Weighted limits and colimits in the category of left S-posets

Valdis Laan

December 23, 2008

Abstract

Weighted limits and colimits are defined in categories that are enriched over a symmetric monoidal closed category. Since the category ${ }_{S}$ Pos of left S-posets over a pomonoid S is enriched over the category Pos of posets (with order-preserving mappings as morphisms) we can speak about weighted limits and colimits in ${ }_{S}$ Pos.

1 Introduction

By $\mathbf{1}=\{*\}$ we shall denote the one-element $(S$-)poset and by $\mathbf{2}=\{0,1\}$ the two-element chain with $0<1$. We assume the existence of an empty S-poset. Recall that morphisms in ${ }_{S}$ Pos are order and action preserving mappings and isomorphisms are surjective mappings that preserve and reflect order.

The category Pos of posets and order-preserving mappings is a symmetric monoidal closed category (see Def. 6.1.1-6.1.3 of [2]) with the cartesian product as a tensor product and $I=1$.

The category ${ }_{S}$ Pos of left S-posets (or Pos_{S} of right S-posets) is a Pos-category (or poset enriched category or a category enriched over Pos) (see Def. 6.2.1 of [2]), where the morphism sets ${ }_{S} \operatorname{Pos}(A, B),{ }_{S} A,{ }_{S} B \in{ }_{S} \operatorname{Pos}$ are posets with respect to pointwise order.

If \mathcal{A} and \mathcal{B} are Pos-categories then a Pos-functor $F: \mathcal{A} \rightarrow \mathcal{B}$ has to preserve (in addition to composition and identity morphisms) the order of morphism posets. We shall call such functors pofunctors.

Pos-natural transformations (see Def. 6.2.4 of [2]) between pofunctors are just the ordinary natural transformations. If \mathcal{A} and \mathcal{B} are Pos-categories and \mathcal{A} is small then by Proposition 6.3.1 of [2] the category of pofunctors $\mathcal{A} \rightarrow \mathcal{B}$ and natural transformations between them can be provided with the structure of a Pos-category, written $\operatorname{Pos}[\mathcal{A}, \mathcal{B}]$. Namely, given two pofunctors $F, G: \mathcal{A} \longrightarrow \mathcal{B}$, the set

$$
\operatorname{Nat}(F, G)=\left\{\left(\alpha_{A}: F(A) \rightarrow G(A)\right)_{A \in \mathcal{A}} \mid G(f) \alpha_{A^{\prime}}=\alpha_{A^{\prime \prime}} F(f) \text { for every } f: A^{\prime} \rightarrow A^{\prime \prime} \text { in } \mathcal{A}\right\}
$$

of natural transformations from F to G is a poset with respect to the order

$$
\left(\alpha_{A}\right)_{A \in \mathcal{A}} \leq\left(\beta_{A}\right)_{A \in \mathcal{A}} \Longleftrightarrow \alpha_{A} \leq \beta_{A} \text { for every } A \in \mathcal{A} \text { in the poset } \mathcal{B}(F(A), G(A))
$$

2 Weighted limits in ${ }_{S}$ Pos

2.1 Definition

Definition 1 (Cf. Def. 6.6.3 of [2]) Given a pomonoid S, small Pos-category \mathcal{A}, and pofunctors $F: \mathcal{A} \rightarrow{ }_{s}$ Pos, $G: \mathcal{A} \rightarrow$ Pos, a Pos-limit of F weighted by G is a pair $\left({ }_{S} L,\left(\lambda_{P}\right)_{P \in_{S} \text { Pos }}\right)$ where ${ }_{S} L$ is a left S-poset and $\lambda=\left(\lambda_{P}\right)_{P \in_{S} \operatorname{Pos}}:{ }_{S} \operatorname{Pos}(-, L) \Rightarrow$ $\operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(-, F(-))\right)$ is a natural isomorphism, that is, for every ${ }_{S} P \in{ }_{S} \mathrm{Pos}$,

$$
\lambda_{P}:{ }_{S} \operatorname{Pos}(P, L) \longrightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(P, F(-))\right),
$$

are poset isomorphisms that are natural in P. We write $\lim _{G} F$ for a Pos-limit of F weighted by G.

Remark 1 For every ${ }_{S} P \in{ }_{S} \operatorname{Pos},{ }_{S} \operatorname{Pos}(P, F(-))={ }_{S} \operatorname{Pos}(P,-) \circ F: \mathcal{A} \rightarrow \operatorname{Pos}$ is a pofunctor and the set $\operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(P, F(-))\right)$ is a poset with respect to componentwise order of natural transformations. Therefore, there is a contravariant functor

$$
\operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(-, F(-))\right):{ }_{S} \operatorname{Pos} \rightarrow \operatorname{Pos}
$$

given by the assignment

where the mapping $(-\circ p) \circ-$ is defined by

$$
((-\circ p) \circ-)(\mu):=\left((-\circ p) \circ \mu_{A}\right)_{A \in \mathcal{A}}: G \Rightarrow{ }_{S} \operatorname{Pos}(P, F(-))
$$

for every natural transformation $\mu: G \Rightarrow{ }_{S} \operatorname{Pos}(Q, F(-))$ and $-\circ p:{ }_{S} \operatorname{Pos}(Q, F(A)) \rightarrow$ ${ }_{S} \operatorname{Pos}(P, F(A))$. The fact that $\lambda=\left(\lambda_{P}\right)_{P \in S} \operatorname{Pos}:{ }_{S} \operatorname{Pos}(-, L) \Rightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(-, F(-))\right)$ is a natural transformation meand that

$$
\lambda_{P}(\psi \circ p)=\left((-\circ p) \circ \lambda_{Q}(\psi)_{A}\right)_{A \in \mathcal{A}},
$$

or

$$
\lambda_{P}(\psi \circ p)_{A}=(-\circ p) \circ \lambda_{Q}(\psi)_{A},
$$

or

$$
\begin{equation*}
\lambda_{P}(\psi \circ p)_{A}(x)=\lambda_{Q}(\psi)_{A}(x) \circ p \tag{1}
\end{equation*}
$$

for every $A \in \mathcal{A}, x \in G(A),{ }_{S} P,{ }_{S} Q \in{ }_{S} \operatorname{Pos}, p \in{ }_{S} \operatorname{Pos}(P, Q), \psi \in{ }_{S} \operatorname{Pos}(Q, L)$.

2.2 Existence of weighted limits in ${ }_{S} \mathrm{Pos}$

Here we give a characterization of a weighted limit in more usual terms of so-called projections of a limit and a universal property. We shall use the notation of Definition 1.

Theorem 1 There is one-to-one correspondence between Pos-limits of F weighted by G and pairs $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, where ${ }_{S} L$ is a left S-poset and $\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $l_{A}^{x}:{ }_{S} L \rightarrow{ }_{S} F(A)$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x^{\prime} \in G(A)$

$$
x \leq x^{\prime} \Longrightarrow l_{A}^{x} \leq l_{A}^{x^{\prime}}
$$

(b) for all $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{0}\right)$,

$$
F(a) \circ l_{A_{0}}^{x}=l_{A_{1}}^{G(a)(x)} ;
$$

2. for all ${ }_{S} P \in{ }_{S} \operatorname{Pos}$ and $\varphi, \psi \in{ }_{S} \operatorname{Pos}(P, L)$,

$$
\left((\forall A \in \mathcal{A})(\forall x \in G(A))\left(l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi\right)\right) \Longrightarrow \varphi \leq \psi ;
$$

3. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x}:{ }_{S} P \rightarrow$ ${ }_{S} F(A)$ with properties 1 , there is a left S-poset morphism $\varphi:{ }_{S} P \rightarrow{ }_{S} L$ such that $l_{A}^{x} \circ \varphi=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

Proof. Suppose that there is ${ }_{S} L \in{ }_{S} \mathrm{Pos}$ and for every ${ }_{S} P \in{ }_{S} \mathrm{Pos}$ poset isomorphisms

$$
\lambda_{P}:{ }_{S} \operatorname{Pos}(P, L) \longrightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(P, F(-))\right)
$$

which are natural in P. For every $A \in \mathcal{A}, x \in G(A)$ we set

$$
\begin{equation*}
l_{A}^{x}:=\lambda_{L}\left(1_{L}\right)_{A}(x):{ }_{S} L \rightarrow{ }_{S} F(A) . \tag{2}
\end{equation*}
$$

1(a) holds because $\lambda_{L}\left(1_{L}\right)_{A}: G(A) \rightarrow{ }_{S} \operatorname{Pos}(L, F(A))$ is order preserving for every $A \in \mathcal{A}$.

1(b). For every $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{0}\right)$,

$$
F(a) \circ l_{A_{0}}^{x}=F(a) \circ \lambda_{L}\left(1_{L}\right)_{A_{0}}(x)=\lambda_{L}\left(1_{L}\right)_{A_{1}}(G(a)(x))=l_{A_{1}}^{G(a)(x)},
$$

because $\lambda_{L}\left(1_{L}\right)$ is a natural transformation.

2. Suppose that $\varphi, \psi \in{ }_{S} \operatorname{Pos}(P, L)$ are such that $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Since λ_{P} is natural in P (see (1)), we obtain

$$
\begin{aligned}
\lambda_{P}(\varphi)_{A}(x) & =\lambda_{P}\left(1_{L} \circ \varphi\right)_{A}(x)=\lambda_{L}\left(1_{L}\right)_{A}(x) \circ \varphi=l_{A}^{x} \circ \varphi \\
& \leq l_{A}^{x} \circ \psi=\lambda_{L}\left(1_{L}\right)_{A}(x) \circ \psi=\lambda_{P}\left(1_{L} \circ \psi\right)_{A}(x)=\lambda_{P}(\psi)_{A}(x)
\end{aligned}
$$

for every $A \in \mathcal{A}, x \in G(A)$. Hence $\lambda_{P}(\varphi) \leq \lambda_{P}(\psi)$, and so $\varphi \leq \psi$, because λ_{P} reflects order.
3. If $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $p_{A}^{x}:{ }_{S} P \rightarrow{ }_{S} F(A)$ that satisfies condition 1, then $\mu=\left(\mu_{A}\right)_{A \in \mathcal{A}}$, where $\mu_{A}: G(A) \rightarrow{ }_{S} \operatorname{Pos}(P, F(A))$ is defined by

$$
\mu_{A}(x):=p_{A}^{x},
$$

$x \in G(A)$, is a natural transformation $G \Rightarrow{ }_{S} \operatorname{Pos}\left({ }_{S} P, F(-)\right)$. By the surjectivity of λ_{P}, there exists $\varphi \in{ }_{S} \operatorname{Pos}(P, L)$ such that $\lambda_{P}(\varphi)=\mu$, and hence, by (1),

$$
l_{A}^{x} \circ \varphi=\lambda_{L}\left(1_{L}\right)_{A}(x) \circ \varphi=\lambda_{P}(\varphi)_{A}(x)=\mu_{A}(x)=p_{A}^{x}
$$

for every $A \in \mathcal{A}$ and $x \in G(A)$.
Conversely, let a pair $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfy conditions 1-3. For every ${ }_{S} P \in{ }_{S}$ Pos we define a mapping

$$
\lambda_{P}:{ }_{S} \operatorname{Pos}(P, L) \longrightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(P, F(-))\right)
$$

by

$$
\begin{equation*}
\lambda_{P}(\varphi)_{A}(x):=l_{A}^{x} \circ \varphi: P \rightarrow F(A), \tag{3}
\end{equation*}
$$

$\varphi \in{ }_{S} \operatorname{Pos}(P, L), A \in \mathcal{A}$ and $x \in G(A)$.

1. As a composite of two S-poset morphisms, $\lambda_{P}(\varphi)_{A}(x)$ is an S-poset morphism.
2. Because of $1(\mathrm{a}), \lambda_{P}(\varphi)_{A}: G(A) \rightarrow{ }_{S} \operatorname{Pos}(P, F(A))$ preserves order.
3. $\lambda_{P}(\varphi): G \Rightarrow{ }_{S} \operatorname{Pos}(P, F(-))$ is a natural transformation, because

$$
\begin{aligned}
\left((F(a) \circ-) \circ \lambda_{P}(\varphi)_{A_{0}}\right)(x) & =F(a) \circ \lambda_{P}(\varphi)_{A_{0}}(x)=F(a) \circ l_{A_{0}}^{x} \circ \varphi \\
& =l_{A_{1}}^{G(a)(x)} \circ \varphi=\lambda_{P}(\varphi)_{A_{1}}(G(a)(x)) \\
& =\left(\lambda_{P}(\varphi)_{A_{1}} \circ G(a)\right)(x)
\end{aligned}
$$

for every $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{0}\right)$.
4. λ_{P} is order preserving. Indeed, if $\varphi \leq \psi$ in ${ }_{S} \operatorname{Pos}(P, L)$ then

$$
\lambda_{P}(\varphi)_{A}(x)=l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi=\lambda_{P}(\psi)_{A}(x)
$$

for every $A \in \mathcal{A}$ and $x \in G(A)$, thus $\lambda_{P}(\varphi) \leq \lambda_{P}(\psi)$.
5. λ_{P} is order reflecting, because, assuming that $\lambda_{P}(\varphi) \leq \lambda_{P}(\psi), \varphi, \psi \in{ }_{S} \operatorname{Pos}(P, L)$, i.e. $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$, we conclude $\varphi \leq \psi$ by 2 .
6. λ_{P} is surjective. To prove this, consider a natural transformation $\mu: G \Rightarrow$ ${ }_{S} \operatorname{Pos}(P, F(-))$. For every $A \in \mathcal{A}$ and $x \in G(A)$ set

$$
p_{A}^{x}:=\mu_{A}(x):{ }_{S} P \rightarrow{ }_{S} F(A) .
$$

Since μ_{A} is order preserving, the family $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ satisfies 1 (a). Since μ is a natural transformation,

$$
\begin{aligned}
F(a) \circ p_{A_{0}}^{x} & =\left((F(a) \circ-) \circ \mu_{A_{0}}\right)(x)=\left(\mu_{A_{1}} \circ G(a)\right)(x) \\
& =\mu_{A_{1}}(G(a)(x))=p_{A_{1}}^{G(a)(x)}
\end{aligned}
$$

for every $a: A_{0} \rightarrow A_{1}$ in \mathcal{A}. Hence $1(\mathrm{~b})$ is also satisfied.

By 3, there is an S-poset morphism $\varphi:{ }_{S} P \rightarrow{ }_{S} L$ such that $l_{A}^{x} \circ \varphi=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. So

$$
\lambda_{P}(\varphi)_{A}(x)=l_{A}^{x} \circ \varphi=p_{A}^{x}=\mu_{A}(x)
$$

for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $\lambda_{P}(\varphi)=\mu$ and λ_{P} is surjective.
7. λ_{P} is natural in P by (1), because

$$
\lambda_{P}(\psi \circ p)_{A}(x)=l_{A}^{x} \circ(\psi \circ p)=\left(l_{A}^{x} \circ \psi\right) \circ p=\lambda_{Q}(\psi)_{A}(x) \circ p
$$

for every $\psi \in{ }_{S} \operatorname{Pos}(Q, L), p \in{ }_{S} \operatorname{Pos}(P, Q), A \in \mathcal{A}$ and $x \in G(A)$.
Now, if $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ is a Pos-limit of F weighted by G, if we define mappings l_{A}^{x} by (2) and a natural transformation λ^{\prime} by $\lambda_{P}^{\prime}(\varphi)_{A}(x):=l_{A}^{x} \circ \varphi,{ }_{S} P \in{ }_{S} \operatorname{Pos}, \varphi \in{ }_{S} \operatorname{Pos}(P, L)$, $A \in \mathcal{A}, x \in G(A)$, then by (1)

$$
\lambda_{P}^{\prime}(\varphi)_{A}(x)=l_{A}^{x} \circ \varphi=\lambda_{L}\left(1_{L}\right)_{A}(x) \circ \varphi=\lambda_{P}\left(1_{L} \circ \varphi\right)_{A}(x)=\lambda_{P}(\varphi)_{A}(x),
$$

and so $\lambda=\lambda^{\prime}$. Also, if $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfies conditions 1-3, we define a natural transformation λ by (3) and thereafter mappings k_{A}^{x} by $k_{A}^{x}:=\lambda_{L}\left(1_{L}\right)_{A}(x), A \in \mathcal{A}, x \in$ $G(A)$, then

$$
k_{A}^{x}=\lambda_{L}\left(1_{L}\right)_{A}(x)=l_{A}^{x} \circ 1_{L}=l_{A}^{x} .
$$

Hence the correspondence is indeed one-to-one.

Remark 2 We always can assume that φ in condition 3 of Theorem 1 is unique. Indeed, if also $\psi:{ }_{S} P \rightarrow{ }_{S} L$ is such that $l_{A}^{x} \circ \psi=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, then $l_{A}^{x} \circ \psi \leq l_{A}^{x} \circ \varphi$ and $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$, which by condition 2 of Theorem 1 implies $\varphi=\psi$.

Remark 3 Having Theorem 1 in mind, we shall also call the pairs $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, satisfying conditions 1-3 of Theorem 1, limits of F weighted by G and l_{A}^{x} their projections.

2.3 Canonical construction of weighted limits in ${ }_{S} \mathrm{Pos}$

We shall show that weighted limits always exist in the category ${ }_{S}$ Pos and give a canonical construction for such limits.

It is easy to see that the poset $\operatorname{Nat}(G, U \circ F)$, where $U:{ }_{S}$ Pos \rightarrow Pos is the forgetful functor, is an S-poset if the left S-action is given by

$$
s \cdot f:=\left(s \cdot f_{A}\right)_{A \in \mathcal{A}}
$$

where $s \in S, f=\left(f_{A}\right)_{A \in \mathcal{A}} \in \operatorname{Nat}(G, U \circ F)$, and the mapping $s \cdot f_{A}: G(A) \rightarrow F(A)$ is defined by

$$
\left(s \cdot f_{A}\right)(x):=s \cdot f_{A}(x)
$$

$x \in G(A)$. For every $A \in \mathcal{A}$ and $x \in G(A)$ we define a mapping $l_{A}^{x}: \operatorname{Nat}(G, U \circ F) \rightarrow F(A)$ by

$$
\begin{equation*}
l_{A}^{x}(f):=f_{A}(x), \tag{4}
\end{equation*}
$$

$f=\left(f_{A}\right)_{A \in \mathcal{A}} \in \operatorname{Nat}(G, U \circ F)$.
Theorem 2 The pair $\left(\operatorname{Nat}(G, U \circ F),\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ is a Pos-limit of F weighted by G.
Proof. Since

$$
l_{A}^{x}(s \cdot f)=l_{A}^{x}\left(\left(s \cdot f_{A}\right)_{A \in \mathcal{A}}\right)=\left(s \cdot f_{A}\right)(x)=s \cdot f_{A}(x)=s \cdot l_{A}^{x}(f)
$$

for every $A \in \mathcal{A}, x \in G(A), f=\left(f_{A}\right)_{A \in \mathcal{A}} \in L, s \in S$, and since l_{A}^{x} are obviously order preserving, they are left S-poset morphisms. We shall show that they satisfy the conditions of Theorem 1 .

1(a). If $x \leq x^{\prime}, x, x^{\prime} \in G(A)$, then $f_{A}(x) \leq f_{A}\left(x^{\prime}\right)$ for every $f \in \operatorname{Nat}(G, U \circ F)$. Hence $l_{A}^{x} \leq l_{A}^{x^{\prime}}$.

1(b). For every $a: A_{0} \rightarrow A_{1}$ in $\mathcal{A}, x \in G\left(A_{0}\right)$ and $f \in \operatorname{Nat}(G, U \circ F)$,

$$
\left(F(a) \circ l_{A_{0}}^{x}\right)(f)=F(a)\left(f_{A_{0}}(x)\right)=f_{A_{1}}(G(a)(x))=l_{A_{1}}^{G(a)(x)}(f) .
$$

2. Suppose that ${ }_{S} P \in{ }_{S} \operatorname{Pos}, \varphi, \psi \in{ }_{S} \operatorname{Pos}(P, \operatorname{Nat}(G, U \circ F))$ are such that $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Then $\varphi(z)_{A}(x)=l_{A}^{x}(\varphi(z)) \leq l_{A}^{x}(\psi(z))=\psi(z)_{A}(x)$ in $F(A)$ for every $A \in \mathcal{A}, x \in G(A)$ and $z \in P$. Since the order in $\operatorname{Pos}(G(A), F(A))$ is pointwise and the order in $\operatorname{Nat}(G, U \circ F)$ is componentwise, $\varphi(z)=\left(\varphi(z)_{A}\right)_{A \in \mathcal{A}} \leq$ $\left(\psi(z)_{A}\right)_{A \in \mathcal{A}}=\psi(z)$ for every $z \in P$, and thus $\varphi \leq \psi$.
3. Let ${ }_{S} P \in{ }_{S}$ Pos and let $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ be a family of left S-poset morphisms p_{A}^{x} : ${ }_{S} P \rightarrow{ }_{S} F(A)$ such that (a) $x \leq x^{\prime}$ implies $p_{A}^{x} \leq p_{A}^{x^{\prime}}$ for all $A \in \mathcal{A}, x, x^{\prime} \in G(A)$, and (b) $F(a) \circ p_{A_{0}}^{x}=p_{A_{1}}^{G(a)(x)}$ for all $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{0}\right)$. We define a mapping $\varphi: P \rightarrow \operatorname{Nat}(G, U \circ F)$ by

$$
\varphi(z)_{A}(x):=p_{A}^{x}(z),
$$

$A \in \mathcal{A}, x \in G(A), z \in P$. By (a), $\varphi(z)_{A}: G(A) \rightarrow F(A)$ is order preserving. By (b),
$\left(F(a) \circ \varphi(z)_{A_{0}}\right)(x)=F(a)\left(p_{A_{0}}^{x}(z)\right)=p_{A_{1}}^{G(a)(x)}(z)=\varphi(z)_{A_{1}}(G(a)(x))=\left(\varphi(z)_{A_{1}} \circ G(a)\right)(x)$
for every $a: A_{0} \rightarrow A_{1}$ in $\mathcal{A}, x \in G\left(A_{0}\right)$ and $z \in P$. Hence $\varphi(z) \in L$. Further, φ is order preserving, because all mappings p_{A}^{x} are. Also

$$
\begin{aligned}
\varphi(s \cdot z)_{A}(x) & =p_{A}^{x}(s \cdot z)=s \cdot p_{A}^{x}(z)=s \cdot \varphi(z)_{A}(x) \\
& =\left(s \cdot \varphi(z)_{A}\right)(x)=(s \cdot \varphi(z))_{A}(x)
\end{aligned}
$$

for every $A \in \mathcal{A}, x \in G(A), z \in P$ and $s \in S$, which implies $\varphi(s \cdot z)=s \cdot \varphi(z)$, and hence φ is a left S-poset morphism. Finally,

$$
\left(l_{A}^{x} \circ \varphi\right)(z)=l_{A}^{x}(\varphi(z))=\varphi(z)_{A}(x)=p_{A}^{x}(z)
$$

for every $A \in \mathcal{A}, x \in G(A), z \in P$, and hence $l_{A}^{x} \circ \varphi=p_{A}^{x}$.

Remark 4 That weighted limits can be constructed as in Theorem 2 may also follow from (3.2) or (2.1) of [6], but we have preferred to give a direct proof here.

2.4 Another existence theorem for weighted limits

Here we show that condition 2 in Theorem 1 is actually redundant.
Theorem 3 A pair $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, where $l_{A}^{x}:{ }_{S} L \rightarrow{ }_{S} F(A)$ are left S-poset morphisms, is a limit of F weighted by G if and only if

1. (a) for all $A \in \mathcal{A}$ and $x, x^{\prime} \in G(A)$

$$
x \leq x^{\prime} \Longrightarrow l_{A}^{x} \leq l_{A}^{x^{\prime}}
$$

(b) for all $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{0}\right)$,

$$
F(a) \circ l_{A_{0}}^{x}=l_{A_{1}}^{G(a)(x)} ;
$$

2. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x}:{ }_{S} P \rightarrow$ ${ }_{S} F(A)$ with properties 1, there is a unique left S-poset morphism $\varphi:{ }_{S} P \rightarrow{ }_{S} L$ such that $l_{A}^{x} \circ \varphi=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

Proof. Necessity follows immediately from Theorem 1 and Remark 2.
Sufficiency. Suppose that ${ }_{S} L$ with $l_{A}^{x}, A \in \mathcal{A}, x \in G(A)$, satisfies conditions 1 and 2 . Let ${ }_{S} M$ together with left S-poset morphisms $m_{A}^{x}:{ }_{S} M \rightarrow{ }_{S} F(A)$ that satisfy conditions $1-3$ of Theorem 1 be a limit of F weighted by G (by Theorem 2 we know that at least one such ${ }_{S} M$ exists). Then there exists a unique morphism $\mu:{ }_{S} M \rightarrow{ }_{S} L$ such that $l_{A}^{x} \circ \mu=m_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, and a unique morphism $\nu:{ }_{S} L \rightarrow{ }_{S} M$ such that $m_{A}^{x} \circ \nu=l_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $l_{A}^{x} \circ(\mu \circ \nu)=l_{A}^{x}=l_{A}^{x} \circ 1_{L}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, which implies $\mu \circ \nu=1_{L}$ by the uniqueness of the comparison morphism $1_{L}:{ }_{S} L \rightarrow{ }_{S} L$.

Suppose now that $\varphi, \psi \in{ }_{S} \operatorname{Pos}(P, L)$ and $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Then

$$
m_{A}^{x} \circ(\nu \circ \varphi)=l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi=m_{A}^{x} \circ(\nu \circ \psi)
$$

for every $A \in \mathcal{A}$ and $x \in G(A)$. Since, for the limit ${ }_{S} M$, condition 2 of Theorem 1 is satisfied, we have $\nu \circ \varphi \leq \nu \circ \psi$, which yields $\varphi \leq \psi$ by multiplying by μ on the left.

Remark 5 If I correctly understand a remark on p. 306 of [6] then the redundance of condition 2 in Theorem 1 should somehow follow from the existence of a tensor product ($=$ direct product, \neq the "homological tensor product", see Section 5) of $\mathbf{2}$ and ${ }_{S} P$ for every left S-poset ${ }_{S} P$. HOW?

Remark 6 In view of Theorem 3, in what follows, by a limit of F weighted by G we mean a pair $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ that satisfies conditions 1 and 2 of Theorem 3.

3 Some special weighted limits

3.1 Conical limits

If $G=\Delta \mathbf{1}$ is the constant functor at the one-element poset $\mathbf{1}$ then the limit of F weighted by G is called a conical limit (see [6], p. 305). By Theorem $3,\left({ }_{S} L,\left(l_{A}\right)_{A \in \mathcal{A}}\right)$ is such a limit if and only if

1. for all $a: A_{0} \rightarrow A_{1}$ in $\mathcal{A}, F(a) \circ l_{A_{0}}=l_{A_{1}}$;
2. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p_{A}\right)_{A \in \mathcal{A}}$ of left S-poset morphisms $p_{A}:{ }_{S} P \rightarrow{ }_{S} F(A)$ with property 1 , there is a unique left S-poset morphism $\varphi:{ }_{S} P \rightarrow{ }_{S} L$ such that $l_{A} \circ \varphi=p_{A}$ for every $A \in \mathcal{A}$.

Thus conical limits are just the ordinary limits, e.g. products, equalizers, pullbacks.

3.2 Inserters

Consider parallel morphisms $r, q:{ }_{S} R \longrightarrow_{S} Q$ in ${ }_{S}$ Pos. Let the category \mathcal{A} and its images under F and G be

$$
A_{0} \underset{a^{\prime}}{\stackrel{a}{\Longrightarrow}} A_{1} \quad{ }_{S} R \underset{q^{\prime}}{\stackrel{r}{\Longrightarrow}} S Q \quad \mathbf{1} \underset{c_{0}}{\stackrel{c_{1}}{\longrightarrow}} \mathbf{2}
$$

where a, a^{\prime} are incomparable and c_{1}, c_{0} map $*$ to 1 and 0 , respectively. Then the limit of F weighted by G is called the inserter of q and r (see [6], p. 307) and it can be constructed as

$$
\begin{aligned}
\operatorname{Nat}(G, U \circ F)= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1),\right. \\
& \left.r \circ f_{A_{0}}=f_{A_{1}} \circ c_{1}, q \circ f_{A_{0}}=f_{A_{1}} \circ c_{0}\right\} \\
= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1),\right. \\
& \left.r\left(f_{A_{0}}(*)\right)=f_{A_{1}}(1), q\left(f_{A_{0}}(*)\right)=f_{A_{1}}(0)\right\} \\
\cong & \left\{f_{A_{0}} \mid f_{A_{0}}: \mathbf{1} \rightarrow R, q \circ f_{A_{0}} \leq r \circ f_{A_{0}}\right\} \\
\cong & \{z \in R \mid q(z) \leq r(z)\}=: \operatorname{lns}(q, r),
\end{aligned}
$$

where the order and S-action of $\operatorname{Ins}(q, r)$ are inherited from ${ }_{S} R$, and there is an isomorphism

$$
\alpha:{ }_{S} \operatorname{Nat}(G, U \circ F) \rightarrow{ }_{S} \operatorname{lns}(q, r), \quad\left(f_{A_{0}}, f_{A_{1}}\right) \mapsto f_{A_{0}}(*)
$$

in ${ }_{S}$ Pos.
Lemma 1 There is one-to-one correspondence between inserters of q and r and pairs $\left({ }_{S} E, e\right)$, where ${ }_{S} E$ is a left S-poset and $e:{ }_{S} E \rightarrow{ }_{S} R$ a morphism such that

1. $q \circ e \leq r \circ e$,
2. if $e^{\prime}:{ }_{S} E^{\prime} \rightarrow{ }_{S} R$ is such that $q \circ e^{\prime} \leq r \circ e^{\prime}$ then there exists unique $\varphi:{ }_{S} E^{\prime} \rightarrow{ }_{S} E$ in ${ }_{S}$ Pos such that $e \circ \varphi=e^{\prime}$.
Proof. Assume that the pair $\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}, l_{A_{1}}^{0}\right)\right)$ satisfies conditions 1 and 2 of Theorem 3. We write $\left({ }_{S} E, e\right)=\left({ }_{S} L, l_{A_{0}}^{*}\right)=\alpha\left(S L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}, l_{A_{1}}^{0}\right)\right)$. Then

$$
q \circ e=F\left(a^{\prime}\right) \circ l_{A_{0}}^{*}=l_{A_{1}}^{G\left(a^{\prime}\right)(*)}=l_{A_{1}}^{0} \leq l_{A_{1}}^{1}=l_{A_{1}}^{G(a)(*)}=F(a) \circ l_{A_{0}}^{*}=r \circ e .
$$

To prove 2, let $e^{\prime}:{ }_{S} E^{\prime} \rightarrow{ }_{S} R$ be such that $q \circ e^{\prime} \leq r \circ e^{\prime}$. Then for $p_{A_{0}}^{*}=e^{\prime}, p_{A_{1}}^{0}=q \circ e^{\prime}$ and $p_{A_{1}}^{1}=r \circ e^{\prime}$ we have $p_{A_{1}}^{0} \leq p_{A_{1}}^{1}, F\left(a^{\prime}\right) \circ p_{A_{0}}^{*}=q \circ e^{\prime}=p_{A_{1}}^{0}=p_{A_{1}}^{G\left(a^{\prime}\right)(*)}$, and, similarly, $F(a) \circ p_{A_{0}}^{*}=p_{A_{1}}^{G(a)(*)}$. By the assumption, there is a unique morphism $\varphi:{ }_{S} E^{\prime} \rightarrow{ }_{S} E$ such that $e^{\prime}=e \circ \varphi$.

Conversely, if a pair $\left({ }_{S} E, e\right)$ satisfies 1 and 2, we consider the pair $\left({ }_{S} E,(e, r \circ e, q \circ e)\right)=$ $\beta\left({ }_{S} E, e\right)$. It is easy to see that conditions 1 and 2 of Theorem 3 are satisfied.

Finally,

$$
\beta\left(\alpha\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}, l_{A_{1}}^{0}\right)\right)\right)=\beta\left({ }_{S} L, l_{A_{0}}^{*}\right)=\left({ }_{s} L,\left(l_{A_{0}}^{*}, r \circ l_{A_{0}}^{*}, q \circ l_{A_{0}}^{*}\right)\right)=\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}, l_{A_{1}}^{0}\right)\right)
$$

for every inserter $\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}, l_{A_{1}}^{0}\right)\right)$ of q and r and

$$
\left.\alpha\left(\beta\left({ }_{S} E, e\right)\right)=\alpha\left({ }_{S} E,(e, r \circ e, q \circ e)\right)=\left({ }_{S} E, e\right)\right)
$$

for every pair $\left.\left({ }_{S} E, e\right)\right)$ that satisfies 1 and 2 .
Remark 7 It is easy to check that the pair $(\operatorname{lns}(q, r), \iota)$, where $\iota: \operatorname{lns}(q, r) \rightarrow R$ is the inclusion, satisfies conditions 1 and 2 of Lemma 1. We call $(\operatorname{lns}(q, r), \iota)$ the canonical inserter of q and r.

3.3 Equifiers

Consider parallel morphisms $r, q:{ }_{S} R \Longrightarrow{ }_{S} Q$ with $q \leq r$ in ${ }_{S}$ Pos. Let the category \mathcal{A} and its images under F and G be

$$
A_{0} \underset{a^{\prime}}{\stackrel{a}{\Longrightarrow}} A_{1} \quad{ }_{S} R \underset{q}{\stackrel{r}{\Longrightarrow}} S Q \quad \mathbf{1} \underset{c_{0}}{\stackrel{c_{1}}{\Longrightarrow}} \mathbf{2}
$$

where $a^{\prime} \leq a$ and c_{1}, c_{0} map $*$ to 1 and 0 , respectively. Then the limit of F weighted by G is called the equifier of q and r (see [6], p. 309) and it can be constructed as

$$
\begin{aligned}
\operatorname{Nat}(G, U \circ F)= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1),\right. \\
& \left.r \circ f_{A_{0}}=f_{A_{1}} \circ c_{1}, q \circ f_{A_{0}}=f_{A_{1}} \circ c_{0}\right\} \\
= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1),\right. \\
& \left.r\left(f_{A_{0}}(*)\right)=f_{A_{1}}(1), q\left(f_{A_{0}}(*)\right)=f_{A_{1}}(0)\right\} \\
\cong & \left\{f_{A_{0}} \mid f_{A_{0}}: \mathbf{1} \rightarrow R, q \circ f_{A_{0}} \leq r \circ f_{A_{0}}\right\} \\
\cong & \{z \in R \mid q(z) \leq r(z)\}=R .
\end{aligned}
$$

So the equifier of (q, r) with $q \leq r$ is just the pair $\left(R, 1_{R}\right)$ and the universal property is trivially satisfied. Clearly every pofunctor preserves equifiers.

3.4 Comma objects

Consider morphisms $r:{ }_{S} R \rightarrow{ }_{S} Q$ and $r^{\prime}:{ }_{S} R^{\prime} \rightarrow{ }_{S} Q$ in ${ }_{S}$ Pos. If the category \mathcal{A} and its images under F and G are

$$
A \xrightarrow{a} A_{1} \leftarrow{ }_{\leftarrow}^{a^{\prime}} A^{\prime} \quad{ }_{S} R \xrightarrow{r}{ }_{S} Q \leftarrow_{r^{\prime}} R^{\prime} \quad \mathbf{1} \xrightarrow{c_{1}} \mathbf{2} \leftarrow^{c_{0}} \mathbf{1}
$$

then the limit of F weighted by G is called the comma-object of r^{\prime} and r (see [6], p. 308). Analogously to Lemma 1 one can prove the following result.

Lemma 2 There is one-to-one correspondence between comma-objects of r^{\prime} and r and triples $\left(\mathrm{Co}\left(r^{\prime}, r\right), z^{\prime}, z\right)$, where $z: \operatorname{Co}\left(r^{\prime}, r\right) \rightarrow R, z^{\prime}: \operatorname{Co}\left(r^{\prime}, r\right) \rightarrow R^{\prime}$ are such that

1. $r \circ z \leq r^{\prime} \circ z^{\prime} ;$
2. if $w: W \rightarrow R$ and $w^{\prime}: W \rightarrow R^{\prime}$ in ${ }_{S}$ Pos are such that $r \circ w \leq r^{\prime} \circ w^{\prime}$ then there exists a unique morphism $\varphi: W \rightarrow \operatorname{Co}\left(r^{\prime}, r\right)$ in ${ }_{S} \operatorname{Pos}$ such that $z \circ \varphi=w$ and $z^{\prime} \circ \varphi=w^{\prime}$.

Canonically, one can take

$$
\operatorname{Co}\left(r^{\prime}, r\right):=\left\{\left(x^{\prime}, x\right) \in R^{\prime} \times R \mid r^{\prime}\left(x^{\prime}\right) \leq r(x)\right\}
$$

and z^{\prime}, z the restrictions of the projections of $R^{\prime} \times R$.
Note that inserters and comma objects in ${ }_{S}$ Pos were termed sub-equalizers and subpullbacks, respectively, in [3].

3.5 Lax limit and op-lax limit of a morphism

Consider a morphism $r:{ }_{S} R \longrightarrow{ }_{S} Q$ in ${ }_{S}$ Pos. Let the category \mathcal{A} and its images under F and G be

$$
\begin{equation*}
A_{0} \xrightarrow{a} A_{1} \quad{ }_{S} R \xrightarrow{r}{ }_{S} Q \quad \mathbf{1} \xrightarrow{c_{0}} \mathbf{2} . \tag{5}
\end{equation*}
$$

Then the limit of F weighted by G is called the lax limit of the morphism r (replacing c_{0} by c_{1} we obtain the op-lax limit of the morphism r; see [6], p. 308) and it can be canonically constructed as

$$
\begin{aligned}
& \operatorname{Nat}(G, U \circ F) \\
= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1), r \circ f_{A_{0}}=f_{A_{1}} \circ c_{0}\right\} \\
= & \left\{\left(f_{A_{0}}, f_{A_{1}}\right) \mid f_{A_{0}}: \mathbf{1} \rightarrow R, f_{A_{1}}: \mathbf{2} \rightarrow Q, f_{A_{1}}(0) \leq f_{A_{1}}(1), r\left(f_{A_{0}}(*)\right)=f_{A_{1}}(0)\right\} \\
\cong & \{(x, y) \in R \times Q \mid r(x) \leq y\}=: \operatorname{Lax}(r),
\end{aligned}
$$

where the order and left S-action on $\operatorname{Lax}(r)$ are componentwise. In more detail, if $\left(f_{A_{0}}, f_{A_{1}}\right) \in \operatorname{Nat}(G, U \circ F)$ then $r\left(f_{A_{0}}(*)\right) \leq f_{A_{1}}(1)$, and hence we may define a mapping $\alpha: \operatorname{Nat}(G, U \circ F) \rightarrow \operatorname{Lax}(r)$ by

$$
\alpha\left(f_{A_{0}}, f_{A_{1}}\right):=\left(f_{A_{0}}(*), f_{A_{1}}(1)\right) .
$$

Obviously, α is order preserving and, for every $s \in S$,

$$
\begin{aligned}
\alpha\left(s \cdot\left(f_{A_{0}}, f_{A_{1}}\right)\right) & =\alpha\left(s \cdot f_{A_{0}}, s \cdot f_{A_{1}}\right)=\left(\left(s \cdot f_{A_{0}}\right)(*),\left(s \cdot f_{A_{1}}\right)(1)\right) \\
& =\left(s \cdot f_{A_{0}}(*), s \cdot f_{A_{1}}(1)\right)=s \cdot\left(f_{A_{0}}(*), f_{A_{1}}(1)\right)=s \cdot \alpha\left(f_{A_{0}}, f_{A_{1}}\right) .
\end{aligned}
$$

Suppose that also $\left(g_{A_{0}}, g_{A_{1}}\right) \in \operatorname{Nat}(G, U \circ F)$ and $\left(f_{A_{0}}(*), f_{A_{1}}(1)\right) \leq\left(g_{A_{0}}(*), g_{A_{1}}(1)\right)$. Then $f_{A_{0}}(*) \leq g_{A_{0}}(*), f_{A_{1}}(1) \leq g_{A_{1}}(1)$, and $f_{A_{1}}(0)=r\left(f_{A_{0}}(*)\right) \leq r\left(g_{A_{0}}(*)\right)=g_{A_{1}}(0)$. Hence $\left(f_{A_{0}}, f_{A_{1}}\right) \leq\left(g_{A_{0}}, g_{A_{1}}\right)$, and α is order reflecting. Finally, if $(x, y) \in R \times Q$ and $r(x) \leq y$ then defining $f_{A_{0}}(*):=x, f_{A_{1}}(1):=y$ and $f_{A_{1}}(0):=r(x)$ we have $\left(f_{A_{0}}, f_{A_{1}}\right) \in$ $\operatorname{Nat}(G, U \circ F)$ and $\alpha\left(f_{A_{0}}, f_{A_{1}}\right)=(x, y)$. Thus we have proved that α is an isomorphism. Consequently, the pair $\left(\operatorname{Lax}(r),\left(l_{A_{0}}^{*} \circ \alpha^{-1}, l_{A_{1}}^{0} \circ \alpha^{-1}, l_{A_{1}}^{1} \circ \alpha^{-1}\right)\right)$ is a lax limit of r.

Lemma 3 There is one-to-one correspondence between lax limits of a morphism $r:{ }_{s} R \rightarrow$ ${ }_{S} Q$ and pairs $\left(L,\left(l_{R}, l_{Q}\right)\right)$ with $l_{R}:{ }_{S} L \rightarrow{ }_{S} R, l_{Q}:{ }_{S} L \rightarrow{ }_{S} Q$ such that

1. $r \circ l_{R} \leq l_{Q}$;
2. if $l_{R}^{\prime}:{ }_{S} L^{\prime} \rightarrow{ }_{S} R$ and $l_{Q}^{\prime}:{ }_{S} L^{\prime} \rightarrow{ }_{S} Q$ are such that $r \circ l_{R}^{\prime} \leq l_{Q}^{\prime}$ then there exists a unique morphism $\varphi:{ }_{S} L^{\prime} \rightarrow{ }_{S} L$ such that $l_{R} \circ \varphi=l_{R}^{\prime}$ and $l_{Q} \circ \varphi=l_{Q}^{\prime}$.

Proof. Let $\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{0}, l_{A_{1}}^{1}\right)\right)$ be a lax limit of a morphism $r:{ }_{S} R \rightarrow{ }_{S} Q$, that is, it satisfies conditions 1 and 2 of Theorem 3. We write $\left(L,\left(l_{R}, l_{Q}\right)\right)=\left({ }_{s} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}\right)\right)=$ $\alpha\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{0}, l_{A_{1}}^{1}\right)\right)$.

Then

$$
r \circ l_{R}=F(a) \circ l_{A_{0}}^{*}=l_{A_{1}}^{G(a)(*)}=l_{A_{1}}^{0} \leq l_{A_{1}}^{1}=l_{Q} .
$$

Suppose that $l_{R}^{\prime}:{ }_{S} L^{\prime} \rightarrow{ }_{S} R$ and $l_{Q}^{\prime}:{ }_{S} L^{\prime} \rightarrow{ }_{S} Q$ are such that $r \circ l_{R}^{\prime} \leq l_{Q}^{\prime}$. Taking $p_{A_{0}}^{*}:=l_{R}^{\prime}, p_{A_{1}}^{0}:=r \circ l_{R}^{\prime}$ and $p_{A_{1}}^{1}:=l_{Q}^{\prime}$ we see that the pair $\left({ }_{S} L^{\prime},\left(p_{A_{0}}^{*}, p_{A_{1}}^{0}, p_{A_{1}}^{1}\right)\right)$ satisfies condition 1 of Theorem 3. Hence there exists a left S-poset morphism $\varphi:{ }_{S} L^{\prime} \rightarrow{ }_{S} L$ such that $l_{R} \circ \varphi=l_{A_{0}}^{*} \circ \varphi=p_{A_{0}}^{*}=l_{R}^{\prime}$ and $l_{Q} \circ \varphi=l_{A_{1}}^{1} \circ \varphi=p_{A_{1}}^{1}=l_{Q}^{\prime}$. If $\psi:_{S} L^{\prime} \rightarrow{ }_{S} L$ is another morphism such that $l_{R} \circ \psi=l_{R}^{\prime}$ and $l_{Q} \circ \psi=l_{Q}^{\prime}$ then $l_{A_{1}}^{0} \circ \psi=r \circ l_{R} \circ \psi=r \circ l_{R}^{\prime}=p_{A_{1}}^{0}$ and hence $\varphi=\psi$ by the uniqueness of φ in condition 2 of Theorem 3 .

Conversely, if a pair $\left({ }_{S} L,\left(l_{R}, l_{Q}\right)\right)$ satisfies 1 and 2 , we consider the pair $\left({ }_{S} L,\left(l_{R}, r \circ l_{R}, l_{Q}\right)\right)=$ $\beta\left({ }_{S} L,\left(l_{R}, l_{Q}\right)\right)$. It is easy to see that $\left({ }_{S} L,\left(l_{R}, r \circ l_{R}, l_{Q}\right)\right)$ satisfies conditions 1 and 2 of Theorem 3 and hence is a lax limit of r.

Now,
$\beta\left(\alpha\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{0}, l_{A_{1}}^{1}\right)\right)\right)=\beta\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{1}\right)\right)=\left({ }_{S} L,\left(l_{A_{0}}^{*}, r \circ l_{A_{0}}^{*}, l_{A_{1}}^{1}\right)\right)=\left({ }_{S} L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{0}, l_{A_{1}}^{1}\right)\right)$ for every lax limit $\left(s L,\left(l_{A_{0}}^{*}, l_{A_{1}}^{0}, l_{A_{1}}^{1}\right)\right)$ of r, and

$$
\left.\alpha\left(\beta\left({ }_{S} L,\left(l_{R}, l_{Q}\right)\right)\right)=\alpha\left({ }_{S} L,\left(l_{R}, r \circ l_{R}, l_{Q}\right)\right)=\left({ }_{S} L,\left(l_{R}, l_{Q}\right)\right)\right)
$$

for every pair $\left.\left({ }_{S} L,\left(l_{R}, L_{Q}\right)\right)\right)$ that satisfies conditions 1 and 2.
Having Lemma 3 in mind, we shall call the pairs $\left(s L,\left(l_{R}, l_{Q}\right)\right)$ satisfying conditions 1 and 2 of that lemma the lax limits of r. In particular, we say that the canonical lax limit of r is the pair $\left(\operatorname{Lax}(r),\left(p_{R}, p_{Q}\right)\right)$, where $p_{R}:=l_{A_{0}}^{*} \circ \alpha^{-1}: \operatorname{Lax}(r) \rightarrow R$ and $p_{Q}:=l_{A_{1}}^{1} \circ \alpha^{-1}: \operatorname{Lax}(r) \rightarrow Q$ are given by

$$
\begin{aligned}
& p_{R}(x, y)=l_{A_{0}}^{*}\left(\alpha^{-1}(x, y)\right)=\alpha^{-1}(x, y)_{A_{0}}(*)=x, \\
& p_{Q}(x, y)=l_{A_{1}}^{1}\left(\alpha^{-1}(x, y)\right)=\alpha^{-1}(x, y)_{A_{1}}(1)=y,
\end{aligned}
$$

$(x, y) \in \operatorname{Lax}(r)$.
One can check that a canonical op-lax limit of a morphism $r:{ }_{S} R \rightarrow{ }_{S} Q$ in ${ }_{S}$ Pos can be constructed as a pair $\left(\operatorname{Oplax}(r),\left(p_{R}, p_{Q}\right)\right)$, where

$$
\operatorname{Oplax}(r)=\{(x, y) \in R \times Q \mid y \leq r(x)\}
$$

$p_{R}(x, y)=x, p_{Q}(x, y)=y$ for all $(x, y) \in \operatorname{Oplax}(r)$. Op-lax limits of morphisms together with pullbacks give a possibility to define downwards closed S-subposets of an S-poset in categorical terms.

3.6 Cotensor products

If \mathcal{A} is the the discrete category with a single object \star then F and G can be identified with objects $F(\star)$ and $G(\star)$ of ${ }_{S}$ Pos and of Pos, respectively. By Theorem $3,\left({ }_{S} L,\left(l^{x}\right)^{x \in G(\star)}\right)$, where $l^{x}:{ }_{S} L \rightarrow{ }_{S} F(\star)$, is a limit of F weighted by G if and only if

1. for all $x, x^{\prime} \in G(\star)$,

$$
x \leq x^{\prime} \Longrightarrow l^{x} \leq l^{x^{\prime}}
$$

2. for every ${ }_{S} P \in{ }_{S} P$ Pos and family $\left(p^{x}\right)^{x \in G(\star)}$ of left S-poset morphisms $p^{x}:{ }_{S} P \rightarrow$ ${ }_{S} F(\star)$ with property 1 , there is a unique left S-poset morphism $\varphi:{ }_{S} P \rightarrow{ }_{S} L$ such that $l^{x} \circ \varphi=p^{x}$ for every $x \in G(\star)$.

Such weighted limit is called a cotensor product of F and G (or of $F(\star)$ and $G(\star)$; see [6], p. 305). By Theorem 2, one such cotensor product is $\left({ }_{S} \operatorname{Pos}(G(\star), F(\star)),\left(l^{x}\right)^{x \in G(\star)}\right)$, where $l^{x}:{ }_{S} \operatorname{Pos}(G(\star), F(\star)) \rightarrow F(\star)$ is the evaluation map at $x \in G(\star)$, i.e. $l^{x}(f)=f(x)$ for every $f \in{ }_{S} \operatorname{Pos}(G(\star), F(\star))$.

3.7 Pie limits

For a functor $G: \mathcal{D} \rightarrow$ Pos we can consider its category of elements (or Grothendieck category). The objects of this category $\mathrm{el}(G)$ are pairs (x, i), where $i \in I=\mathcal{D}_{0}$ and $x \in G(i)$. A morphism $(x, i) \rightarrow(y, j)$ is a morphism $d \in \mathcal{D}(i, j)$ such that $G(d)(x)=y$.

Definition 2 ([7]) A pofunctor $G: \mathcal{D} \rightarrow$ Pos is called a pie weight if each component of el (G) has an initial object.

Since equifiers in ${ }_{S}$ Pos are trivial, from Proposition 2.1 of [7] we have the following corollary, which we present with a proof.

Proposition 1 If $G: \mathcal{D} \rightarrow$ Pos is a pie weight and $F: \mathcal{D} \rightarrow{ }_{S}$ Pos is a pofunctor then $\lim _{G} F$ can be constructed using products and inserters.

Proof. Let U be the set of connected components of el (G). For every connected component $u \in U$, let $\left(z_{u}, j_{u}\right)$ be the initial object of u. If $(x, i) \in \operatorname{el}(G)_{0}$, then we write $\overline{(x, i)} \in U$ for the connected component of (x, i) and $!_{\overline{(x, i)}}$ for the unique morphism $j_{\overline{(x, i)}} \rightarrow i$ such that $G\left(!_{(x, i)}\right)\left(z_{(x, i)}\right)=x$. Take

$$
S:=\{(x, y, i) \mid i \in I, x, y \in G(i), x \leq y\}
$$

and consider products

$$
\begin{aligned}
& \left(\prod_{u \in U} F\left(j_{u}\right),\left(\pi_{u}\right)_{u \in U}\right) \quad \text { and } \quad\left(\prod_{(x, y, i) \in S} F(i),\left(p_{(x, y, i)}\right)_{(x, y, i) \in S}\right) .
\end{aligned}
$$

Then there exist unique morphisms $f_{0}, f_{1}: \prod_{u \in U} F\left(j_{u}\right) \rightarrow \prod_{(x, y, i) \in S} F(i)$ such that

$$
p_{(x, y, i)} \circ f_{0}=\pi_{\overline{(x, i)}} \circ F(!\overline{(x, i)}) \quad \text { and } \quad p_{(x, y, i)} \circ f_{1}=\pi_{\overline{(y, i)}} \circ F(!\overline{(y, i)})
$$

for every $(x, y, i) \in S$. Let (E, e) be the inserter of $\left(f_{0}, f_{1}\right)$. In particular, $f_{0} \circ e \leq f_{1} \circ e$. We claim that

$$
\left(E,\left(l_{i}^{x}\right)_{i \in I}^{x \in G(i)}\right) \approx \lim _{G} F
$$

where $l_{i}^{x}:=F(!\overline{(x, i)}) \circ \pi_{\overline{(x, i)}} \circ e: E \rightarrow F(i)$. If $d: i_{0} \rightarrow i_{1}$ in \mathcal{D} and $x \in G\left(i_{0}\right)$ then $d:\left(x, i_{0}\right) \rightarrow\left(G(d)(x), i_{1}\right)$ in $\mathrm{el}(G)$ and $\overline{\left(x, i_{0}\right)}=\overline{\left(G(d)(x), i_{1}\right)}$. Hence $!\overline{\left(G(d)(x), i_{1}\right)}=d \circ!\overline{!_{\left(x, i_{0}\right)}}$ and

$$
\begin{aligned}
l_{i_{1}}^{G(d)(x)} & =F\left(!\overline{\left(G(d)(x), i_{1}\right)}\right) \circ \pi_{\overline{\left(G(d)(x), i_{1}\right)}} \circ e=F(d) \circ F\left(!\overline{\left(x, i_{0}\right)}\right) \circ \pi_{\overline{\left(x, i_{0}\right)}} \circ e \\
& =F(d) \circ l_{i}^{x} .
\end{aligned}
$$

If $x, y \in G(i)$ are such that $x \leq y$ then

$$
l_{i}^{x}=F(!\overline{(x, i)}) \circ \pi_{\overline{(x, i)}} \circ e=p_{(x, y, i)} \circ f_{0} \circ e \leq p_{(x, y, i)} \circ f_{1} \circ e=F(!\overline{(y, i)}) \circ \pi_{\overline{(y, i)}} \circ e=l_{i}^{y} .
$$

To verify the universla property, let $\left(P,\left(p_{i}^{x}\right)_{i \in I}^{x \in G(i)}\right)$ be such that $F(d) \circ p_{i_{0}}^{x}=p_{i_{1}}^{G(d)(x)}$ for every $d: i_{0} \rightarrow i_{1}$ in \mathcal{D} and $p_{i}^{x} \leq p_{i}^{y}$ whenever $x \leq y$ in $G(i)$. Then there exists a unique morphism $g: P \rightarrow \prod_{u \in U} F\left(j_{u}\right)$ such that $\pi_{u} \circ g=p_{j_{u}}^{z_{u}}$ for every $u \in U$. Now, for every $(x, y, i) \in S$,

$$
\begin{aligned}
p_{(x, y, i)} \circ f_{0} \circ g & =F(!\overline{(x, i)}) \circ \pi_{\overline{(x, i)}} \circ g=F(!\overline{(x, i)}) \circ p_{j_{\overline{(x, i)}}^{z}}^{z_{\overline{(x, i)}}}=p_{i}^{x} \\
& \leq p_{i}^{y}=F(!\overline{(y, i)}) \circ p_{j_{\overline{(y, i)}}^{z(y, i)}}^{z}=F(!\overline{(y, i)}) \circ \pi_{\overline{(y, i)}} \circ g=p_{(x, y, i)} \circ f_{1} \circ g .
\end{aligned}
$$

Since products are weighted limits, they satisfy condition 2 of Theorem 1, and hence $f_{0} \circ g \leq f_{1} \circ g$. Consequently, there exists a unique morphism $\varphi: P \rightarrow E$ such that $e \circ \varphi=g$. Then

$$
l_{i}^{x} \circ \varphi=F(!\overline{(x, i)}) \circ \pi_{\overline{(x, i)}} \circ e \circ \varphi=F(!\overline{(x, i)}) \circ \pi_{\overline{(x, i)}} \circ g=F(!\overline{(x, i)}) \circ p_{j_{(\overline{x, i)}}^{z_{\overline{x, i)}}}}=p_{i}^{x} .
$$

Finally, suppose that $\psi: P \rightarrow E$ is sucht that $l_{i}^{x} \circ \psi=p_{i}^{x}$ for each $x \in G(i), i \in I$. Note that $\overline{\left(z_{u}, j_{u}\right)}=u$ and $!\overline{\left(z_{u}, j_{u}\right)}=1_{j_{u}}$. Hence $l_{j_{u}}^{z_{u}}=F\left(1_{j_{u}}\right) \circ \pi_{u} \circ e=\pi_{u} \circ e$ for every $u \in U$. Now $l_{i}^{x} \circ \varphi=p_{i}^{x}=l_{i}^{x} \circ \psi$ implies

$$
\pi_{u} \circ e \circ \varphi=l_{j_{u}}^{z_{u}} \circ \varphi \leq l_{j_{u}}^{z_{u}} \circ \psi=\pi_{u} \circ e \circ \psi
$$

for every $u \in U$. Applying again condition 2 of Theorem 1, first for product and then for inserter, we obtain $\varphi \leq \psi$. Symmetrically we get $\psi \leq \varphi$, and thus $\varphi=\psi$.

4 Weighted colimits in ${ }_{S} \mathrm{Pos}$

4.1 Definition

Definition 3 (Cf. Def. 6.6.4 of [2]) Given a pomonoid S, small Pos-category \mathcal{A}, and pofunctors $F: \mathcal{A} \rightarrow{ }_{S}$ Pos, $G: \mathcal{A}^{\text {op }} \rightarrow \mathrm{Pos}$ (covariant and contravariant on \mathcal{A}, respectively), the Pos-colimit of F weighted by G is a pair $\left({ }_{S} L,\left(\lambda_{P}\right)_{P \in_{S} P o s}\right)$ where ${ }_{S} L$ is a left S-poset and $\lambda=\left(\lambda_{P}\right)_{P \in S} \operatorname{Pos}:{ }_{S} \operatorname{Pos}(L,-) \Rightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(F(-),-)\right)$ is a natural isomorphism, that is, for every ${ }_{S} P \in{ }_{S} \mathrm{Pos}$,

$$
\lambda_{P}:{ }_{S} \operatorname{Pos}(L, P) \longrightarrow \operatorname{Nat}\left(G,{ }_{S} \operatorname{Pos}(F(-), P)\right),
$$

are poset isomorphisms that are natural in ${ }_{S} P$. We write $\operatorname{colim}_{G} F$ for a Pos-colimit of F weighted by G.

Dually to Theorem 1 , one can prove the following result.
Theorem 4 There is one-to-one correspondence between Pos-colimits of F weighted by G and pairs $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, where ${ }_{S} L$ is a left S-poset and $\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $l_{A}^{x}:{ }_{S} F(A) \rightarrow{ }_{S} L$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x^{\prime} \in G(A)$

$$
x \leq x^{\prime} \Longrightarrow l_{A}^{x} \leq l_{A}^{x^{\prime}}
$$

(b) for all $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{1}\right)$,

$$
l_{A_{1}}^{x} \circ F(a)=l_{A_{0}}^{G(a)(x)} ;
$$

2. for all ${ }_{S} P \in{ }_{S} \operatorname{Pos}$ and $\varphi, \psi \in{ }_{S} \operatorname{Pos}(L, P)$,

$$
\left((\forall A \in \mathcal{A})(\forall x \in G(A))\left(\varphi \circ l_{A}^{x} \leq \psi \circ l_{A}^{x}\right)\right) \Longrightarrow \varphi \leq \psi
$$

3. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x}:{ }_{S} F(A) \rightarrow$ ${ }_{S} P$ with properties 1 , there is a left S-poset morphism $\varphi:{ }_{S} L \rightarrow{ }_{S} P$ such that $\varphi \circ l_{A}^{x}=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

4.2 Canonical construction of weighted colimits in ${ }_{S} \mathrm{Pos}$

We shall show that the Pos-category ${ }_{S}$ Pos is Pos-cocomplete by giving an explicit construction of a colimit ${ }_{S} L \cong \operatorname{colim}_{G} F$ of F weighted by G.

We define a relation τ on the disjoint union $\bigsqcup_{A \in \mathcal{A}} G(A) \times F(A)$ by

$$
\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right)
$$

$x_{A} \in G(A), y_{A} \in F(A), x_{A^{\prime}} \in G\left(A^{\prime}\right), y_{A^{\prime}} \in F\left(A^{\prime}\right)$, if and only if either $\left(x_{A}, y_{A}\right) \leq\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$ or

$$
\begin{array}{rlrl}
x_{A} & \leq G\left(f_{1}\right)\left(x_{1}\right) & & \\
G\left(g_{1}\right)\left(x_{1}\right) & \leq G\left(f_{2}\right)\left(x_{2}\right) & F\left(f_{1}\right)\left(y_{A}\right) & \leq F\left(g_{1}\right)\left(y_{1}\right) \\
G\left(g_{2}\right)\left(x_{2}\right) & \leq G\left(f_{3}\right)\left(x_{3}\right) & F\left(f_{2}\right)\left(y_{1}\right) & \leq F\left(g_{2}\right)\left(y_{2}\right) \tag{6}\\
& \cdots & \cdots & \\
G\left(g_{n}\right)\left(x_{n}\right) & \leq x_{A^{\prime}} & F\left(f_{n}\right)\left(y_{n-1}\right) \leq F\left(g_{n}\right)\left(y_{A^{\prime}}\right)
\end{array}
$$

for some morphisms

$$
\begin{equation*}
A \xrightarrow{f_{1}} A_{1}^{\prime} \leftarrow g_{1}^{g_{1}} A_{1} \xrightarrow{f_{2}} A_{2}^{\prime} \leftarrow{ }^{g_{2}} A_{2} \xrightarrow{f_{3}} A_{3}^{\prime} \ldots A_{n-1} \xrightarrow{f_{n}} A_{n}^{\prime}<g^{g_{n}} A^{\prime} \tag{7}
\end{equation*}
$$

in \mathcal{A} and elements $x_{i} \in G\left(A_{i}^{\prime}\right), i=1, \ldots, n, y_{j} \in F\left(A_{j}\right), j=1, \ldots, n-1$.
Lemma 4 The relation τ is reflexive and transitive.
Proof. Reflexivity of τ follows from inequalities

$$
\begin{aligned}
x_{A} & \leq G\left(1_{A}\right)\left(x_{A}\right) \\
G\left(1_{A}\right)\left(x_{A}\right) & \leq x_{A}
\end{aligned} \quad F\left(1_{A}\right)\left(y_{A}\right) \leq F\left(1_{A}\right)\left(y_{A}\right) .
$$

To prove transitivity, suppose that $\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$ and $\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \tau\left(x_{A^{\prime \prime}}, y_{A^{\prime \prime}}\right)$, where $x_{A} \in G(A), x_{A^{\prime}} \in G\left(A^{\prime}\right), x_{A^{\prime \prime}} \in G\left(A^{\prime \prime}\right), y_{A} \in F(A), y_{A^{\prime}} \in F\left(A^{\prime}\right)$ and $y_{A^{\prime \prime}} \in F\left(A^{\prime \prime}\right)$. Then, in addition to inequalities (6), we have inequalities

$$
\begin{array}{rlrl}
x_{A^{\prime}} & \leq G\left(h_{1}\right)\left(z_{1}\right) & & \\
G\left(k_{1}\right)\left(z_{1}\right) & \leq G\left(h_{2}\right)\left(z_{2}\right) & F\left(h_{1}\right)\left(y_{A^{\prime}}\right) & \leq F\left(k_{1}\right)\left(w_{1}\right) \\
G\left(k_{2}\right)\left(z_{2}\right) & \leq G\left(h_{3}\right)\left(z_{3}\right) & F\left(h_{2}\right)\left(w_{1}\right) & \leq F\left(k_{2}\right)\left(w_{2}\right) \\
& \cdots & \cdots & \\
G\left(k_{m}\right)\left(z_{m}\right) & \leq x_{A^{\prime \prime}} & F\left(h_{m}\right)\left(w_{m-1}\right) \leq F\left(k_{m}\right)\left(y_{A^{\prime \prime}}\right)
\end{array}
$$

for some morphisms

$$
A^{\prime} \xrightarrow{h_{1}} B_{1}^{\prime} \leftarrow k_{1} B_{1} \xrightarrow{h_{2}} B_{2}^{\prime} \ll B_{2} \xrightarrow{h_{3}} B_{3}^{\prime} \ldots B_{m-1} \xrightarrow{h_{m}} B_{m}^{\prime}<{ }^{k_{m}} A^{\prime \prime}
$$

in \mathcal{A}. Hence we have inequalities

$$
\begin{aligned}
x_{A} & \leq G\left(f_{1}\right)\left(x_{1}\right) & & \\
G\left(g_{1}\right)\left(x_{1}\right) & \leq G\left(f_{2}\right)\left(x_{2}\right) & F\left(f_{1}\right)\left(y_{A}\right) & \leq F\left(g_{1}\right)\left(y_{1}\right) \\
G\left(g_{2}\right)\left(x_{2}\right) & \leq G\left(f_{3}\right)\left(x_{3}\right) & F\left(f_{2}\right)\left(y_{1}\right) & \leq F\left(g_{2}\right)\left(y_{2}\right) \\
& \cdots & \cdots & \\
G\left(g_{n}\right)\left(x_{n}\right) & \leq G\left(h_{1}\right)\left(z_{1}\right) & F\left(f_{n}\right)\left(y_{n-1}\right) & \leq F\left(g_{n}\right)\left(y_{A^{\prime}}\right) \\
G\left(k_{1}\right)\left(z_{1}\right) & \leq G\left(h_{2}\right)\left(z_{2}\right) & F\left(h_{1}\right)\left(y_{A^{\prime}}\right) & \leq F\left(k_{1}\right)\left(w_{1}\right) \\
G\left(k_{2}\right)\left(z_{2}\right) & \leq G\left(h_{3}\right)\left(z_{3}\right) & F\left(h_{2}\right)\left(w_{1}\right) & \leq F\left(k_{2}\right)\left(w_{2}\right) \\
& \cdots & \cdots & \\
G\left(k_{m}\right)\left(z_{m}\right) & \leq x_{A^{\prime \prime}} & F\left(h_{m}\right)\left(w_{m-1}\right) & \leq F\left(k_{m}\right)\left(y_{A^{\prime \prime}}\right),
\end{aligned}
$$

i.e. $\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime \prime}}, y_{A^{\prime \prime}}\right)$.

Lemma 5 Let τ be reflexive and transitive binary relation on a set M. Define a binary relation σ on M by

$$
m \sigma n \Longleftrightarrow m \tau n \wedge n \tau m
$$

Then σ is an equivalence relation, and by defining

$$
[m] \leq[n] \Longleftrightarrow m \tau n
$$

we obtain a well-defined partial order on the quotient set $M / \sigma=\{[m] \mid m \in M\}$.
By Lemma 5 , the relation σ, defined by

$$
\left(x_{A}, y_{A}\right) \sigma\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \Longleftrightarrow\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \wedge\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \tau\left(x_{A}, y_{A}\right)
$$

is an equivalence relation on the set $\bigsqcup_{A \in \mathcal{A}} G(A) \times F(A)$, and the definition

$$
\left[x_{A}, y_{A}\right] \leq\left[x_{A^{\prime}}, y_{A^{\prime}}\right] \Longleftrightarrow\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right)
$$

gives a partial order on the quotient set

$$
L:=\bigsqcup_{A \in \mathcal{A}} G(A) \times F(A) / \sigma=\left\{\left[x_{A}, y_{A}\right] \mid A \in \mathcal{A}, x_{A} \in G(A), y_{A} \in F(A)\right\}
$$

We define a left S-action on L by

$$
s \cdot\left[x_{A}, y_{A}\right]:=\left[x_{A}, s \cdot y_{A}\right] .
$$

Lemma 6 This way, L becomes a left S-poset.
Proof. Since $F(A)$ is a left S-act for every $A \in \mathcal{A}$, so is L.
Suppose that $s \leq t, s, t \in S, x_{A} \in G(A), y_{A} \in F(A), A \in \mathcal{A}$. Since $F(A)$ is a left S-poset, $s \cdot y_{A} \leq t \cdot y_{A}$. From

$$
\begin{aligned}
x_{A} & \leq G\left(1_{A}\right)\left(x_{A}\right) \\
G\left(1_{A}\right)\left(x_{A}\right) & \leq x_{A} \quad F\left(1_{A}\right)\left(s \cdot y_{A}\right) \leq F\left(1_{A}\right)\left(t \cdot y_{A}\right)
\end{aligned}
$$

we see that $\left(x_{A}, s \cdot y_{A}\right) \tau\left(x_{A}, t \cdot y_{A}\right)$, i.e. $\left[x_{A}, s \cdot y_{A}\right] \leq\left[x_{A}, t \cdot y_{A}\right]$.
Suppose that $\left[x_{A}, y_{A}\right] \leq\left[x_{A^{\prime}}, y_{A^{\prime}}\right]$ and $s \in S$. Then we have inequalities (6). Using that the elements in the right-hand column belong to left S-posets and all $F\left(f_{i}\right), F\left(g_{i}\right)$ are left S-poset morphisms, we obtain

$$
\begin{aligned}
& \begin{aligned}
x_{A} & \leq G\left(f_{1}\right)\left(x_{1}\right) \\
G\left(g_{1}\right)\left(x_{1}\right) & \leq G\left(f_{2}\right)\left(x_{2}\right) \quad F\left(f_{1}\right)\left(s \cdot y_{A}\right) \leq F\left(g_{1}\right)\left(s \cdot y_{1}\right)
\end{aligned} \\
& G\left(g_{2}\right)\left(x_{2}\right) \leq G\left(f_{3}\right)\left(x_{3}\right) \quad F\left(f_{2}\right)\left(s \cdot y_{1}\right) \leq F\left(g_{2}\right)\left(s \cdot y_{2}\right) \\
& G\left(g_{n}\right)\left(x_{n}\right) \leq x_{A^{\prime}} \quad F\left(f_{n}\right)\left(s \cdot y_{n-1}\right) \leq F\left(g_{n}\right)\left(s \cdot y_{A^{\prime}}\right) .
\end{aligned}
$$

Hence

$$
s \cdot\left[x_{A}, y_{A}\right]=\left[x_{A}, s \cdot y_{A}\right] \leq\left[x_{A^{\prime}}, s \cdot y_{A^{\prime}}\right]=s \cdot\left[x_{A^{\prime}}, y_{A^{\prime}}\right] .
$$

(Note that the condition, we have just verified, implies that the S-action is well-defined.)

Lemma 7 The poset L satisfies conditions

1. $(\forall x \in G(A))\left(\forall y, y^{\prime} \in F(A)\right)\left(y \leq y^{\prime} \Rightarrow[x, y] \leq\left[x, y^{\prime}\right]\right)$,
2. $\left(\forall x, x^{\prime} \in G(A)\right)(\forall y \in F(A))\left(x \leq x^{\prime} \Rightarrow[x, y] \leq\left[x^{\prime}, y\right]\right)$,
3. $(\forall x \in G(A))\left(\forall y^{\prime} \in F\left(A^{\prime}\right)\right)\left(\forall f: A^{\prime} \rightarrow A\right.$ in $\left.\mathcal{A}\right)\left(\left[x, F(f)\left(y^{\prime}\right)\right]=\left[G(f)(x), y^{\prime}\right]\right)$.

Proof. The proof follows from the existence of the following inequalities:

$$
\begin{aligned}
& x \leq G\left(1_{A}\right)(x) \\
& G\left(1_{A}\right)(x) \leq x \\
& x \leq G\left(1_{A}\right)\left(x^{\prime}\right) \\
& G\left(1_{A}\right)\left(x^{\prime}\right) \leq x^{\prime} \quad F\left(1_{A}\right)(y) \leq F\left(1_{A}\right)\left(y^{\prime}\right), \\
& x \leq \leq G\left(1_{A}\right)(x) \\
& G(f)(x) \leq G\left(1_{A}\right)(y), \\
& \\
& \\
&
\end{aligned}
$$

and

$$
\begin{aligned}
G(f)(x) & \leq G(f)(x) \\
G\left(1_{A}\right)(x) & \leq x \quad F(f)\left(y^{\prime}\right) \leq F\left(1_{A}\right)\left(F(f)\left(y^{\prime}\right)\right) .
\end{aligned}
$$

Theorem 5 The left S-poset ${ }_{S} L$ is a Pos-colimit of F weighted by G.
Proof. We define a mapping $l_{A}^{x}: F(A) \rightarrow L, A \in \mathcal{A}, x \in G(A)$, by

$$
l_{A}^{x}(y):=[x, y],
$$

$y \in F(A)$. By Lemma $7(1), l_{A}^{x}$ is order preserving. Since it obviously preserves S-action, it is a left S-poset morphism. We shall check that the pair $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfies conditions 1-3 of Theorem 4.

1(a) follows from Lemma 7(2).
1(b) For every $a: A_{0} \rightarrow A_{1}$ in $\mathcal{A}, x \in G\left(A_{1}\right)$ and $y \in F\left(A_{0}\right)$ we have

$$
\left(l_{A_{1}}^{x} \circ F(a)\right)(y)=l_{A_{1}}^{x}(F(a)(y))=[x, F(a)(y)]=[G(a)(x), y]=l_{A_{0}}^{G(a)(x)}(y)
$$

by Lemma 7(3).
2. Suppose that ${ }_{S} P \in{ }_{S} \operatorname{Pos}, \varphi, \psi \in{ }_{S} \operatorname{Pos}(L, P)$ and $\varphi \circ l_{A}^{x} \leq \psi \circ l_{A}^{x}$ for all $A \in \mathcal{A}$ and $x \in G(A)$. Then, for every $A \in \mathcal{A}, x \in G(A)$ and $y \in F(A)$,

$$
\varphi([x, y])=\left(\varphi \circ l_{A}^{x}\right)(y) \leq\left(\psi \circ l_{A}^{x}\right)(y)=\psi([x, y]),
$$

and hence $\varphi \leq \psi$.
3. Suppose that the morphisms $p_{A}^{x}:{ }_{S} F(A) \rightarrow{ }_{S} P$ satisfy condition 1 . We define a mapping $\varphi: L \rightarrow P$ by

$$
\varphi([x, y]):=p_{A}^{x}(y)
$$

for every $A \in \mathcal{A}, x \in G(A)$ and $y \in F(A)$. Since p_{A}^{x} are left S-act morphisms, so is φ. Suppose that $\left[x_{A}, y_{A}\right] \leq\left[x_{A^{\prime}}, y_{A^{\prime}}\right]$ in L, i.e. we have inequalities (6). Then

$$
\begin{aligned}
p_{A}^{x_{A}}\left(y_{A}\right) & \leq p_{A}^{G\left(f_{1}\right)\left(x_{1}\right)}\left(y_{A}\right)=\left(p_{A_{1}^{\prime}}^{x_{1}} \circ F\left(f_{1}\right)\right)\left(y_{A}\right) \leq\left(p_{A_{1}^{\prime}}^{x_{1}} \circ F\left(g_{1}\right)\right)\left(y_{1}\right)=p_{A_{1}}^{G\left(g_{1}\right)\left(x_{1}\right)}\left(y_{1}\right) \\
& \leq p_{A_{1}}^{G\left(f_{2}\right)\left(x_{2}\right)}\left(y_{1}\right) \leq \ldots \leq p_{A_{n-1}}^{G\left(f_{n}\right)\left(x_{n}\right)}\left(y_{n-1}\right)=\left(p_{A_{n}^{\prime}}^{x_{n}} \circ F\left(f_{n}\right)\right)\left(y_{n-1}\right) \\
& \leq\left(p_{A_{n}^{\prime}}^{x_{n}} \circ F\left(g_{n}\right)\right)\left(y_{A^{\prime}}\right)=p_{A^{\prime}}^{G\left(g_{n}\right)\left(x_{n}\right)}\left(y_{A^{\prime}}\right) \leq p_{A^{\prime}}^{x_{A^{\prime}}}\left(y_{A^{\prime}}\right) .
\end{aligned}
$$

This proves that φ is well defined and order preserving. Finally, $\left(\varphi \circ l_{A}^{x}\right)(y)=\varphi([x, y])=$ $p_{A}^{x}(y)$ for every $A \in \mathcal{A}, x \in G(A)$ and $y \in F(A)$.

Dually to Theorem 3 , one can prove the following result.
Theorem 6 There is one-to-one correspondence between Pos-colimits of F weighted by G and pairs $\left({ }_{S} L,\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, where ${ }_{S} L$ is a left S-poset and $\left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $l_{A}^{x}:{ }_{S} F(A) \rightarrow{ }_{S} L$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x^{\prime} \in G(A)$

$$
x \leq x^{\prime} \Longrightarrow l_{A}^{x} \leq l_{A}^{x^{\prime}}
$$

(b) for all $a: A_{0} \rightarrow A_{1}$ in \mathcal{A} and $x \in G\left(A_{1}\right)$,

$$
l_{A_{1}}^{x} \circ F(a)=l_{A_{0}}^{G(a)(x)} ;
$$

2. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x}:{ }_{S} F(A) \rightarrow$ ${ }_{S} P$ with properties 1 , there is a unique left S-poset morphism $\varphi:{ }_{S} L \rightarrow{ }_{S} P$ such that $\varphi \circ l_{A}^{x}=p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

5 Some special weighted colimits

5.1 Conical colimits

Pos-colimits of a functor F weighted by the constant functor $G=\Delta \mathbf{1}$ are called conical colimits. These turn out to be ordinary colimits.

5.2 Coinserters

Consider parallel morphisms $r, q:{ }_{S} R \longrightarrow_{S} Q$ in ${ }_{S}$ Pos. Let the category \mathcal{A} and its images under F and G be

$$
A_{0} \underset{a^{\prime}}{\stackrel{a}{\leftrightarrows}} A_{1} \quad{ }_{S} R \underset{q^{\prime}}{\stackrel{r}{\rightrightarrows}} S_{S} Q \quad \mathbf{2} \underset{c_{0}}{\stackrel{c_{1}}{\leftrightarrows}} \mathbf{1} .
$$

Then the colimit of F weighted by G is called the coinserter of q and r.
Lemma 8 There is one-to-one correspondence between coinserters of q and r and pairs $\left({ }_{s} L, l\right)$, where ${ }_{S} L$ is a left S-poset and $l:{ }_{S} Q \rightarrow{ }_{S} L$ a morphism such that

1. $l \circ q \leq l \circ r$,
2. if $l^{\prime}:{ }_{S} Q \rightarrow{ }_{S} L^{\prime}$ is such that $l^{\prime} \circ q \leq l^{\prime} \circ r$ then there exists unique $\varphi:{ }_{S} L \rightarrow{ }_{S} L^{\prime}$ in ${ }_{S}$ Pos such that $\varphi \circ l=l^{\prime}$.

By Lemma 4.2 of [3] (where coinserters were called subcoequalizers), one such pair is $\left.{ }_{S} \operatorname{Coins}(q, r), \pi\right)$, where ${ }_{S} \operatorname{Coins}(q, r)=Q / \nu(H)$ is the quotient S-poset of ${ }_{S} Q$ by the congruence $\nu(H)$ induced by the set $H=\{(q(x), r(x)) \mid x \in R\} \subseteq Q^{2}$ and $\pi: Q \rightarrow$ $Q / \nu(H)$ is the natural surjection. We call $\left({ }_{S} \operatorname{Coins}(q, r), \pi\right)$ the canonical coinserter of q and r.

5.3 Co-comma-objects

Consider morphisms $r:{ }_{S} R \rightarrow{ }_{S} Q$ and $r^{\prime}:{ }_{S} R^{\prime} \rightarrow{ }_{S} Q$ in ${ }_{S}$ Pos. If the category \mathcal{A} and its images under F and G are

$$
A<{ }^{a} A_{1} \xrightarrow{a^{\prime}} A^{\prime} \quad{ }_{S} R<\leftarrow_{\leftarrow}^{r} Q \xrightarrow{r^{\prime}} R^{\prime} \quad \mathbf{1} \xrightarrow{c_{1}} \mathbf{2} \leftarrow^{c_{0}} \mathbf{1}
$$

then the colimit of F weighted by G is called the co-comma-object of r^{\prime} and r.
Lemma 9 There is one-to-one correspondence between co-comma-objects of r^{\prime} and r and triples $\left({ }_{S} L, l^{\prime}, l\right)$, where $l:{ }_{S} R \rightarrow{ }_{S} L, l^{\prime}:{ }_{S} R^{\prime} \rightarrow{ }_{S} L$ are such that

1. $l \circ r \leq l^{\prime} \circ r^{\prime}$;
2. if $p:{ }_{S} R \rightarrow{ }_{S} L^{\prime}$ and $p^{\prime}:{ }_{S} R^{\prime} \rightarrow{ }_{S} L^{\prime}$ in ${ }_{S}$ Pos are such that $p \circ r \leq p^{\prime} \circ r^{\prime}$ then there exists a unique morphism $\varphi: L \rightarrow L^{\prime}$ in ${ }_{S} \operatorname{Pos}$ such that $\varphi \circ l=p$ and $\varphi \circ l^{\prime}=p^{\prime}$.

By Section 2.1 of [4] (where co-comma-objects were called subpushouts), one such triple is $\left({ }_{S} \operatorname{Coco}\left(r^{\prime}, r\right), l^{\prime}, l\right)$, where ${ }_{S} \operatorname{Coco}\left(r^{\prime}, r\right)$ is the quotient S-poset of the coproduct ${ }_{S} R \sqcup{ }_{S} R^{\prime}=(1 \times R) \cup\left(\{2\} \times R^{\prime}\right)$ by the congruence $\nu(H)$ induced by the set $H=$ $\left\{\left(\left(2, r^{\prime}(x)\right),(1, r(x))\right) \mid x \in Q\right\} \subseteq\left(R \sqcup R^{\prime}\right)^{2}$ and the mapping $l: R \rightarrow{ }_{s} \operatorname{Coco}\left(r^{\prime}, r\right)\left(l^{\prime}:\right.$ $\left.R^{\prime} \rightarrow{ }_{S} \operatorname{Coco}\left(r^{\prime}, r\right)\right)$ is defined by $l(y):=[1, y]\left(l^{\prime}\left(y^{\prime}\right):=\left[2, y^{\prime}\right]\right)$. We call $\left({ }_{S} \operatorname{Coco}\left(r^{\prime}, r\right), l^{\prime}, l\right)$ the canonical co-comma-object of r^{\prime} and r.

5.4 Lax colimit of a morphism

(WARNING: The results of this section may be incorrect!)

Consider a morphism $h:{ }_{S} R \longrightarrow{ }_{S} Q$ in ${ }_{S}$ Pos. Let the category \mathcal{A} and its images under (covariant) F and (contravariant) G be

$$
\begin{equation*}
A_{0} \xrightarrow{a} A_{1} \quad{ }_{S} R \xrightarrow{h}{ }_{S} Q \quad \mathbf{1} \xrightarrow{c_{0}} \mathbf{2} . \tag{8}
\end{equation*}
$$

Then the colimit of F weighted by G is called the lax colimit of the morphism h (replacing c_{0} by c_{1} we obtain the op-lax colimit of the morphism h).

By the canonical construction of weighted colimits we know that

$$
\operatorname{Laxco}(h)=(\mathbf{1} \times Q \sqcup \mathbf{2} \times R) / \sigma \cong(Q \sqcup \mathbf{2} \times R) / \sigma,
$$

where

$$
\left(x_{A}, y_{A}\right) \sigma\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \Longleftrightarrow\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \wedge\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \tau\left(x_{A}, y_{A}\right)
$$

and τ is defined as in Section 4.2.
Let us examine the relation τ. Suppose that $\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$. Then we have a scheme (6), assume that it has a minimal length. Note that if $f_{i}=g_{i}=1_{A_{i}}$ or $g_{i}=f_{i+1}=$ $1_{A_{i}}$ for some i then the scheme could be shortened. Otherwise, consider the following cases.

1. Zigzag (7) contains $1_{A_{0}}$. Then

$$
\begin{equation*}
\left(x_{A}, y_{A}\right) \leq\left(x_{A^{\prime}}, y_{A^{\prime}}\right), \tag{9}
\end{equation*}
$$

because otherwise either the morpism preceeding $1_{A_{0}}$ or the morphism following it would also be $1_{A_{0}}$.
2. Zigzag (7) contains no $1_{A_{0}}$. We have two subcases.
2.1. $f_{1}=1_{A_{1}}$. Then $g_{1}=a$. If $n>1$ then we must have $f_{2}=a$, hence $x_{A}=*=x_{1}=$ x_{2},

$$
\begin{aligned}
x_{A} & \leq G\left(f_{1}\right)\left(x_{1}\right) \\
G\left(g_{2}\right)\left(x_{2}\right) & \leq G\left(f_{3}\right)\left(x_{3}\right) \quad F\left(f_{1}\right)\left(y_{A}\right) \leq F\left(g_{1}\right)\left(y_{1}\right)=F\left(f_{2}\right)\left(y_{1}\right) \leq F\left(g_{2}\right)\left(y_{2}\right),
\end{aligned}
$$

contradicting the minimality of n. Hence $n=1$ and

$$
\begin{aligned}
=x_{A} & \leq x_{1}= \\
c_{0}(*)=0 & \leq x_{A^{\prime}} \quad y_{A} \leq h\left(y_{A^{\prime}}\right),
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left(x_{A}, y_{A}\right) \in \mathbf{1} \times Q, \quad\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \in \mathbf{2} \times R, \quad y_{A} \leq h\left(y_{A^{\prime}}\right) \tag{10}
\end{equation*}
$$

2.2. $f_{1}=a$. If $g_{1}=1_{A_{1}}$ then also $f_{2}=1_{A_{1}}$, contradicting our assumption. Hence $g_{1}=a$. If $n>1$ then $f_{2}=a$ (because $\operatorname{dom} f_{2}=A_{0}$), but then the sequence can be shortened. Hence $n=1$ and

$$
\begin{aligned}
x_{A} & \leq c_{0}\left(x_{1}\right) \\
c_{0}\left(x_{1}\right) & \leq x_{A^{\prime}}
\end{aligned} \quad h\left(y_{A}\right) \leq h\left(y_{A^{\prime}}\right), ~ l
$$

i.e.

$$
\begin{equation*}
\left(x_{A}, y_{A}\right),\left(x_{A^{\prime}}, y_{A^{\prime}}\right) \in \mathbf{2 \times R}, \quad x_{A}=0, \quad h\left(y_{A}\right) \leq h\left(y_{A^{\prime}}\right) . \tag{11}
\end{equation*}
$$

So it seems that the cases when $\left(x_{A}, y_{A}\right) \tau\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$ can only be (9), (10) and (11). Also, it seems that $\left(x_{A}, y_{A}\right) \sigma\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$ if and only if

1) $\left(x_{A}, y_{A}\right)=\left(x_{A^{\prime}}, y_{A^{\prime}}\right)$, or
2) $x_{A}=x_{A^{\prime}}=0 \in \mathbf{2}, y_{A}, y_{A^{\prime}} \in R$ and $h\left(y_{A}\right)=h\left(y_{A^{\prime}}\right)$.

5.4.1 An application: coconvexity

Let ${ }_{S} R$ be a S-subposet of Q_{S} and $r: R_{S} \rightarrow Q_{S}$ the inclusion mapping. Then the left S-poset $\operatorname{Oplax}(r)=\{(x, y) \in R \times Q \mid y \leq r(x)\}$ together with the restrictions l_{R} and l_{Q} of projections is an op-lax limit (see [6] for the definition) of the morphism r. It is easy to see that the S-subposet R_{S} is down-closed if and only if the projection $\pi_{2}: \mathrm{Pb}\left(r, l_{Q}\right) \rightarrow \operatorname{Oplax}(r)$ of the canonical pullback $\left(\mathrm{Pb}\left(r, l_{Q}\right), \pi_{1}, \pi_{2}\right)$ of r and l_{Q} is an epimorphism (i.e. a surjective morphism). Note that

$$
\mathrm{Pb}\left(r, l_{Q}\right)=\left\{\left(x_{1}, x_{2}, y\right) \in R \times R \times Q \mid x_{1}=y \leq x_{2}\right\} .
$$

Using pullbacks and lax limits of morphisms one can categorically define up-closedness.
Convex S-subposets are precisely the intersections of up-closed and down-closed S subposets.

We say that a (regular?) epimorphism $h: R \rightarrow Q$ in ${ }_{S}$ Pos is down-coclosed if the injection u_{2} : $\operatorname{Oplaxco}(h) \rightarrow \mathrm{Po}\left(h, n_{R}\right)$ of the pushout

is a (regular?) monomorphism, where $\left(\operatorname{Oplaxco}(h), n_{R}, n_{Q}\right)$ is the op-lax colimit of the morphism h.

Using pushouts and lax colimits we define up-coclosedness. We say that a factor S poset is coconvex if it is a cointersection (!) of a down-coclosed and an up-coclosed factor S-poset. (I have no idea, what are the cointersections, but they must exist!)

5.5 Weighted tensor product

If \mathcal{A} is the the discrete category with a single object \star then we call a colimit of F weighted by G a weighted tensor product of F and G (to distinguish it from the tensor product that is used in the study of flatness properites of S-posets). The weighted tensor product, constructed as in Theorem 2 is just the direct product $G(\star) \times F(\star)$, where the order is componentwise and the S-action is defined by

$$
s \cdot(x, y):=(x, s \cdot y),
$$

together with left S-poset morphisms $l^{x}: F(\star) \rightarrow G(\star) \times F(\star), x \in G(*)$, defined by $l^{x}(y):=(x, y), y \in F(\star)$.

By Theorem 6, weighted tensor products of F and G are pairs $\left({ }_{S} L,\left(l^{x}\right)^{x \in G(\star)}\right)$, where $l^{x}:{ }_{S} F(\star) \rightarrow{ }_{S} L$ are morphisms such that

1. for all $x, x^{\prime} \in G(\star), x \leq x^{\prime}$ implies $l^{x} \leq l^{x^{\prime}}$;
2. for every ${ }_{S} P \in{ }_{S}$ Pos and family $\left(p^{x}\right)^{x \in G(\star)}$ of left S-poset morphisms $p^{x}:{ }_{S} F(\star) \rightarrow$ ${ }_{S} P$ such that $x \leq x^{\prime}$ implies $p^{x} \leq p^{x^{\prime}}$ for all $x, x^{\prime} \in G(\star)$ then there is a unique left S-poset morphism $\varphi:{ }_{S} L \rightarrow{ }_{S} P$ such that $\varphi \circ l^{x}=p^{x}$ for every $x \in G(\star)$.

In the case when $F(\star)={ }_{S} S$, the weighted tensor product of F and G is the free S-poset on $G(\star)$ (see Theorem 10 of [4]).

Since Pos also admits weighted tensor products (=direct products) of P and 2, for every poset P, the two-dimensional universal property of any limit follows from the onedimensional one (see p. 306 of [6], or Theorem 4.85 of [5]). WHAT DOES THIS MEAN?

References

[1] F. Borceux, Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge University Press, Cambridge, 1994.
[2] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Cambridge University Press, Cambridge, 1994.
[3] S. Bulman-Fleming and V. Laan, Lazard's theorem for S-posets, Math. Nachr. 278, 15 (2005), 1743-1755.
[4] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum 71 (2005), 443-461.
[5] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, 1982.
[6] G. M. Kelly, Elementary observations on 2-categorical limits, Bull. Austral. Math. Soc., 39 (1989) 301-317.
[7] J. Power, E. Robinson, A characterization of pie limits, Math. Proc. Camb. Phil. Soc. 110 (1991), 33-47.

