Weighted limits and colimits in the category of left S-posets

Valdis Laan

December 23, 2008

Abstract

Weighted limits and colimits are defined in categories that are enriched over a symmetric monoidal closed category. Since the category $_S$ Pos of left S-posets over a pomonoid S is enriched over the category Pos of posets (with order-preserving mappings as morphisms) we can speak about weighted limits and colimits in $_S$ Pos.

1 Introduction

By $\mathbf{1} = \{*\}$ we shall denote the one-element (S-)poset and by $\mathbf{2} = \{0, 1\}$ the two-element chain with 0 < 1. We assume the existence of an empty S-poset. Recall that morphisms in $_{S}$ Pos are order and action preserving mappings and isomorphisms are surjective mappings that preserve and reflect order.

The category Pos of posets and order-preserving mappings is a symmetric monoidal closed category (see Def. 6.1.1–6.1.3 of [2]) with the cartesian product as a tensor product and I = 1.

The category ${}_{S}\mathsf{Pos}$ of left S-posets (or Pos_{S} of right S-posets) is a Pos -category (or poset enriched category or a category enriched over Pos) (see Def. 6.2.1 of [2]), where the morphism sets ${}_{S}\mathsf{Pos}(A, B)$, ${}_{S}A, {}_{S}B \in {}_{S}\mathsf{Pos}$ are posets with respect to pointwise order.

If \mathcal{A} and \mathcal{B} are Pos-categories then a Pos-functor $F : \mathcal{A} \to \mathcal{B}$ has to preserve (in addition to composition and identity morphisms) the order of morphism posets. We shall call such functors **pofunctors**.

Pos-natural transformations (see Def. 6.2.4 of [2]) between pofunctors are just the ordinary natural transformations. If \mathcal{A} and \mathcal{B} are Pos-categories and \mathcal{A} is small then by Proposition 6.3.1 of [2] the category of pofunctors $\mathcal{A} \to \mathcal{B}$ and natural transformations between them can be provided with the structure of a Pos-category, written $\mathsf{Pos}[\mathcal{A}, \mathcal{B}]$. Namely, given two pofunctors $F, G : \mathcal{A} \longrightarrow \mathcal{B}$, the set

$$\mathsf{Nat}(F,G) = \{ (\alpha_A : F(A) \to G(A))_{A \in \mathcal{A}} \mid G(f)\alpha_{A'} = \alpha_{A''}F(f) \text{ for every } f : A' \to A'' \text{ in } \mathcal{A} \}$$

of natural transformations from F to G is a poset with respect to the order

 $(\alpha_A)_{A \in \mathcal{A}} \leq (\beta_A)_{A \in \mathcal{A}} \iff \alpha_A \leq \beta_A \text{ for every } A \in \mathcal{A} \text{ in the poset } \mathcal{B}(F(A), G(A)).$

2 Weighted limits in _SPos

2.1 Definition

Definition 1 (Cf. Def. 6.6.3 of [2]) Given a pomonoid S, small Pos-category \mathcal{A} , and pofunctors $F : \mathcal{A} \to {}_{S}\mathsf{Pos}, G : \mathcal{A} \to \mathsf{Pos}$, a Pos-limit of F weighted by G is a pair $({}_{S}L, (\lambda_{P})_{P \in {}_{S}\mathsf{Pos}})$ where ${}_{S}L$ is a left S-poset and $\lambda = (\lambda_{P})_{P \in {}_{S}\mathsf{Pos}} : {}_{S}\mathsf{Pos}(-, L) \Rightarrow$ $\mathsf{Nat}(G, {}_{S}\mathsf{Pos}(-, F(-)))$ is a natural isomorphism, that is, for every ${}_{S}P \in {}_{S}\mathsf{Pos}$,

$$\lambda_P : {}_S\mathsf{Pos}(P,L) \longrightarrow \mathsf{Nat}(G, {}_S\mathsf{Pos}(P,F(-))),$$

are poset isomorphisms that are natural in P. We write $\lim_G F$ for a **Pos**-limit of F weighted by G.

Remark 1 For every ${}_{S}P \in {}_{S}\text{Pos}$, ${}_{S}\text{Pos}(P, F(-)) = {}_{S}\text{Pos}(P, -) \circ F : \mathcal{A} \to \text{Pos}$ is a pofunctor and the set $\text{Nat}(G, {}_{S}\text{Pos}(P, F(-)))$ is a poset with respect to componentwise order of natural transformations. Therefore, there is a contravariant functor

$$Nat(G, {}_{S}Pos(-, F(-))) : {}_{S}Pos \rightarrow Pos$$

given by the assignment

$$SP \longmapsto \mathsf{Nat}(G, S\mathsf{Pos}(P, F(-)))$$

$$\downarrow^{p} \qquad \qquad \uparrow^{(-\circ p)\circ -}$$

$$SQ \longmapsto \mathsf{Nat}(G, S\mathsf{Pos}(Q, F(-)))$$

where the mapping $(-\circ p) \circ -$ is defined by

$$((-\circ p)\circ -)(\mu) := ((-\circ p)\circ \mu_A)_{A\in\mathcal{A}} : G \Rightarrow {}_S\mathsf{Pos}(P, F(-))$$

for every natural transformation $\mu : G \Rightarrow {}_{S}\mathsf{Pos}(Q, F(-))$ and $- \circ p : {}_{S}\mathsf{Pos}(Q, F(A)) \rightarrow {}_{S}\mathsf{Pos}(P, F(A))$. The fact that $\lambda = (\lambda_{P})_{P \in {}_{S}\mathsf{Pos}} : {}_{S}\mathsf{Pos}(-, L) \Rightarrow \mathsf{Nat}(G, {}_{S}\mathsf{Pos}(-, F(-)))$ is a natural transformation meand that

$$\lambda_P(\psi \circ p) = \left((-\circ p) \circ \lambda_Q(\psi)_A\right)_{A \in \mathcal{A}},$$

or

$$\lambda_P(\psi \circ p)_A = (- \circ p) \circ \lambda_Q(\psi)_A,$$

or

$$\lambda_P(\psi \circ p)_A(x) = \lambda_Q(\psi)_A(x) \circ p \tag{1}$$

for every $A \in \mathcal{A}$, $x \in G(A)$, ${}_{S}P, {}_{S}Q \in {}_{S}\mathsf{Pos}, p \in {}_{S}\mathsf{Pos}(P,Q), \psi \in {}_{S}\mathsf{Pos}(Q,L)$.

2.2 Existence of weighted limits in _SPos

Here we give a characterization of a weighted limit in more usual terms of so-called projections of a limit and a universal property. We shall use the notation of Definition 1.

Theorem 1 There is one-to-one correspondence between Pos-limits of F weighted by Gand pairs $\left({}_{S}L, (l_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}\right)$, where ${}_{S}L$ is a left S-poset and $(l_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $l_{A}^{x} : {}_{S}L \to {}_{S}F(A)$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x' \in G(A)$

 $x \le x' \Longrightarrow l_A^x \le l_A^{x'};$

(b) for all $a : A_0 \to A_1$ in \mathcal{A} and $x \in G(A_0)$,

$$F(a) \circ l_{A_0}^x = l_{A_1}^{G(a)(x)}$$

2. for all $_{S}P \in _{S}\mathsf{Pos}$ and $\varphi, \psi \in _{S}\mathsf{Pos}(P,L)$,

$$((\forall A \in \mathcal{A})(\forall x \in G(A))(l_A^x \circ \varphi \le l_A^x \circ \psi)) \Longrightarrow \varphi \le \psi;$$

3. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p_{A}^{x})_{A\in\mathcal{A}}^{x\in G(A)}$ of left S-poset morphisms $p_{A}^{x} : {}_{S}P \to {}_{S}F(A)$ with properties 1, there is a left S-poset morphism $\varphi : {}_{S}P \to {}_{S}L$ such that $l_{A}^{x} \circ \varphi = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

Proof. Suppose that there is ${}_{S}L \in {}_{S}\mathsf{Pos}$ and for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ poset isomorphisms

$$\lambda_P : {}_{S}\mathsf{Pos}(P, L) \longrightarrow \mathsf{Nat}(G, {}_{S}\mathsf{Pos}(P, F(-)))$$

which are natural in P. For every $A \in \mathcal{A}, x \in G(A)$ we set

$$l_A^x := \lambda_L(1_L)_A(x) : {}_SL \to {}_SF(A).$$
⁽²⁾

1(a) holds because $\lambda_L(1_L)_A : G(A) \to {}_S\mathsf{Pos}(L, F(A))$ is order preserving for every $A \in \mathcal{A}$.

1(b). For every $a: A_0 \to A_1$ in \mathcal{A} and $x \in G(A_0)$,

$$F(a) \circ l_{A_0}^x = F(a) \circ \lambda_L(1_L)_{A_0}(x) = \lambda_L(1_L)_{A_1}(G(a)(x)) = l_{A_1}^{G(a)(x)},$$

because $\lambda_L(1_L)$ is a natural transformation.

$$\begin{array}{c|c} G(A_0) & \xrightarrow{\lambda_L(1_L)_{A_0}} & _{S} \mathsf{Pos}(L, F(A_0)) \\ & & & & \downarrow^{F(a) \circ -} \\ G(A_1) & \xrightarrow{\lambda_L(1_L)_{A_1}} & _{S} \mathsf{Pos}(L, F(A_1)) \end{array}$$

2. Suppose that $\varphi, \psi \in {}_{S}\mathsf{Pos}(P, L)$ are such that $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Since λ_{P} is natural in P (see (1)), we obtain

$$\lambda_P(\varphi)_A(x) = \lambda_P(1_L \circ \varphi)_A(x) = \lambda_L(1_L)_A(x) \circ \varphi = l_A^x \circ \varphi$$

$$\leq l_A^x \circ \psi = \lambda_L(1_L)_A(x) \circ \psi = \lambda_P(1_L \circ \psi)_A(x) = \lambda_P(\psi)_A(x)$$

for every $A \in \mathcal{A}$, $x \in G(A)$. Hence $\lambda_P(\varphi) \leq \lambda_P(\psi)$, and so $\varphi \leq \psi$, because λ_P reflects order.

3. If $(p_A^x)_{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $p_A^x : {}_SP \to {}_SF(A)$ that satisfies condition 1, then $\mu = (\mu_A)_{A \in \mathcal{A}}$, where $\mu_A : G(A) \to {}_S\mathsf{Pos}(P, F(A))$ is defined by

$$\mu_A(x) := p_A^x,$$

 $x \in G(A)$, is a natural transformation $G \Rightarrow {}_{S}\mathsf{Pos}({}_{S}P, F(-))$. By the surjectivity of λ_{P} , there exists $\varphi \in {}_{S}\mathsf{Pos}(P, L)$ such that $\lambda_{P}(\varphi) = \mu$, and hence, by (1),

$$l_A^x \circ \varphi = \lambda_L(1_L)_A(x) \circ \varphi = \lambda_P(\varphi)_A(x) = \mu_A(x) = p_A^x$$

for every $A \in \mathcal{A}$ and $x \in G(A)$.

Conversely, let a pair $\left({}_{S}L, (l_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfy conditions 1–3. For every ${}_{S}P \in {}_{S}\mathsf{Pos}$ we define a mapping

$$\lambda_P: {_S}\mathsf{Pos}(P, L) \longrightarrow \mathsf{Nat}(G, {_S}\mathsf{Pos}(P, F(-)))$$

by

$$\lambda_P(\varphi)_A(x) := l_A^x \circ \varphi : P \to F(A), \tag{3}$$

 $\varphi \in {}_{S}\mathsf{Pos}(P,L), A \in \mathcal{A} \text{ and } x \in G(A).$

1. As a composite of two S-poset morphisms, $\lambda_P(\varphi)_A(x)$ is an S-poset morphism.

2. Because of 1(a), $\lambda_P(\varphi)_A : G(A) \to {}_S\mathsf{Pos}(P, F(A))$ preserves order.

3. $\lambda_P(\varphi): G \Rightarrow {}_S\mathsf{Pos}(P, F(-))$ is a natural transformation, because

$$((F(a) \circ -) \circ \lambda_P(\varphi)_{A_0})(x) = F(a) \circ \lambda_P(\varphi)_{A_0}(x) = F(a) \circ l_{A_0}^x \circ \varphi$$

= $l_{A_1}^{G(a)(x)} \circ \varphi = \lambda_P(\varphi)_{A_1}(G(a)(x))$
= $(\lambda_P(\varphi)_{A_1} \circ G(a))(x)$

for every $a: A_0 \to A_1$ in \mathcal{A} and $x \in G(A_0)$.

4. λ_P is order preserving. Indeed, if $\varphi \leq \psi$ in ${}_{S}\mathsf{Pos}(P,L)$ then

$$\lambda_P(\varphi)_A(x) = l_A^x \circ \varphi \le l_A^x \circ \psi = \lambda_P(\psi)_A(x)$$

for every $A \in \mathcal{A}$ and $x \in G(A)$, thus $\lambda_P(\varphi) \leq \lambda_P(\psi)$.

5. λ_P is order reflecting, because, assuming that $\lambda_P(\varphi) \leq \lambda_P(\psi), \varphi, \psi \in {}_{S}\mathsf{Pos}(P,L)$, i.e. $l_A^x \circ \varphi \leq l_A^x \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$, we conclude $\varphi \leq \psi$ by 2.

6. λ_P is surjective. To prove this, consider a natural transformation $\mu : G \Rightarrow {}_{S}\mathsf{Pos}(P, F(-))$. For every $A \in \mathcal{A}$ and $x \in G(A)$ set

$$p_A^x := \mu_A(x) : {}_SP \to {}_SF(A).$$

Since μ_A is order preserving, the family $(p_A^x)_{A \in \mathcal{A}}^{x \in G(A)}$ satisfies 1(a). Since μ is a natural transformation,

$$F(a) \circ p_{A_0}^x = ((F(a) \circ -) \circ \mu_{A_0})(x) = (\mu_{A_1} \circ G(a))(x)$$

= $\mu_{A_1}(G(a)(x)) = p_{A_1}^{G(a)(x)}$

for every $a: A_0 \to A_1$ in \mathcal{A} . Hence 1(b) is also satisfied.

$$\begin{array}{c|c} G(A_0) & \xrightarrow{\mu_{A_0}} & _{S}\mathsf{Pos}(_{S}P, F(A_0)) \\ & & & \downarrow \\ G(a) & & & \downarrow \\ G(A_1) & \xrightarrow{\mu_{A_1}} & _{S}\mathsf{Pos}(_{S}P, F(A_1)) \end{array}$$

By 3, there is an S-poset morphism $\varphi : {}_{S}P \to {}_{S}L$ such that $l_{A}^{x} \circ \varphi = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. So

$$\lambda_P(\varphi)_A(x) = l_A^x \circ \varphi = p_A^x = \mu_A(x)$$

for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $\lambda_P(\varphi) = \mu$ and λ_P is surjective.

7. λ_P is natural in P by (1), because

$$\lambda_P(\psi \circ p)_A(x) = l_A^x \circ (\psi \circ p) = (l_A^x \circ \psi) \circ p = \lambda_Q(\psi)_A(x) \circ p$$

for every $\psi \in {}_{S}\mathsf{Pos}(Q, L), \ p \in {}_{S}\mathsf{Pos}(P, Q), \ A \in \mathcal{A} \ \text{and} \ x \in G(A).$

Now, if $\left({}_{S}L, (l_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}\right)$ is a Pos-limit of F weighted by G, if we define mappings l_{A}^{x} by (2) and a natural transformation λ' by $\lambda'_{P}(\varphi)_{A}(x) := l_{A}^{x} \circ \varphi, \ _{S}P \in _{S}\mathsf{Pos}, \ \varphi \in _{S}\mathsf{Pos}(P,L), A \in \mathcal{A}, \ x \in G(A)$, then by (1)

$$\lambda'_P(\varphi)_A(x) = l_A^x \circ \varphi = \lambda_L(1_L)_A(x) \circ \varphi = \lambda_P(1_L \circ \varphi)_A(x) = \lambda_P(\varphi)_A(x),$$

and so $\lambda = \lambda'$. Also, if $\left({}_{S}L, (l_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfies conditions 1–3, we define a natural transformation λ by (3) and thereafter mappings k_{A}^{x} by $k_{A}^{x} := \lambda_{L}(1_{L})_{A}(x), A \in \mathcal{A}, x \in G(A)$, then

$$k_A^x = \lambda_L(1_L)_A(x) = l_A^x \circ 1_L = l_A^x.$$

Hence the correspondence is indeed one-to-one. \blacksquare

Remark 2 We always can assume that φ in condition 3 of Theorem 1 is unique. Indeed, if also $\psi : {}_{S}P \to {}_{S}L$ is such that $l_{A}^{x} \circ \psi = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, then $l_{A}^{x} \circ \psi \leq l_{A}^{x} \circ \varphi$ and $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$, which by condition 2 of Theorem 1 implies $\varphi = \psi$.

Remark 3 Having Theorem 1 in mind, we shall also call the pairs $\left({}_{SL}, (l_A^x)_{A \in \mathcal{A}}^{x \in G(A)}\right)$, satisfying conditions 1–3 of Theorem 1, **limits of** F weighted by G and l_A^x their projections.

2.3 Canonical construction of weighted limits in _SPos

We shall show that weighted limits always exist in the category $_{S}$ Pos and give a canonical construction for such limits.

It is easy to see that the poset $Nat(G, U \circ F)$, where $U : {}_{S}Pos \to Pos$ is the forgetful functor, is an S-poset if the left S-action is given by

$$s \cdot f := (s \cdot f_A)_{A \in \mathcal{A}}$$

where $s \in S$, $f = (f_A)_{A \in \mathcal{A}} \in \mathsf{Nat}(G, U \circ F)$, and the mapping $s \cdot f_A : G(A) \to F(A)$ is defined by

$$(s \cdot f_A)(x) := s \cdot f_A(x),$$

 $x \in G(A)$. For every $A \in \mathcal{A}$ and $x \in G(A)$ we define a mapping $l_A^x : \mathsf{Nat}(G, U \circ F) \to F(A)$ by

$$l_A^x(f) := f_A(x),\tag{4}$$

 $f = (f_A)_{A \in \mathcal{A}} \in \mathsf{Nat}(G, U \circ F).$

Theorem 2 The pair $\left(\mathsf{Nat}(G, U \circ F), (l_A^x)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ is a Pos-limit of F weighted by G.

Proof. Since

$$l_A^x(s \cdot f) = l_A^x((s \cdot f_A)_{A \in \mathcal{A}}) = (s \cdot f_A)(x) = s \cdot f_A(x) = s \cdot l_A^x(f)$$

for every $A \in \mathcal{A}$, $x \in G(A)$, $f = (f_A)_{A \in \mathcal{A}} \in L$, $s \in S$, and since l_A^x are obviously order preserving, they are left S-poset morphisms. We shall show that they satisfy the conditions of Theorem 1.

1(a). If $x \leq x', x, x' \in G(A)$, then $f_A(x) \leq f_A(x')$ for every $f \in \mathsf{Nat}(G, U \circ F)$. Hence $l_A^x \leq l_A^{x'}$.

1(b). For every $a: A_0 \to A_1$ in $\mathcal{A}, x \in G(A_0)$ and $f \in \mathsf{Nat}(G, U \circ F)$,

$$(F(a) \circ l_{A_0}^x)(f) = F(a)(f_{A_0}(x)) = f_{A_1}(G(a)(x)) = l_{A_1}^{G(a)(x)}(f).$$

2. Suppose that ${}_{S}P \in {}_{S}\mathsf{Pos}, \varphi, \psi \in {}_{S}\mathsf{Pos}(P, \mathsf{Nat}(G, U \circ F))$ are such that $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Then $\varphi(z)_{A}(x) = l_{A}^{x}(\varphi(z)) \leq l_{A}^{x}(\psi(z)) = \psi(z)_{A}(x)$ in F(A) for every $A \in \mathcal{A}, x \in G(A)$ and $z \in P$. Since the order in $\mathsf{Pos}(G(A), F(A))$ is pointwise and the order in $\mathsf{Nat}(G, U \circ F)$ is componentwise, $\varphi(z) = (\varphi(z)_{A})_{A \in \mathcal{A}} \leq (\psi(z)_{A})_{A \in \mathcal{A}} = \psi(z)$ for every $z \in P$, and thus $\varphi \leq \psi$.

3. Let ${}_{S}P \in {}_{S}\mathsf{Pos}$ and let $(p_{A}^{x})_{A\in\mathcal{A}}^{x\in G(A)}$ be a family of left S-poset morphisms p_{A}^{x} : ${}_{S}P \to {}_{S}F(A)$ such that (a) $x \leq x'$ implies $p_{A}^{x} \leq p_{A}^{x'}$ for all $A \in \mathcal{A}$, $x, x' \in G(A)$, and (b) $F(a) \circ p_{A_{0}}^{x} = p_{A_{1}}^{G(a)(x)}$ for all $a : A_{0} \to A_{1}$ in \mathcal{A} and $x \in G(A_{0})$. We define a mapping $\varphi : P \to \mathsf{Nat}(G, U \circ F)$ by

$$\varphi(z)_A(x) := p_A^x(z),$$

 $A \in \mathcal{A}, x \in G(A), z \in P$. By (a), $\varphi(z)_A : G(A) \to F(A)$ is order preserving. By (b),

$$(F(a) \circ \varphi(z)_{A_0})(x) = F(a)(p_{A_0}^x(z)) = p_{A_1}^{G(a)(x)}(z) = \varphi(z)_{A_1}(G(a)(x)) = (\varphi(z)_{A_1} \circ G(a))(x)$$

for every $a: A_0 \to A_1$ in $\mathcal{A}, x \in G(A_0)$ and $z \in P$. Hence $\varphi(z) \in L$. Further, φ is order preserving, because all mappings p_A^x are. Also

$$\varphi(s \cdot z)_A(x) = p_A^x(s \cdot z) = s \cdot p_A^x(z) = s \cdot \varphi(z)_A(x)$$
$$= (s \cdot \varphi(z)_A)(x) = (s \cdot \varphi(z))_A(x)$$

for every $A \in \mathcal{A}$, $x \in G(A)$, $z \in P$ and $s \in S$, which implies $\varphi(s \cdot z) = s \cdot \varphi(z)$, and hence φ is a left S-poset morphism. Finally,

$$(l_A^x \circ \varphi)(z) = l_A^x(\varphi(z)) = \varphi(z)_A(x) = p_A^x(z)$$

for every $A \in \mathcal{A}, x \in G(A), z \in P$, and hence $l_A^x \circ \varphi = p_A^x$.

Remark 4 That weighted limits can be constructed as in Theorem 2 may also follow from (3.2) or (2.1) of [6], but we have preferred to give a direct proof here.

2.4 Another existence theorem for weighted limits

Here we show that condition 2 in Theorem 1 is actually redundant.

Theorem 3 A pair $({}_{SL}, (l^x_A)^{x \in G(A)}_{A \in \mathcal{A}})$, where $l^x_A : {}_{SL} \to {}_{S}F(A)$ are left S-poset morphisms, is a limit of F weighted by G if and only if

1. (a) for all $A \in \mathcal{A}$ and $x, x' \in G(A)$

$$x \le x' \Longrightarrow l_A^x \le l_A^{x'}$$

(b) for all $a : A_0 \to A_1$ in \mathcal{A} and $x \in G(A_0)$,

$$F(a) \circ l_{A_0}^x = l_{A_1}^{G(a)(x)};$$

2. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p_{A}^{x})_{A\in\mathcal{A}}^{x\in G(A)}$ of left S-poset morphisms $p_{A}^{x} : {}_{S}P \to {}_{S}F(A)$ with properties 1, there is a unique left S-poset morphism $\varphi : {}_{S}P \to {}_{S}L$ such that $l_{A}^{x} \circ \varphi = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

Proof. Necessity follows immediately from Theorem 1 and Remark 2.

Sufficiency. Suppose that ${}_{S}L$ with l_{A}^{x} , $A \in \mathcal{A}$, $x \in G(A)$, satisfies conditions 1 and 2. Let ${}_{S}M$ together with left S-poset morphisms $m_{A}^{x} : {}_{S}M \to {}_{S}F(A)$ that satisfy conditions 1–3 of Theorem 1 be a limit of F weighted by G (by Theorem 2 we know that at least one such ${}_{S}M$ exists). Then there exists a unique morphism $\mu : {}_{S}M \to {}_{S}L$ such that $l_{A}^{x} \circ \mu = m_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, and a unique morphism $\nu : {}_{S}L \to {}_{S}M$ such that $m_{A}^{x} \circ \nu = l_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $l_{A}^{x} \circ (\mu \circ \nu) = l_{A}^{x} = l_{A}^{x} \circ 1_{L}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $l_{A}^{x} \circ (\mu \circ \nu) = l_{A}^{x} = l_{A}^{x} \circ 1_{L}$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Hence $l_{A}^{x} \circ (\mu \circ \nu) = l_{A}^{x} = l_{A}^{x} \circ 1_{L}$ for every $A \in \mathcal{A}$ and $x \in G(A)$, which implies $\mu \circ \nu = 1_{L}$ by the uniqueness of the comparison morphism $1_{L} : {}_{S}L \to {}_{S}L$.

Suppose now that $\varphi, \psi \in {}_{S}\mathsf{Pos}(P, L)$ and $l_{A}^{x} \circ \varphi \leq l_{A}^{x} \circ \psi$ for every $A \in \mathcal{A}$ and $x \in G(A)$. Then

$$m_A^x \circ (\nu \circ \varphi) = l_A^x \circ \varphi \le l_A^x \circ \psi = m_A^x \circ (\nu \circ \psi)$$

for every $A \in \mathcal{A}$ and $x \in G(A)$. Since, for the limit ${}_{S}M$, condition 2 of Theorem 1 is satisfied, we have $\nu \circ \varphi \leq \nu \circ \psi$, which yields $\varphi \leq \psi$ by multiplying by μ on the left.

Remark 5 If I correctly understand a remark on p. 306 of [6] then the redundance of condition 2 in Theorem 1 should somehow follow from the existence of a tensor product (= direct product, \neq the "homological tensor product", see Section 5) of **2** and $_{S}P$ for every left S-poset $_{S}P$. HOW?

Remark 6 In view of Theorem 3, in what follows, by a limit of F weighted by G we mean a pair $\left({}_{S}L, \left(l_{A}^{x}\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ that satisfies conditions 1 and 2 of Theorem 3.

3 Some special weighted limits

3.1 Conical limits

If $G = \Delta \mathbf{1}$ is the constant functor at the one-element poset $\mathbf{1}$ then the limit of F weighted by G is called a **conical limit** (see [6], p. 305). By Theorem 3, $(_{SL}, (l_A)_{A \in \mathcal{A}})$ is such a limit if and only if

- 1. for all $a: A_0 \to A_1$ in $\mathcal{A}, F(a) \circ l_{A_0} = l_{A_1}$;
- 2. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p_{A})_{A \in \mathcal{A}}$ of left S-poset morphisms $p_{A} : {}_{S}P \to {}_{S}F(A)$ with property 1, there is a unique left S-poset morphism $\varphi : {}_{S}P \to {}_{S}L$ such that $l_{A} \circ \varphi = p_{A}$ for every $A \in \mathcal{A}$.

Thus conical limits are just the ordinary limits, e.g. products, equalizers, pullbacks.

3.2 Inserters

Consider parallel morphisms $r, q : {}_{S}R \Longrightarrow {}_{S}Q$ in ${}_{S}Pos$. Let the category \mathcal{A} and its images under F and G be

$$A_0 \xrightarrow[a']{a} A_1 \qquad \qquad SR \xrightarrow[q]{r} SQ \qquad \qquad \mathbf{1} \xrightarrow[c_0]{c_1} \mathbf{2}$$

where a, a' are incomparable and c_1, c_0 map * to 1 and 0, respectively. Then the limit of F weighted by G is called the **inserter** of q and r (see [6], p. 307) and it can be constructed as

$$\begin{aligned} \mathsf{Nat}(G, U \circ F) &= \{ (f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \leq f_{A_1}(1), \\ & r \circ f_{A_0} = f_{A_1} \circ c_1, q \circ f_{A_0} = f_{A_1} \circ c_0 \} \\ &= \{ (f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \leq f_{A_1}(1), \\ & r(f_{A_0}(*)) = f_{A_1}(1), q(f_{A_0}(*)) = f_{A_1}(0) \} \\ &\cong \{ f_{A_0} \mid f_{A_0} : \mathbf{1} \to R, q \circ f_{A_0} \leq r \circ f_{A_0} \} \\ &\cong \{ z \in R \mid q(z) \leq r(z) \} =: \mathsf{Ins}(q, r), \end{aligned}$$

where the order and S-action of lns(q, r) are inherited from $_{S}R$, and there is an isomorphism

$$\alpha: {}_{S}\mathsf{Nat}(G, U \circ F) \to {}_{S}\mathsf{Ins}(q, r), \quad (f_{A_0}, f_{A_1}) \mapsto f_{A_0}(*)$$

in ${}_{S}\mathsf{Pos}$.

Lemma 1 There is one-to-one correspondence between inserters of q and r and pairs $({}_{S}E, e)$, where ${}_{S}E$ is a left S-poset and $e : {}_{S}E \to {}_{S}R$ a morphism such that

- 1. $q \circ e \leq r \circ e$,
- 2. if $e': {}_{S}E' \to {}_{S}R$ is such that $q \circ e' \leq r \circ e'$ then there exists unique $\varphi: {}_{S}E' \to {}_{S}E$ in ${}_{S}Pos$ such that $e \circ \varphi = e'$.

Proof. Assume that the pair $({}_{S}L, (l^*_{A_0}, l^1_{A_1}, l^0_{A_1}))$ satisfies conditions 1 and 2 of Theorem 3. We write $({}_{S}E, e) = ({}_{S}L, l^*_{A_0}) = \alpha \left({}_{S}L, (l^*_{A_0}, l^1_{A_1}, l^0_{A_1})\right)$. Then

$$q \circ e = F(a') \circ l_{A_0}^* = l_{A_1}^{G(a')(*)} = l_{A_1}^0 \le l_{A_1}^1 = l_{A_1}^{G(a)(*)} = F(a) \circ l_{A_0}^* = r \circ e.$$

To prove 2, let $e': {}_{S}E' \to {}_{S}R$ be such that $q \circ e' \leq r \circ e'$. Then for $p_{A_0}^* = e', p_{A_1}^0 = q \circ e'$ and $p_{A_1}^1 = r \circ e'$ we have $p_{A_1}^0 \leq p_{A_1}^1, F(a') \circ p_{A_0}^* = q \circ e' = p_{A_1}^0 = p_{A_1}^{G(a')(*)}$, and, similarly, $F(a) \circ p_{A_0}^* = p_{A_1}^{G(a)(*)}$. By the assumption, there is a unique morphism $\varphi : {}_{S}E' \to {}_{S}E$ such that $e' = e \circ \varphi$.

Conversely, if a pair $({}_{S}E, e)$ satisfies 1 and 2, we consider the pair $({}_{S}E, (e, r \circ e, q \circ e)) = \beta({}_{S}E, e)$. It is easy to see that conditions 1 and 2 of Theorem 3 are satisfied. Finally,

 $\beta\left(\alpha\left({}_{S}L,(l_{A_{0}}^{*},l_{A_{1}}^{1},l_{A_{1}}^{0})\right)\right) = \beta\left({}_{S}L,l_{A_{0}}^{*}\right) = \left({}_{S}L,(l_{A_{0}}^{*},r\circ l_{A_{0}}^{*},q\circ l_{A_{0}}^{*})\right) = \left({}_{S}L,(l_{A_{0}}^{*},l_{A_{1}}^{1},l_{A_{1}}^{0})\right)$ for every inserter $\left({}_{S}L,(l_{A_{0}}^{*},l_{A_{1}}^{1},l_{A_{1}}^{0})\right)$ of q and r and

$$\alpha(\beta({}_{S}E, e)) = \alpha({}_{S}E, (e, r \circ e, q \circ e)) = ({}_{S}E, e))$$

for every pair $({}_{S}E, e)$) that satisfies 1 and 2.

Remark 7 It is easy to check that the pair $(lns(q, r), \iota)$, where $\iota : lns(q, r) \to R$ is the inclusion, satisfies conditions 1 and 2 of Lemma 1. We call $(lns(q, r), \iota)$ the **canonical inserter** of q and r.

3.3 Equifiers

Consider parallel morphisms $r, q : {}_{S}R \Longrightarrow {}_{S}Q$ with $q \leq r$ in ${}_{S}Pos$. Let the category \mathcal{A} and its images under F and G be

$$A_0 \xrightarrow[a']{a} A_1 \qquad \qquad SR \xrightarrow[q]{r} SQ \qquad \qquad \mathbf{1} \xrightarrow[c_0]{c_1} \mathbf{2}$$

where $a' \leq a$ and c_1, c_0 map * to 1 and 0, respectively. Then the limit of F weighted by G is called the **equifier** of q and r (see [6], p. 309) and it can be constructed as

$$\begin{aligned} \mathsf{Nat}(G, U \circ F) &= \{ (f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \leq f_{A_1}(1), \\ & r \circ f_{A_0} = f_{A_1} \circ c_1, q \circ f_{A_0} = f_{A_1} \circ c_0 \} \\ &= \{ (f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \leq f_{A_1}(1), \\ & r(f_{A_0}(*)) = f_{A_1}(1), q(f_{A_0}(*)) = f_{A_1}(0) \} \\ &\cong \{ f_{A_0} \mid f_{A_0} : \mathbf{1} \to R, q \circ f_{A_0} \leq r \circ f_{A_0} \} \\ &\cong \{ z \in R \mid q(z) \leq r(z) \} = R. \end{aligned}$$

So the equifier of (q, r) with $q \leq r$ is just the pair $(R, 1_R)$ and the universal property is trivially satisfied. Clearly every pofunctor preserves equifiers.

3.4 Comma objects

Consider morphisms $r : {}_{S}R \to {}_{S}Q$ and $r' : {}_{S}R' \to {}_{S}Q$ in ${}_{S}\mathsf{Pos}$. If the category \mathcal{A} and its images under F and G are

 $A \xrightarrow{a} A_1 \xleftarrow{a'} A' \qquad \qquad SR \xrightarrow{r} SQ \xleftarrow{r'} R' \qquad \qquad \mathbf{1} \xrightarrow{c_1} \mathbf{2} \xleftarrow{c_0} \mathbf{1}$

then the limit of F weighted by G is called the **comma-object** of r' and r (see [6], p. 308). Analogously to Lemma 1 one can prove the following result.

Lemma 2 There is one-to-one correspondence between comma-objects of r' and r and triples (Co(r', r), z', z), where $z : Co(r', r) \to R$, $z' : Co(r', r) \to R'$ are such that

- 1. $r \circ z \leq r' \circ z';$
- 2. if $w: W \to R$ and $w': W \to R'$ in _SPos are such that $r \circ w \leq r' \circ w'$ then there exists a unique morphism $\varphi: W \to \mathsf{Co}(r', r)$ in _SPos such that $z \circ \varphi = w$ and $z' \circ \varphi = w'$.

Canonically, one can take

$$\mathsf{Co}(r', r) := \{ (x', x) \in R' \times R \mid r'(x') \le r(x) \}$$

and z', z the restrictions of the projections of $R' \times R$.

Note that inserters and comma objects in $_{S}$ Pos were termed sub-equalizers and subpullbacks, respectively, in [3].

3.5 Lax limit and op-lax limit of a morphism

Consider a morphism $r: {}_{S}R \longrightarrow {}_{S}Q$ in ${}_{S}Pos$. Let the category \mathcal{A} and its images under F and G be

$$A_0 \xrightarrow{a} A_1 \qquad SR \xrightarrow{r} SQ \qquad \mathbf{1} \xrightarrow{c_0} \mathbf{2}.$$
 (5)

Then the limit of F weighted by G is called the **lax limit** of the morphism r (replacing c_0 by c_1 we obtain the **op-lax limit** of the morphism r; see [6], p. 308) and it can be canonically constructed as

$$\begin{aligned} \mathsf{Nat}(G, U \circ F) \\ &= \{(f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \le f_{A_1}(1), r \circ f_{A_0} = f_{A_1} \circ c_0\} \\ &= \{(f_{A_0}, f_{A_1}) \mid f_{A_0} : \mathbf{1} \to R, f_{A_1} : \mathbf{2} \to Q, f_{A_1}(0) \le f_{A_1}(1), r(f_{A_0}(*)) = f_{A_1}(0)\} \\ &\cong \{(x, y) \in R \times Q \mid r(x) \le y\} =: \mathsf{Lax}(r), \end{aligned}$$

where the order and left S-action on $\mathsf{Lax}(r)$ are componentwise. In more detail, if $(f_{A_0}, f_{A_1}) \in \mathsf{Nat}(G, U \circ F)$ then $r(f_{A_0}(*)) \leq f_{A_1}(1)$, and hence we may define a mapping $\alpha : \mathsf{Nat}(G, U \circ F) \to \mathsf{Lax}(r)$ by

$$\alpha(f_{A_0}, f_{A_1}) := (f_{A_0}(*), f_{A_1}(1)).$$

Obviously, α is order preserving and, for every $s \in S$,

$$\begin{aligned} \alpha(s \cdot (f_{A_0}, f_{A_1})) &= \alpha(s \cdot f_{A_0}, s \cdot f_{A_1}) = ((s \cdot f_{A_0})(*), (s \cdot f_{A_1})(1)) \\ &= (s \cdot f_{A_0}(*), s \cdot f_{A_1}(1)) = s \cdot (f_{A_0}(*), f_{A_1}(1)) = s \cdot \alpha(f_{A_0}, f_{A_1}). \end{aligned}$$

Suppose that also $(g_{A_0}, g_{A_1}) \in \mathsf{Nat}(G, U \circ F)$ and $(f_{A_0}(*), f_{A_1}(1)) \leq (g_{A_0}(*), g_{A_1}(1))$. Then $f_{A_0}(*) \leq g_{A_0}(*), f_{A_1}(1) \leq g_{A_1}(1)$, and $f_{A_1}(0) = r(f_{A_0}(*)) \leq r(g_{A_0}(*)) = g_{A_1}(0)$. Hence $(f_{A_0}, f_{A_1}) \leq (g_{A_0}, g_{A_1})$, and α is order reflecting. Finally, if $(x, y) \in R \times Q$ and $r(x) \leq y$ then defining $f_{A_0}(*) := x, f_{A_1}(1) := y$ and $f_{A_1}(0) := r(x)$ we have $(f_{A_0}, f_{A_1}) \in \mathsf{Nat}(G, U \circ F)$ and $\alpha(f_{A_0}, f_{A_1}) = (x, y)$. Thus we have proved that α is an isomorphism. Consequently, the pair $(\mathsf{Lax}(r), (l_{A_0}^* \circ \alpha^{-1}, l_{A_1}^0 \circ \alpha^{-1}, l_{A_1}^1 \circ \alpha^{-1}))$ is a lax limit of r.

Lemma 3 There is one-to-one correspondence between lax limits of a morphism $r : {}_{S}R \to {}_{S}Q$ and pairs $(L, (l_R, l_Q))$ with $l_R : {}_{S}L \to {}_{S}R$, $l_Q : {}_{S}L \to {}_{S}Q$ such that

- 1. $r \circ l_R \leq l_Q$;
- 2. if $l'_R : {}_{S}L' \to {}_{S}R$ and $l'_Q : {}_{S}L' \to {}_{S}Q$ are such that $r \circ l'_R \leq l'_Q$ then there exists a unique morphism $\varphi : {}_{S}L' \to {}_{S}L$ such that $l_R \circ \varphi = l'_R$ and $l_Q \circ \varphi = l'_Q$.

Proof. Let $({}_{S}L, (l_{A_0}^*, l_{A_1}^0, l_{A_1}^1))$ be a lax limit of a morphism $r : {}_{S}R \to {}_{S}Q$, that is, it satisfies conditions 1 and 2 of Theorem 3. We write $(L, (l_R, l_Q)) = ({}_{S}L, (l_{A_0}^*, l_{A_1}^1)) = \alpha ({}_{S}L, (l_{A_0}^*, l_{A_1}^0, l_{A_1}^1)).$

Then

$$r \circ l_R = F(a) \circ l_{A_0}^* = l_{A_1}^{G(a)(*)} = l_{A_1}^0 \le l_{A_1}^1 = l_Q.$$

Suppose that $l'_R : {}_{S}L' \to {}_{S}R$ and $l'_Q : {}_{S}L' \to {}_{S}Q$ are such that $r \circ l'_R \leq l'_Q$. Taking $p^*_{A_0} := l'_R, p^0_{A_1} := r \circ l'_R$ and $p^1_{A_1} := l'_Q$ we see that the pair $({}_{S}L', (p^*_{A_0}, p^0_{A_1}, p^1_{A_1}))$ satisfies condition 1 of Theorem 3. Hence there exists a left S-poset morphism $\varphi : {}_{S}L' \to {}_{S}L$ such that $l_R \circ \varphi = l^*_{A_0} \circ \varphi = p^*_{A_0} = l'_R$ and $l_Q \circ \varphi = l^1_{A_1} \circ \varphi = p^1_{A_1} = l'_Q$. If $\psi : {}_{S}L' \to {}_{S}L$ is another morphism such that $l_R \circ \psi = l'_R$ and $l_Q \circ \psi = l'_Q$ then $l^0_{A_1} \circ \psi = r \circ l_R \circ \psi = r \circ l'_R = p^0_{A_1}$ and hence $\varphi = \psi$ by the uniqueness of φ in condition 2 of Theorem 3.

Conversely, if a pair $({}_{S}L, (l_{R}, l_{Q}))$ satisfies 1 and 2, we consider the pair $({}_{S}L, (l_{R}, r \circ l_{R}, l_{Q})) = \beta({}_{S}L, (l_{R}, l_{Q}))$. It is easy to see that $({}_{S}L, (l_{R}, r \circ l_{R}, l_{Q}))$ satisfies conditions 1 and 2 of Theorem 3 and hence is a lax limit of r.

Now,

$$\beta\left(\alpha\left({}_{S}L,\left(l_{A_{0}}^{*},l_{A_{1}}^{0},l_{A_{1}}^{1}\right)\right)\right)=\beta\left({}_{S}L,\left(l_{A_{0}}^{*},l_{A_{1}}^{1}\right)\right)=\left({}_{S}L,\left(l_{A_{0}}^{*},r\circ l_{A_{0}}^{*},l_{A_{1}}^{1}\right)\right)=\left({}_{S}L,\left(l_{A_{0}}^{*},l_{A_{1}}^{0},l_{A_{1}}^{1}\right)\right)$$

for every lax limit $({}_{S}L, (l^*_{A_0}, l^0_{A_1}, l^1_{A_1}))$ of r, and

$$\alpha(\beta({}_{S}L,(l_{R},l_{Q}))) = \alpha({}_{S}L,(l_{R},r \circ l_{R},l_{Q})) = ({}_{S}L,(l_{R},l_{Q})))$$

for every pair $({}_{S}L, (l_R, L_Q)))$ that satisfies conditions 1 and 2.

Having Lemma 3 in mind, we shall call the pairs $({}_{S}L, (l_R, l_Q))$ satisfying conditions 1 and 2 of that lemma the **lax limits** of r. In particular, we say that the **canonical lax limit** of r is the pair $(\mathsf{Lax}(r), (p_R, p_Q))$, where $p_R := l_{A_0}^* \circ \alpha^{-1} : \mathsf{Lax}(r) \to R$ and $p_Q := l_{A_1}^1 \circ \alpha^{-1} : \mathsf{Lax}(r) \to Q$ are given by

$$p_R(x,y) = l_{A_0}^*(\alpha^{-1}(x,y)) = \alpha^{-1}(x,y)_{A_0}(*) = x,$$

$$p_Q(x,y) = l_{A_1}^1(\alpha^{-1}(x,y)) = \alpha^{-1}(x,y)_{A_1}(1) = y,$$

 $(x,y) \in \mathsf{Lax}(r).$

One can check that a canonical op-lax limit of a morphism $r: {}_{S}R \to {}_{S}Q$ in ${}_{S}Pos$ can be constructed as a pair $(Oplax(r), (p_R, p_Q))$, where

$$\mathsf{Oplax}(r) = \{(x, y) \in R \times Q \mid y \le r(x)\},\$$

 $p_R(x,y) = x$, $p_Q(x,y) = y$ for all $(x,y) \in \mathsf{Oplax}(r)$. Op-lax limits of morphisms together with pullbacks give a possibility to define downwards closed S-subposets of an S-poset in categorical terms.

3.6 Cotensor products

If \mathcal{A} is the discrete category with a single object \star then F and G can be identified with objects $F(\star)$ and $G(\star)$ of $_{S}$ Pos and of Pos, respectively. By Theorem 3, $(_{S}L, (l^{x})^{x \in G(\star)})$, where $l^{x} : _{S}L \to _{S}F(\star)$, is a limit of F weighted by G if and only if

1. for all $x, x' \in G(\star)$,

 $x \le x' \Longrightarrow l^x \le l^{x'};$

2. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p^{x})^{x \in G(\star)}$ of left S-poset morphisms $p^{x} : {}_{S}P \to {}_{S}F(\star)$ with property 1, there is a unique left S-poset morphism $\varphi : {}_{S}P \to {}_{S}L$ such that $l^{x} \circ \varphi = p^{x}$ for every $x \in G(\star)$.

Such weighted limit is called a **cotensor product** of F and G (or of $F(\star)$ and $G(\star)$; see [6], p. 305). By Theorem 2, one such cotensor product is $(_{S}\mathsf{Pos}(G(\star), F(\star)), (l^x)^{x \in G(\star)})$, where $l^x : _{S}\mathsf{Pos}(G(\star), F(\star)) \to F(\star)$ is the evaluation map at $x \in G(\star)$, i.e. $l^x(f) = f(x)$ for every $f \in _{S}\mathsf{Pos}(G(\star), F(\star))$.

3.7 Pie limits

For a functor $G : \mathcal{D} \to \mathsf{Pos}$ we can consider its category of elements (or Grothendieck category). The objects of this category $\mathsf{el}(G)$ are pairs (x, i), where $i \in I = \mathcal{D}_0$ and $x \in G(i)$. A morphism $(x, i) \to (y, j)$ is a morphism $d \in \mathcal{D}(i, j)$ such that G(d)(x) = y.

Definition 2 ([7]) A pofunctor $G : \mathcal{D} \to \mathsf{Pos}$ is called a **pie weight** if each component of $\mathsf{el}(G)$ has an initial object.

Since equifiers in $_{S}$ Pos are trivial, from Proposition 2.1 of [7] we have the following corollary, which we present with a proof.

Proposition 1 If $G : \mathcal{D} \to \mathsf{Pos}$ is a pie weight and $F : \mathcal{D} \to {}_S\mathsf{Pos}$ is a pofunctor then $\lim_G F$ can be constructed using products and inserters.

Proof. Let U be the set of connected components of el(G). For every connected component $u \in U$, let (z_u, j_u) be the initial object of u. If $(x, i) \in el(G)_0$, then we write $\overline{(x,i)} \in U$ for the connected component of (x,i) and $!_{\overline{(x,i)}}$ for the unique morphism $j_{\overline{(x,i)}} \to i$ such that $G(!_{\overline{(x,i)}})(z_{\overline{(x,i)}}) = x$. Take

$$S := \{ (x, y, i) \mid i \in I, x, y \in G(i), x \le y \}$$

and consider products

$$\left(\prod_{u \in U} F(j_u), (\pi_u)_{u \in U}\right) \quad \text{and} \quad \left(\prod_{(x,y,i) \in S} F(i), (p_{(x,y,i)})_{(x,y,i) \in S}\right).$$

$$F(j_{\overline{(x,i)}}) \xleftarrow{\pi_{\overline{(x,i)}}} \prod_{u \in U} F(j_u) \xrightarrow{\pi_{\overline{(y,i)}}} F(j_{\overline{(y,i)}})$$

$$F(!_{\overline{(x,i)}}) \xleftarrow{f_0} f_1 f_1 \qquad f_1 f_1 \quad f_1 f_1 \qquad f_1 f_1 \quad f_1 f_1 \qquad f_1 f_1 \quad f_1 f_1 f_1 \quad f_1 f_1 \quad$$

Then there exist unique morphisms $f_0, f_1: \prod_{u \in U} F(j_u) \to \prod_{(x,u,i) \in S} F(i)$ such that

 $p_{(x,y,i)} \circ f_0 = \pi_{\overline{(x,i)}} \circ F(!_{\overline{(x,i)}}) \text{ and } p_{(x,y,i)} \circ f_1 = \pi_{\overline{(y,i)}} \circ F(!_{\overline{(y,i)}})$

for every $(x, y, i) \in S$. Let (E, e) be the inserter of (f_0, f_1) . In particular, $f_0 \circ e \leq f_1 \circ e$. We claim that $\left(\sum_{i=1}^{n} (ix)^{x \in G(i)} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} (ix)^{x \in G(i)} = \sum_{i=1}^{n} \sum_{j=1}^{n} (ix)^{x \in G(i)} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$

$$\left(E, (l_i^x)_{i \in I}^{x \in G(i)}\right) \approx \lim_G F$$

where $l_i^x := F(\underline{!}_{(x,i)}) \circ \pi_{\overline{(x,i)}} \circ e : E \to F(i)$. If $d : i_0 \to i_1$ in \mathcal{D} and $x \in G(i_0)$ then $d : (x, i_0) \to (G(d)(x), i_1)$ in el(G) and $\overline{(x, i_0)} = \overline{(G(d)(x), i_1)}$. Hence $\underline{!}_{(\overline{G(d)(x), i_1)}} = d \circ \underline{!}_{(x,i_0)}$ and

$$\begin{aligned} l_{i_1}^{G(d)(x)} &= F\left(!_{\overline{(G(d)(x),i_1)}}\right) \circ \pi_{\overline{(G(d)(x),i_1)}} \circ e = F(d) \circ F(!_{\overline{(x,i_0)}}) \circ \pi_{\overline{(x,i_0)}} \circ e \\ &= F(d) \circ l_i^x. \end{aligned}$$

If $x, y \in G(i)$ are such that $x \leq y$ then

$$l_i^x = F(!_{\overline{(x,i)}}) \circ \pi_{\overline{(x,i)}} \circ e = p_{(x,y,i)} \circ f_0 \circ e \le p_{(x,y,i)} \circ f_1 \circ e = F(!_{\overline{(y,i)}}) \circ \pi_{\overline{(y,i)}} \circ e = l_i^y.$$

To verify the universal property, let $\left(P, (p_i^x)_{i \in I}^{x \in G(i)}\right)$ be such that $F(d) \circ p_{i_0}^x = p_{i_1}^{G(d)(x)}$ for every $d: i_0 \to i_1$ in \mathcal{D} and $p_i^x \leq p_i^y$ whenever $x \leq y$ in G(i). Then there exists a unique morphism $g: P \to \prod_{u \in U} F(j_u)$ such that $\pi_u \circ g = p_{j_u}^{z_u}$ for every $u \in U$. Now, for every $(x, y, i) \in S$,

$$p_{(x,y,i)} \circ f_0 \circ g = F(!_{\overline{(x,i)}}) \circ \pi_{\overline{(x,i)}} \circ g = F(!_{\overline{(x,i)}}) \circ p_{j_{\overline{(x,i)}}}^{z_{\overline{(x,i)}}} = p_i^x$$

$$\leq p_i^y = F(!_{\overline{(y,i)}}) \circ p_{j_{\overline{(y,i)}}}^{z_{\overline{(y,i)}}} = F(!_{\overline{(y,i)}}) \circ \pi_{\overline{(y,i)}} \circ g = p_{(x,y,i)} \circ f_1 \circ g.$$

Since products are weighted limits, they satisfy condition 2 of Theorem 1, and hence $f_0 \circ g \leq f_1 \circ g$. Consequently, there exists a unique morphism $\varphi : P \to E$ such that $e \circ \varphi = g$. Then

$$l_i^x \circ \varphi = F(\underline{!}_{\overline{(x,i)}}) \circ \pi_{\overline{(x,i)}} \circ e \circ \varphi = F(\underline{!}_{\overline{(x,i)}}) \circ \pi_{\overline{(x,i)}} \circ g = F(\underline{!}_{\overline{(x,i)}}) \circ p_{j_{\overline{(x,i)}}}^{z_{\overline{(x,i)}}} = p_i^x \cdot p_j^{z_{\overline{(x,i)}}} = p_i^x \cdot p_j^{z_{\overline{(x,i)}}} = p_i^x \cdot p_j^{z_{\overline{(x,i)}}} = p_j^x \cdot p_j^z \cdot p_j^{z_{\overline{(x,i)}}} = p_j^x \cdot p_j^z \cdot p_j^z \cdot p_j^z \cdot p_j^z = p_j^x \cdot p_j^z \cdot$$

Finally, suppose that $\psi: P \to E$ is sucht that $l_i^x \circ \psi = p_i^x$ for each $x \in G(i)$, $i \in I$. Note that $\overline{(z_u, j_u)} = u$ and $\underline{|_{(z_u, j_u)}} = 1_{j_u}$. Hence $l_{j_u}^{z_u} = F(1_{j_u}) \circ \pi_u \circ e = \pi_u \circ e$ for every $u \in U$. Now $l_i^x \circ \varphi = p_i^x = l_i^x \circ \psi$ implies

$$\pi_u \circ e \circ \varphi = l_{j_u}^{z_u} \circ \varphi \le l_{j_u}^{z_u} \circ \psi = \pi_u \circ e \circ \psi$$

for every $u \in U$. Applying again condition 2 of Theorem 1, first for product and then for inserter, we obtain $\varphi \leq \psi$. Symmetrically we get $\psi \leq \varphi$, and thus $\varphi = \psi$.

4 Weighted colimits in _SPos

4.1 Definition

Definition 3 (Cf. Def. 6.6.4 of [2]) Given a pomonoid S, small Pos-category \mathcal{A} , and pofunctors $F : \mathcal{A} \to {}_{S}\mathsf{Pos}, G : \mathcal{A}^{\mathrm{op}} \to \mathsf{Pos}$ (covariant and contravariant on \mathcal{A} , respectively), the Pos-colimit of F weighted by G is a pair $({}_{S}L, (\lambda_{P})_{P \in {}_{S}\mathsf{Pos}})$ where ${}_{S}L$ is a left S-poset and $\lambda = (\lambda_{P})_{P \in {}_{S}\mathsf{Pos}} : {}_{S}\mathsf{Pos}(L, -) \Rightarrow \mathsf{Nat}(G, {}_{S}\mathsf{Pos}(F(-), -))$ is a natural isomorphism, that is, for every ${}_{S}P \in {}_{S}\mathsf{Pos}$,

$$\lambda_P : {}_{S}\mathsf{Pos}(L, P) \longrightarrow \mathsf{Nat}(G, {}_{S}\mathsf{Pos}(F(-), P)),$$

are poset isomorphisms that are natural in $_{S}P$. We write $\operatorname{colim}_{G}F$ for a Pos-colimit of F weighted by G.

Dually to Theorem 1, one can prove the following result.

Theorem 4 There is one-to-one correspondence between Pos-colimits of F weighted by G and pairs $\binom{SL}{R} \binom{l_A^x \in G(A)}{A \in \mathcal{A}}$, where SL is a left S-poset and $\binom{l_A^x \in G(A)}{A \in \mathcal{A}}$ is a family of left S-poset morphisms $l_A^x : {}_SF(A) \to {}_SL$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x' \in G(A)$

$$x \le x' \Longrightarrow l_A^x \le l_A^{x'};$$

(b) for all $a : A_0 \to A_1$ in \mathcal{A} and $x \in G(A_1)$,

$$l_{A_1}^x \circ F(a) = l_{A_0}^{G(a)(x)};$$

2. for all $_{S}P \in _{S}\mathsf{Pos}$ and $\varphi, \psi \in _{S}\mathsf{Pos}(L, P)$,

$$((\forall A \in \mathcal{A})(\forall x \in G(A))(\varphi \circ l_A^x \le \psi \circ l_A^x)) \Longrightarrow \varphi \le \psi;$$

3. for every ${}_{S}P \in {}_{S}\text{Pos}$ and family $(p_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x} : {}_{S}F(A) \to {}_{S}P$ with properties 1, there is a left S-poset morphism $\varphi : {}_{S}L \to {}_{S}P$ such that $\varphi \circ l_{A}^{x} = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

4.2 Canonical construction of weighted colimits in $_{S}$ Pos

We shall show that the Pos-category $_{S}$ Pos is Pos-cocomplete by giving an explicit construction of a colimit $_{S}L \cong \operatorname{colim}_{G}F$ of F weighted by G.

We define a relation τ on the disjoint union $\bigsqcup_{A \in \mathcal{A}} G(A) \times F(A)$ by

$$(x_A, y_A)\tau(x_{A'}, y_{A'})$$

 $x_A \in G(A), y_A \in F(A), x_{A'} \in G(A'), y_{A'} \in F(A')$, if and only if either $(x_A, y_A) \leq (x_{A'}, y_{A'})$ or $x_A \leq G(f_A)(x_A)$

for some morphisms

$$A \xrightarrow{f_1} A'_1 \xleftarrow{g_1} A_1 \xrightarrow{f_2} A'_2 \xleftarrow{g_2} A_2 \xrightarrow{f_3} A'_3 \dots A_{n-1} \xrightarrow{f_n} A'_n \xleftarrow{g_n} A' \tag{7}$$

in \mathcal{A} and elements $x_i \in G(A'_i), i = 1, \dots, n, y_j \in F(A_j), j = 1, \dots, n-1.$

Lemma 4 The relation τ is reflexive and transitive.

Proof. Reflexivity of τ follows from inequalities

To prove transitivity, suppose that $(x_A, y_A)\tau(x_{A'}, y_{A'})$ and $(x_{A'}, y_{A'})\tau(x_{A''}, y_{A''})$, where $x_A \in G(A), x_{A'} \in G(A'), x_{A''} \in G(A''), y_A \in F(A), y_{A'} \in F(A')$ and $y_{A''} \in F(A'')$. Then, in addition to inequalities (6), we have inequalities

for some morphisms

$$A' \xrightarrow{h_1} B'_1 \xleftarrow{k_1} B_1 \xrightarrow{h_2} B'_2 \xleftarrow{k_2} B_2 \xrightarrow{h_3} B'_3 \dots B_{m-1} \xrightarrow{h_m} B'_m \xleftarrow{k_m} A''$$

in \mathcal{A} . Hence we have inequalities

$$\begin{array}{rcrcrcrc} x_{A} & \leq & G(f_{1})(x_{1}) \\ G(g_{1})(x_{1}) & \leq & G(f_{2})(x_{2}) \\ G(g_{2})(x_{2}) & \leq & G(f_{3})(x_{3}) \\ & & & & \\ & & & \\ & & & \\ G(g_{n})(x_{n}) & \leq & G(h_{1})(z_{1}) \\ G(k_{1})(z_{1}) & \leq & G(h_{2})(z_{2}) \\ G(k_{2})(z_{2}) & \leq & G(h_{3})(z_{3}) \\ & & & \\ & & \\ & & \\ G(k_{m})(z_{m}) & \leq & x_{A''} \end{array} \qquad \begin{array}{rcl} F(f_{n})(y_{A}) & \leq & F(g_{n})(y_{A'}) \\ F(f_{n})(y_{A'}) & \leq & F(g_{n})(y_{A'}) \\ F(h_{1})(y_{A'}) & \leq & F(k_{1})(w_{1}) \\ F(h_{2})(w_{1}) & \leq & F(k_{2})(w_{2}) \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$

i.e. $(x_A, y_A)\tau(x_{A''}, y_{A''})$.

Lemma 5 Let τ be reflexive and transitive binary relation on a set M. Define a binary relation σ on M by

$$m\sigma n \iff m\tau n \wedge n\tau m.$$

Then σ is an equivalence relation, and by defining

$$[m] \le [n] \Longleftrightarrow m\tau n$$

we obtain a well-defined partial order on the quotient set $M/\sigma = \{[m] \mid m \in M\}$.

By Lemma 5, the relation σ , defined by

$$(x_A, y_A)\sigma(x_{A'}, y_{A'}) \iff (x_A, y_A)\tau(x_{A'}, y_{A'}) \land (x_{A'}, y_{A'})\tau(x_A, y_A)$$

is an equivalence relation on the set $\bigsqcup_{A \in \mathcal{A}} G(A) \times F(A)$, and the definition

$$[x_A, y_A] \le [x_{A'}, y_{A'}] \Longleftrightarrow (x_A, y_A)\tau(x_{A'}, y_{A'})$$

gives a partial order on the quotient set

$$L := \bigsqcup_{A \in \mathcal{A}} G(A) \times F(A) / \sigma = \{ [x_A, y_A] \mid A \in \mathcal{A}, x_A \in G(A), y_A \in F(A) \}.$$

We define a left S-action on L by

$$s \cdot [x_A, y_A] := [x_A, s \cdot y_A].$$

Lemma 6 This way, L becomes a left S-poset.

Proof. Since F(A) is a left S-act for every $A \in \mathcal{A}$, so is L.

Suppose that $s \leq t, s, t \in S, x_A \in G(A), y_A \in F(A), A \in \mathcal{A}$. Since F(A) is a left S-poset, $s \cdot y_A \leq t \cdot y_A$. From

we see that $(x_A, s \cdot y_A) \tau(x_A, t \cdot y_A)$, i.e. $[x_A, s \cdot y_A] \leq [x_A, t \cdot y_A]$.

Suppose that $[x_A, y_A] \leq [x_{A'}, y_{A'}]$ and $s \in S$. Then we have inequalities (6). Using that the elements in the right-hand column belong to left S-posets and all $F(f_i), F(g_i)$ are left S-poset morphisms, we obtain

$$\begin{array}{rclcrcrcrc} x_A & \leq & G(f_1)(x_1) \\ G(g_1)(x_1) & \leq & G(f_2)(x_2) \\ G(g_2)(x_2) & \leq & G(f_3)(x_3) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

Hence

$$s \cdot [x_A, y_A] = [x_A, s \cdot y_A] \le [x_{A'}, s \cdot y_{A'}] = s \cdot [x_{A'}, y_{A'}]$$

(Note that the condition, we have just verified, implies that the S-action is well-defined.)

Lemma 7 The poset L satisfies conditions

- $1. \ (\forall x \in G(A))(\forall y, y' \in F(A))(y \leq y' \Rightarrow [x, y] \leq [x, y']),$
- 2. $(\forall x, x' \in G(A))(\forall y \in F(A))(x \le x' \Rightarrow [x, y] \le [x', y]),$
- 3. $(\forall x \in G(A))(\forall y' \in F(A'))(\forall f : A' \to A \text{ in } \mathcal{A})([x, F(f)(y')] = [G(f)(x), y']).$

Proof. The proof follows from the existence of the following inequalities:

$$\begin{array}{rcl} x & \leq & G(1_A)(x) \\ G(1_A)(x) & \leq & x & F(1_A)(y) & \leq & F(1_A)(y'), \\ x & \leq & G(1_A)(x') \\ G(1_A)(x') & \leq & x' & F(1_A)(y) & \leq & F(1_A)(y), \\ x & \leq & G(1_A)(x) \\ G(f)(x) & \leq & G(f)(x) & F(1_A)(F(f)(y')) & \leq & F(f)(y') \\ G(f)(x) & \leq & G(f)(x) & \end{array}$$

and

$$\begin{array}{rcl} G(f)(x) &\leq & G(f)(x) \\ G(1_A)(x) &\leq & x \end{array} \qquad F(f)(y') &\leq & F(1_A)(F(f)(y')). \end{array}$$

Theorem 5 The left S-poset $_{SL}$ is a Pos-colimit of F weighted by G.

Proof. We define a mapping $l_A^x : F(A) \to L, A \in \mathcal{A}, x \in G(A)$, by

 $l_A^x(y) := [x, y],$

 $y \in F(A)$. By Lemma 7(1), l_A^x is order preserving. Since it obviously preserves S-action, it is a left S-poset morphism. We shall check that the pair $\left({}_{SL}, \left(l_A^x\right)_{A \in \mathcal{A}}^{x \in G(A)}\right)$ satisfies conditions 1–3 of Theorem 4.

1(a) follows from Lemma 7(2).

1(b) For every $a: A_0 \to A_1$ in $\mathcal{A}, x \in G(A_1)$ and $y \in F(A_0)$ we have

$$\left(l_{A_1}^x \circ F(a)\right)(y) = l_{A_1}^x(F(a)(y)) = [x, F(a)(y)] = [G(a)(x), y] = l_{A_0}^{G(a)(x)}(y)$$

by Lemma 7(3).

2. Suppose that ${}_{S}P \in {}_{S}\mathsf{Pos}, \varphi, \psi \in {}_{S}\mathsf{Pos}(L, P) \text{ and } \varphi \circ l_{A}^{x} \leq \psi \circ l_{A}^{x} \text{ for all } A \in \mathcal{A} \text{ and } x \in G(A)$. Then, for every $A \in \mathcal{A}, x \in G(A)$ and $y \in F(A)$,

$$\varphi([x,y]) = (\varphi \circ l_A^x)(y) \le (\psi \circ l_A^x)(y) = \psi([x,y]),$$

and hence $\varphi \leq \psi$.

3. Suppose that the morphisms $p_A^x : {}_SF(A) \to {}_SP$ satisfy condition 1. We define a mapping $\varphi : L \to P$ by

$$\varphi([x,y]) := p_A^x(y)$$

for every $A \in \mathcal{A}$, $x \in G(A)$ and $y \in F(A)$. Since p_A^x are left S-act morphisms, so is φ . Suppose that $[x_A, y_A] \leq [x_{A'}, y_{A'}]$ in L, i.e. we have inequalities (6). Then

$$p_{A}^{x_{A}}(y_{A}) \leq p_{A}^{G(f_{1})(x_{1})}(y_{A}) = \left(p_{A_{1}'}^{x_{1}} \circ F(f_{1})\right)(y_{A}) \leq \left(p_{A_{1}'}^{x_{1}} \circ F(g_{1})\right)(y_{1}) = p_{A_{1}}^{G(g_{1})(x_{1})}(y_{1})$$

$$\leq p_{A_{1}}^{G(f_{2})(x_{2})}(y_{1}) \leq \ldots \leq p_{A_{n-1}}^{G(f_{n})(x_{n})}(y_{n-1}) = \left(p_{A_{n}'}^{x_{n}} \circ F(f_{n})\right)(y_{n-1})$$

$$\leq \left(p_{A_{n}'}^{x_{n}} \circ F(g_{n})\right)(y_{A'}) = p_{A'}^{G(g_{n})(x_{n})}(y_{A'}) \leq p_{A'}^{x_{A'}}(y_{A'}).$$

This proves that φ is well defined and order preserving. Finally, $(\varphi \circ l_A^x)(y) = \varphi([x, y]) = p_A^x(y)$ for every $A \in \mathcal{A}, x \in G(A)$ and $y \in F(A)$.

Dually to Theorem 3, one can prove the following result.

Theorem 6 There is one-to-one correspondence between Pos-colimits of F weighted by G and pairs $\binom{SL, (l_A^x)_{A \in \mathcal{A}}^{x \in G(A)}}{A \in \mathcal{A}}$, where $_{SL}$ is a left S-poset and $\binom{X}{A \in \mathcal{A}}^{x \in G(A)}$ is a family of left S-poset morphisms $l_A^x : {}_{SF}(A) \to {}_{SL}$ such that

1. (a) for all $A \in \mathcal{A}$ and $x, x' \in G(A)$

$$x \le x' \Longrightarrow l_A^x \le l_A^{x'};$$

(b) for all $a : A_0 \to A_1$ in \mathcal{A} and $x \in G(A_1)$,

$$l_{A_1}^x \circ F(a) = l_{A_0}^{G(a)(x)};$$

2. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p_{A}^{x})_{A \in \mathcal{A}}^{x \in G(A)}$ of left S-poset morphisms $p_{A}^{x} : {}_{S}F(A) \to {}_{S}P$ with properties 1, there is a unique left S-poset morphism $\varphi : {}_{S}L \to {}_{S}P$ such that $\varphi \circ l_{A}^{x} = p_{A}^{x}$ for every $A \in \mathcal{A}$ and $x \in G(A)$.

5 Some special weighted colimits

5.1 Conical colimits

Pos-colimits of a functor F weighted by the constant functor $G = \Delta \mathbf{1}$ are called **conical** colimits. These turn out to be ordinary colimits.

5.2 Coinserters

Consider parallel morphisms $r, q : {}_{S}R \Longrightarrow {}_{S}Q$ in ${}_{S}Pos$. Let the category \mathcal{A} and its images under F and G be

$$A_0 \xrightarrow[a]{a} A_1 \qquad SR \xrightarrow[q]{r} SQ \qquad \mathbf{2} \underset{c_0}{\overset{c_1}{\underset{c_0}{\longrightarrow}}} \mathbf{1}.$$

Then the colimit of F weighted by G is called the **coinserter** of q and r.

Lemma 8 There is one-to-one correspondence between coinserters of q and r and pairs $({}_{S}L, l)$, where ${}_{S}L$ is a left S-poset and $l : {}_{S}Q \to {}_{S}L$ a morphism such that

- 1. $l \circ q \leq l \circ r$,
- 2. if $l': {}_{S}Q \to {}_{S}L'$ is such that $l' \circ q \leq l' \circ r$ then there exists unique $\varphi: {}_{S}L \to {}_{S}L'$ in ${}_{S}Pos$ such that $\varphi \circ l = l'$.

By Lemma 4.2 of [3] (where coinserters were called subcoequalizers), one such pair is $({}_{S}\text{Coins}(q, r), \pi)$, where ${}_{S}\text{Coins}(q, r) = Q/\nu(H)$ is the quotient S-poset of ${}_{S}Q$ by the congruence $\nu(H)$ induced by the set $H = \{(q(x), r(x)) \mid x \in R\} \subseteq Q^{2}$ and $\pi : Q \to Q/\nu(H)$ is the natural surjection. We call $({}_{S}\text{Coins}(q, r), \pi)$ the **canonical coinserter** of q and r.

5.3 Co-comma-objects

Consider morphisms $r : {}_{S}R \to {}_{S}Q$ and $r' : {}_{S}R' \to {}_{S}Q$ in ${}_{S}\mathsf{Pos}$. If the category \mathcal{A} and its images under F and G are

$$A \stackrel{a}{\longleftrightarrow} A_1 \stackrel{a'}{\longrightarrow} A' \qquad \qquad SR \stackrel{r}{\longleftrightarrow} SQ \stackrel{r'}{\longrightarrow} R' \qquad \qquad \mathbf{1} \stackrel{c_1}{\longrightarrow} \mathbf{2} \stackrel{c_0}{\longleftarrow} \mathbf{1}$$

then the colimit of F weighted by G is called the **co-comma-object** of r' and r.

Lemma 9 There is one-to-one correspondence between co-comma-objects of r' and r and triples $({}_{S}L, l', l)$, where $l : {}_{S}R \to {}_{S}L, l' : {}_{S}R' \to {}_{S}L$ are such that

- 1. $l \circ r \leq l' \circ r';$
- 2. if $p: {}_{S}R \to {}_{S}L'$ and $p': {}_{S}R' \to {}_{S}L'$ in ${}_{S}$ Pos are such that $p \circ r \leq p' \circ r'$ then there exists a unique morphism $\varphi: L \to L'$ in ${}_{S}$ Pos such that $\varphi \circ l = p$ and $\varphi \circ l' = p'$.

By Section 2.1 of [4] (where co-comma-objects were called subpushouts), one such triple is $({}_{S}\mathsf{Coco}(r',r), l', l)$, where ${}_{S}\mathsf{Coco}(r',r)$ is the quotient S-poset of the coproduct ${}_{S}R \sqcup {}_{S}R' = (1 \times R) \cup (\{2\} \times R')$ by the congruence $\nu(H)$ induced by the set H = $\{((2, r'(x)), (1, r(x))) \mid x \in Q\} \subseteq (R \sqcup R')^2$ and the mapping $l : R \to {}_{S}\mathsf{Coco}(r', r) (l' :$ $R' \to {}_{S}\mathsf{Coco}(r', r))$ is defined by l(y) := [1, y] (l'(y') := [2, y']). We call $({}_{S}\mathsf{Coco}(r', r), l', l)$ the **canonical co-comma-object** of r' and r.

5.4 Lax colimit of a morphism

(WARNING: The results of this section may be incorrect!)

Consider a morphism $h: {}_{S}R \longrightarrow {}_{S}Q$ in ${}_{S}Pos$. Let the category \mathcal{A} and its images under (covariant) F and (contravariant) G be

$$A_0 \xrightarrow{a} A_1 \qquad SR \xrightarrow{h} SQ \qquad 1 \xrightarrow{c_0} 2.$$
 (8)

Then the colimit of F weighted by G is called the **lax colimit** of the morphism h (replacing c_0 by c_1 we obtain the **op-lax colimit** of the morphism h).

By the canonical construction of weighted colimits we know that

$$\mathsf{Laxco}(h) = (\mathbf{1} \times Q \sqcup \mathbf{2} \times R) / \sigma \cong (Q \sqcup \mathbf{2} \times R) / \sigma,$$

where

$$(x_A, y_A)\sigma(x_{A'}, y_{A'}) \iff (x_A, y_A)\tau(x_{A'}, y_{A'}) \land (x_{A'}, y_{A'})\tau(x_A, y_A)$$

and τ is defined as in Section 4.2.

Let us examine the relation τ . Suppose that $(x_A, y_A)\tau(x_{A'}, y_{A'})$. Then we have a scheme (6), assume that it has a minimal length. Note that if $f_i = g_i = 1_{A_i}$ or $g_i = f_{i+1} = 1_{A_i}$ for some *i* then the scheme could be shortened. Otherwise, consider the following cases.

1. Zigzag (7) contains 1_{A_0} . Then

$$(x_A, y_A) \le (x_{A'}, y_{A'}),$$
(9)

because otherwise either the morphism preceeding 1_{A_0} or the morphism following it would also be 1_{A_0} .

2. Zigzag (7) contains no 1_{A_0} . We have two subcases.

2.1. $f_1 = 1_{A_1}$. Then $g_1 = a$. If n > 1 then we must have $f_2 = a$, hence $x_A = * = x_1 = x_2$,

contradicting the minimality of n. Hence n = 1 and

$$* = x_A \leq x_1 = *$$

 $c_0(*) = 0 \leq x_{A'} \quad y_A \leq h(y_{A'}),$

i.e.

$$(x_A, y_A) \in \mathbf{1} \times Q, \ (x_{A'}, y_{A'}) \in \mathbf{2} \times R, \ y_A \le h(y_{A'}).$$
 (10)

2.2. $f_1 = a$. If $g_1 = 1_{A_1}$ then also $f_2 = 1_{A_1}$, contradicting our assumption. Hence $g_1 = a$. If n > 1 then $f_2 = a$ (because $dom f_2 = A_0$), but then the sequence can be shortened. Hence n = 1 and

i.e.

$$(x_A, y_A), (x_{A'}, y_{A'}) \in \mathbf{2} \times R, \ x_A = 0, \ h(y_A) \le h(y_{A'}).$$
 (11)

So it seems that the cases when $(x_A, y_A)\tau(x_{A'}, y_{A'})$ can only be (9), (10) and (11). Also, it seems that $(x_A, y_A)\sigma(x_{A'}, y_{A'})$ if and only if

1) $(x_A, y_A) = (x_{A'}, y_{A'})$, or 2) $x_A = x_{A'} = 0 \in \mathbf{2}, y_A, y_{A'} \in R$ and $h(y_A) = h(y_{A'})$.

5.4.1 An application: coconvexity

Let ${}_{S}R$ be a S-subposet of Q_{S} and $r : R_{S} \to Q_{S}$ the inclusion mapping. Then the left S-poset $\mathsf{Oplax}(r) = \{(x, y) \in R \times Q \mid y \leq r(x)\}$ together with the restrictions l_{R} and l_{Q} of projections is an op-lax limit (see [6] for the definition) of the morphism r. It is easy to see that the S-subposet R_{S} is down-closed if and only if the projection $\pi_{2} : \mathsf{Pb}(r, l_{Q}) \to \mathsf{Oplax}(r)$ of the canonical pullback $(\mathsf{Pb}(r, l_{Q}), \pi_{1}, \pi_{2})$ of r and l_{Q} is an epimorphism (i.e. a surjective morphism). Note that

$$\mathsf{Pb}(r, l_Q) = \{(x_1, x_2, y) \in R \times R \times Q \mid x_1 = y \le x_2\}.$$
$$\mathsf{Pb}(r, l_Q) \xrightarrow{\pi_2} \mathsf{Oplax}(r)$$
$$\pi_1 \bigvee_{q} \qquad \qquad \downarrow l_Q$$
$$R \xrightarrow{r} \qquad Q$$

Using pullbacks and lax limits of morphisms one can categorically define up-closedness.

Convex S-subposets are precisely the intersections of up-closed and down-closed S-subposets.

We say that a (regular?) epimorphism $h : R \to Q$ in _SPos is down-coclosed if the injection $u_2 : Oplaxco(h) \to Po(h, n_R)$ of the pushout

is a (regular?) monomorphism, where $(\mathsf{Oplaxco}(h), n_R, n_Q)$ is the op-lax colimit of the morphism h.

Using pushouts and lax colimits we define up-coclosedness. We say that a factor S-poset is *coconvex* if it is a cointersection (!) of a down-coclosed and an up-coclosed factor S-poset. (I have no idea, what are the cointersections, but they must exist!)

5.5 Weighted tensor product

If \mathcal{A} is the discrete category with a single object \star then we call a colimit of F weighted by G a **weighted tensor product** of F and G (to distinguish it from the tensor product that is used in the study of flatness properites of S-posets). The weighted tensor product, constructed as in Theorem 2 is just the direct product $G(\star) \times F(\star)$, where the order is componentwise and the S-action is defined by

$$s \cdot (x, y) := (x, s \cdot y),$$

together with left S-poset morphisms $l^x : F(\star) \to G(\star) \times F(\star), x \in G(\star)$, defined by $l^x(y) := (x, y), y \in F(\star)$.

By Theorem 6, weighted tensor products of F and G are pairs $({}_{SL}, (l^x)^{x \in G(\star)})$, where $l^x : {}_{S}F(\star) \to {}_{SL}$ are morphisms such that

- 1. for all $x, x' \in G(\star), x \leq x'$ implies $l^x \leq l^{x'}$;
- 2. for every ${}_{S}P \in {}_{S}\mathsf{Pos}$ and family $(p^{x})^{x \in G(\star)}$ of left S-poset morphisms $p^{x} : {}_{S}F(\star) \to {}_{S}P$ such that $x \leq x'$ implies $p^{x} \leq p^{x'}$ for all $x, x' \in G(\star)$ then there is a unique left S-poset morphism $\varphi : {}_{S}L \to {}_{S}P$ such that $\varphi \circ l^{x} = p^{x}$ for every $x \in G(\star)$.

In the case when $F(\star) = {}_{S}S$, the weighted tensor product of F and G is the free S-poset on $G(\star)$ (see Theorem 10 of [4]).

Since Pos also admits weighted tensor products (=direct products) of P and $\mathbf{2}$, for every poset P, the two-dimensional universal property of any limit follows from the onedimensional one (see p. 306 of [6], or Theorem 4.85 of [5]). WHAT DOES THIS MEAN?

References

- F. Borceux, Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge University Press, Cambridge, 1994.
- [2] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Cambridge University Press, Cambridge, 1994.
- [3] S. Bulman-Fleming and V. Laan, *Lazard's theorem for S-posets*, Math. Nachr. 278, 15 (2005), 1743–1755.
- [4] S. Bulman-Fleming and M. Mahmoudi, *The category of S-posets*, Semigroup Forum 71 (2005), 443-461.
- [5] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, 1982.
- [6] G. M. Kelly, Elementary observations on 2-categorical limits, Bull. Austral. Math. Soc., 39 (1989) 301-317.
- [7] J. Power, E. Robinson, A characterization of pie limits, Math. Proc. Camb. Phil. Soc. 110 (1991), 33–47.