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Abstract

Weighted limits and colimits are defined in categories that are enriched over a
symmetric monoidal closed category. Since the category SPos of left S-posets over
a pomonoid S is enriched over the category Pos of posets (with order-preserving
mappings as morphisms) we can speak about weighted limits and colimits in SPos.

1 Introduction

By 1 = {∗} we shall denote the one-element (S-)poset and by 2 = {0, 1} the two-element
chain with 0 < 1. We assume the existence of an empty S-poset. Recall that morphisms in

SPos are order and action preserving mappings and isomorphisms are surjective mappings
that preserve and reflect order.

The category Pos of posets and order-preserving mappings is a symmetric monoidal
closed category (see Def. 6.1.1–6.1.3 of [2]) with the cartesian product as a tensor product
and I = 1.

The category SPos of left S-posets (or PosS of right S-posets) is a Pos-category (or
poset enriched category or a category enriched over Pos) (see Def. 6.2.1 of [2]), where the
morphism sets SPos(A,B), SA, SB ∈ SPos are posets with respect to pointwise order.

If A and B are Pos-categories then a Pos-functor F : A → B has to preserve (in
addition to composition and identity morphisms) the order of morphism posets. We shall
call such functors pofunctors.

Pos-natural transformations (see Def. 6.2.4 of [2]) between pofunctors are just the
ordinary natural transformations. If A and B are Pos-categories and A is small then by
Proposition 6.3.1 of [2] the category of pofunctors A → B and natural transformations
between them can be provided with the structure of a Pos-category, written Pos[A,B].
Namely, given two pofunctors F,G : A // B, the set

Nat(F,G) = {(αA : F (A)→ G(A))A∈A | G(f)αA′ = αA′′F (f) for every f :A′ → A′′ in A}

of natural transformations from F to G is a poset with respect to the order

(αA)A∈A ≤ (βA)A∈A ⇐⇒ αA ≤ βA for every A ∈ A in the poset B(F (A), G(A)).
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2 Weighted limits in SPos

2.1 Definition

Definition 1 (Cf. Def. 6.6.3 of [2]) Given a pomonoid S, small Pos-category A, and
pofunctors F : A → SPos, G : A → Pos, a Pos-limit of F weighted by G is a
pair (SL, (λP )P∈SPos) where SL is a left S-poset and λ = (λP )P∈SPos : SPos(−, L) ⇒
Nat(G, SPos(−, F (−))) is a natural isomorphism, that is, for every SP ∈ SPos,

λP : SPos(P,L) −→ Nat(G, SPos(P, F (−))),

are poset isomorphisms that are natural in P . We write limG F for a Pos-limit of F
weighted by G.

A SPosF //A

Pos

G

��????????????? SPos

Pos

SPos(P,−)

��

Remark 1 For every SP ∈ SPos, SPos(P, F (−)) = SPos(P,−) ◦ F : A → Pos is a
pofunctor and the set Nat(G, SPos(P, F (−))) is a poset with respect to componentwise
order of natural transformations. Therefore, there is a contravariant functor

Nat(G, SPos(−, F (−))) : SPos→ Pos

given by the assignment

SP Nat(G, SPos(P, F (−)))� //

SQ Nat(G, SPos(Q,F (−)))� //

SP

SQ

p

��
Nat(G, SPos(Q,F (−)))

Nat(G, SPos(P, F (−)))

(−◦p)◦−

OO

where the mapping (− ◦ p) ◦ − is defined by

((− ◦ p) ◦ −)(µ) := ((− ◦ p) ◦ µA)A∈A : G⇒ SPos(P, F (−))

for every natural transformation µ : G ⇒ SPos(Q,F (−)) and − ◦ p : SPos(Q,F (A)) →
SPos(P, F (A)). The fact that λ = (λP )P∈SPos : SPos(−, L)⇒ Nat(G, SPos(−, F (−))) is a
natural transformation meand that

λP (ψ ◦ p) = ((− ◦ p) ◦ λQ(ψ)A)A∈A ,

or
λP (ψ ◦ p)A = (− ◦ p) ◦ λQ(ψ)A,

or
λP (ψ ◦ p)A(x) = λQ(ψ)A(x) ◦ p (1)
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for every A ∈ A, x ∈ G(A), SP , SQ ∈ SPos, p ∈ SPos(P,Q), ψ ∈ SPos(Q,L).

SPos(Q,L) Nat(G, SPos(Q,F (−)))
λQ

//

SPos(P,L)

SPos(Q,L)

OO

−◦p

SPos(P,L) Nat(G, SPos(P, F (−)))
λP // Nat(G, SPos(P, F (−)))

Nat(G, SPos(Q,F (−)))

OO

(−◦p)◦−

G(A) SPos(Q,F (A))
λQ(ψ)A //G(A)

SPos(P, F (A))

λP (ψ◦p)A

''OOOOOOOOOOOOOOOOOOO SPos(Q,F (A))

SPos(P, F (A))

−◦p

��

2.2 Existence of weighted limits in SPos

Here we give a characterization of a weighted limit in more usual terms of so-called
projections of a limit and a universal property. We shall use the notation of Definition 1.

Theorem 1 There is one-to-one correspondence between Pos-limits of F weighted by G

and pairs
(
SL, (l

x
A)

x∈G(A)
A∈A

)
, where SL is a left S-poset and (lxA)

x∈G(A)
A∈A is a family of left

S-poset morphisms lxA : SL→ SF (A) such that

1. (a) for all A ∈ A and x, x′ ∈ G(A)

x ≤ x′ =⇒ lxA ≤ lx
′

A ;

(b) for all a : A0 → A1 in A and x ∈ G(A0),

F (a) ◦ lxA0
= l

G(a)(x)
A1

;

2. for all SP ∈ SPos and ϕ, ψ ∈ SPos(P,L),

((∀A ∈ A)(∀x ∈ G(A))(lxA ◦ ϕ ≤ lxA ◦ ψ)) =⇒ ϕ ≤ ψ;

3. for every SP ∈ SPos and family (pxA)
x∈G(A)
A∈A of left S-poset morphisms pxA : SP →

SF (A) with properties 1, there is a left S-poset morphism ϕ : SP → SL such that
lxA ◦ ϕ = pxA for every A ∈ A and x ∈ G(A).

F (A0) F (A1)
F (a)

//F (A0)

L

ww

lxA0
oooooooo

L

F (A1)

l
G(a)(x)
A1

''OOOOOOOO

F (A0)

P

��

px
A0

�����������������

P

F (A1)

p
G(a)(x)
A1

��66666666666666666P

L

ϕ

���
�
�
�
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Proof. Suppose that there is SL ∈ SPos and for every SP ∈ SPos poset isomorphisms

λP : SPos(P,L) −→ Nat(G, SPos(P, F (−)))

which are natural in P . For every A ∈ A, x ∈ G(A) we set

lxA := λL(1L)A(x) : SL→ SF (A). (2)

1(a) holds because λL(1L)A : G(A) → SPos(L, F (A)) is order preserving for every
A ∈ A.

1(b). For every a : A0 → A1 in A and x ∈ G(A0),

F (a) ◦ lxA0
= F (a) ◦ λL(1L)A0(x) = λL(1L)A1(G(a)(x)) = l

G(a)(x)
A1

,

because λL(1L) is a natural transformation.

G(A1) SPos(L, F (A1))
λL(1L)A1

//

G(A0)

G(A1)

G(a)

��

G(A0) SPos(L, F (A0))
λL(1L)A0 //

SPos(L, F (A0))

SPos(L, F (A1))

F (a)◦−

��

2. Suppose that ϕ, ψ ∈ SPos(P,L) are such that lxA ◦ ϕ ≤ lxA ◦ ψ for every A ∈ A and
x ∈ G(A). Since λP is natural in P (see (1)), we obtain

λP (ϕ)A(x) = λP (1L ◦ ϕ)A(x) = λL(1L)A(x) ◦ ϕ = lxA ◦ ϕ
≤ lxA ◦ ψ = λL(1L)A(x) ◦ ψ = λP (1L ◦ ψ)A(x) = λP (ψ)A(x)

for every A ∈ A, x ∈ G(A). Hence λP (ϕ) ≤ λP (ψ), and so ϕ ≤ ψ, because λP reflects
order.

3. If (pxA)
x∈G(A)
A∈A is a family of left S-poset morphisms pxA : SP → SF (A) that satisfies

condition 1, then µ = (µA)A∈A, where µA : G(A)→ SPos(P, F (A)) is defined by

µA(x) := pxA,

x ∈ G(A), is a natural transformation G ⇒ SPos(SP , F (−)). By the surjectivity of λP ,
there exists ϕ ∈ SPos(P,L) such that λP (ϕ) = µ, and hence, by (1),

lxA ◦ ϕ = λL(1L)A(x) ◦ ϕ = λP (ϕ)A(x) = µA(x) = pxA

for every A ∈ A and x ∈ G(A).

Conversely, let a pair
(
SL, (l

x
A)

x∈G(A)
A∈A

)
satisfy conditions 1–3. For every SP ∈ SPos we

define a mapping
λP : SPos(P,L) −→ Nat(G, SPos(P, F (−)))

by
λP (ϕ)A(x) := lxA ◦ ϕ : P → F (A), (3)

ϕ ∈ SPos(P,L), A ∈ A and x ∈ G(A).
1. As a composite of two S-poset morphisms, λP (ϕ)A(x) is an S-poset morphism.
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2. Because of 1(a), λP (ϕ)A : G(A)→ SPos(P, F (A)) preserves order.
3. λP (ϕ) : G⇒ SPos(P, F (−)) is a natural transformation, because

((F (a) ◦ −) ◦ λP (ϕ)A0) (x) = F (a) ◦ λP (ϕ)A0(x) = F (a) ◦ lxA0
◦ ϕ

= l
G(a)(x)
A1

◦ ϕ = λP (ϕ)A1(G(a)(x))

= (λP (ϕ)A1 ◦G(a)) (x)

for every a : A0 → A1 in A and x ∈ G(A0).
4. λP is order preserving. Indeed, if ϕ ≤ ψ in SPos(P,L) then

λP (ϕ)A(x) = lxA ◦ ϕ ≤ lxA ◦ ψ = λP (ψ)A(x)

for every A ∈ A and x ∈ G(A), thus λP (ϕ) ≤ λP (ψ).
5. λP is order reflecting, because, assuming that λP (ϕ) ≤ λP (ψ), ϕ, ψ ∈ SPos(P,L),

i.e. lxA ◦ ϕ ≤ lxA ◦ ψ for every A ∈ A and x ∈ G(A), we conclude ϕ ≤ ψ by 2.
6. λP is surjective. To prove this, consider a natural transformation µ : G ⇒

SPos(P, F (−)). For every A ∈ A and x ∈ G(A) set

pxA := µA(x) : SP → SF (A).

Since µA is order preserving, the family (pxA)
x∈G(A)
A∈A satisfies 1(a). Since µ is a natural

transformation,

F (a) ◦ pxA0
= ((F (a) ◦ −) ◦ µA0) (x) = (µA1 ◦G(a)) (x)

= µA1(G(a)(x)) = p
G(a)(x)
A1

for every a : A0 → A1 in A. Hence 1(b) is also satisfied.

G(A1) SPos(SP , F (A1))µA1

//

G(A0)

G(A1)

G(a)

��

G(A0) SPos(SP , F (A0))
µA0 //

SPos(SP , F (A0))

SPos(SP , F (A1))

F (a)◦−

��

By 3, there is an S-poset morphism ϕ : SP → SL such that lxA ◦ ϕ = pxA for every A ∈ A
and x ∈ G(A). So

λP (ϕ)A(x) = lxA ◦ ϕ = pxA = µA(x)

for every A ∈ A and x ∈ G(A). Hence λP (ϕ) = µ and λP is surjective.
7. λP is natural in P by (1), because

λP (ψ ◦ p)A(x) = lxA ◦ (ψ ◦ p) = (lxA ◦ ψ) ◦ p = λQ(ψ)A(x) ◦ p

for every ψ ∈ SPos(Q,L), p ∈ SPos(P,Q), A ∈ A and x ∈ G(A).

Now, if
(
SL, (l

x
A)

x∈G(A)
A∈A

)
is a Pos-limit of F weighted by G, if we define mappings lxA by

(2) and a natural transformation λ′ by λ′P (ϕ)A(x) := lxA ◦ ϕ, SP ∈ SPos, ϕ ∈ SPos(P,L),
A ∈ A, x ∈ G(A), then by (1)

λ′P (ϕ)A(x) = lxA ◦ ϕ = λL(1L)A(x) ◦ ϕ = λP (1L ◦ ϕ)A(x) = λP (ϕ)A(x),
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and so λ = λ′. Also, if
(
SL, (l

x
A)

x∈G(A)
A∈A

)
satisfies conditions 1–3, we define a natural

transformation λ by (3) and thereafter mappings kxA by kxA := λL(1L)A(x), A ∈ A, x ∈
G(A), then

kxA = λL(1L)A(x) = lxA ◦ 1L = lxA.

Hence the correspondence is indeed one-to-one.

Remark 2 We always can assume that ϕ in condition 3 of Theorem 1 is unique. Indeed,
if also ψ : SP → SL is such that lxA ◦ ψ = pxA for every A ∈ A and x ∈ G(A), then
lxA ◦ ψ ≤ lxA ◦ ϕ and lxA ◦ ϕ ≤ lxA ◦ ψ for every A ∈ A and x ∈ G(A), which by condition 2
of Theorem 1 implies ϕ = ψ.

Remark 3 Having Theorem 1 in mind, we shall also call the pairs
(
SL, (l

x
A)

x∈G(A)
A∈A

)
,

satisfying conditions 1–3 of Theorem 1, limits of F weighted by G and lxA their pro-
jections.

2.3 Canonical construction of weighted limits in SPos

We shall show that weighted limits always exist in the category SPos and give a canonical
construction for such limits.

It is easy to see that the poset Nat(G,U ◦ F ), where U : SPos → Pos is the forgetful
functor, is an S-poset if the left S-action is given by

s · f := (s · fA)A∈A,

where s ∈ S, f = (fA)A∈A ∈ Nat(G,U ◦ F ), and the mapping s · fA : G(A) → F (A) is
defined by

(s · fA)(x) := s · fA(x),

x ∈ G(A). For every A ∈ A and x ∈ G(A) we define a mapping lxA : Nat(G,U ◦F )→ F (A)
by

lxA(f) := fA(x), (4)

f = (fA)A∈A ∈ Nat(G,U ◦ F ).

Theorem 2 The pair
(
Nat(G,U ◦ F ), (lxA)

x∈G(A)
A∈A

)
is a Pos-limit of F weighted by G.

Proof. Since

lxA(s · f) = lxA((s · fA)A∈A) = (s · fA)(x) = s · fA(x) = s · lxA(f)

for every A ∈ A, x ∈ G(A), f = (fA)A∈A ∈ L, s ∈ S, and since lxA are obviously
order preserving, they are left S-poset morphisms. We shall show that they satisfy the
conditions of Theorem 1.

1(a). If x ≤ x′, x, x′ ∈ G(A), then fA(x) ≤ fA(x′) for every f ∈ Nat(G,U ◦ F ). Hence
lxA ≤ lx

′
A .

1(b). For every a : A0 → A1 in A, x ∈ G(A0) and f ∈ Nat(G,U ◦ F ),

(F (a) ◦ lxA0
)(f) = F (a)(fA0(x)) = fA1(G(a)(x)) = l

G(a)(x)
A1

(f).
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G(A1) U(F (A1))fA1

//

G(A0)

G(A1)

G(a)

��

G(A0) U(F (A0))
fA0 // U(F (A0))

U(F (A1))

F (a)

��

2. Suppose that SP ∈ SPos, ϕ, ψ ∈ SPos(P,Nat(G,U ◦F )) are such that lxA ◦ϕ ≤ lxA ◦ψ
for every A ∈ A and x ∈ G(A). Then ϕ(z)A(x) = lxA(ϕ(z)) ≤ lxA(ψ(z)) = ψ(z)A(x) in
F (A) for every A ∈ A, x ∈ G(A) and z ∈ P . Since the order in Pos(G(A), F (A))
is pointwise and the order in Nat(G,U ◦ F ) is componentwise, ϕ(z) = (ϕ(z)A)A∈A ≤
(ψ(z)A)A∈A = ψ(z) for every z ∈ P , and thus ϕ ≤ ψ.

3. Let SP ∈ SPos and let (pxA)
x∈G(A)
A∈A be a family of left S-poset morphisms pxA :

SP → SF (A) such that (a) x ≤ x′ implies pxA ≤ px
′
A for all A ∈ A, x, x′ ∈ G(A), and

(b) F (a) ◦ pxA0
= p

G(a)(x)
A1

for all a : A0 → A1 in A and x ∈ G(A0). We define a mapping
ϕ : P → Nat(G,U ◦ F ) by

ϕ(z)A(x) := pxA(z),

A ∈ A, x ∈ G(A), z ∈ P . By (a), ϕ(z)A : G(A)→ F (A) is order preserving. By (b),

(F (a) ◦ ϕ(z)A0)(x) = F (a)(pxA0
(z)) = p

G(a)(x)
A1

(z) = ϕ(z)A1(G(a)(x)) = (ϕ(z)A1 ◦G(a))(x)

for every a : A0 → A1 in A, x ∈ G(A0) and z ∈ P . Hence ϕ(z) ∈ L. Further, ϕ is order
preserving, because all mappings pxA are. Also

ϕ(s · z)A(x) = pxA(s · z) = s · pxA(z) = s · ϕ(z)A(x)

= (s · ϕ(z)A)(x) = (s · ϕ(z))A(x)

for every A ∈ A, x ∈ G(A), z ∈ P and s ∈ S, which implies ϕ(s · z) = s ·ϕ(z), and hence
ϕ is a left S-poset morphism. Finally,

(lxA ◦ ϕ)(z) = lxA(ϕ(z)) = ϕ(z)A(x) = pxA(z)

for every A ∈ A, x ∈ G(A), z ∈ P , and hence lxA ◦ ϕ = pxA.

Remark 4 That weighted limits can be constructed as in Theorem 2 may also follow
from (3.2) or (2.1) of [6], but we have preferred to give a direct proof here.

2.4 Another existence theorem for weighted limits

Here we show that condition 2 in Theorem 1 is actually redundant.

Theorem 3 A pair
(
SL, (l

x
A)

x∈G(A)
A∈A

)
, where lxA : SL→ SF (A) are left S-poset morphisms,

is a limit of F weighted by G if and only if

1. (a) for all A ∈ A and x, x′ ∈ G(A)

x ≤ x′ =⇒ lxA ≤ lx
′

A ;
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(b) for all a : A0 → A1 in A and x ∈ G(A0),

F (a) ◦ lxA0
= l

G(a)(x)
A1

;

2. for every SP ∈ SPos and family (pxA)
x∈G(A)
A∈A of left S-poset morphisms pxA : SP →

SF (A) with properties 1, there is a unique left S-poset morphism ϕ : SP → SL such
that lxA ◦ ϕ = pxA for every A ∈ A and x ∈ G(A).

Proof. Necessity follows immediately from Theorem 1 and Remark 2.
Sufficiency. Suppose that SL with lxA, A ∈ A, x ∈ G(A), satisfies conditions 1 and 2.

Let SM together with left S-poset morphisms mx
A : SM → SF (A) that satisfy conditions

1–3 of Theorem 1 be a limit of F weighted by G (by Theorem 2 we know that at least
one such SM exists). Then there exists a unique morphism µ : SM → SL such that
lxA ◦ µ = mx

A for every A ∈ A and x ∈ G(A), and a unique morphism ν : SL → SM such
that mx

A ◦ ν = lxA for every A ∈ A and x ∈ G(A). Hence lxA ◦ (µ ◦ ν) = lxA = lxA ◦ 1L for
every A ∈ A and x ∈ G(A), which implies µ◦ν = 1L by the uniqueness of the comparison
morphism 1L : SL→ SL.

Suppose now that ϕ, ψ ∈ SPos(P,L) and lxA◦ϕ ≤ lxA◦ψ for every A ∈ A and x ∈ G(A).
Then

mx
A ◦ (ν ◦ ϕ) = lxA ◦ ϕ ≤ lxA ◦ ψ = mx

A ◦ (ν ◦ ψ)

for every A ∈ A and x ∈ G(A). Since, for the limit SM , condition 2 of Theorem 1 is
satisfied, we have ν ◦ ϕ ≤ ν ◦ ψ, which yields ϕ ≤ ψ by multiplying by µ on the left.

Remark 5 If I correctly understand a remark on p. 306 of [6] then the redundance of
condition 2 in Theorem 1 should somehow follow from the existence of a tensor product
(= direct product, 6= the “homological tensor product”, see Section 5) of 2 and SP for
every left S-poset SP . HOW?

Remark 6 In view of Theorem 3, in what follows, by a limit of F weighted by G we

mean a pair
(
SL, (l

x
A)

x∈G(A)
A∈A

)
that satisfies conditions 1 and 2 of Theorem 3.

3 Some special weighted limits

3.1 Conical limits

If G = ∆1 is the constant functor at the one-element poset 1 then the limit of F weighted
by G is called a conical limit (see [6], p. 305). By Theorem 3, (SL, (lA)A∈A) is such a
limit if and only if

1. for all a : A0 → A1 in A, F (a) ◦ lA0 = lA1 ;

2. for every SP ∈ SPos and family (pA)A∈A of left S-poset morphisms pA : SP → SF (A)
with property 1, there is a unique left S-poset morphism ϕ : SP → SL such that
lA ◦ ϕ = pA for every A ∈ A.

Thus conical limits are just the ordinary limits, e.g. products, equalizers, pullbacks.
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3.2 Inserters

Consider parallel morphisms r, q : SR
//// SQ in SPos. Let the category A and its images

under F and G be

A0

a //

a′
// A1 SR

r //
q

// SQ 1
c1 //
c0

// 2

where a, a′ are incomparable and c1, c0 map ∗ to 1 and 0, respectively. Then the limit of F
weighted by G is called the inserter of q and r (see [6], p. 307) and it can be constructed
as

Nat(G,U ◦ F ) = {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1),

r ◦ fA0 = fA1 ◦ c1, q ◦ fA0 = fA1 ◦ c0}
= {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1),

r(fA0(∗)) = fA1(1), q(fA0(∗)) = fA1(0)}
∼= {fA0 | fA0 : 1→ R, q ◦ fA0 ≤ r ◦ fA0}
∼= {z ∈ R | q(z) ≤ r(z)} =: Ins(q, r),

where the order and S-action of Ins(q, r) are inherited from SR, and there is an isomor-
phism

α : SNat(G,U ◦ F )→ SIns(q, r), (fA0 , fA1) 7→ fA0(∗)
in SPos.

Lemma 1 There is one-to-one correspondence between inserters of q and r and pairs
(SE, e), where SE is a left S-poset and e : SE → SR a morphism such that

1. q ◦ e ≤ r ◦ e,

2. if e′ : SE
′ → SR is such that q ◦ e′ ≤ r ◦ e′ then there exists unique ϕ : SE

′ → SE in

SPos such that e ◦ ϕ = e′.

Proof. Assume that the pair (SL, (l
∗
A0
, l1A1

, l0A1
)) satisfies conditions 1 and 2 of Theo-

rem 3. We write (SE, e) = (SL, l
∗
A0

) = α
(
SL, (l

∗
A0
, l1A1

, l0A1
)
)
. Then

q ◦ e = F (a′) ◦ l∗A0
= l

G(a′)(∗)
A1

= l0A1
≤ l1A1

= l
G(a)(∗)
A1

= F (a) ◦ l∗A0
= r ◦ e.

To prove 2, let e′ : SE
′ → SR be such that q ◦ e′ ≤ r ◦ e′. Then for p∗A0

= e′, p0
A1

= q ◦ e′

and p1
A1

= r ◦ e′ we have p0
A1
≤ p1

A1
, F (a′) ◦ p∗A0

= q ◦ e′ = p0
A1

= p
G(a′)(∗)
A1

, and, similarly,

F (a) ◦ p∗A0
= p

G(a)(∗)
A1

. By the assumption, there is a unique morphism ϕ : SE
′ → SE such

that e′ = e ◦ ϕ.
Conversely, if a pair (SE, e) satisfies 1 and 2, we consider the pair (SE, (e, r ◦ e, q ◦ e)) =

β(SE, e). It is easy to see that conditions 1 and 2 of Theorem 3 are satisfied.
Finally,

β
(
α
(
SL, (l

∗
A0
, l1A1

, l0A1
)
))

= β
(
SL, l

∗
A0

)
=
(
SL, (l

∗
A0
, r ◦ l∗A0

, q ◦ l∗A0
)
)

=
(
SL, (l

∗
A0
, l1A1

, l0A1
)
)

for every inserter
(
SL, (l

∗
A0
, l1A1

, l0A1
)
)

of q and r and

α(β(SE, e)) = α (SE, (e, r ◦ e, q ◦ e)) = (SE, e))

for every pair (SE, e)) that satisfies 1 and 2.

Remark 7 It is easy to check that the pair (Ins(q, r), ι), where ι : Ins(q, r) → R is the
inclusion, satisfies conditions 1 and 2 of Lemma 1. We call (Ins(q, r), ι) the canonical
inserter of q and r.

9



3.3 Equifiers

Consider parallel morphisms r, q : SR
//// SQ with q ≤ r in SPos. Let the category A

and its images under F and G be

A0

a //

a′
// A1 SR

r //
q

// SQ 1
c1 //
c0

// 2

where a′ ≤ a and c1, c0 map ∗ to 1 and 0, respectively. Then the limit of F weighted by
G is called the equifier of q and r (see [6], p. 309) and it can be constructed as

Nat(G,U ◦ F ) = {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1),

r ◦ fA0 = fA1 ◦ c1, q ◦ fA0 = fA1 ◦ c0}
= {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1),

r(fA0(∗)) = fA1(1), q(fA0(∗)) = fA1(0)}
∼= {fA0 | fA0 : 1→ R, q ◦ fA0 ≤ r ◦ fA0}
∼= {z ∈ R | q(z) ≤ r(z)} = R.

So the equifier of (q, r) with q ≤ r is just the pair (R, 1R) and the universal property
is trivially satisfied. Clearly every pofunctor preserves equifiers.

3.4 Comma objects

Consider morphisms r : SR → SQ and r′ : SR
′ → SQ in SPos. If the category A and its

images under F and G are

A a // A1
oo a′

A′ SR
r //

SQ oo r′
R′ 1

c1 // 2 oo c0 1

then the limit of F weighted by G is called the comma-object of r′ and r (see [6], p.
308). Analogously to Lemma 1 one can prove the following result.

Lemma 2 There is one-to-one correspondence between comma-objects of r′ and r and
triples (Co(r′, r), z′, z), where z : Co(r′, r)→ R, z′ : Co(r′, r)→ R′ are such that

1. r ◦ z ≤ r′ ◦ z′;

2. if w : W → R and w′ : W → R′ in SPos are such that r◦w ≤ r′◦w′ then there exists
a unique morphism ϕ : W → Co(r′, r) in SPos such that z ◦ ϕ = w and z′ ◦ ϕ = w′.

Canonically, one can take

Co(r′, r) := {(x′, x) ∈ R′ ×R | r′(x′) ≤ r(x)}

and z′, z the restrictions of the projections of R′ ×R.
Note that inserters and comma objects in SPos were termed sub-equalizers and sub-

pullbacks, respectively, in [3].
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3.5 Lax limit and op-lax limit of a morphism

Consider a morphism r : SR //
SQ in SPos. Let the category A and its images under F

and G be
A0

a // A1 SR
r //

SQ 1
c0 // 2. (5)

Then the limit of F weighted by G is called the lax limit of the morphism r (replacing
c0 by c1 we obtain the op-lax limit of the morphism r; see [6], p. 308) and it can be
canonically constructed as

Nat(G,U ◦ F )

= {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1), r ◦ fA0 = fA1 ◦ c0}
= {(fA0 , fA1) | fA0 : 1→ R, fA1 : 2→ Q, fA1(0) ≤ fA1(1), r(fA0(∗)) = fA1(0)}
∼= {(x, y) ∈ R×Q | r(x) ≤ y} =: Lax(r),

where the order and left S-action on Lax(r) are componentwise. In more detail, if
(fA0 , fA1) ∈ Nat(G,U ◦ F ) then r(fA0(∗)) ≤ fA1(1), and hence we may define a map-
ping α : Nat(G,U ◦ F )→ Lax(r) by

α(fA0 , fA1) := (fA0(∗), fA1(1)).

Obviously, α is order preserving and, for every s ∈ S,

α(s · (fA0 , fA1)) = α(s · fA0 , s · fA1) = ((s · fA0)(∗), (s · fA1)(1))

= (s · fA0(∗), s · fA1(1)) = s · (fA0(∗), fA1(1)) = s · α(fA0 , fA1).

Suppose that also (gA0 , gA1) ∈ Nat(G,U ◦ F ) and (fA0(∗), fA1(1)) ≤ (gA0(∗), gA1(1)).
Then fA0(∗) ≤ gA0(∗), fA1(1) ≤ gA1(1), and fA1(0) = r(fA0(∗)) ≤ r(gA0(∗)) = gA1(0).
Hence (fA0 , fA1) ≤ (gA0 , gA1), and α is order reflecting. Finally, if (x, y) ∈ R × Q and
r(x) ≤ y then defining fA0(∗) := x, fA1(1) := y and fA1(0) := r(x) we have (fA0 , fA1) ∈
Nat(G,U ◦ F ) and α(fA0 , fA1) = (x, y). Thus we have proved that α is an isomorphism.
Consequently, the pair

(
Lax(r),

(
l∗A0
◦ α−1, l0A1

◦ α−1, l1A1
◦ α−1

))
is a lax limit of r.

Lemma 3 There is one-to-one correspondence between lax limits of a morphism r : SR→
SQ and pairs (L, (lR, lQ)) with lR : SL→ SR, lQ : SL→ SQ such that

1. r ◦ lR ≤ lQ;

2. if l′R : SL
′ → SR and l′Q : SL

′ → SQ are such that r ◦ l′R ≤ l′Q then there exists a
unique morphism ϕ : SL

′ → SL such that lR ◦ ϕ = l′R and lQ ◦ ϕ = l′Q.

Proof. Let
(
SL,

(
l∗A0
, l0A1

, l1A1

))
be a lax limit of a morphism r : SR → SQ, that is,

it satisfies conditions 1 and 2 of Theorem 3. We write (L, (lR, lQ)) =
(
SL,

(
l∗A0
, l1A1

))
=

α
(
SL,

(
l∗A0
, l0A1

, l1A1

))
.

R Qr
//

L

R

l∗A0

uullllllllll

L′

R

l′R

�������������������

L

Q

l1A1

))RRRRRRRRRRL

Ql0A1
))RRRRRRRRRR

L′

Q

l′Q

��66666666666666666L′

L

ϕ

���
�
�
�
�
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Then
r ◦ lR = F (a) ◦ l∗A0

= l
G(a)(∗)
A1

= l0A1
≤ l1A1

= lQ.

Suppose that l′R : SL
′ → SR and l′Q : SL

′ → SQ are such that r ◦ l′R ≤ l′Q. Taking

p∗A0
:= l′R, p0

A1
:= r ◦ l′R and p1

A1
:= l′Q we see that the pair

(
SL
′,
(
p∗A0

, p0
A1
, p1

A1

))
satisfies

condition 1 of Theorem 3. Hence there exists a left S-poset morphism ϕ : SL
′ → SL such

that lR◦ϕ = l∗A0
◦ϕ = p∗A0

= l′R and lQ◦ϕ = l1A1
◦ϕ = p1

A1
= l′Q. If ψ : SL

′ → SL is another
morphism such that lR ◦ ψ = l′R and lQ ◦ ψ = l′Q then l0A1

◦ ψ = r ◦ lR ◦ ψ = r ◦ l′R = p0
A1

and hence ϕ = ψ by the uniqueness of ϕ in condition 2 of Theorem 3.
Conversely, if a pair (SL, (lR, lQ)) satisfies 1 and 2, we consider the pair (SL, (lR, r ◦ lR, lQ)) =

β(SL, (lR, lQ)). It is easy to see that (SL, (lR, r ◦ lR, lQ)) satisfies conditions 1 and 2 of
Theorem 3 and hence is a lax limit of r.

Now,

β
(
α
(
SL, (l

∗
A0
, l0A1

, l1A1
)
))

= β
(
SL, (l

∗
A0
, l1A1

)
)

=
(
SL, (l

∗
A0
, r ◦ l∗A0

, l1A1
)
)

=
(
SL, (l

∗
A0
, l0A1

, l1A1
)
)

for every lax limit
(
SL, (l

∗
A0
, l0A1

, l1A1
)
)

of r, and

α(β(SL, (lR, lQ))) = α (SL, (lR, r ◦ lR, lQ)) = (SL, (lR, lQ)))

for every pair (SL, (lR, LQ))) that satisfies conditions 1 and 2.

Having Lemma 3 in mind, we shall call the pairs (SL, (lR, lQ)) satisfying conditions
1 and 2 of that lemma the lax limits of r. In particular, we say that the canonical
lax limit of r is the pair (Lax(r), (pR, pQ)), where pR := l∗A0

◦ α−1 : Lax(r) → R and
pQ := l1A1

◦ α−1 : Lax(r)→ Q are given by

pR(x, y) = l∗A0
(α−1(x, y)) = α−1(x, y)A0(∗) = x,

pQ(x, y) = l1A1
(α−1(x, y)) = α−1(x, y)A1(1) = y,

(x, y) ∈ Lax(r).
One can check that a canonical op-lax limit of a morphism r : SR → SQ in SPos can

be constructed as a pair (Oplax(r), (pR, pQ)), where

Oplax(r) = {(x, y) ∈ R×Q | y ≤ r(x)},

pR(x, y) = x, pQ(x, y) = y for all (x, y) ∈ Oplax(r). Op-lax limits of morphisms together
with pullbacks give a possibility to define downwards closed S-subposets of an S-poset in
categorical terms.

3.6 Cotensor products

If A is the the discrete category with a single object ? then F and G can be identified with
objects F (?) and G(?) of SPos and of Pos, respectively. By Theorem 3, (SL, (l

x)x∈G(?)),
where lx : SL→ SF (?), is a limit of F weighted by G if and only if

1. for all x, x′ ∈ G(?),
x ≤ x′ =⇒ lx ≤ lx

′
;

2. for every SP ∈ SPos and family (px)x∈G(?) of left S-poset morphisms px : SP →
SF (?) with property 1, there is a unique left S-poset morphism ϕ : SP → SL such
that lx ◦ ϕ = px for every x ∈ G(?).
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Such weighted limit is called a cotensor product of F and G (or of F (?) and G(?); see
[6], p. 305). By Theorem 2, one such cotensor product is

(
SPos(G(?), F (?)), (lx)x∈G(?)

)
,

where lx : SPos(G(?), F (?))→ F (?) is the evaluation map at x ∈ G(?), i.e. lx(f) = f(x)
for every f ∈ SPos(G(?), F (?)).

3.7 Pie limits

For a functor G : D → Pos we can consider its category of elements (or Grothendieck
category). The objects of this category el(G) are pairs (x, i), where i ∈ I = D0 and
x ∈ G(i). A morphism (x, i)→ (y, j) is a morphism d ∈ D(i, j) such that G(d)(x) = y.

Definition 2 ([7]) A pofunctor G : D → Pos is called a pie weight if each component
of el(G) has an initial object.

Since equifiers in SPos are trivial, from Proposition 2.1 of [7] we have the following
corollary, which we present with a proof.

Proposition 1 If G : D → Pos is a pie weight and F : D → SPos is a pofunctor then
limG F can be constructed using products and inserters.

Proof. Let U be the set of connected components of el(G). For every connected
component u ∈ U , let (zu, ju) be the initial object of u. If (x, i) ∈ el(G)0, then we
write (x, i) ∈ U for the connected component of (x, i) and !(x,i) for the unique morphism

j(x,i) → i such that G(!(x,i))(z(x,i)) = x. Take

S := {(x, y, i) | i ∈ I, x, y ∈ G(i), x ≤ y}

and consider products(∏
u∈U

F (ju), (πu)u∈U

)
and

 ∏
(x,y,i)∈S

F (i), (p(x,y,i))(x,y,i)∈S

 .

∏
(x,y,i)∈S F (i)F (i) p(x,y,i)

oo
∏

(x,y,i)∈S F (i) F (i)p(x,y,i)

//

∏
u∈U F (ju)F (j(x,i))

π
(x,i)oo

∏
u∈U F (ju) F (j(y,i))

π
(y,i) //F (j(x,i))

F (i)

F (!
(x,i)

)

��

F (j(y,i))

F (i)

F (!
(y,i)

)

��

∏
u∈U F (ju)

∏
(x,y,i)∈S F (i)

f0

���
�
�
�
�
�
�
�

∏
u∈U F (ju)

∏
(x,y,i)∈S F (i)

f1

���
�
�
�
�
�
�
�

Then there exist unique morphisms f0, f1 :
∏

u∈U F (ju)→
∏

(x,y,i)∈S F (i) such that

p(x,y,i) ◦ f0 = π(x,i) ◦ F (!(x,i)) and p(x,y,i) ◦ f1 = π(y,i) ◦ F (!(y,i))

for every (x, y, i) ∈ S. Let (E, e) be the inserter of (f0, f1). In particular, f0 ◦ e ≤ f1 ◦ e.
We claim that (

E, (lxi )
x∈G(i)
i∈I

)
≈ lim

G
F
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where lxi := F (!(x,i)) ◦ π(x,i) ◦ e : E → F (i). If d : i0 → i1 in D and x ∈ G(i0) then

d : (x, i0)→ (G(d)(x), i1) in el(G) and (x, i0) = (G(d)(x), i1). Hence !(G(d)(x),i1) = d◦!(x,i0)

and

l
G(d)(x)
i1

= F
(

!(G(d)(x),i1)

)
◦ π(G(d)(x),i1) ◦ e = F (d) ◦ F (!(x,i0)) ◦ π(x,i0) ◦ e

= F (d) ◦ lxi .

If x, y ∈ G(i) are such that x ≤ y then

lxi = F (!(x,i)) ◦ π(x,i) ◦ e = p(x,y,i) ◦ f0 ◦ e ≤ p(x,y,i) ◦ f1 ◦ e = F (!(y,i)) ◦ π(y,i) ◦ e = lyi .

To verify the universla property, let
(
P, (pxi )

x∈G(i)
i∈I

)
be such that F (d) ◦ pxi0 = p

G(d)(x)
i1

for every d : i0 → i1 in D and pxi ≤ pyi whenever x ≤ y in G(i). Then there exists a unique
morphism g : P →

∏
u∈U F (ju) such that πu ◦ g = pzu

ju
for every u ∈ U . Now, for every

(x, y, i) ∈ S,

p(x,y,i) ◦ f0 ◦ g = F (!(x,i)) ◦ π(x,i) ◦ g = F (!(x,i)) ◦ p
z
(x,i)

j
(x,i)

= pxi

≤ pyi = F (!(y,i)) ◦ p
z
(y,i)

j
(y,i)

= F (!(y,i)) ◦ π(y,i) ◦ g = p(x,y,i) ◦ f1 ◦ g.

Since products are weighted limits, they satisfy condition 2 of Theorem 1, and hence
f0 ◦ g ≤ f1 ◦ g. Consequently, there exists a unique morphism ϕ : P → E such that
e ◦ ϕ = g. Then

lxi ◦ ϕ = F (!(x,i)) ◦ π(x,i) ◦ e ◦ ϕ = F (!(x,i)) ◦ π(x,i) ◦ g = F (!(x,i)) ◦ p
z
(x,i)

j
(x,i)

= pxi .

Finally, suppose that ψ : P → E is sucht that lxi ◦ ψ = pxi for each x ∈ G(i), i ∈ I. Note
that (zu, ju) = u and !(zu,ju) = 1ju . Hence lzu

ju
= F (1ju) ◦ πu ◦ e = πu ◦ e for every u ∈ U .

Now lxi ◦ ϕ = pxi = lxi ◦ ψ implies

πu ◦ e ◦ ϕ = lzu
ju
◦ ϕ ≤ lzu

ju
◦ ψ = πu ◦ e ◦ ψ

for every u ∈ U . Applying again condition 2 of Theorem 1, first for product and then for
inserter, we obtain ϕ ≤ ψ. Symmetrically we get ψ ≤ ϕ, and thus ϕ = ψ.
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4 Weighted colimits in SPos

4.1 Definition

Definition 3 (Cf. Def. 6.6.4 of [2]) Given a pomonoid S, small Pos-category A, and
pofunctors F : A → SPos, G : Aop → Pos (covariant and contravariant on A, respec-
tively), the Pos-colimit of F weighted by G is a pair (SL, (λP )P∈SPos) where SL is
a left S-poset and λ = (λP )P∈SPos : SPos(L,−) ⇒ Nat(G, SPos(F (−),−)) is a natural
isomorphism, that is, for every SP ∈ SPos,

λP : SPos(L, P ) −→ Nat(G, SPos(F (−), P )),

are poset isomorphisms that are natural in SP . We write colimGF for a Pos-colimit of F
weighted by G.

Aop

Pos

G

$$HHHHHHHHHHHHHHHH
∼= A SPosF //

SPos

Pos

SPos(−,P )

��

Dually to Theorem 1, one can prove the following result.

Theorem 4 There is one-to-one correspondence between Pos-colimits of F weighted by

G and pairs
(
SL, (l

x
A)

x∈G(A)
A∈A

)
, where SL is a left S-poset and (lxA)

x∈G(A)
A∈A is a family of left

S-poset morphisms lxA : SF (A)→ SL such that

1. (a) for all A ∈ A and x, x′ ∈ G(A)

x ≤ x′ =⇒ lxA ≤ lx
′

A ;

(b) for all a : A0 → A1 in A and x ∈ G(A1),

lxA1
◦ F (a) = l

G(a)(x)
A0

;

2. for all SP ∈ SPos and ϕ, ψ ∈ SPos(L, P ),

((∀A ∈ A)(∀x ∈ G(A))(ϕ ◦ lxA ≤ ψ ◦ lxA)) =⇒ ϕ ≤ ψ;

3. for every SP ∈ SPos and family (pxA)
x∈G(A)
A∈A of left S-poset morphisms pxA : SF (A)→

SP with properties 1, there is a left S-poset morphism ϕ : SL → SP such that
ϕ ◦ lxA = pxA for every A ∈ A and x ∈ G(A).

F (A0) F (A1)
F (a)

//F (A0)

Ll
G(a)(x)
A0

77oooooooo

L

F (A1)

gg lxA1

OOOOOOOO

F (A0)

P

p
G(a)(x)
A0

DD�����������������

P

F (A1)

ZZ

px
A1

66666666666666666P

L

OO

ϕ

�
�
�
�
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4.2 Canonical construction of weighted colimits in SPos

We shall show that the Pos-category SPos is Pos-cocomplete by giving an explicit con-
struction of a colimit SL ∼= colimGF of F weighted by G.

We define a relation τ on the disjoint union
⊔
A∈AG(A)× F (A) by

(xA, yA)τ(xA′ , yA′)

xA ∈ G(A), yA ∈ F (A), xA′ ∈ G(A′), yA′ ∈ F (A′), if and only if either (xA, yA) ≤ (xA′ , yA′)
or

xA ≤ G(f1)(x1)
G(g1)(x1) ≤ G(f2)(x2) F (f1)(yA) ≤ F (g1)(y1)
G(g2)(x2) ≤ G(f3)(x3) F (f2)(y1) ≤ F (g2)(y2)

· · · · · ·
G(gn)(xn) ≤ xA′ F (fn)(yn−1) ≤ F (gn)(yA′)

(6)

for some morphisms

A
f1 // A′1 oo g1

A1
f2 // A′2 oo g2

A2
f3 // A′3 . . . An−1

fn // A′n oo gn
A′ (7)

in A and elements xi ∈ G(A′i), i = 1, . . . , n, yj ∈ F (Aj), j = 1, . . . , n− 1.

Lemma 4 The relation τ is reflexive and transitive.

Proof. Reflexivity of τ follows from inequalities

xA ≤ G(1A)(xA)
G(1A)(xA) ≤ xA F (1A)(yA) ≤ F (1A)(yA).

To prove transitivity, suppose that (xA, yA)τ(xA′ , yA′) and (xA′ , yA′)τ(xA′′ , yA′′), where
xA ∈ G(A), xA′ ∈ G(A′), xA′′ ∈ G(A′′), yA ∈ F (A), yA′ ∈ F (A′) and yA′′ ∈ F (A′′). Then,
in addition to inequalities (6), we have inequalities

xA′ ≤ G(h1)(z1)
G(k1)(z1) ≤ G(h2)(z2) F (h1)(yA′) ≤ F (k1)(w1)
G(k2)(z2) ≤ G(h3)(z3) F (h2)(w1) ≤ F (k2)(w2)

· · · · · ·
G(km)(zm) ≤ xA′′ F (hm)(wm−1) ≤ F (km)(yA′′)

for some morphisms

A′
h1 // B′1 oo k1 B1

h2 // B′2 oo k2 B2
h3 // B′3 . . . Bm−1

hm // B′m oo km A′′

in A. Hence we have inequalities

xA ≤ G(f1)(x1)
G(g1)(x1) ≤ G(f2)(x2) F (f1)(yA) ≤ F (g1)(y1)
G(g2)(x2) ≤ G(f3)(x3) F (f2)(y1) ≤ F (g2)(y2)

· · · · · ·
G(gn)(xn) ≤ G(h1)(z1) F (fn)(yn−1) ≤ F (gn)(yA′)
G(k1)(z1) ≤ G(h2)(z2) F (h1)(yA′) ≤ F (k1)(w1)
G(k2)(z2) ≤ G(h3)(z3) F (h2)(w1) ≤ F (k2)(w2)

· · · · · ·
G(km)(zm) ≤ xA′′ F (hm)(wm−1) ≤ F (km)(yA′′),

i.e. (xA, yA)τ(xA′′ , yA′′).
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Lemma 5 Let τ be reflexive and transitive binary relation on a set M . Define a binary
relation σ on M by

mσn⇐⇒ mτn ∧ nτm.

Then σ is an equivalence relation, and by defining

[m] ≤ [n]⇐⇒ mτn

we obtain a well-defined partial order on the quotient set M/σ = {[m] | m ∈M}.

By Lemma 5, the relation σ, defined by

(xA, yA)σ(xA′ , yA′)⇐⇒ (xA, yA)τ(xA′ , yA′) ∧ (xA′ , yA′)τ(xA, yA)

is an equivalence relation on the set
⊔
A∈AG(A)× F (A), and the definition

[xA, yA] ≤ [xA′ , yA′ ]⇐⇒ (xA, yA)τ(xA′ , yA′)

gives a partial order on the quotient set

L :=
⊔
A∈A

G(A)× F (A)/σ = {[xA, yA] | A ∈ A, xA ∈ G(A), yA ∈ F (A)} .

We define a left S-action on L by

s · [xA, yA] := [xA, s · yA].

Lemma 6 This way, L becomes a left S-poset.

Proof. Since F (A) is a left S-act for every A ∈ A, so is L.
Suppose that s ≤ t, s, t ∈ S, xA ∈ G(A), yA ∈ F (A), A ∈ A. Since F (A) is a left

S-poset, s · yA ≤ t · yA. From

xA ≤ G(1A)(xA)
G(1A)(xA) ≤ xA F (1A)(s · yA) ≤ F (1A)(t · yA)

we see that (xA, s · yA)τ(xA, t · yA), i.e. [xA, s · yA] ≤ [xA, t · yA].
Suppose that [xA, yA] ≤ [xA′ , yA′ ] and s ∈ S. Then we have inequalities (6). Using

that the elements in the right-hand column belong to left S-posets and all F (fi), F (gi)
are left S-poset morphisms, we obtain

xA ≤ G(f1)(x1)
G(g1)(x1) ≤ G(f2)(x2) F (f1)(s · yA) ≤ F (g1)(s · y1)
G(g2)(x2) ≤ G(f3)(x3) F (f2)(s · y1) ≤ F (g2)(s · y2)

· · · · · ·
G(gn)(xn) ≤ xA′ F (fn)(s · yn−1) ≤ F (gn)(s · yA′).

Hence
s · [xA, yA] = [xA, s · yA] ≤ [xA′ , s · yA′ ] = s · [xA′ , yA′ ].

(Note that the condition, we have just verified, implies that the S-action is well-defined.)
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Lemma 7 The poset L satisfies conditions

1. (∀x ∈ G(A))(∀y, y′ ∈ F (A))(y ≤ y′ ⇒ [x, y] ≤ [x, y′]),

2. (∀x, x′ ∈ G(A))(∀y ∈ F (A))(x ≤ x′ ⇒ [x, y] ≤ [x′, y]),

3. (∀x ∈ G(A))(∀y′ ∈ F (A′))(∀f : A′ → A in A)([x, F (f)(y′)] = [G(f)(x), y′]).

Proof. The proof follows from the existence of the following inequalities:

x ≤ G(1A)(x)
G(1A)(x) ≤ x F (1A)(y) ≤ F (1A)(y′),

x ≤ G(1A)(x′)
G(1A)(x′) ≤ x′ F (1A)(y) ≤ F (1A)(y),

x ≤ G(1A)(x)
G(f)(x) ≤ G(f)(x) F (1A)(F (f)(y′)) ≤ F (f)(y′)

and
G(f)(x) ≤ G(f)(x)
G(1A)(x) ≤ x F (f)(y′) ≤ F (1A)(F (f)(y′)).

Theorem 5 The left S-poset SL is a Pos-colimit of F weighted by G.

Proof. We define a mapping lxA : F (A)→ L, A ∈ A, x ∈ G(A), by

lxA(y) := [x, y],

y ∈ F (A). By Lemma 7(1), lxA is order preserving. Since it obviously preserves S-action,

it is a left S-poset morphism. We shall check that the pair
(
SL, (l

x
A)

x∈G(A)
A∈A

)
satisfies

conditions 1–3 of Theorem 4.
1(a) follows from Lemma 7(2).
1(b) For every a : A0 → A1 in A, x ∈ G(A1) and y ∈ F (A0) we have(

lxA1
◦ F (a)

)
(y) = lxA1

(F (a)(y)) = [x, F (a)(y)] = [G(a)(x), y] = l
G(a)(x)
A0

(y)

by Lemma 7(3).
2. Suppose that SP ∈ SPos, ϕ, ψ ∈ SPos(L, P ) and ϕ ◦ lxA ≤ ψ ◦ lxA for all A ∈ A and

x ∈ G(A). Then, for every A ∈ A, x ∈ G(A) and y ∈ F (A),

ϕ([x, y]) = (ϕ ◦ lxA)(y) ≤ (ψ ◦ lxA)(y) = ψ([x, y]),

and hence ϕ ≤ ψ.
3. Suppose that the morphisms pxA : SF (A) → SP satisfy condition 1. We define a

mapping ϕ : L→ P by
ϕ([x, y]) := pxA(y)
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for every A ∈ A, x ∈ G(A) and y ∈ F (A). Since pxA are left S-act morphisms, so is ϕ.
Suppose that [xA, yA] ≤ [xA′ , yA′ ] in L, i.e. we have inequalities (6). Then

pxA
A (yA) ≤ p

G(f1)(x1)
A (yA) =

(
px1

A′1
◦ F (f1)

)
(yA) ≤

(
px1

A′1
◦ F (g1)

)
(y1) = p

G(g1)(x1)
A1

(y1)

≤ p
G(f2)(x2)
A1

(y1) ≤ . . . ≤ p
G(fn)(xn)
An−1

(yn−1) =
(
pxn

A′n
◦ F (fn)

)
(yn−1)

≤
(
pxn

A′n
◦ F (gn)

)
(yA′) = p

G(gn)(xn)
A′ (yA′) ≤ p

xA′
A′ (yA′).

This proves that ϕ is well defined and order preserving. Finally, (ϕ ◦ lxA)(y) = ϕ([x, y]) =
pxA(y) for every A ∈ A, x ∈ G(A) and y ∈ F (A).

Dually to Theorem 3, one can prove the following result.

Theorem 6 There is one-to-one correspondence between Pos-colimits of F weighted by

G and pairs
(
SL, (l

x
A)

x∈G(A)
A∈A

)
, where SL is a left S-poset and (lxA)

x∈G(A)
A∈A is a family of left

S-poset morphisms lxA : SF (A)→ SL such that

1. (a) for all A ∈ A and x, x′ ∈ G(A)

x ≤ x′ =⇒ lxA ≤ lx
′

A ;

(b) for all a : A0 → A1 in A and x ∈ G(A1),

lxA1
◦ F (a) = l

G(a)(x)
A0

;

2. for every SP ∈ SPos and family (pxA)
x∈G(A)
A∈A of left S-poset morphisms pxA : SF (A)→

SP with properties 1, there is a unique left S-poset morphism ϕ : SL → SP such
that ϕ ◦ lxA = pxA for every A ∈ A and x ∈ G(A).

5 Some special weighted colimits

5.1 Conical colimits

Pos-colimits of a functor F weighted by the constant functor G = ∆1 are called conical
colimits. These turn out to be ordinary colimits.

5.2 Coinserters

Consider parallel morphisms r, q : SR
// // SQ in SPos. Let the category A and its images

under F and G be

A0

a //

a′
// A1 SR

r //
q

// SQ 2 oo c1
oo
c0

1.

Then the colimit of F weighted by G is called the coinserter of q and r.

Lemma 8 There is one-to-one correspondence between coinserters of q and r and pairs
(SL, l), where SL is a left S-poset and l : SQ→ SL a morphism such that
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1. l ◦ q ≤ l ◦ r,

2. if l′ : SQ → SL
′ is such that l′ ◦ q ≤ l′ ◦ r then there exists unique ϕ : SL → SL

′ in

SPos such that ϕ ◦ l = l′.

By Lemma 4.2 of [3] (where coinserters were called subcoequalizers), one such pair
is (SCoins(q, r), π), where SCoins(q, r) = Q/ν(H) is the quotient S-poset of SQ by the
congruence ν(H) induced by the set H = {(q(x), r(x)) | x ∈ R} ⊆ Q2 and π : Q →
Q/ν(H) is the natural surjection. We call (SCoins(q, r), π) the canonical coinserter of
q and r.

5.3 Co-comma-objects

Consider morphisms r : SR → SQ and r′ : SR
′ → SQ in SPos. If the category A and its

images under F and G are

A oo a
A1

a′ // A′ SR oo r
SQ

r′ // R′ 1
c1 // 2 oo c0 1

then the colimit of F weighted by G is called the co-comma-object of r′ and r.

Lemma 9 There is one-to-one correspondence between co-comma-objects of r′ and r and
triples (SL, l

′, l), where l : SR→ SL, l′ : SR
′ → SL are such that

1. l ◦ r ≤ l′ ◦ r′;

2. if p : SR → SL
′ and p′ : SR

′ → SL
′ in SPos are such that p ◦ r ≤ p′ ◦ r′ then there

exists a unique morphism ϕ : L→ L′ in SPos such that ϕ ◦ l = p and ϕ ◦ l′ = p′.

By Section 2.1 of [4] (where co-comma-objects were called subpushouts), one such
triple is (SCoco(r′, r), l′, l), where SCoco(r′, r) is the quotient S-poset of the coproduct

SR t SR
′ = (1 × R) ∪ ({2} × R′) by the congruence ν(H) induced by the set H =

{((2, r′(x)), (1, r(x))) | x ∈ Q} ⊆ (R t R′)2 and the mapping l : R → SCoco(r′, r) (l′ :
R′ → SCoco(r′, r)) is defined by l(y) := [1, y] (l′(y′) := [2, y′]). We call (SCoco(r′, r), l′, l)
the canonical co-comma-object of r′ and r.
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5.4 Lax colimit of a morphism

(WARNING: The results of this section may be incorrect!)
Consider a morphism h : SR //

SQ in SPos. Let the category A and its images under
(covariant) F and (contravariant) G be

A0
a // A1 SR

h //
SQ 1

c0 // 2. (8)

Then the colimit of F weighted byG is called the lax colimit of the morphism h (replacing
c0 by c1 we obtain the op-lax colimit of the morphism h).

By the canonical construction of weighted colimits we know that

Laxco(h) = (1×Q t 2×R)/σ ∼= (Q t 2×R)/σ,

where
(xA, yA)σ(xA′ , yA′)⇐⇒ (xA, yA)τ(xA′ , yA′) ∧ (xA′ , yA′)τ(xA, yA)

and τ is defined as in Section 4.2.
Let us examine the relation τ . Suppose that (xA, yA)τ(xA′ , yA′). Then we have a

scheme (6), assume that it has a minimal length. Note that if fi = gi = 1Ai
or gi = fi+1 =

1Ai
for some i then the scheme could be shortened. Otherwise, consider the following

cases.
1. Zigzag (7) contains 1A0 . Then

(xA, yA) ≤ (xA′ , yA′), (9)

because otherwise either the morpism preceeding 1A0 or the morphism following it would
also be 1A0 .

2. Zigzag (7) contains no 1A0 . We have two subcases.
2.1. f1 = 1A1 . Then g1 = a. If n > 1 then we must have f2 = a, hence xA = ∗ = x1 =

x2,

xA ≤ G(f1)(x1)
G(g2)(x2) ≤ G(f3)(x3) F (f1)(yA) ≤ F (g1)(y1) = F (f2)(y1) ≤ F (g2)(y2),

contradicting the minimality of n. Hence n = 1 and

∗ = xA ≤ x1 = ∗
c0(∗) = 0 ≤ xA′ yA ≤ h(yA′),

i.e.
(xA, yA) ∈ 1×Q, (xA′ , yA′) ∈ 2×R, yA ≤ h(yA′). (10)

2.2. f1 = a. If g1 = 1A1 then also f2 = 1A1 , contradicting our assumption. Hence
g1 = a. If n > 1 then f2 = a (because domf2 = A0), but then the sequence can be
shortened. Hence n = 1 and

xA ≤ c0(x1)
c0(x1) ≤ xA′ h(yA) ≤ h(yA′),

i.e.
(xA, yA), (xA′ , yA′) ∈ 2×R, xA = 0, h(yA) ≤ h(yA′). (11)

So it seems that the cases when (xA, yA)τ(xA′ , yA′) can only be (9), (10) and (11).
Also, it seems that (xA, yA)σ(xA′ , yA′) if and only if

1) (xA, yA) = (xA′ , yA′), or
2) xA = xA′ = 0 ∈ 2, yA, yA′ ∈ R and h(yA) = h(yA′).
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5.4.1 An application: coconvexity

Let SR be a S-subposet of QS and r : RS → QS the inclusion mapping. Then the
left S-poset Oplax(r) = {(x, y) ∈ R × Q | y ≤ r(x)} together with the restrictions lR
and lQ of projections is an op-lax limit (see [6] for the definition) of the morphism r.
It is easy to see that the S-subposet RS is down-closed if and only if the projection
π2 : Pb(r, lQ) → Oplax(r) of the canonical pullback (Pb(r, lQ), π1, π2) of r and lQ is an
epimorphism (i.e. a surjective morphism). Note that

Pb(r, lQ) = {(x1, x2, y) ∈ R×R×Q | x1 = y ≤ x2}.

R Qr
//

Pb(r, lQ)

R

π1

��

Pb(r, lQ) Oplax(r)
π2 // Oplax(r)

Q

lQ

��

Using pullbacks and lax limits of morphisms one can categorically define up-closedness.
Convex S-subposets are precisely the intersections of up-closed and down-closed S-

subposets.
We say that a (regular?) epimorphism h : R → Q in SPos is down-coclosed if the

injection u2 : Oplaxco(h)→ Po(h, nR) of the pushout

Q Po(h, nR)u1

//

R

Q

h

��

R Oplaxco(h)
nR // Oplaxco(h)

Po(h, nR)

u2

��

is a (regular?) monomorphism, where (Oplaxco(h), nR, nQ) is the op-lax colimit of the
morphism h.

Using pushouts and lax colimits we define up-coclosedness. We say that a factor S-
poset is coconvex if it is a cointersection (!) of a down-coclosed and an up-coclosed factor
S-poset. (I have no idea, what are the cointersections, but they must exist!)
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5.5 Weighted tensor product

If A is the the discrete category with a single object ? then we call a colimit of F weighted
by G a weighted tensor product of F and G (to distinguish it from the tensor product
that is used in the study of flatness properites of S-posets). The weighted tensor product,
constructed as in Theorem 2 is just the direct product G(?) × F (?), where the order is
componentwise and the S-action is defined by

s · (x, y) := (x, s · y),

together with left S-poset morphisms lx : F (?) → G(?) × F (?), x ∈ G(?), defined by
lx(y) := (x, y), y ∈ F (?).

By Theorem 6, weighted tensor products of F and G are pairs
(
SL, (l

x)x∈G(?)
)
, where

lx : SF (?)→ SL are morphisms such that

1. for all x, x′ ∈ G(?), x ≤ x′ implies lx ≤ lx
′
;

2. for every SP ∈ SPos and family (px)x∈G(?) of left S-poset morphisms px : SF (?) →
SP such that x ≤ x′ implies px ≤ px

′
for all x, x′ ∈ G(?) then there is a unique left

S-poset morphism ϕ : SL→ SP such that ϕ ◦ lx = px for every x ∈ G(?).

In the case when F (?) = SS, the weighted tensor product of F and G is the free
S-poset on G(?) (see Theorem 10 of [4]).

Since Pos also admits weighted tensor products (=direct products) of P and 2, for
every poset P , the two-dimensional universal property of any limit follows from the one-
dimensional one (see p. 306 of [6], or Theorem 4.85 of [5]). WHAT DOES THIS MEAN?
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