Congruences of Morita equivalent categories

Valdis Laan
University of Tartu
Tartu, Estonia

Categories \mathcal{A} and \mathcal{B} are called **Morita equivalent** ([2]) if the functor categories $\text{Fun}(\mathcal{A}, \text{Set})$ and $\text{Fun}(\mathcal{B}, \text{Set})$ are equivalent.

Definition 1 (See [1], p. 52) A **congruence** on a category \mathcal{A} is a family $\rho = (\rho_{A, B})_{(A, B) \in \mathcal{A}^2}$ of equivalence relations $\rho_{A, B}$ on morphism sets $\mathcal{A}(A, B)$ that are compatible with the composition of morphisms.

Theorem 1 If \mathcal{A} and \mathcal{B} are Morita equivalent small categories then there is an isomorphism $\Pi : \text{Con}(\mathcal{A}) \to \text{Con}(\mathcal{B})$ between their congruence lattices. Moreover, if $\rho \in \text{Con}(\mathcal{A})$ then \mathcal{A}/ρ is Morita equivalent to $\mathcal{B}/\Pi(\rho)$.

References
