ON INJECTIVE HULLS OF S-POSETS

XIA ZHANG¹,² AND VALDIS LAAN

Abstract. In this paper we describe injectives in the category of S-posets with \(S \)-submultiplicative morphisms and construct injective hulls of S-posets with respect to a specific class \(E \subseteq \) of monomorphisms.

1. Introduction

Injectivity is among properties that were studied in the very first articles which appeared in the area of S-posets ([12] and [5]). It is also a topic of several recent papers on S-posets (see, e.g., [3] and [13]). From those articles it turns out that a regularly injective S-poset has to be complete in such a way that suprema are compatible with S-action. One of the aims of this paper is to show that in a suitable framework injectivity is equivalent to that kind of completeness. The second goal is to show how to construct injective hulls of S-posets with respect to a certain class of monomorphisms.

In this work, S is always a \textit{pomonoid}, that is, a monoid \(S \) equipped with a partial order \(\leq \) such that \(ss' \leq tt' \) whenever \(s \leq t, s' \leq t' \) in \(S \). A poset \((A, \leq)\) together with a mapping \(A \times S \rightarrow A \) (under which a pair \((a, s)\) maps to an element of \(A \) denoted by \(as \)) is called a \textit{right S-poset}, denoted by \(AS \), if for any \(a, b \in A, s, t \in S \),

\begin{enumerate}
 \item \(a(st) = (as)t \),
 \item \(a1 = a \),
 \item \(a \leq b, s \leq t \) imply that \(as \leq bt \).
\end{enumerate}

A left S-poset can be defined similarly. \textit{Right S-poset homomorphisms} are order-preserving mappings which also preserve the S-action. We denote the category of right S-posets with S-poset homomorphisms as morphisms by \(\text{Pos}_S \). An S\textit{-subposet} of an S-poset \(AS \) is an action-closed subset of \(A \) whose partial order is the restriction of the order of \(A \).

Let \(C \) be a category and let \(M \) be a class of morphisms in \(C \). We recall that an object \(Q \) from \(C \) is \(M \)-\textit{injective} in \(C \) provided that for any morphism \(h : A \rightarrow B \) in \(M \) and any morphism \(f : A \rightarrow Q \) in \(C \) there exists a morphism \(g : B \rightarrow Q \) in \(C \) such that \(gh = f \).

Communicated by Victoria Gould.
The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-014-9646-4.

Date: February 14, 2014.

Key words and phrases. S-poset, injectivity, injective hull, S-quantale.

Research of the first named author was supported by the SRFDP of Ministry of Education of China (20124407120004), the NNSF of China (11171118), and the Program on International Cooperation and Innovation, Department of Education, Guangdong Province (2012gjha0007). Research of the second named author was supported by Estonian Institutional Research Project IUT20-57.
A morphism \(\eta : A \to B \) in \(\mathcal{M} \) is called \(\mathcal{M} \)-essential if every morphism \(\psi : B \to C \) in \(\mathcal{C} \), for which the composite \(\psi \eta \) is in \(\mathcal{M} \), is itself in \(\mathcal{M} \). An object \(H \in \mathcal{C} \) is called an \(\mathcal{M} \)-injective hull of an object \(A \in \mathcal{C} \) if \(H \) is \(\mathcal{M} \)-injective and there exists an \(\mathcal{M} \)-essential morphism \(A \to H \) (see [1], Def. 9.22).

Let \(A_S \) and \(B_S \) be \(S \)-posets. We say that a mapping \(f : A \to B \) is \(S \)-submultiplicative if \(f(a)s \leq f(as) \) for any \(a \in A \), \(s \in S \). We denote by \(\text{Pos}_S^\leq \) the category where objects are right \(S \)-posets and morphisms are \(S \)-submultiplicative order-preserving mappings. Clearly every \(S \)-poset homomorphism is an \(S \)-submultiplicative order-preserving mapping, so \(\text{Pos}_S \) is a subcategory of \(\text{Pos}_S^\leq \) which is not necessarily full.

Example 1. Consider the pomonoid \(S = ((0,1],\cdot,\leq) \) where \(0 < 1 \). Then the constant mapping

\[
f : S_S \to S_S, 1 \mapsto 1, 0 \mapsto 1
\]

is order-preserving and \(S \)-submultiplicative, but it is not a right \(S \)-act homomorphism, because \(f(1) \cdot 0 = 0 \neq 1 = f(1 \cdot 0) \).

An order embedding from a poset \((A,\leq_A) \) to a poset \((B,\leq_B) \) is a mapping \(h : A \to B \) such that \(a \leq_A a' \) iff \(h(a) \leq_B h(a') \), for all \(a, a' \in A \). Every order embedding is necessarily an injective mapping. We will denote by \(\mathcal{E} \) the class of all right \(S \)-poset homomorphisms that are order-embeddings. These are precisely the regular monomorphisms in \(\text{Pos}_S \) (see [2], Theorem 7).

In this paper we will study injectivity with respect to a specific class of order-embeddings. Let \(\mathcal{E}^\leq \) be the class of morphisms \(e : A_S \to B_S \) in the category \(\text{Pos}_S^\leq \) which satisfy the following condition: \(e(a)s \leq e(a') \) implies \(a \leq a' \) for all \(a, a' \in A \) and \(s \in S \). Evidently, each morphism in \(\mathcal{E}^\leq \) is an order-embedding. On the other hand, every \(S \)-poset homomorphism that is an order embedding belongs to \(\mathcal{E}^\leq \). In other words, \(\mathcal{E} \subseteq \mathcal{E}^\leq \).

Lemma 2. Let \(S \) be a pogroup. Then \(\text{Pos}_S^\leq = \text{Pos}_S \) and \(\mathcal{E}^\leq = \mathcal{E} \).

Proof. We need to show that every order-preserving \(S \)-submultiplicative mapping \(f : A_S \to B_S \) is a right \(S \)-poset homomorphism. For every \(a \in A \) and \(s \in S \) we have \(f(a)s \leq f(as) \) and \(f(as)s^{-1} \leq f(ass^{-1}) = f(a) \) by \(S \)-submultiplicativity. Multiplying both sides of the last inequality by \(s \) we obtain \(f(as) \leq f(a)s \). We conclude that \(f(as) = f(a)s \), as required.

For the second claim we have to prove the inclusion \(\mathcal{E}^\leq \subseteq \mathcal{E} \). If \(e \in \mathcal{E}^\leq \) then clearly \(e \) is an order-embedding. By the first part of this proof, \(e \) also preserves \(S \)-action.

Inspired by the notion of a quantale (see [8]) we introduce a term “\(S \)-quantale”.

Definition 3. We call a right \(S \)-poset \(A_S \) a right \(S \)-quantale if

1. the poset \(A \) is a complete lattice;
2. \(\bigvee M = \bigvee \{ms \mid m \in M \} \) for each subset \(M \) of \(A \) and each \(s \in S \).

In the following, “\(S \)-quantale” is also used to substitute the term “right \(S \)-quantale”.

We note that \(S \)-quantales also appear in [5] under the name of “complete \(S \)-posets”, in [4] under the name of “continuously complete \(S \)-posets” and in [10] under the name of “equivariantly complete \(S \)-posets”.
Injectivity properties of S-posets have been studied by several authors. First of all, injectivity with respect to all monomorphisms (i.e., injective homomorphisms) is not an interesting property, because the only S-posets with this property are singletons ([3], Theorem 2.5). Therefore it is more natural to study \mathcal{E}-injectivity. Since the morphisms in \mathcal{E} are precisely the regular monomorphisms of Pos_S, \mathcal{E}-injective S-posets have been called also regularly injective (cf. [13]).

The first to study regular injectivity was Skornyakov ([12]) who studied S-posets over a discretely ordered monoid S and proved that such S-posets are complete as posets if they are regularly injective. Later on, Fakhruddin in [5] found that for a S-poset over a cofree S-quantale (see [5], Proposition 7.2). Recently, Ebrahimi, Mahmoudi and Rasouli showed in their paper [3] that for a pomonoid S, an S-poset is regularly injective if and only if it is a retract of a cofree S-poset over a complete poset. However, it seems that there exist no descriptions of regularly injective S-posets A_S in terms that are internal to A_S.

There are some special results. For example, Fakhruddin in [5] found that for a pogroup S, a left S-poset is regularly injective if and only if it is a left S-quantale, thereby generalizing a similar result of Skornyakov.

One approach to obtain necessary and sufficient conditions for injectivity is to allow a larger class of morphisms between S-posets. This is inspired by the most recent work [7], and also [14], in which certain injective hulls of posemigroups were constructed in a category where morphisms are submultiplicative order-preserving mappings. In this work, we will first investigate \mathcal{E}_S-injectives in the category Pos_S^S (which has the same objects but possibly more morphisms than Pos_S) and then give an explicit construction of \mathcal{E}_S-injective hulls of S-posets in Pos_S^S.

2. \mathcal{E}_S-Injective S-Posets

In this section we show that \mathcal{E}_S-injective objects in the category Pos_S^S are precisely the right S-quantales.

Proposition 4. Let Q_S be an S-quantale. Then Q_S is \mathcal{E}_S-injective in the category Pos_S^S.

Proof. Let Q_S be an S-quantale, $e : A_S \to B_S$ be a morphism in \mathcal{E}_S and let $f : A_S \to Q_S$ be a morphism in Pos_S^S. Define a mapping $g : B_S \to Q_S$ by

$$g(b) = \bigvee \{ f(a)z \mid e(a)z \leq b, \ a \in A, \ z \in S \},$$

for any $b \in B$. Then g is obviously an order-preserving mapping. For any $s \in S$, we have

$$g(bs) = \left(\bigvee \{ f(a)zs \mid e(a)zs \leq bs, \ a \in A, \ z \in S \} \right)s$$

$$\leq \bigvee \{ f(a)t \mid e(a)t \leq bs, \ a \in A, \ t \in S \}$$

$$= g(bs),$$

which means that g is S-submultiplicative. (Note that here we used that $e(a)z \leq b$ implies $e(a)zs \leq bs$ if $a \in A, z \in S$.) Finally, for any $a \in A$, we have

$$g(e(a)) = \bigvee \{ f(x)z \mid e(x)z \leq e(a), \ x \in A, \ z \in S \}.$$
If \(x \in A, z \in S \) are such that \(e(x)z \leq e(a) \) then \(xz \leq a \) and hence
\[
f(x)z \leq f(xz) \leq f(a).
\]
Consequently, \((ge)(a) \leq f(a)\). On the other hand, \(f(a)\) is obviously one of the terms in the sup that defines \((ge)(a)\). Therefore, \(ge = f\) as needed.

Proposition 5. In the category \(\text{Pos}^\le_S \), every retract of an \(S \)-quantale is an \(S \)-quantale.

Proof. Let \(E_S \) be an \(S \)-quantale and let \(A_S \) be a retract of \(E_S \). Then there exist \(S \)-submultiplicative order-preserving mappings \(i : A \to E \) and \(g : E \to A \) such that \(gi = id_A \), where \(id_A \) is the identity mapping on \(A \). It is obvious that \(A \) is complete.

Let \(s \in S, M \subseteq A \). Clearly, \((\vee M)s\) is an upper bound of \(\{ms \mid m \in M\} \).

Suppose that \(u \) is an upper bound of \(\{ms \mid m \in M\} \) in \(A \). Then
\[
u = g(i(u)) \geq g\left(\bigvee_E\{i(ms) \mid m \in M\}\right) \geq g\left(\bigvee_E\{i(m)s \mid m \in M\}\right)
\]
\[
= g\left(\left(\bigvee_E\{i(m) \mid m \in M\}\right)s\right) \geq g\left(\bigvee_E\{i(m) \mid m \in M\}\right)s \geq \left(\bigvee_A\right)s.
\]
This means that \((\vee M)s\) is the least upper bound of \(\{ms \mid m \in M\} \), that is,
\[
\left(\bigvee M\right)s = \bigvee\{ms \mid m \in M\}.
\]
\[\Box\]

A subset \(D \) of a poset \(A \) is said to be a down-set if \(x \leq d \) implies that \(x \in D \) for any \(x \in A, d \in D \). For any \(D \subseteq A \), we denote by \(D \downarrow \) the down-set \(\{x \in A \mid x \leq d \text{ for some } d \in D\} \) and by \(a \downarrow \) the down-set \(\{x \in A \mid x \leq a\} \) for \(a \in A \).

Now we wish to construct an \(\mathcal{E}_\leq \)-injective \(S \)-poset starting from an arbitrary right \(S \)-poset.

Let \(A_S \) be an \(S \)-poset, and let \(\mathcal{P}(A) \) be the set of all down-sets of the poset \(A \). Define a right \(S \)-action \(\cdot \) on \(\mathcal{P}(A) \) by
\[
D \cdot s = (Ds) \downarrow = \{x \in A \mid x \leq ds \text{ for some } d \in D\},
\]
for any \(s \in S, D \in \mathcal{P}(A) \). It is routine to check that \((\mathcal{P}(A), \cdot)\) is an \(S \)-act, and an \(S \)-poset if we consider inclusion as the partial order. Furthermore, \((\mathcal{P}(A), \cdot, \subseteq)\) is a right \(S \)-quantale, that is, \(\mathcal{P}(A) \) is a complete lattice under the inclusion relation with supremum being union, and it satisfies
\[
\left(\bigvee\{M_\alpha \mid \alpha \in \Omega\}\right) \cdot s = \bigvee\{M_\alpha \cdot s \mid \alpha \in \Omega\}
\]
for any \(M_\alpha \in \mathcal{P}(A), \alpha \in \Omega, s \in S \). We denote the right \(S \)-quantale \((\mathcal{P}(A), \cdot, \subseteq)\) shortly by \(\mathcal{P}(A)_S \). By Proposition 4, we have the following result.

Proposition 6. Let \(A_S \) be an \(S \)-poset. Then \(\mathcal{P}(A)_S \) is \(\mathcal{E}_\leq \)-injective in the category \(\text{Pos}^\le_S \).

Using the above construction, we obtain a description of \(\mathcal{E}_\leq \)-injectives in the category \(\text{Pos}^\le_S \) in the next theorem.

Theorem 7. Let \(A_S \) be an \(S \)-poset. Then \(A_S \) is \(\mathcal{E}_\leq \)-injective in \(\text{Pos}^\le_S \) if and only if \(A_S \) is a right \(S \)-quantale.
Proof. **Necessity.** The mapping \(\eta : A_S \to \mathcal{P}(A)_S \) given by \(\eta(a) = a \downarrow \) for each \(a \in S \) is clearly an order embedding of the poset \(A \) into the poset \(\mathcal{P}(A) \). It is routine to check that \(\eta \) preserves \(S \)-action and hence \(\eta \) is also \(S \)-submultiplicative. Moreover, if \(\eta(a) \cdot s \subseteq \eta(a') \) for \(a, a' \in A, \, s \in S \), then \((as) \downarrow = a \downarrow \cdot s \subseteq a' \downarrow \). This implies that \(as \leq a' \), which means that \(\eta \in E_S \).

Since \(A_S \) is \(E_S \)-injective by assumption, \(A_S \) is a retract of the \(S \)-quantale \(\mathcal{P}(A)_S \). Consequently, \(A_S \) is an \(S \)-quantale by Proposition 5.

Sufficiency follows by Proposition 4. \(\square \)

Corollary 8 (Cf. [12] and [5]). For a right \(S \)-poset \(A_S \) over a porgroup \(S \) the following assertions are equivalent.

1. \(A_S \) is \(E \)-injective in \(\text{Pos}^S \).
2. \(A_S \) is \(E ^\leq \)-injective in \(\text{Pos}^S \).
3. \(A_S \) is a right \(S \)-quantale.

Proof. (1) \(\Leftrightarrow \) (2) by Lemma 2. (2) \(\Leftrightarrow \) (3) by Theorem 7. \(\square \)

We say that a pomonoid \(S \) is right (left) \(E ^\leq \)-self-injective if the \(S \)-poset \(S_S \) \((sS)\) is \(E ^\leq \)-injective in the category \(\text{Pos}^S \). A pomonoid \(S \) is \(E ^\leq \)-self-injective if it is both right and left \(E ^\leq \)-self-injective.

Self-injective (unordered) semigroups have been studied by several authors (see the comments in [6]). In particular, Pääva [9] has given necessary and sufficient conditions for right self-injectivity of a semigroup in terms of certain homomorphisms and right congruences. From Theorem 7 it immediately follows that \(E ^\leq \)-self-injectivity of a pomonoid can be described in a quite simple way.

Corollary 9. A pomonoid \(S \) is \(E ^\leq \)-self-injective if and only if it is a quantale.

3. \(E ^\leq \)-injective hulls of \(S \)-posets

In a recent article [7], Lambek et al considered injective hulls in the category of pomonoids and submultiplicative order-preserving mappings. Later on, Zhang and Laan in [14] extended those results to certain posemigroups and submultiplicative order-preserving mappings. Inspired by these results, in this section, we construct \(E ^\leq \)-injective hulls in the category \(\text{Pos}^S \). Similarly to Proposition 2.1 in [7] it can be shown that \(E ^\leq \)-injective hulls are unique up to isomorphism.

Recall that an order-preserving mapping \(j \) on a poset \(P \) is called a closure operator if it satisfies

1. \(a \leq j(a) \),
2. \(j(j(a)) = j(a) \),

for all \(a \in P \). Let us introduce the concept of \(S \)-quantic nucleus similarly to the case of quantales (see [11]).

Definition 10. Let \(Q_S \) be an \(S \)-quantale. We say that an \(S \)-submultiplicative closure operator \(j \) on \(Q \) is an \(S \)-quantic nucleus.

Lemma 11. Let \(j \) be an \(S \)-quantic nucleus on an \(S \)-quantale \(Q_S \). Then \(j(as) = j(j(a)s) \) for any \(a \in Q, s \in S \).

Proof. On one hand, since \(j \) is increasing and order-preserving it follows that

\[
(1) \quad a \leq j(a) \Rightarrow as \leq j(a)s \Rightarrow j(as) \leq j(j(a)s).
\]

Conversely, \(j(as) \leq j(as) \) implies \(j(j(a)s) = j(j(as)) = j(as) \). \(\square \)
Lemma 13. The category \(\mathcal{S} \) is complete. Moreover, \(\mathcal{S} \) is an S-quantic nucleus, then \(\mathcal{S} \) is an S-quantic nucleus.

Proof. Since \(\mathcal{S} \) is complete, it is straightforward to show that

\[
\mathcal{S} \quad \text{and define a right } \mathcal{S}-\text{action } \circ \text{ on } \mathcal{S} \text{ by }
\]

\[
D \circ s := \text{cl}(D \cdot s),
\]

for any \(s \in S \). By Theorem 12, the S-poset \(\mathcal{S} \) is the \(\mathcal{S} \)-injective hull of \(\mathcal{S} \) in the category \(\mathcal{S} \).

Theorem 14. For every S-poset \(\mathcal{S} \), \(\mathcal{S} \) is the \(\mathcal{S} \)-injective hull of \(\mathcal{S} \) in the category \(\mathcal{S} \).
Proof. Since S is a monoid, $a \downarrow \in \mathscr{D}(A)_S$ for any $a \in A$. We will show that the mapping $\eta : A_S \to \mathscr{D}(A)_S$, $a \mapsto a \downarrow$ is an \mathcal{E}_∞-essential morphism in Pos_∞^S.

To show that η is an S-poset homomorphism, take $a \in A$, $s \in S$. It is easy to see that $a \downarrow \cdot s = (as) \downarrow$. Hence we have

$$\eta(a) \circ s = \text{cl}(a \downarrow \cdot s) = \text{cl}((as) \downarrow) = (as) \downarrow = \eta(as),$$

i.e. η is an S-act homomorphism. For every $a, b \in A$, $a \leq b$ if and only if $a \downarrow \subseteq b \downarrow$, which means that η is an order embedding. Thus $\eta \in \mathcal{E} \subseteq \mathcal{E}_\infty$.

Finally, let $\psi : \mathscr{D}(A)_S \to B_S$ be a morphism in Pos_∞^S such that $\psi \eta \in \mathcal{E}_\infty$. We have to show that $\psi \in \mathcal{E}_\infty$. Suppose that $\psi(D)z \leq \psi(D')$, where $D, D' \in \mathscr{D}(A)$, $z \in S$. First we prove that

$$(\forall a \in A, s \in S)(D's \subseteq a \downarrow \implies Dzs \subseteq a \downarrow).$$

Assume that $D's \subseteq a \downarrow$, $a \in A$, $s \in S$, and take an element $d \in D$. Then $D' \circ s = \text{cl}((D's) \downarrow) \subseteq \text{cl}((a \downarrow) \downarrow) = a \downarrow$ and so

$$(\psi \eta)(d)zs = \psi(d)zs \leq \psi(D)zs \leq \psi(D')s \leq \psi(D' \circ s) \leq \psi(a \downarrow) = (\psi \eta)(a).$$

Since $\psi \eta \in \mathcal{E}_\infty$, we conclude that $dzs \leq a$ in A. Consequently, $Dzs \subseteq a \downarrow$.

To complete the proof, we have to show that $D \circ z \subseteq D'$. Take $x \in D \circ z$. Since $D' = \text{cl}(D')$, it suffices to prove that $x \in \text{cl}(D')$, i.e.,

$$(\forall a \in A, s \in S)(D's \subseteq a \downarrow \implies xs \leq a).$$

If $D's \subseteq a \downarrow$ then, by (3.1), we have $Dzs \subseteq a \downarrow$. Since $x \in D \circ z = \text{cl}((Dz) \downarrow)$, we get $xs \leq a$ if we are able to prove that $(Dz) \downarrow \subseteq a \downarrow$. If $d \in D$, $d' \in A$ and $d' \leq dz$ then $d's \leq dzs \leq a$, so $(Dz) \downarrow \subseteq a \downarrow$, as needed. \hfill \square

Example 15. Consider the additive pomonoid $S = (\mathbb{N}, +)$ of nonnegative integers acting on the set $A = \mathbb{N}$ by addition. For the S-poset A_S we have

$$\mathscr{P}(A) = \{n \downarrow \mid n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\} = \mathscr{D}(A),$$

where $n \downarrow = \{1, \ldots, n\}$, and the action on $\mathscr{D}(A)$ is defined by

$$\begin{align*}
n \downarrow \circ s &= \text{cl}((n \downarrow + s) \downarrow) = \text{cl}((n + s) \downarrow) = (n + s) \downarrow, \\
\mathbb{N} \circ s &= \text{cl}((\mathbb{N} \downarrow) \downarrow) = \text{cl}(\mathbb{N}) = \mathbb{N}, \\
\emptyset \circ s &= \text{cl}(\emptyset \downarrow) = \emptyset,
\end{align*}$$

$s \in \mathbb{N}$. So $\mathscr{D}(A)_S$ is isomorphic to $(\mathbb{N} \cup \{\emptyset, \infty\})_\mathbb{N}$, where $\infty + s = \infty$, $\emptyset + s = \emptyset$, and $\emptyset \leq a \leq \infty$ for all $s \in \mathbb{N}_0$ and $a \in \mathbb{N}$. In other words, we obtain the injective hull of A_S by adjoining external zero elements, one at the top, the other at the bottom.

References

Xia Zhang1,2,

1 School of Mathematical Sciences, South China Normal University, 510631 Guangzhou, China
2 Department of Mathematics, Southern Illinois University Carbondale, 62901 Carbondale, USA.
E-mail address: xiazhang@scnu.edu.cn

Valdis Laan, Institute of Mathematics, Faculty of Mathematics and Computer Science, University of Tartu, 50409 Tartu, Estonia
E-mail address: vlaan@ut.ee