Generators in the category of S-posets
 Valdis Laan

May 2007, Ratnieki

Def. 1 A monoid S together with a partial order relation \leq on it is called a partially ordered monoid (shortly pomonoid) if

$$
s \leq t \Longrightarrow u s \leq u t \quad \text { and } \quad s u \leq t u
$$

for all $s, t, u \in S$.

Def. 2 Let S be a pomonoid. A poset (A, \leq) is called a right S-poset if there is a mapping $A \times S \rightarrow$ $A,(a, s) \mapsto a \cdot s$, such that

1. $(a \cdot s) \cdot t=a \cdot s t$,
2. $a \cdot 1=a$,
3. $a \leq b$ implies $a \cdot s \leq b \cdot s$,
4. $s \leq t$ implies $a \cdot s \leq a \cdot t$,
for all $a, b \in A, s, t \in S$. We write A_{S}. Similarly, for a pomonoid T, left T-posets and (T, S)-biposets can be defined.

Def. 3 Right S-poset morphisms $A_{S} \rightarrow B_{S}$ are mappings $f: A \rightarrow B$ such that

1. $f(a \cdot s)=f(a) \cdot s$,
2. $a \leq b$ implies $f(a) \leq f(b)$,
for all $a, b \in A, s \in S$. We write $\operatorname{Pos}_{S}(A, B)$ for the set of all S-poset morphisms from A_{S} to B_{S}.

Right S-posets and their morphisms form a category Pos_{S}, which is enriched over the category Pos of posets, i.e. the morphism sets $\operatorname{Pos}_{S}(A, B)$ are posets with respect to the pointwise order

$$
f \leq g \Longleftrightarrow f(a) \leq g(a) \quad \text { for every } a \in A
$$

Regular monomorphisms in the category Pos_{S} are mappings $f: A_{S} \rightarrow B_{S}$ with

$$
a \leq a^{\prime} \Longleftrightarrow f(a) \leq f\left(a^{\prime}\right) \quad \text { for every } a, a^{\prime} \in A
$$

A right S-poset A_{S} is a retract of B_{S} if there exist morphisms $A \underset{\gamma}{\stackrel{\pi}{\rightleftarrows}} B$ in Pos_{S} such that $\gamma \circ \pi=1_{A}$.

Proposition 1 Cyclic projectives in Pos_{S} are precisely retracts of S_{S}.

Generators

An object A_{S} in the category Pos_{S} is a generator if the mapping $\operatorname{Pos}_{S}(A,-)$ restricted to every morphism set is injective. In other words, for every $X_{S}, Y_{S} \in \operatorname{Pos}_{S}$ and $f, g \in \operatorname{Pos}_{S}(X, Y)$,

$$
\operatorname{Pos}_{S}(A, f)=\operatorname{Pos}_{S}(A, g) \Longrightarrow f=g
$$

or

$$
\left(\left(\forall k \in \operatorname{Pos}_{S}(A, X)\right)(f \circ k=g \circ k)\right) \Longrightarrow f=g
$$

Theorem 1 The following assertions are equivalent for a right S-poset A_{S} :

1. A_{S} is a generator;
2. for every $X_{S} \in \operatorname{Pos}_{S}$ there exists a set I and an epimorphism $h: \sqcup_{I} A \rightarrow X$ in Pos_{S};
3. there exists an epimorphism $\pi: A \rightarrow S$ in Pos_{S};
4. S_{S} is a retract of A_{S}.

For fixed elements $s \in S, t \in T$ and ${ }_{T} A_{S} \in{ }_{T}{ }^{P_{0 s}}{ }_{S}$, the mappings $\rho_{s}: A \rightarrow A, a \mapsto a \cdot s$, and
$\lambda_{t}: A \rightarrow A, \quad a \mapsto t \cdot a$, are morphisms in ${ }_{T}$ Pos and Pos_{S}, respectively.

Lemma 1 For every ${ }_{T} A_{S} \in{ }_{T} \operatorname{Pos}_{S}$

1. if $T_{T} B \in{ }_{T} \operatorname{Pos}$ then ${ }_{T} \operatorname{Pos}(B, A) \in \operatorname{Pos}_{S}$ with

$$
\begin{equation*}
f \cdot s:=\rho_{s} \circ f, \tag{1}
\end{equation*}
$$

$f \in{ }_{T} \operatorname{Pos}(B, A), s \in S ;$
2. the assignment ${ }_{T} B \mapsto{ }_{T} \operatorname{Pos}(B, A)$ defines a contravariant pofunctor ${ }_{T} \operatorname{Pos}(-, A):{ }_{T} \operatorname{Pos} \rightarrow \operatorname{Pos}_{S}$;
3. $T_{T} \operatorname{Pos}(T, A) \cong A_{S}$ in Pos_{S};
4. $T_{T} \operatorname{Pos}(A, A) \in{ }_{S} \operatorname{Pos}_{S}$ with (1) and

$$
\begin{aligned}
& s \cdot f:=f \circ \rho_{s}, \\
& f \in{ }_{T} \operatorname{Pos}(A, A), s \in S ;
\end{aligned}
$$

5. the mapping $\rho: S \rightarrow{ }_{T} \operatorname{Pos}(A, A), \quad s \mapsto \rho_{s}$, is a morphism in ${ }_{S} \mathrm{Pos}_{S}$.

For every $A_{S} \in \operatorname{Pos}_{S}$ we consider the set End $\left(A_{S}\right)=$ $\operatorname{Pos}_{S}(A, A)$ as a pomonoid with respect to composition and pointwise order. For every ${ }_{T} A \in{ }_{T}$ Pos we consider the set $\operatorname{End}\left({ }_{T} A\right)={ }_{T} \operatorname{Pos}(A, A)$ as a pomonoid with multiplication

$$
f \bullet g:=g \circ f
$$

$f, g \in \operatorname{End}\left({ }_{T} A\right)$.

Lemma 2 For every $A_{S} \in \operatorname{Pos}_{S}$, $\operatorname{End}\left(A_{S}\right) A_{S} \in \operatorname{End}\left(A_{S}\right) \operatorname{Pos}_{S}$ with the left $\operatorname{End}\left(A_{S}\right)$-action defined by

$$
\begin{equation*}
f \cdot a:=f(a) \tag{2}
\end{equation*}
$$

$a \in A, f \in \operatorname{End}\left(A_{S}\right)$.

Proposition 2 For every ${ }_{T} A_{S} \in{ }_{T} \operatorname{Pos}_{S}$, the mappings

$$
\begin{array}{ll}
\lambda: T \rightarrow \operatorname{End}\left(A_{S}\right), & t \mapsto \lambda_{t} \\
\rho: S \rightarrow \operatorname{End}\left(_{T} A\right), & s \mapsto \rho_{s}
\end{array}
$$

are pomonoid homomorphisms.

Def. 4 We call a biposet ${ }_{T} A_{S}$ faithful (regularly faithful, balanced, faithfully balanced) if the pomonoid homomorphisms $\lambda: T \rightarrow \operatorname{End}\left(A_{S}\right)$ and $\rho: S \rightarrow \operatorname{End}\left({ }_{T} A\right)$ are monomorphisms (resp. regular monomorphisms, epimorphisms, isomorphisms).

We say that a right S-poset A_{S} is faithful (regularly faithful, balanced, faithfully balanced) if the biposet $\operatorname{End}\left(A_{S}\right) A_{S}$ is faithful (resp. regularly faithful, balanced, faithfully balanced).

Thus ${ }_{T} A_{S}$ (or A_{S}) is faithfully balanced if and only if it is regularly faithful and balanced.

Note that $\lambda: \operatorname{End}\left(A_{S}\right) \rightarrow \operatorname{End}\left(A_{S}\right)$ is the identity mapping, because $\lambda_{f}(a)=f \cdot a=f(a)$ for all $a \in$ $A, f \in \operatorname{End}\left(A_{S}\right)$. Hence A_{S} is faithful (regularly faithful, balanced, faithfully balanced) if and only if the mapping

$$
\rho: S \rightarrow \operatorname{End}\left(\operatorname{End}\left(A_{S}\right) A\right)
$$

is a monomorphism (resp. regular monomorphism, epimorphism, isomorphism). Moreover, the set $\operatorname{End}\left(\operatorname{End}\left(A_{S}\right) A\right)=\operatorname{End}\left(A_{S}\right) \operatorname{Pos}(A, A)$ consists of order preserving mappings $f: A \rightarrow A$ (i.e. morphisms in Pos) such that $f \circ k=k \circ f$ for all $k \in \operatorname{End}\left(A_{S}\right)$. That is, $\operatorname{End}\left(\operatorname{End}\left(A_{S}\right) A\right)$ is the centralizer of the submonoid $\operatorname{Pos}_{S}(A, A)$ in the monoid $\operatorname{Pos}(A, A)$. Thus A_{S} is balanced if and only if only right translations by some element of S commute with all endomorphisms of A_{S}, i.e.

$$
C_{\operatorname{Pos}(A, A)}\left(\operatorname{Pos}_{S}(A, A)\right)=\left\{\rho_{s}: A \rightarrow A \mid s \in S\right\},
$$

and A_{S} is faithfully balanced if, in addition, the last pomonoid is isomorphic to S.

Proposition 3 Let $_{T} A_{S} \in{ }_{T} \mathrm{Pos}_{S}$ be a faithfully balanced biposet. Then A_{S} is a generator if and only if ${ }_{T} A$ is a cyclic projective.

Proof. If ${ }_{T} A_{S}$ is faithfully balanced, by Lemma 1, the mappings $\lambda: T \rightarrow \operatorname{Pos}_{S}(A, A), \rho: S \rightarrow{ }_{T} \operatorname{Pos}(A, A)$ are isomorphisms in ${ }_{T}$ Pos and Pos_{S}, respectively.

Necessity. If A_{S} is a generator, by Theorem 1 there exist morphisms $A \underset{\gamma}{\underset{\gamma}{\rightleftarrows}} S$ in Pos_{S} such that $\pi \circ \gamma=1_{S}$. Applying the functor $\operatorname{Pos}_{S}(-, A)$ and Lemma 1, we obtain morphisms and isomorphisms

$$
T_{T} A \cong \operatorname{Pos}_{S}(S, A) \stackrel{\operatorname{Pos}_{S}(\pi, A)}{\operatorname{Pos}_{S}(\gamma, A)} \operatorname{Pos}_{S}(A, A) \cong{ }_{T} T
$$

in ${ }_{T}$ Pos such that $\operatorname{Pos}_{S}(\gamma, A) \circ \operatorname{Pos}_{S}(\pi, A)=\operatorname{Pos}_{S}(\pi \circ$ $\gamma, A)=1_{\operatorname{Pos}_{S}(S, A)}$. Hence ${ }_{T} A$ is a retract of $T_{T} T$, consequently a cyclic projective by Proposition 1.

Sufficiency. If ${ }_{T} A$ is cyclic projective then, by Proposition 1, there are morphisms $T \underset{\gamma}{\underset{\gamma}{\leftrightarrows}} A$ in ${ }_{T}$ Pos such that $\pi \circ \gamma=1_{A}$. Applying the functor ${ }_{T} \operatorname{Pos}(-, A)$ and Lemma 1, we obtain the diagram

$$
S_{S} \cong{ }_{T} \operatorname{Pos}(A, A) \underset{T}{\underset{T}{ } \operatorname{Pos}(\pi, A)} \underset{T}{ } \operatorname{Pos}(T, A) \cong A_{S}
$$

in Pos_{S} with ${ }_{T} \operatorname{Pos}(\gamma, A) \circ{ }_{T} \operatorname{Pos}(\pi, A)=1_{T} \operatorname{Pos}(A, A)$. So S_{S} is a retract of A_{S} and hence A_{S} is a generator by Theorem 1.

Theorem 2 If a right S-poset A_{S} is a generator then

1. A_{S} is regularly faithful,
2. $\operatorname{End}\left(A_{S}\right) A$ is a cyclic projective.

Cyclic projective generators

Proposition 4 If A_{S} is a cyclic projective then $\operatorname{End}\left(A_{S}\right) A$ is a generator.

Theorem 3 A right S-poset A_{S} is a cyclic projective generator if and only if

1. A_{S} is faithfully balanced,
2. $\operatorname{End}\left(A_{S}\right) A$ is a cyclic projective generator.

Proposition 5 An S-poset A_{S} is a cyclic projective generator in Pos_{S} if and only if $A_{S} \cong e S_{S}$ for an idempotent $e \in S$ with $e \mathcal{J} 1$ (that is, $k^{\prime} e k=1$ for some $k, k^{\prime} \in S$).

References

1 F. Anderson, K. Fuller, Rings and categories of modules, Springer-Verlag, Berlin, New York, 1974.

2 M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York, 2000.

