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Abstract—A novel method for decoding of low-density parity-
check codes on the AWGN channel is presented. In the proposed
method, first, a standard belief-propagation decoder is applied,
then a certain number of positions is erased using a combination
of a reliability criterion and a set of masks. A list erasure decoder
is then applied to the resulting word. The performance of the
proposed method is analyzed mathematically and demonstrated
by simulations.

I. INTRODUCTION

Performance of low-density parity-check (LDPC) codes
under belief-propagation (BP) decoding is inferior to their
performance under the maximum-likelihood (ML) decoding.

There is a variety of approaches for improving both LDPC
code constructions and the corresponding decoding techniques.
One method to improve the decoding success probability by
lowering the error floors is based on detection of trapping sets
followed by a post-processing of the corresponding subgraphs
in the Tanner graph of the code [1]. In that work, the above
approach is applied to regular LDPC codes with high decoding
error floors. In [2], trapping sets are taken into account and
eliminated when constructing LDPC codes. Both regular and
irregular LDPC codes are studied therein. However, neither [1]
nor [2] demonstrate any significant performance improvement
in the waterfall region.

Near-optimum practical soft decoding techniques for linear
block coding are considered in [3]–[5]. The main idea behind
these techniques is multiple attempts of finding a “good”
(error-free) information set and then reconstructing a codeword
by re-encoding.

Reconstructing a codeword in a situation when only a part
of the symbol set is known is equivalent to decoding on a
binary erasure channel (BEC). Simple decoding algorithms for
LDPC codes used for communicating over BEC appeared in
[6]. Later, suboptimal erasure decoding algorithms for LDPC
codes used over BEC were presented, for example, in [7], [8].

We note that ML decoding of an [n, k] LDPC code (where
n is length of the block and k is the number of information
symbols) with ν erasures is equivalent to solving a system
of linear equations of order ν, that is, can be performed
via the Gaussian elimination with time complexity at most
O(ν3). By taking into account the sparsity of the parity-
check matrix of the codes, the complexity can be lowered to
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approximately O(ν2) (see overview and analysis in [9] and
the references therein). Practically feasible algorithms with
thorough complexity analysis can be found in [10].

The idea to introduce erasures in order to improve perfor-
mances of BP decoding appears in [11], [12]. In [11], symbol
log-likelihood ratios (LLR) after BP decoding are used as a
criterion for introducing erasures. In [12], after BP decoding,
the values of specially selected symbols are guessed, and the
BP decoding is repeated for each guessing attempt.

In this paper, we propose an algorithm, which uses some
ideas similar to [11] and [12], but differs significantly both
in strategy for introducing erasures and in erasure decoding
algorithm. A distinguishing feature of our algorithm is the use
of a list decoding for the BEC.

II. LIST DECODING IN BEC

Consider a BEC with erasure probability ε. Let H be an
r×n parity-check matrix of a binary linear [n, k, dmin] block
code, r = n − k. We denote by hi the i-th column of H ,
i = 1, 2, · · · , n. We use notation HI for the submatrix of H ,
whose columns are indexed by the set I ⊆ {1, 2, ..., n}. We
use 0 to denote a zero vector.

ML decoder corrects any pattern of ν erasures if ν ≤ dmin−
1. If dmin ≤ ν ≤ n − k then a unique correct decision can
be obtained for some erasure patterns. The number of such
correctable patterns depends on the code structure.

Let y = (y1, y2, . . . , yn) be a received vector, where yi ∈
{0, 1, φ}, and the symbol φ represents erasures. We denote
by e = (e1, e2, . . . , en) a binary vector, such that for all i =
1, 2, · · · , n, ei = 1 if yi = φ, and ei = 0 if yi ∈ {0, 1}.
Let I(e) be a set of nonzero coordinates of e, |I(e)| = ν(e),
and z = (z1, z2, ..., zν) be a vector of unknowns located on
positions I(e).

Consider a system of linear equations yHT = 0 which can
be reduced to

zHT
I(e) = s(e) . (1)

where s(e) = yIc(e)H
T
Ic(e) is a syndrome vector

computed using non-erased positions of y and
Ic(e) = {1, 2, . . . , n} \ I(e).

The solution of (1) is unique if ρ(e) , rankHI(e)≥ ν,
otherwise the full list L of candidate solutions contains T =
|L| = 2L elements, where L = ν − ρ(e) .
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Fig. 1. Structure of the parity-check matrix after diagonalization and
reordering of columns

If the code rate R approaches the BEC capacity C = 1− ε,
the typical number of erasures ν ≈ nε→ n(1−R) = n−k. In
that case, with high probability, the dimension L of the linear
space of solutions of (1) is positive.

In general case, by column and row permutations, the
submatrix HI(e) can be represented in the form shown in
Fig. 1. The coordinates of L columns of the submatrix A
determine a set IAA of arbitrarily assigned (AA) positions.

Definition 1. List erasure decoder (LED) is a decoder for
the BEC, which for a given input x with ν erased positions,
outputs a list L of codewords ĉ coinciding with the input word
on all non-erased coordinates.

One of possible implementations of the LED is presented as
Algorithm 1. In this algorithm we call ”pivot” a row chosen to
eliminate nonzero elements in other rows on a position which
we call ”leader”.

III. LED-BASED ALGORITHM FOR AWGN CHANNEL

In this section, we show how the LED can be used for
decoding of LDPC codes on additive white Gaussian noise
(AWGN) channel with input vector v = (v1, v2, ..., vn),
vi = 2ci − 1, and output vector r = (r1, r2, ..., rn). To
describe algorithm we introduce the following notations: L1

is the number of erasures determined by the reliability values
computed by the BP decoder, L2 is the number of additional
erasures, M = {Mi}i=1,...,N is a set of masks, where
Mi ⊂ {1, 2, ..., n} and |Mi| = L2 for i = 1, 2, . . . , N ,
Jmax ≤ 2L denotes the maximal number of allowed candidate
solutions, µ(·) is a decoding metric.

The following three subroutines are used by Algorithm 2.
• (v̂,x)=BPDECOD(r), where v̂ and x are vectors of hard

decisions and of symbol reliabilities, respectively, pro-
duced by the BP decoder. In order to avoid overestimates
due to cycles in the Tanner graph, x is computed as the
minimum of the absolute values of the symbol reliabilities
in the first gT iterations, where gT is a girth of the
corresponding Tanner graph.

• (c, IAA)=LED(ξ), where ξ is a vector v with zeros on
ν erasured positions, and c is a vector of hard decisions
with erasures φ on L AA positions. Function LED can
be implemented as discussed in Section II.

• cj=CANDIDATE (c, IAA, j). This subroutine generates the
j-th candidate codeword from the full list of solutions
of (1). This is done by constructing a list W of Jmax

binary words of length L = |IAA| = log2 |L| ordered
according to the ascending order of their weights. Then,
the jth candidate is obtained by flipping AA bits in
positions determined by the ones of the j-th element in
W .

Now, we discuss the strategy for selecting the N masks
used in Step 3 of Algorithm 2. These masks are used to erase
L2 symbols in addition to already erased L1 symbols. This
step in the algorithm is similar to the bit flipping step in other
information sets based decoding algorithms, such as [4], [5].
The choice of the parameters N and L2 depends on the code
length and the code rate. We found empirically that for the rate
R = 1/2, for any code length, we can choose 5 ≤ N ≤ 10
and L2 ≈ 0.15n.

We use pseudo-randomly pre-selected binary sequences of
length 2L2 and weight L2 as masks. Masks are applied to the
next 2L2 less reliable entries, after L1 positions have already
been erased.

We use the Euclidean distance between the channel output r
and 2c−1 as the decoding metric µ(c), where c is a candidate
codeword. Alternatively, we can maximize the scalar product
of r and 2c− 1.

As it is shown in Algorithm 2, first, ν = L1 + L2

input symbols are erased (see below). Next, LED is used for
correcting ρ erasures and producing a list IAA of the AA
positions.

IV. ALGORITHM ANALYSIS

There are two main reasons for the algorithm failure. First,
an erroneous bit can be mistakenly identified as reliable, in
that case it is not erased in Steps 2 and 3 of the algorithm.
Second, the list size could be too large, so the correct decision
is not found in Step 5 because of the decoding complexity
restrictions.

A. Probability of non-erased hard decision errors after BP
and masking

Unlike “classical” information set (IS) based decoding
techniques [3] on the AWGN channel, symbol reliabilities
can be used as a prompt for choosing the IS. Additionally,
in ordered statistic decoding and Box-and-Match decoding
[4], [5] the low-weight combinations of symbol inversions
are employed to catch small error patterns in the IS. In the
proposed algorithm, we follow a similar strategy, yet we
apply a preliminary BP decoding step in order to improve
the decoding efficiency.

In Fig. 2, we demonstrate the distribution of the erroneous
hard decisions in the ordered (in descending order of relia-
bilities) code positions. Only the frames, for which the BP
decoding leads to the decoding error, are taken into account.
The simulation parameters are: SNR=2.5 dB, n = 520,
maximum number of iterations 50. As it can be seen from the
plot, the preliminary BP decoding step noticeably reduces the



Algorithm 1 LED algorithm for decoding of LDPC code on
the BEC channel

Input: y = (y1, · · · , yn) ∈ {0, 1, φ}n.
Initialization:
IAA ← ∅; I(e)← {i : yi = φ} ;
ν ← |I(e)|; s← yIc(e)H

T
Ic(e).

Step 1:
while there is a check j with one erased position yi do

yi ← sj ;
I(e)← I(e)\{i};
ν ← ν − 1;
Update s;
if ν = 0 then goto Step 3;
end if

end while
Step 2:
if there is a check j with erasures not used as pivot then

Select a check j as a pivot;
Select yi = φ as a leader;
Gaussian elimination of row j:
Modify all checks which include position i;
Update s;
goto Step 1.

end if

Step 3: IAA ← I(e) , c← y.
Step 4: Return c and IAA .

Algorithm 2 Algorithm for decoding of LDPC code on the
AWGN channel

Input: the vector of LLRs r = (r1, . . . , rn) ∈ Rn.
Let µopt ←∞.
Step 1:
(v̂,x) = BPDECOD(r); ĉ = (v̂ + 1)/2;
if ĉHT = 0 then goto Step 6;
end if
Step 2:
ξ ← v̂ with zeros on L1 least reliable positions in x.
for i = 1 to N do

Step 3:
Use mask Mi to erase L2 non-erased positions in ξ.
Step 4:
(c, IAA)← LED(ξ);
Initialize AA positions in c0 by hard decisions from r.

Step 5:
for j = 1 to Jmax do

Compute codeword c′ from c and cj−1;
if µ(c′) < µopt then let ĉ← c′; µopt ← µ(c′);
end if

Generate next candidate cj = CANDIDATE(c, IAA, j);
end for

end for
Step 6: Return ĉ.
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Fig. 2. Locations of hard decision errors in list of ascending reliability
ordered positions

probability of the hard decision errors within the 50% of the
most reliable positions (for code rate R = 1/2), thus leading
to a lower overall decoding error probability.

B. Probability of large list size after LED

For simplicity, hereafter we consider an ensemble of random
(J,K)-regular LDPC codes equivalent to the Gallager ensem-
ble [13]. In the considered ensemble a parity-check matrix H
consists of the strips of width M = r/J rows each. All strips
are random column permutations of the strip where the ith
row contains K ones in positions from (i − 1)K + 1 up to
iK, i = 1, 2, · · · , n/K.

A set of solutions of zHT
I(e) = 0 represents a coset of

solutions of (1), that is, has the same number of solutions as
(1). We denote this number by T . Note that the solution will
be unique if HI(e) has rank ρ = ν.

Introduce a random variable

χ(z) =

{
1, zHT

I(e) = 0

0, zHT
I(e) 6= 0

.

Then T =
∑

z χ(z) and

E[T ] =
∑
z

E[χ(z)] =
∑
z

Pr(zHT
I(e) = 0) . (2)

The RHS of (2) can represented in the form

E[T ] = 2ν ·
∑
z

Pr(zHT
I(e) = 0)

1

2ν

= 2ν ·
∑
z

Pr(zHT
I(e) = 0)p(z)

assuming the vector z is chosen uniformly at random from
{0, 1}ν . Rank of HI(e) can be reduced: (i) due to all-zero
rows in HI(e) and (ii) due to linearly-dependent columns in the
sparse matrix HI(e). Consider a random vector s = zHT

I(e).
Denote by sji a subvector (si, ..., sj). The probability of the
all-zero subvector of s corresponding to one-strip part of the
parity-check matrix is

p(sM1 = 0) = p(s1 = 0)

M∏
i=2

p(si = 0|si−11 = 0) ,



TABLE I
EXAMPLE OF CRITICAL VALUES OF α = ν/r

Rate 1/5 1/4 1/2 5/8 3/4
(J,K) (4,5) (3,4) (4,8) (3,8) (3,12) (4,16)
α 0.9995 0.994 0.994 0.975 0.944 0.984

where
p(si = 0|si−11 = 0)

= p(si = 0|wi = 0, si−11 = 0)p(wi = 0|si−11 = 0)

+ p(si = 0|wi > 0, si−11 = 0)p(wi > 0|si−11 = 0)
(a)
= p(wi = 0|si−11 = 0) +

1

2
p(wi > 0|si−11 = 0)

=
1

2

(
1 + p(wi = 0|si−11 = 0)

)
,

and p(wi = w|si−11 = 0) denotes the conditional probability
that the ith row of HI(e) has weight w given that the syndrome
components (s1, s2, . . . , si−1) are zeros. In order to obtain (a)
first we substitute p(si = 0|wi = 0, si−11 = 0) = 1 and
additionally we take into account that that a projection of the
random vector z on a nonzero parity check of HI(e) is equal
to zero with probability 1/2. Notice that

p(wi = 0|si−11 = 0) = p(wi = 0)
p(si−11 = 0|wi = 0)

p(si−11 = 0)
.

Since the fraction in RHS of the latter equation is upper-
bounded by 1 then (we skip the details due to the space
limitations)

p(si = 0|si−11 = 0) ≤ 1

2
(1 + p(wi = 0)) .

Since the strips are obtained by the independent random
permutations, we have

p(s = 0) = p(sM1 = 0)J ≤ p(s1 = 0)MJ = p(s1 = 0)r .

The probability that the row i in HI(e) has only zeros can
be bounded from above by

p(wi = 0) =

(
n−ν
K

)(
n
K

) ≤ (n− ν
n

)K
. (3)

The probability that the entire sequence of length ν is a
codeword (all r components of the syndrome are equal to
zero) is

p(s = 0) ≤ 2−r
(
1 +

(
1− ν

n

)K)r
; . (4)

Denote by α = ν/r the normalized number of erasures.
Asymptotic exponent of list size is determined by

ϕ(α, J,K) = lim
r→∞

E[L]

r
≤ lim
r→∞

log2 E[T ]

r

≤ α− 1 + log2

(
1 +

(
1− α J

K

)K)
. (5)

It is interesting to find a critical (largest) value of α, such that
ϕ(α, J,K) = 0.

We expect that for sparse matrices α < 1. Examples of
critical values of α for different code rates R = 1− J/K and
K are given in Table I. We can see that α is close to 1 even for

rather sparse parity-check matrices. It means that the allowable
fraction of erasures ν/n can be chosen close to 1−R.

V. SIMULATION RESULTS

All simulated parity-check matrices were obtained from the
same matrix of the irregular LDPC convolutional code used in
[14] as a competitor for the standard code from the WiMAX
standard. To facilitate low complexity encoding, the degree
matrix of the LDPC code [14] has the form

D =
(
Dbd DI

)
, (6)

where the submatrix Dbd of size 12× 11 is

Dbd =

 0 0 −1 . . . −1 −1
−1 0 0 . . . −1 −1
. . . . . . . . . . . . . . . . . .
−1 −1 −1 . . . 0 0

 (7)

and

DI =



0 −1 −1 −1 0 −1 0 −1 −1 0 −1 0 0
−1 −1 0 −1 −1 0 −1 −1 −1 16 0 5 −1
−1 0 −1 −1 −1 −1 −1 −1 0 12 1 −1 7
−1 −1 −1 −1 6 −1 −1 0 −1 15 7 11 −1
13 −1 −1 −1 −1 −1 −1 11 22 −1 1 21 4
−1 −1 8 −1 −1 −1 21 −1 −1 12 14 −1 19
−1 −1 −1 0 −1 10 −1 −1 15 21 −1 12 3
−1 10 −1 −1 −1 −1 −1 18 −1 5 14 21 23
−1 −1 −1 3 −1 −1 8 −1 −1 18 23 16 11
−1 −1 14 −1 23 −1 −1 −1 20 −1 11 22 7
0 −1 −1 −1 −1 19 −1 −1 −1 18 6 5 22
−1 20 −1 1 −1 −1 −1 −1 −1 5 11 23 19


.

In Figs. 3 and 4, the FER performance of the BP decoding
with 50 iterations and the LED-based decoding for R = 1/2
codes of length n = 288, 576, 864 and 1152 are shown.
For comparison, in Fig. 4 the FER performance of the BP
decoding of the WiMAX standard code of length n = 576 is
presented. The parameters in all simulations were the same:
the total number of erased symbols αn = 0.5n. Among them,
(α − β)n = 0.35n positions were selected according to the
reliabilities, estimated by the BP decoding, and βn = 0.15n
positions were selected pseudo-randomly from the next 2β =
0.3n less reliable positions. The number of trials was chosen
to be equal N = 5. All the simulations were run until at least
50 LED-decoding block errors occurred.

The abbreviations LED-8 and LED-16 denote decoding with
the list size Lmax = 28 and Lmax = 216 in Step 5 of
Algorithm 2, respectively. As expected, LED-16 yields lower
FER than LED-8, yet the gain is not large enough to justify
much higher decoding complexity.

From the presented results, we can conclude that the energy
gain grows with the SNRb. In all four cases the gain from
using the LED at FER ≈ 10−5 is about 0.5 dB.

The estimated decoding time is shown in Fig. 5. Execution
time was measured at SNRb=2.25 dB for Step 4 and Step 5
in Algorithm 2 separately. The simulations were performed
on desktop computer with Intel Core i5 processor. Only the
blocks, where the BP decoding has failed, were taken into
account.

By the dashed lines we show the polynomial approximations
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Fig. 3. FER performance of codes of rate R = 1/2 and length n = 288
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κ4 = 1.07× 10−6n2 + 4.27× 10−4n− 0.00385 , (8)
κ5 = 4.73× 10−6n2 + 6.74× 10−3n− 0.0674 , (9)

for computation time of Steps 4 and 5, respectively.
As it was mentioned in the Introduction, the expected

decoding complexity for Step 4 is a cubic function of the code
length n. Nevertheless, the observed average decoding time
grows approximately linearly with code length. Approximation
(8) shows that contribution of the quadratic term is negligible.

By contrast, the linear complexity of Step 5 for a fixed num-
ber of decoding attempts can be readily explained. Complexity
of each codeword reconstruction and computing its metric is
proportional to the list dimension L (see Fig.1).

Although complexity grows approximately linearly, the al-
gorithm loses efficiency for large n since a typical number
L of AA positions grows as well. To maintain the decoding
efficiency, parameters N and Lmax should also be increased,
which leads to impractically high computational complexity
for length above 2000.

VI. CONCLUSIONS

In this paper, we presented a novel decoding algorithm for
LDPC codes used in conjunction with the AWGN channel.
This algorithm consists of a standard BP decoder followed by
list erasure decoder.
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Fig. 5. Complexities of Steps 4 (LED) and 5 (search for the best candidate
from the list) and their polynomial approximations.

We simulated the proposed algorithm for the irregular LDPC
codes of rate R = 1/2 optimized for BP decoding. It is shown
that the new algorithm outperforms the standard BP decoding
for the chosen codes. We observed that the growth of the
average decoding complexity of the most heavy steps in the
algorithm is almost linear with the code length.
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