Generators in the category of S-posets

Valdis Laan

May 2007, Ratnieki

Def. 1 A monoid S together with a partial order relation \leq on it is called a **partially ordered monoid** (shortly **pomonoid**) if

 $s \leq t \Longrightarrow us \leq ut$ and $su \leq tu$

for all $s, t, u \in S$.

Def. 2 Let S be a pomonoid. A poset (A, \leq) is called a **right** S-**poset** if there is a mapping $A \times S \rightarrow A$, $(a, s) \mapsto a \cdot s$, such that

1.
$$(a \cdot s) \cdot t = a \cdot st$$
,

2. $a \cdot 1 = a$,

3. $a \leq b$ implies $a \cdot s \leq b \cdot s$,

4. $s \leq t$ implies $a \cdot s \leq a \cdot t$,

for all $a, b \in A$, $s, t \in S$. We write A_S . Similarly, for a pomonoid T, **left** T-**posets** and (T, S)-**biposets** can be defined. **Def.** 3 Right S-poset morphisms $A_S \rightarrow B_S$ are mappings $f: A \rightarrow B$ such that

1.
$$f(a \cdot s) = f(a) \cdot s$$
,

2.
$$a \leq b$$
 implies $f(a) \leq f(b)$,

for all $a, b \in A$, $s \in S$. We write $Pos_S(A, B)$ for the set of all S-poset morphisms from A_S to B_S .

Right *S*-posets and their morphisms form a category Pos_S , which is enriched over the category Pos of posets, i.e. the morphism sets $Pos_S(A, B)$ are posets with respect to the pointwise order

$$f \leq g \iff f(a) \leq g(a)$$
 for every $a \in A$.

Regular monomorphisms in the category Pos_S are mappings $f: A_S \to B_S$ with

$$a \leq a' \iff f(a) \leq f(a')$$
 for every $a, a' \in A$.

A right S-poset A_S is a **retract** of B_S if there exist morphisms $A \rightleftharpoons_{\gamma}^{\pi} B$ in Pos_S such that $\gamma \circ \pi = 1_A$.

Proposition 1 Cyclic projectives in Pos_S are precisely retracts of S_S .

Generators

An object A_S in the category Pos_S is a **generator** if the mapping $\operatorname{Pos}_S(A, -)$ restricted to every morphism set is injective. In other words, for every $X_S, Y_S \in \operatorname{Pos}_S$ and $f, g \in \operatorname{Pos}_S(X, Y)$,

$$\mathsf{Pos}_S(A, f) = \mathsf{Pos}_S(A, g) \Longrightarrow f = g,$$

or

$$((\forall k \in \mathsf{Pos}_S(A, X))(f \circ k = g \circ k)) \Longrightarrow f = g.$$

Theorem 1 The following assertions are equivalent for a right S-poset A_S :

- 1. A_S is a generator;
- 2. for every $X_S \in \mathsf{Pos}_S$ there exists a set I and an epimorphism $h : \sqcup_I A \to X$ in Pos_S ;
- 3. there exists an epimorphism $\pi : A \to S$ in Pos_S ;
- 4. S_S is a retract of A_S .

For fixed elements $s \in S$, $t \in T$ and $_{T}A_{S} \in _{T}\mathsf{Pos}_{S}$, the mappings $\rho_{s} : A \to A$, $a \mapsto a \cdot s$, and $\lambda_{t} : A \to A$, $a \mapsto t \cdot a$, are morphisms in $_{T}\mathsf{Pos}$ and Pos_{S} , respectively.

Lemma 1 For every $_TA_S \in _T \mathsf{Pos}_S$

1. if $_TB \in _T$ Pos then $_T$ Pos $(B, A) \in$ Pos $_S$ with

$$f \cdot s := \rho_s \circ f, \tag{1}$$
$$f \in {}_T \mathsf{Pos}(B, A), s \in S;$$

2. the assignment $_TB \mapsto _T Pos(B, A)$ defines a contravariant pofunctor $_TPos(-, A) : _TPos \rightarrow Pos_S;$

3.
$$_T Pos(T, A) \cong A_S$$
 in Pos_S ;

4. $_T Pos(A, A) \in _S Pos_S$ with (1) and

$$s \cdot f := f \circ \rho_s,$$

 $f \in {}_T\mathsf{Pos}(A,A)$, $s \in S$;

5. the mapping $\rho : S \to {}_T \mathsf{Pos}(A, A), s \mapsto \rho_s$, is a morphism in ${}_S \mathsf{Pos}_S$.

For every $A_S \in \operatorname{Pos}_S$ we consider the set $\operatorname{End}(A_S) = \operatorname{Pos}_S(A, A)$ as a pomonoid with respect to composition and pointwise order. For every $_TA \in _T\operatorname{Pos}$ we consider the set $\operatorname{End}(_TA) = _T\operatorname{Pos}(A, A)$ as a pomonoid with multiplication

$$f \bullet g := g \circ f,$$

 $f,g \in \operatorname{End}(_TA).$

Lemma 2 For every $A_S \in \text{Pos}_S$, $\text{End}(A_S)A_S \in \text{End}(A_S)\text{Pos}_S$ with the left $\text{End}(A_S)$ -action defined by

$$f \cdot a := f(a), \tag{2}$$

 $a \in A, f \in \operatorname{End}(A_S).$

Proposition 2 For every ${}_{T}A_{S} \in {}_{T}Pos_{S}$, the mappings

$$\begin{array}{ll} \lambda : T \to \mathsf{End}(A_S), & t \mapsto \lambda_t, \\ \rho : S \to \mathsf{End}(_TA), & s \mapsto \rho_s, \end{array}$$

are pomonoid homomorphisms.

Def. 4 We call a biposet ${}_{T}A_{S}$ faithful (regularly faithful, balanced, faithfully balanced) if the pomonoid homomorphisms $\lambda : T \rightarrow \text{End}(A_{S})$ and $\rho : S \rightarrow \text{End}(_{T}A)$ are monomorphisms (resp. regular monomorphisms, epimorphisms, isomorphisms).

We say that a right *S*-poset A_S is faithful (regularly faithful, balanced, faithfully balanced) if the biposet $_{End(A_S)}A_S$ is faithful (resp. regularly faithful, balanced, faithfully balanced).

Thus $_TA_S$ (or A_S) is faithfully balanced if and only if it is regularly faithful and balanced.

Note that λ : End $(A_S) \rightarrow$ End (A_S) is the identity mapping, because $\lambda_f(a) = f \cdot a = f(a)$ for all $a \in A$, $f \in$ End (A_S) . Hence A_S is faithful (regularly faithful, balanced, faithfully balanced) if and only if the mapping

$$\rho: S \to \mathsf{End}\left(\mathsf{End}(A_S)A\right)$$

is a monomorphism (resp. regular monomorphism, epimorphism, isomorphism). Moreover, the set $\operatorname{End}(A_S)A = \operatorname{End}(A_S)\operatorname{Pos}(A, A)$ consists of order preserving mappings $f : A \to A$ (i.e. morphisms in Pos) such that $f \circ k = k \circ f$ for all $k \in \operatorname{End}(A_S)$. That is, $\operatorname{End}(A_S)A$ is the centralizer of the submonoid $\operatorname{Pos}_S(A, A)$ in the monoid $\operatorname{Pos}(A, A)$. Thus A_S is balanced if and only if only right translations by some element of S commute with all endomorphisms of A_S , i.e.

 $C_{\mathsf{Pos}(A,A)}(\mathsf{Pos}_S(A,A)) = \{\rho_s : A \to A \mid s \in S\},\$ and A_S is faithfully balanced if, in addition, the last pomonoid is isomorphic to S. **Proposition 3** Let ${}_{T}A_{S} \in {}_{T}\mathsf{Pos}_{S}$ be a faithfully balanced biposet. Then A_{S} is a generator if and only if ${}_{T}A$ is a cyclic projective.

Proof. If $_TA_S$ is faithfully balanced, by Lemma 1, the mappings $\lambda : T \to \text{Pos}_S(A, A)$, $\rho : S \to _T\text{Pos}(A, A)$ are isomorphisms in $_T\text{Pos}$ and Pos_S , respectively.

Necessity. If A_S is a generator, by Theorem 1 there exist morphisms $A \stackrel{\pi}{\longleftrightarrow} S$ in Pos_S such that $\pi \circ \gamma = 1_S$. Applying the functor $\text{Pos}_S(-, A)$ and Lemma 1, we obtain morphisms and isomorphisms

$${}_{T}A \cong \mathsf{Pos}_{S}(S,A) \xrightarrow[]{\mathsf{Pos}_{S}(\pi,A)]{}} \mathsf{Pos}_{S}(A,A) \cong {}_{T}T$$

in $_T$ Pos such that $Pos_S(\gamma, A) \circ Pos_S(\pi, A) = Pos_S(\pi \circ \gamma, A) = 1_{Pos_S(S,A)}$. Hence $_TA$ is a retract of $_TT$, consequently a cyclic projective by Proposition 1.

Sufficiency. If $_TA$ is cyclic projective then, by Proposition 1, there are morphisms $T \rightleftharpoons_{\gamma}^{\pi} A$ in $_TPos$ such that $\pi \circ \gamma = 1_A$. Applying the functor $_TPos(-, A)$ and Lemma 1, we obtain the diagram

$$S_S \cong {}_T\mathsf{Pos}(A,A) \xrightarrow[T]{}_T\mathsf{Pos}(\pi,A) \xrightarrow[T]{}_T\mathsf{Pos}(T,A) \cong A_S$$

in Pos_S with $_T\operatorname{Pos}(\gamma, A) \circ_T\operatorname{Pos}(\pi, A) = 1_{_T\operatorname{Pos}(A,A)}$. So S_S is a retract of A_S and hence A_S is a generator by Theorem 1.

Theorem 2 If a right S-poset A_S is a generator then

1. A_S is regularly faithful,

2. $End(A_S)A$ is a cyclic projective.

Cyclic projective generators

Proposition 4 If A_S is a cyclic projective then $_{End(A_S)}A$ is a generator.

Theorem 3 A right S-poset A_S is a cyclic projective generator if and only if

1. A_S is faithfully balanced,

2. $End(A_S)A$ is a cyclic projective generator.

Proposition 5 An S-poset A_S is a cyclic projective generator in Pos_S if and only if $A_S \cong eS_S$ for an idempotent $e \in S$ with $e\mathcal{J}1$ (that is, k'ek = 1 for some $k, k' \in S$).

References

- 1 F. Anderson, K. Fuller, Rings and categories of modules, Springer-Verlag, Berlin, New York, 1974.
- 2 M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York, 2000.