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1. Data Dissemination Problem

Generalization of the index coding and the data ex-
change problem to networks with arbitrary topology
and requests.
Example 1 There are five nodes, which in total possess
three bits of information x1, x2, x3. If node 1 transmits x1+x2
and node 2 transmits x2 + x3, then the requests of all nodes
will be satisfied with only two transmissions.
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1
has x1, x2

2
has x2, x3

3
has x1

requests x2, x3

4
has x2

requests x1, x3

5
has x1, x3

requests x2

& %
transmits x1 + x2

& %
transmits x2 + x3

Figure 1: Example network

2. Problem setup

G(V , E) is a directed graph with the vertex set V and the
edge set E . x = (x1, . . . , xn) ∈ Fn is the information
vector. Each node ` ∈ V possesses as side information
the symbols xj, j ∈ P` ⊆ [n] and requests the symbols
xi, i ∈ T` ⊆ [n]\P`. For each ` ∈ V, let Nin(`) be the set
of incoming edges. Denote by (A)i,j the entry in the i-th
row and j-th column of the matrix A. For v ∈ Fn, diag(v)
returns a matrix whose diagonal entries are the elements
of v and other values are zeroes.
•E is the all-one square matrix;
• I is the identity matrix;
•D is the transposed adjacency matrix of the graph.

The goal is to find a schedule which minimizes the
number of transmissions such that each node obtains
the requested symbols.

Definition 1 The network based on the graph G(V , E) is
said to be r-solvable if for any combination of the sets P`
and T`, ` ∈ V, r communications rounds are sufficient to
satisfy all the node requests, but r − 1 rounds are not suffi-
cient. If the network is not r-solvable for any r ∈ N, then we
say that it is not solvable.

3. Possession and query matrices

For each node ` ∈ V, define a matrix family A` as

(A`)i,j =

{
“ ? ” if j ∈ P`

0 otherwise .

Each entry “ ? ” can be replaced by an arbitrary element in
F. In this way, A` denotes a family of matrices over F.
The matrix family A is defined as

A =


A1
A2
...
Ak

 .
Given A ∈ A, the j-th n×n sub-matrix of A will be denoted
as Aj. We will also use the notation ANin(`) to denote the
dn× n matrix

ANin(`) =


Ai1
Ai2...
Aid

 ,

where Nin(`) = {i1, i2, · · · , id}, and d is an in-degree of ` in
G.
For each ` ∈ V, we define an n × n information matrix
P ` = (P `)i∈[n],j∈[n],

(P `)i,j =

{
1 if i = j and i ∈ P`
0 otherwise .

Similarly, for each ` ∈ V, we define an n × n query matrix
T ` = (T `)i∈[n],j∈[n],

(T `)i,j =

{
1 if i = j and i ∈ T`
0 otherwise .

Example 1 (cont.) The possession sets are

P1 = {1, 2}, P2 = {2, 3}, P3 = {1}, P4 = {2}, P5 = {1, 3},
and query sets are

T1 = ∅, T2 = ∅, T3 = {2, 3}, T4 = {1, 3}, T5 = {2}.
The matrix families A` are

A1 =

? ? 0
? ? 0
? ? 0

, A2 =

0 ? ?
0 ? ?
0 ? ?

, A3 =

? 0 0
? 0 0
? 0 0

,

A4 =

0 ? 0
0 ? 0
0 ? 0

, A5 =

? 0 ?
? 0 ?
? 0 ?

.

The information matrices P ` corresponding to the matrix
families A` are

P 1 =

1 0 0
0 1 0
0 0 0

, P 2 =

0 0 0
0 1 0
0 0 1

, P 3 =

1 0 0
0 0 0
0 0 0

,

P 4 =

0 0 0
0 1 0
0 0 0

, P 5 =

1 0 0
0 0 0
0 0 1

.

The query matrices T ` corresponding to the query sets T`
are

T 1 = 0, T 2 = 0,

T 3 =

0 0 0
0 1 0
0 0 1

, T 4 =

1 0 0
0 0 0
0 0 1

, T 5 =

0 0 0
0 1 0
0 0 0

.

4. Optimal schedule for 1-solvable networks

Theorem 1 The minimal number of transmissions needed
to satisfy the demands of all the nodes in V in one round
of communications is

τ = min
A∈A

∑
`∈V

rank (A`)

 , (1)

where for all ` ∈ V

rowspace

([
ANin(`)

P `

])
⊇ rowspace(T `) . (2)

If the matrix A ∈ A does not exist then there is no algo-
rithm that satisfies all the requests in one round.

Example 1 (cont.) The matrix A is

A =

? ? ? 0 0 0 ? ? ? 0 0 0 ? ? ?
? ? ? ? ? ? 0 0 0 ? ? ? 0 0 0
0 0 0 ? ? ? 0 0 0 0 0 0 ? ? ?

T .
By iterating over all matrices in the family,

A =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

T

achieves the minimum in Equation (1) such that the condi-
tion in Equation (2) holds for all ` ∈ V.
The induced vector spaces for the left-hand and right-hand
side of Equation (2) for this A are

` left-hand side right-hand side
1 span{(1, 0, 0), (0, 1, 0)} {(0, 0, 0)}
2 span{(0, 1, 0), (0, 0, 1)} {(0, 0, 0)}
3 span{(1, 0, 0), (1, 1, 0), (0, 1, 1)} span{(0, 1, 0), (0, 0, 1)}
4 span{(0, 1, 0), (1, 1, 0), (0, 1, 1)} span{(1, 0, 0), (0, 0, 1)}
5 span{(1, 0, 0), (0, 0, 1), (0, 1, 1)} span{(0, 1, 0)}

Node ` ∈ V transmits the vector A` ·xT whenever the value
is not 0T :

A1 · xT =

1 1 0
0 0 0
0 0 0

 ·
x1
x2
x3

 =

x1 + x2
0
0

 ,
A2 · xT =

0 1 1
0 0 0
0 0 0

 ·
x1
x2
x3

 =

x2 + x3
0
0

 .

5. Schedule for r0-solvable networks

Theorem 2 There exists an iterated data exchange pro-
tocol with r rounds, for any r ≥ r0, and τ transmissions,
where

τ =

r∑
i=1

 min
A(i)∈(Di−1⊗E)·A


k∑
j=1

rank
(
A

(i)
j

)
 (3)

for matrices A(i) which are subject to

∀j ∈ [k] : rank

([ (
diag

(
D[j]

)
⊗ I

)
·A(i)

Γj((D
i−1 ⊗E) · A)

])
= max-rank

((
diag(ej)⊗ I

)
·
(
Di ⊗E

)
· A
)
, (4)

where the matrices I and E are both n× n.

6. Experimental results

Proposition 3 For a node ` ∈ V, and for i ∈ [n], denote by
d`(xi) the length of the shortest path from a set of vertices
having xi in their possession to `. Let d` =

∑
i∈T` d`(xi)

and
dmax = max

`∈V
d` . (5)

Then, the minimum number of transmissions in any algo-
rithm for data dissemination problem is at least dmax.

We generate the adjacency matrix of the graph randomly,
while fixing the diameter and the number of vertices in the
graph. We also randomly generate the possession matrix
of the network.
For each randomly chosen network with four nodes and four
items, we compute the number of transmissions guaran-
teed by Theorem 2 and the lower bound on the number of
transmissions in Proposition 3. The distribution of the ratios
in the tested cases is shown in the following tables.

Range [1, 1.2) [1.2, 1.4) [1.4, 1.6) [1.6, 1.8) [1.8, 2.0) [2.0,∞)
% 54 22 6 4 0 14

The efficiency of the algorithm for graphs of diameter 2

Range [1, 1.2) [1.2, 1.4) [1.4, 1.6) [1.6, 1.8) [1.8, 2.0) [2.0,∞)
% 30 18 24 0 6 22

The efficiency of the algorithm for graphs of diameter 3
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