Minimum Distance Bounds for Expander Codes

Vitaly Skachek
Claude Shannon Institute
University College Dublin

Open Problems Session
Information Theory and Applications Workshop
UCSD
January 28, 2008
Basic Definitions
Base Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.
Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The *Hamming distance* between $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ in Σ^n, $d(\mathbf{x}, \mathbf{y})$, is the number of pairs of symbols (x_i, y_i), $1 \leq i \leq n$, such that $x_i \neq y_i$.
Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

- The *Hamming distance* between $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ in Σ^n, $d(\mathbf{x}, \mathbf{y})$, is the number of pairs of symbols (x_i, y_i), $1 \leq i \leq n$, such that $x_i \neq y_i$.
- The *minimum distance* of a code C is

$$d = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y}).$$
Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

- The *Hamming distance* between $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in Σ^n, $d(x, y)$, is the number of pairs of symbols (x_i, y_i), $1 \leq i \leq n$, such that $x_i \neq y_i$.
- The *minimum distance* of a code C is
 \[d = \min_{x, y \in C, x \neq y} d(x, y). \]
- The *relative minimum distance* of C is defined as $\delta = d/n$.

Vitaly Skachek
Minimum Distance Bounds
A code \mathcal{C} over field $\mathbb{F} = \text{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n - k$ such that

$$\mathcal{H}x^t = \bar{0} \iff x \in \mathcal{C}.$$

The matrix \mathcal{H} is a parity-check matrix.

The value k is the dimension of the code \mathcal{C}.

The ratio $r = k/n$ is the rate of the code \mathcal{C}.
Definition

- A code \mathcal{C} over field $\mathbb{F} = \text{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n - k$ such that
 $$\mathcal{H}x^t = \bar{0} \iff x \in \mathcal{C}.$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r = k/n$ is the rate of the code \mathcal{C}.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ.

Vitaly Skachek Minimum Distance Bounds
A code C over field $F = \text{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix H with n columns and rank $n - k$ such that

$$Hx^t = \bar{0} \iff x \in C.$$

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio $r = k/n$ is the rate of the code C.

Let C be a code of minimum distance d over Σ.

The unique decoding problem:
Linear Code

Definition

- A code \(C \) over field \(\mathbb{F} = \text{GF}(q) \) is said to be a *linear* \([n, k, d]\) code if there exists a matrix \(\mathcal{H} \) with \(n \) columns and rank \(n - k \) such that

\[
\mathcal{H} x^t = \bar{0} \iff x \in C.
\]

- The matrix \(\mathcal{H} \) is a *parity-check matrix*.
- The value \(k \) is the *dimension* of the code \(C \).
- The ratio \(r = k/n \) is the *rate* of the code \(C \).

Definition

- Let \(C \) be a code of minimum distance \(d \) over \(\Sigma \).
- The *unique decoding problem*:
 - **Input**: \(y \in \Sigma^n \).
Definition

A code C over field $\mathbb{F} = \text{GF}(q)$ is said to be a *linear* $[n, k, d]$ *code* if there exists a matrix H with n columns and rank $n - k$ such that

$$Hx^t = \bar{0} \Leftrightarrow x \in C.$$

The matrix H is a *parity-check matrix*.

The value k is the *dimension* of the code C.

The ratio $r = k/n$ is the *rate* of the code C.

Definition

Let C be a code of minimum distance d over Σ.

The *unique decoding problem*:

Input: $y \in \Sigma^n$.

Find: $c \in C$, such that $d(c, y) < d/2$.

Vitaly Skachek Minimum Distance Bounds
Let $H_q : [0, 1] \to [0, 1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q (q - 1) - x \log_q x - (1 - x) \log_q (1 - x).$$
Let $H_q : [0, 1] \rightarrow [0, 1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q (q - 1) - x \log_q x - (1 - x) \log_q (1 - x).$$

Theorem

Let $F = GF(q)$, and let $\delta \in (0, 1 - 1/q]$ and $R \in (0, 1)$, such that

$$R \leq 1 - H_q(\delta).$$

Then, for large enough values of n, there exists a linear $[n, Rn, \geq \delta n]$ code over F.

Vitaly Skachek

Minimum Distance Bounds
Let $H_q : [0, 1] \rightarrow [0, 1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q(q - 1) - x \log_q x - (1 - x) \log_q(1 - x).$$

Theorem

Let $\mathbb{F} = \text{GF}(q)$, and let $\delta \in (0, 1 - 1/q]$ and $R \in (0, 1)$, such that

$$R \leq 1 - H_q(\delta).$$

Then, for large enough values of n, there exists a linear $[n, Rn, \geq \delta n]$ code over \mathbb{F}.

- The above expression is called the *Gilbert-Varshamov bound*.
Let $H_q : [0, 1] \rightarrow [0, 1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q(q - 1) - x \log_q x - (1 - x) \log_q(1 - x).$$

Theorem

Let $F = GF(q)$, and let $\delta \in (0, 1 - 1/q]$ and $\mathcal{R} \in (0, 1)$, such that

$$\mathcal{R} \leq 1 - H_q(\delta).$$

Then, for large enough values of n, there exists a linear $[n, \mathcal{R}n, \geq \delta n]$ code over F.

- The above expression is called the *Gilbert-Varshamov bound*.
- Denote $\delta_{GV}(\mathcal{R}) = H_2^{-1}(1 - \mathcal{R})$.
Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = \text{GF}(q)$ (inner code).

[Forney ’66]
Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = \text{GF}(q)$ (inner code).
- A linear $[N, R\Phi N, \delta\Phi N]$ code C_Φ over $\Phi = \mathbb{F}^k$ (outer code).
Concatenated Codes

[Forney ’66] Ingredients:

- A linear \([\Delta, k=r\Delta, \theta\Delta]\) code \(C\) over \(\mathbb{F} = \text{GF}(q)\) (inner code).
- A linear \([N, R_{\Phi}N, \delta_{\Phi}N]\) code \(C_{\Phi}\) over \(\Phi = \mathbb{F}^k\) (outer code).
- A linear one-to-one mapping \(E : \Phi \rightarrow C\).
Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code C_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).
- A linear one-to-one mapping $E : \Phi \rightarrow C$.

Concatenated code C of length $N = \Delta n$ over \mathbb{F} is defined as

$$C = \left\{ (c_1|c_2| \cdots |c_n) \in \mathbb{F}^{\Delta n} : c_i = E(a_i) , \right.$$ for $i \in 1, 2, \cdots, n$, and $(a_1a_2 \cdots a_n) \in C_{\Phi} \right\}.$$
[Forney ’66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = GF(q)$ (inner code).
- A linear $[N, R_\Phi N, \delta_\Phi N]$ code C_Φ over $\Phi = \mathbb{F}^k$ (outer code).
- A linear one-to-one mapping $E : \Phi \to C$.

Concatenated code C of length $N = \Delta n$ over \mathbb{F} is defined as

$$C = \left\{ (c_1|c_2|\cdots|c_n) \in \mathbb{F}^{\Delta n} : c_i = E(a_i), \right. $$

where $i \in \{1, 2, \ldots, n\}$, and $(a_1a_2\cdots a_n) \in C_\Phi$.

- The rate of C: $R = rR_\Phi$.

Vitaly Skachek
Minimum Distance Bounds
Concatenated Codes

[Forney '66] Ingredients:
- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = \text{GF}(q)$ (inner code).
- A linear $[N, R_\Phi N, \delta_\Phi N]$ code C_Φ over $\Phi = \mathbb{F}^k$ (outer code).
- A linear one-to-one mapping $\mathcal{E} : \Phi \rightarrow C$.

Concatenated code C of length $N = \Delta n$ over \mathbb{F} is defined as

$$C = \left\{ (c_1|c_2|\cdots|c_n) \in \mathbb{F}^{\Delta n} : c_i = \mathcal{E}(a_i), \quad\text{for } i \in 1, 2, \cdots, n, \text{ and } (a_1a_2\cdots a_n) \in C_\Phi \right\}.$$

- The rate of C: $R = rR_\Phi$.
- The relative minimum distance of C: $\delta \geq \theta \delta_\Phi$.

Vitaly Skachek Minimum Distance Bounds
Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2}\delta$.
Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2}\delta$.

Justesen ’72 For a wide range of rates, concatenated codes attain the Zyablov bound:

$$\delta \geq \max_{\frac{R}{q} \leq r \leq 1} \left(1 - \frac{R}{r}\right) H^{-1}_q(1 - r).$$
Concatenated Codes (Cont.)

- **Generalized minimum distance** (GMD) decoder corrects any fraction of errors up to \(\frac{1}{2} \delta \).

- **[Justesen ’72]** For a wide range of rates, concatenated codes attain the **Zyablov bound**:

\[
\delta \geq \max_{\mathcal{R} \leq r \leq 1} \left(1 - \frac{\mathcal{R}}{r} \right) \mathcal{H}^{-1}_q(1 - r).
\]

- **[Blokh-Zyablov ’82]** Multilevel concatenations of codes (almost) attain the **Blokh-Zyablov bound**:

\[
\mathcal{R} = 1 - \mathcal{H}_2(\delta) - \delta \int_0^{1 - \mathcal{H}_2(\delta)} \frac{dx}{\mathcal{H}_2^{-1}(1 - x)}.
\]
Consider a Δ-regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
Consider a Δ-regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.
- Let $\lambda^*_\mathcal{G}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
Consider a Δ-regular graph $G = (V, E)$.

The largest eigenvalue of the adjacency matrix A_G of G equals Δ.

Let λ^*_G be the second largest absolute value of eigenvalues of A_G.

Lower ratios of λ^*_G/Δ imply greater values of expansion [Alon ’86].
Consider a Δ-regular graph $G = (V, E)$. The largest eigenvalue of the adjacency matrix A_G of G equals Δ. Let λ_G^* be the second largest absolute value of eigenvalues of A_G. Lower ratios of λ_G^*/Δ imply greater values of expansion \[\text{[Alon '86]}\].

Expander graphs with

$$\lambda_G^* \leq 2\sqrt{\Delta} - 1$$

are called a Ramanujan graphs. Constructions are due to \[\text{[Lubotsky Philips Sarnak '88]}, \text{[Margulis '88]}\].
Consider a Δ-regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.

Let $\lambda^*_\mathcal{G}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.

Lower ratios of $\lambda^*_\mathcal{G}/\Delta$ imply greater values of expansion [Alon ’86].

Expander graphs with

$$\lambda^*_\mathcal{G} \leq 2\sqrt{\Delta} - 1$$

are called a Ramanujan graphs. Constructions are due to [Lubotsky Philips Sarnak ’88], [Margulis ’88].

Let $\lambda_{\mathcal{G}}$ be the second largest eigenvalues of $A_{\mathcal{G}}$ and $\gamma_{\mathcal{G}} = \lambda_{\mathcal{G}}/\Delta$.
G is bipartite: $\mathcal{V} = A \cup B$,
$A \cap B = \emptyset$, $|A| = |B| = n$.

Ordering on the vertices and the edges.

Denote by $(z)_{\mathcal{E}(u)}$ the sub-block of z that is indexed by $\mathcal{E}(u)$.

Let \mathcal{C}_A and \mathcal{C}_B be two linear codes of length Δ over \mathbb{F}.

Denote $N = |\mathcal{E}| = \Delta n$.
\(G \) is bipartite: \(V = A \cup B, \ A \cap B = \emptyset, \ |A| = |B| = n. \)

Ordering on the vertices and the edges.

Denote by \((z)_{\mathcal{E}(u)}\) the sub-block of \(z\) that is indexed by \(\mathcal{E}(u)\).

Let \(C_A\) and \(C_B\) be two linear codes of length \(\Delta\) over \(\mathbb{F}\).

Denote \(N = |\mathcal{E}| = \Delta n\).

The code \(C = (G, C_A : C_B)\):

\[
C = \left\{ c \in \mathbb{F}^N : (c)_{\mathcal{E}(u)} \in C_A \text{ for } v \in A \right. \\
\left. \text{ and } (c)_{\mathcal{E}(v)} \in C_B \text{ for } u \in B \right\}.
\]
\(G \) is bipartite: \(V = A \cup B \), \(A \cap B = \emptyset \), \(|A| = |B| = n \).

- Ordering on the vertices and the edges.
- Denote by \((z)_{E(u)}\) the sub-block of \(z \) that is indexed by \(E(u) \).
- Let \(C_A \) and \(C_B \) be two linear codes of length \(\Delta \) over \(\mathbb{F} \).
- Denote \(N = |E| = \Delta n \).

The code \(\mathcal{C} = (G, C_A : C_B) \):

\[
\mathcal{C} = \left\{ c \in \mathbb{F}^N : (c)_{E(u)} \in C_A \text{ for } v \in A \right. \\
\left. \quad \text{and } (c)_{E(v)} \in C_B \text{ for } u \in B \right\} .
\]
‘Dangling edges’ are introduced [Barg Zémor ’03].
‘Dangling edges’ are introduced [Barg Zémor ’03].

Mimics behavior of concatenated codes.
‘Dangling edges’ are introduced [Barg Zémor ’03].

Mimics behavior of concatenated codes.

Can be viewed as a concatenation of two codes [Roth Skachek ’04].
‘Dangling edges’ are introduced [Barg Zémor ’03].

Mimics behavior of concatenated codes.

Can be viewed as a concatenation of two codes [Roth Skachek ’04].

Another construction with similar properties [Guruswami Indyk ’02].
Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].
Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].

Lower bounds on the relative minimum distance

(i) \[
\delta(\mathcal{R}) \geq \frac{1}{4}(1 - \mathcal{R})^2 \cdot \min_{\delta_{GV}((1+\mathcal{R})/2)<B<\frac{1}{2}} \frac{g(B)}{H_2(B)},
\]

where the function \(g(B) \) is defined in the next slides.

(ii) \[
\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r \leq 1} \left\{ \min_{\delta_{GV}(r)<B<\frac{1}{2}} \left(\delta_0(B, r) \cdot \frac{1 - \mathcal{R}/r}{H_2(B)} \right) \right\},
\]

where the function \(\delta_0(B, r) \) is defined in the next slides.
Definition of the Function $g(\mathcal{B})$

These two families of codes surpass the Zyablov bound.
Definition of the Function $g(B)$

These two families of codes surpass the Zyablov bound.

Let $\delta_{GV}(R) = H_2^{-1}(1 - R)$, and let B_1 be the largest root of the equation

$$H_2(B) = H_2(B) \left(B - H_2(B) \cdot \frac{\delta_{GV}(R)}{1 - R} \right) = -(B - \delta_{GV}(R)) \cdot \log_2(1 - B).$$

Moreover, let

$$a_1 = \frac{B_1}{H_2(B_1)} - \frac{\delta_{GV}(R)}{H_2(\delta_{GV}(R))},$$

and

$$b_1 = \frac{\delta_{GV}(R)}{H_2(\delta_{GV}(R))} \cdot B_1 - \frac{B_1}{H_2(B_1)} \cdot \delta_{GV}(R).$$
The function $g(B)$ is defined as

$$
g(B) = \begin{cases}
\frac{\delta_{GV}(R)}{1 - R} & \text{if } B \leq \delta_{GV}(R) \\
B & \text{if } \delta_{GV}(R) \leq B \text{ and } R \leq 0.284 \\
\frac{B}{H_2(B)} & \text{if } \delta_{GV}(R) \leq B \leq B_1 \text{ and } 0.284 < R \leq 1 \\
\frac{a_1 B + b_1}{B_1 - \delta_{GV}(R)} & \text{if } B_1 < B \leq 1 \text{ and } 0.284 < R \leq 1
\end{cases} \, .
$$
Definition of the Function $\delta_0(B, r)$

The function $\delta_0(B, r)$ is defined to be $\omega**(B)$ for $\delta_{GV}(r) \leq B \leq B_1$, where

$$\omega**(B) = rB + (1 - r)H_2^{-1} \left(1 - \frac{r}{1 - r}H_2(B) \right),$$

and B_1 is the only root of the equation

$$\delta_{GV}(r) = w^*(B),$$

where

$$w^*(B) = (1-r) \left((2^{H_2(B)/B} + 1)^{-1} + \frac{B}{H_2(B)} \left(1 - H_2 \left((2^{H_2(B)/B} + 1)^{-1} \right) \right) \right).$$

For $B_1 \leq B \leq \frac{1}{2}$, the function $\delta_0(B, r)$ is defined to be a tangent to the function $\omega**(B)$ drawn from the point $\left(\frac{1}{2}, \omega^*(\frac{1}{2}) \right)$.
Minimum Distance Bounds

Comparison of Bounds

- Zyablov bound
- Barg–Zemor bound 1
- Barg–Zemor bound 2
- Blokh–Zyablov bound
- Gilbert–Varshamov bound

Vitaly Skachek
$\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
Let $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before.

Let $B = B^1 \cup B^2$, $B^1 \cap B^2 = \emptyset$. Let $|B^2| = \eta n$, $|B^1| = (1 - \eta)n$, $\eta \in [0, 1]$.

Vitaly Skachek Minimum Distance Bounds
Let $G = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before.

Let $B = B^1 \cup B^2$, $B^1 \cap B^2 = \emptyset$. Let $|B^2| = \eta n$, $|B^1| = (1-\eta)n$, $\eta \in [0,1]$.

C_A, C_1 and C_2 are linear $[\Delta, r_A \Delta, \delta_A \Delta]$, $[\Delta, r_1 \Delta, \delta_1 \Delta]$ and $[\Delta, r_2 \Delta, \delta_2 \Delta]$ codes over \mathbb{F}, respectively.
Generalized Expander Codes

- $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
- $B = B^1 \cup B^2$, $B^1 \cap B^2 = \emptyset$. Let $|B^2| = \eta n$, $|B^1| = (1 - \eta)n$, $\eta \in [0, 1]$.
- \mathcal{C}_A, \mathcal{C}_1 and \mathcal{C}_2 are linear $[\Delta, r_A \Delta, \delta_A \Delta]$, $[\Delta, r_1 \Delta, \delta_1 \Delta]$ and $[\Delta, r_2 \Delta, \delta_2 \Delta]$ codes over \mathbb{F}, respectively.

The code code $\mathcal{C} = (\mathcal{G}, \mathcal{C}_A, \mathcal{C}_1, \mathcal{C}_2)$:

$$\mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}^N : (\mathbf{c})_{\mathcal{E}(u)} \in \mathcal{C}_A \text{ for } u \in A, \right.$$

$$(\mathbf{c})_{\mathcal{E}(u)} \in \mathcal{C}_1 \text{ for } u \in B^1$$

and $$(\mathbf{c})_{\mathcal{E}(u)} \in \mathcal{C}_2 \text{ for } u \in B^2$$ $$\right\}$$
\[\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E}) \] be a bipartite \(\Delta \)-regular, as before

\[B = B^1 \cup B^2, \quad B^1 \cap B^2 = \emptyset. \]
Let \(|B^2| = \eta n, \quad |B^1| = (1 - \eta)n, \quad \eta \in [0, 1]. \)

\(C_A, \ C_1 \) and \(C_2 \) are linear
\([\Delta, r_A \Delta, \delta_A \Delta], \ [\Delta, r_1 \Delta, \delta_1 \Delta] \) and
\([\Delta, r_2 \Delta, \delta_2 \Delta] \) codes over \(\mathbb{F} \), respectively.

The code code \(\mathbb{C} = (\mathcal{G}, C_A, C_1, C_2) \):

\[\mathbb{C} = \left\{ \mathbf{c} \in \mathbb{F}^N \ :
ight. \begin{array}{l}
(c)_{\mathcal{E}(u)} \in C_A \text{ for } u \in A, \\
(c)_{\mathcal{E}(u)} \in C_1 \text{ for } u \in B^1 \\
\text{and } (c)_{\mathcal{E}(u)} \in C_2 \text{ for } u \in B^2 \end{array} \left. \right\} \]
Properties of Generalized Expander Codes

- **The rate:** \(R \geq r_A + (1 - \eta)r_1 + \eta r_2 - 1. \)
Properties of Generalized Expander Codes

- **The rate:** \(R \geq r_A + (1 - \eta)r_1 + \eta r_2 - 1. \)

- Assume
 \[
 \eta < \frac{\delta_A - \gamma_g \sqrt{\delta_A/\delta_2}}{1 - \gamma_g} - \gamma_g^{2/3}.
 \]

 Then, the relative minimum distance:

 \[
 \delta > \delta_A (\delta_1 - \frac{1}{2} \gamma_g^{2/3}).
 \]

 \Rightarrow The code \(C \) attains the **Zyablov bound**.
Properties of Generalized Expander Codes

- **The rate:** $\mathcal{R} \geq r_A + (1 - \eta)r_1 + \eta r_2 - 1$.
- Assume
 \[
 \eta < \frac{\delta_A - \gamma G \sqrt{\delta_A/\delta_2}}{1 - \gamma G} - \gamma G^{2/3}.
 \]

Then, the relative minimum distance:

\[
\delta > \delta_A(\delta_1 - \frac{1}{2}\gamma G^{2/3}).
\]

\Rightarrow The code \mathbb{C} attains the **Zyablov bound**.

- **A linear-time decoding algorithm:** if $\delta_1 > 2\gamma G^{2/3}$ and η as above, the decoder corrects any error pattern of size $J_{\mathbb{C}}$,

 \[
 J_{\mathbb{C}} \triangleq \frac{\frac{1}{2} \delta_1 - \gamma G^{2/3} \left(1 + \sqrt{2 \left(\delta_1 - 2\gamma G^{2/3}\right)}\right)}{1 - \gamma G} \cdot \delta_A \Delta n.
 \]

The number of correctable errors is (almost) half of the Zyablov bound.
Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(R) \geq \max_{R \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - R/r_A}{H_2(\beta)} \right) \right\} - \varepsilon.$$
Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - \mathcal{R}/r_A}{H_2(\beta)} \right) \right\} - \varepsilon.$$

Consider a code \mathbb{C} with parameter $\eta = 0$. Then, $|B^2| = 0$, and the code \mathbb{C} coincides with the code in [Barg Zémor’02].
Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes C of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - \mathcal{R}/r_A}{H_2(\beta)} \right) \right\} - \varepsilon.$$

Consider a code C with parameter $\eta = 0$. Then, $|B^2| = 0$, and the code C coincides with the code in [Barg Zémor’02]. The minimum distance:

$$\delta(\mathcal{R}) \geq \frac{1}{4} (1 - \mathcal{R})^2 \cdot \min_{\delta_{GV}((1+\mathcal{R})/2) < B < \frac{1}{2}} \frac{g(B)}{H_2(B)}.$$
Minimum Distance Bounds

Comparison of Bounds

- Zyablov bound
- Barg–Zemor bound 1
- Barg–Zemor bound 2
- Blokh–Zyablov bound
- Gilbert–Varshamov bound

Vitaly Skachek
Further improvements on the minimum distance bounds.
Further improvements on the **minimum distance bounds**.

Bounds on the **error-correcting capabilities** of the decoders.
Further improvements on the minimum distance bounds.

 Bounds on the error-correcting capabilities of the decoders.

 Could other types of expander graphs yield better properties?
Open Problems

- Further improvements on the **minimum distance bounds**.
- Bounds on the **error-correcting capabilities** of the decoders.
- Could **other types of expander graphs** yield better properties?
- Do the **generalized expander codes** have any **advantage** over the known expander codes?