Entity Authentication

Sven Laur swen@math.ut.ee

University of Tartu

Formal Syntax

Entity authentication

- ▷ The communication between the prover and verifier must be authentic.
- ▷ To establish electronic identity, Charlie must generate (pk, sk) ← Gen and convinces others that the public information pk represents him.
- The entity authentication protocol must convince the verifier that his or her opponent possesses the secret sk.
- $\triangleright \mbox{ An entity authentication protocol is functional if an honest verifier \mathcal{V}_{pk} always accepts an honest prover \mathcal{P}_{sk}.}$

Classical impossibility results

Inherent limitations. Entity authentication is impossible if

- (i) authenticated communication is unaffordable in the setup phase.
- (ii) authenticated communication is unaffordable in the second phase.

Proof: Man-in-the-middle attacks. Chess-master attacks.

Conclusions

- ▷ It is impossible to establish legal identity without physical measures.
- Any bank-card is susceptible to physical attacks regardless of the cryptographic countermeasures used to authenticate transactions.
- Secure e-banking is impossible if the user does not have full control over the computing environment (secure e-banking is practically impossible).

Physical and legal identities

- Entity authentication is possible only if all participants have set up a network with authenticated communication links.
- A role of a entity authentication protocol is to establish a convincing bound between physical network address and legal identities.
- A same legal identity can be in many physical locations and move from one physical node to another node.

Challenge-Response Paradigm

Salted hashing

Global setup:

Authentication server \mathcal{V} outputs a description of a hash function h.

Entity creation:

A party \mathcal{P} chooses a password sk $\leftarrow_u \{0,1\}^{\ell}$ and a nonce $r \leftarrow_u \{0,1\}^k$. The public authentication information is $\mathsf{pk} = (r,c)$ where $c \leftarrow h(\mathsf{sk},r)$.

Entity authentication:

To authenticate him- or herself, \mathcal{P} releases sk to the server \mathcal{V} who verifies that the hash value is correctly computed, i.e., c = h(sk, r).

Theorem. If h is (t, ε) -secure one-way function, then no t-time adversary \mathcal{A} without sk can succeed in the protocol with probability more than ε .

- ▷ There are no secure one-way functions for practical sizes of sk.
- ▷ A malicious server can completely break the security.

RSA based entity authentication

Global setup:

Authentication server $\ensuremath{\mathcal{V}}$ fixes the minimal size of RSA keys.

Entity creation:

A party $\mathfrak P$ runs a RSA key generation algorithm $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}_{\mathrm{rsa}}$ and outputs the public key pk as the authenticating information.

Entity authentication:

- 1. \mathcal{V} creates a challenge $c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m)$ for $m \leftarrow \mathcal{M}$ and sends c to \mathcal{P} .
- 2. \mathcal{P} sends back $\overline{m} \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c)$.
- 3. \mathcal{V} accepts the proof if $m = \overline{m}$.

This protocol can be generalised for any public key cryptosystem.

The general form of this protocol is known as challenge-response protocol. This mechanism provides explicit security guarantees in the SSL protocol.

The most powerful attack model

Consider a setting, where an adversary ${\mathcal A}$ can impersonate verifier ${\mathcal V}$

- \triangleright The adversary $\mathcal A$ can execute several protocol instances with the honest prover $\mathcal P$ in parallel to spoof the challenge protocol.
- $\triangleright~$ The adversary ${\cal A}~$ may use protocol messages arbitrarily as long as ${\cal A}~$ does not conduct the crossmaster attack.

Let us denote the corresponding success probability by

$$\mathsf{Adv}^{\mathsf{ea}}(\mathcal{A}) = \Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{A}} = 1\right]$$

Corresponding security guarantees

Theorem. If a cryptosystem used in the challenge-response protocol is (t, ε) -IND-CCA2 secure, then for any *t*-time adversary \mathcal{A} the corresponding success probability $\operatorname{Adv}^{\operatorname{ea}}(\mathcal{A}) \leq \frac{1}{|\mathcal{M}|} + \varepsilon$.

Proof. A honest prover acts as a decryption oracle.

The nature of the protocol

- The protocol proves only that the prover has access to the decryption oracle and therefore the prover must possess the secret key sk.
- The possession of the secret key sk does not imply the knowledge of it. For example, the secret key sk might be hardwired into a smart card.
- Usually, the inability to decrypt is a strictly stronger security requirement than the ability to find the secret key.
- ▷ Knowledge is permanent whereas possession can be temporal.

Proofs of knowledge

Schnorr identification protocol

The group $\mathbb{G} = \langle g \rangle$ must be a DL group with a prime cardinality q.

- \triangleright The secret key x is the discrete logarithm of y.
- \triangleright The verifier \mathcal{V} is assumed to be semi-honest.
- \triangleright The prover $\mathcal P$ is assumed to be potentially malicious.
- ▷ We consider only security in the standalone setting.

Zero-knowledge property

Theorem. If a *t*-time verifier \mathcal{V}_* is semi-honest in the Schnorr identification protocol, then there exists t + O(1)-algorithm \mathcal{V}_\circ that has the same output distribution as \mathcal{V}_* but do not interact with the prover \mathcal{P} .

Proof.

Consider a code wrapper S that chooses $\beta \leftarrow \mathbb{Z}_q$ and $\gamma \leftarrow \mathbb{Z}_q$ and computes $\alpha \leftarrow g^{\gamma} \cdot y^{-\beta}$ and outputs whatever \mathcal{V}_* outputs on the transcript (α, β, γ) . \triangleright If $x \neq 0$, then $\gamma = \beta + xk$ has indeed a uniform distribution. \triangleright For fixed β and γ , there exist only a single consistent value of α .

Rationale: Semi-honest verifier learns nothing from the interaction with the prover. The latter is known as zero-knowledge property.

Knowledge-extraction lemma

This property is known as special-soundness.

- \triangleright If adversary \mathcal{A} succeeds with probability 1, then we can extract the secret key x by rewinding \mathcal{A} to get two runs with a coinciding prefix α .
- \triangleright If adversary A succeeds with a non-zero probability ε , then we must use more advanced knowledge extraction techniques.

Let A(r,c) be the output of the honest verifier $\mathcal{V}(c)$ that interacts with a potentially malicious prover $\mathcal{P}_*(r)$.

- \triangleright Then all matrix elements in the same row $A(r, \cdot)$ lead to same α value.
- \triangleright To extract the secret key sk, we must find two ones in the same row.
- \triangleright We can compute the entries of the matrix on the fly.

We derive the corresponding security guarantees a bit later.

Modified Fiat-Shamir identification protocol

All computations are done in \mathbb{Z}_n , where n is an RSA modulus.

- \triangleright The secret key s is a square root of v.
- \triangleright The verifier ${\mathcal V}$ is assumed to be semi-honest.
- \triangleright The prover $\mathcal P$ is assumed to be potentially malicious.
- ▷ We consider only security in the standalone setting.

Zero-knowledge property

Theorem. If a *t*-time verifier \mathcal{V}_* is semi-honest in the modified Fiat-Shamir identification protocol, then there exists t + O(1)-algorithm \mathcal{V}_\circ that has the same output distribution as \mathcal{V}_* but do not interact with the prover \mathcal{P} .

Proof.

Consider a code wrapper S that chooses $\beta \leftarrow \{0,1\}$, $\gamma \leftarrow \mathbb{Z}_n^*$, computes $\alpha \leftarrow v^{-\beta} \cdot \gamma^2$ and outputs whatever \mathcal{V}_* outputs on the transcript (α, β, γ) .

- \triangleright Since s is invertible, we can prove that $s \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$ and $s^2 \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$. As a result, γ is independent of β and has indeed a uniform distribution.
- \triangleright For fixed β and γ , there exist only a single consistent value of α .

Knowledge-extraction lemma

Theorem. The Fiat-Shamir protocol is specially sound.

Proof. Assume that a prover \mathcal{P}_* succeeds for both challenges $\beta \in \{0, 1\}$:

$$\gamma_0^2 = \alpha, \quad \gamma_1^2 = \alpha v \implies \frac{\gamma_1}{\gamma_0} = \sqrt{v} .$$

The corresponding extractor construction \mathcal{K} :

- \triangleright Choose random coins r for \mathcal{P}_* .
- \triangleright Run the protocol with $\beta=0$ and record γ_0
- \triangleright Run the protocol with $\beta=1$ and record γ_1

$$\triangleright$$
 Return $\zeta = \frac{\gamma_1}{\gamma_0}$

Bound on success probability

Theorem. Let v and n be fixed. If a potentially malicious prover \mathcal{P}_* succeeds in the modified Fiat-Shamir protocol with probability $\varepsilon > \frac{1}{2}$, then the knowledge extractor $\mathcal{K}^{\mathcal{P}_*}$ returns \sqrt{v} with probability $2\varepsilon - 1$.

Proof. Consider the success matrix A(r,c) as before. Let p_1 denote the fraction rows that contain only single one and p_2 the fraction of rows that contain two ones. Then evidently $p_1 + p_2 \le 1$ and $\frac{p_1}{2} + p_2 \ge \varepsilon$ and thus we can establish $p_2 \ge 2\varepsilon - 1$. \Box

Rationale: The knowledge extraction succeeds in general only if the success probability of \mathcal{P}_* is above $\frac{1}{2}$. The value $\kappa = \frac{1}{2}$ is known as knowledge error.

Matrix Games

Classical algorithm

Task: Find two ones in a same row.

Rewind:

- 1. Probe random entries A(r,c) until A(r,c) = 1.
- 2. Store the matrix location (r, c).
- 3. Probe random entries $A(r, \overline{c})$ in the same row until $A(r, \overline{c}) = 1$.
- 4. Output the location triple (r, c, \overline{c}) .

Rewind-Exp:

- 1. Repeat the procedure Rewind until $c \neq \overline{c}$.
- 2. Use the knowledge extraction lemma to extract sk.

Average case complexity I

Assume that the matrix contains ε -fraction of nonzero elements, i.e., \mathcal{P}_* convinces \mathcal{V} with probability ε . Then on average we make

$$\mathbf{E}[\operatorname{probes}_1] = \varepsilon + 2(1-\varepsilon)\varepsilon + 3(1-\varepsilon)^2\varepsilon + \cdots = \frac{1}{\varepsilon}$$

matrix probes to find the first non-zero entry. Analogously, we make

$$\mathbf{E}\left[\mathsf{probes}_2|r\right] = \frac{1}{\varepsilon_r}$$

probes to find the second non-zero entry. Also, note that

$$\mathbf{E}[\mathsf{probes}_2] = \sum_r \Pr[r] \cdot \mathbf{E}[\mathsf{probes}_2|r] = \sum_r \frac{\varepsilon_r}{\sum_{r'} \varepsilon_{r'}} \cdot \frac{1}{\varepsilon_r} = \frac{1}{\varepsilon} ,$$

where ε_r is the fraction of non-zero entries in the r^{th} row.

Average case complexity II

As a result we obtain that the Rewind algorithm does on average

 $\mathbf{E}[\text{probes}] = \frac{2}{\varepsilon}$

probes. Since the Rewind algorithm fails with probability

$$\Pr\left[\mathsf{failure}\right] = \frac{\Pr\left[\mathsf{halting} \land c = \overline{c}\right]}{\Pr\left[\mathsf{halting}\right]} \le \frac{\kappa}{\varepsilon} \qquad \text{where} \qquad \kappa = \frac{1}{q} \ .$$

we make on average

$$\mathbf{E}[\mathsf{probes}^*] = \frac{1}{\Pr[\mathsf{success}]} \cdot \mathbf{E}[\mathsf{probes}] \le \frac{\varepsilon}{\varepsilon - \kappa} \cdot \frac{2}{\varepsilon} = \frac{2}{\varepsilon - \kappa} \ .$$

Strict time bounds

Markov's inequality assures that for a non-negative random variable probes

$$\Pr\left[\mathsf{probes} \ge \alpha\right] \le \frac{\mathbf{E}\left[\mathsf{probes}\right]}{\alpha}$$

and thus Rewind-Exp succeeds with probability at least $\frac{1}{2}$ after $\frac{4}{\varepsilon-\kappa}$ probes.

If we repeat the experiment ℓ times, we the failure probability goes to $2^{-\ell}$.

From Soundness to Security

Soundness and subjective security

Assume that we know a constructive proof:

If for fixed pk a potentially malicious t-time prover \mathcal{P}_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor $\mathcal{K}^{\mathcal{P}}$ that runs in time $\tau(\varepsilon) = O(\frac{t}{\varepsilon - \kappa})$ outputs sk with probability $1 - \varepsilon_2$.

and we believe:

No human can create a $\tau(\varepsilon_1)$ -time algorithm that computes sk from pk with success probability at least $1 - \varepsilon_2$.

then it is rational to assume that:

No human without the knowledge of sk can create a algorithm \mathcal{P}_* that succeeds in the proof of knowledge with probability at least ε_1 .

Caveat: For each fixed pk, there exists a trivial algorithm that prints out sk. Hence, we cannot get objective security guarantees.

MTAT.07.003 Cryptology II, Entity Authentication, April 16, 2008

Soundness and objective security

Assume that we know a constructive proof:

If for a fixed pk a potentially malicious t-time prover \mathcal{P}_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor $\mathcal{K}^{\mathcal{P}}$ that runs in time $\tau(\varepsilon) = O(\frac{t}{\varepsilon - \kappa})$ outputs sk with probability $1 - \varepsilon_2$.

and know a mathematical fact that any $\tau(2\varepsilon_1)\text{-time}$ algorithm $\mathcal A$

$$\Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{A}(\mathsf{pk}) = \mathsf{sk}\right] \le \varepsilon_1(1 - \varepsilon_2)$$

then we can prove an average-case security guarantee:

For any *t*-time prover \mathcal{P}_* that does not know the secret key

$$\mathsf{Adv}^{\mathsf{ea}}(\mathcal{A}) = \Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{P}_*(\mathsf{pk})} = 1\right] \le 2\varepsilon_1$$
.

Objective security guarantees

Schnorr identification scheme

If \mathbb{G} is a DL group, then the Schnorr identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen.

Fiat-Shamir identification scheme

Assume that modulus n is chosen form a distribution \mathcal{N} of RSA moduli such that on average factoring is hard over \mathcal{N} . Then the Fiat-Shamir identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen and over all choices of modulus n.

Composability of Σ -protocols

A formal definition of sigma protocol

A sigma protocol for an efficiently computable relation $R \subseteq \{0, 1\}^* \times \{0, 1\}^*$ is a three move protocol that satisfies the following properties.

- \triangleright **\Sigma-structure.** A prover first sends a commitment, next a verifier sends varying challenge, and then the prover must give a consistent response.
- ▷ **Functionality.** The protocol run between an honest prover $\mathcal{P}(\mathsf{sk})$ and verifier $\mathcal{V}(\mathsf{pk})$ is always accepting if $(\mathsf{sk},\mathsf{pk}) \in R$.
- $\triangleright \ \ \, \textbf{Perfect simulatability.} \ \ \, \textbf{There exists an efficient non-rewinding simulator} \\ \mathcal{S} \ \, \textbf{such that the output distribution of a semi-honest verifier } \mathcal{V}_* \ \, \textbf{in the} \\ \text{ real world and the output distribution of } \mathcal{S}^{\mathcal{V}_*} \ \, \textbf{in the ideal world coincide.} \\ \end{cases}$
- $\triangleright \text{ Special soundness. There exists an efficient extraction algorithm Extr that, given two accepting protocol runs <math>(\alpha, \beta_0, \gamma_0)$ and $(\alpha, \beta_1, \gamma_1)$ with $\beta_0 \neq \beta_1$ that correspond to pk, outputs sk_{*} such that $(sk_*, pk) \in R$

AND-composition

If we run two sigma protocols for different relations R_1 and R_2 in parallel, we get a sigma protocol^{*} for new relation $R_1 \wedge R_2$

 $(\mathsf{sk}_1,\mathsf{sk}_2,\mathsf{pk}) \in R_1 \wedge R_2 \quad \Leftrightarrow \quad (\mathsf{sk}_1,\mathsf{pk}) \in R_1 \wedge (\mathsf{sk}_1,\mathsf{pk}) \in R_2$.

* Modulo some minor details discussed in the next slide.

MTAT.07.003 Cryptology II, Entity Authentication, April 16, 2008

The corresponding proof

Perfect simulatability. Let S_1 and S_2 be canonical simulators for \mathcal{V}_1 and \mathcal{V}_2 . Then S_1 outputs a properly distributed triple $(\alpha_1, \beta_1, \gamma_1)$ and S_2 outputs a properly distributed triple $(\alpha_2, \beta_2, \gamma_2)$. Hence, we can run S_1 and S_2 in parallel to create a properly distributed transcript $(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2)$.

Special soundness*. Given two accepting transcripts

 $(\alpha_1, \alpha_2, \beta_1^0, \beta_2^0, \gamma_1^0, \gamma_2^0), (\alpha_1, \alpha_2, \beta_1^1, \beta_2^1, \gamma_1^1, \gamma_2^1), \quad \text{with} \quad \beta_1^0 \neq \beta_1^1, \beta_2^0 \neq \beta_2^1 \ ,$

we can decompose them into original colliding transcripts

$$(\alpha_1, \beta_1^0, \gamma_1^0), (\alpha_1, \beta_1^1, \gamma_1^1), \qquad \beta_1^0 \neq \beta_1^1 , (\alpha_2, \beta_2^0, \gamma_2^0), (\alpha_2, \beta_2^1, \gamma_2^1), \qquad \beta_2^0 \neq \beta_2^1 .$$

OR-composition

Assume that we have two sigma protocols for relations R_1 and R_2 such that the challenge is chosen uniformly from a commutative group $(\mathcal{B}; +)$.

Then a prover can use a simulator S_j to create the transcript for missing secret sk_j and then create response using the known secret sk_i.

OR-composition

As a result, we get a sigma protocol for new relation $R_1 \vee R_2$

 $(\mathsf{sk}_1,\mathsf{sk}_2,\mathsf{pk}) \in R_1 \lor R_2 \quad \Leftrightarrow \quad (\mathsf{sk}_1,\mathsf{pk}) \in R_1 \lor (\mathsf{sk}_1,\mathsf{pk}) \in R_2$.

The corresponding proof

Perfect simulatability. Note that β_1 and β_2 are independent and have a uniform distribution over \mathcal{B} . Consequently, we can run the canonical simulators \mathcal{S}_1 and \mathcal{S}_2 be for \mathcal{V}_1 and \mathcal{V}_2 in parallel to create the properly distributed transcript $(\alpha_1, \alpha_2, \beta_1 + \beta_2, \beta_1, \beta_2, \gamma_1, \gamma_2)$.

Special soundness. Given two transcripts

$$(\alpha_1, \alpha_2, \beta_1^0 + \beta_2^0, \beta_1^0, \beta_2^0, \gamma_1^0, \gamma_2^0), (\alpha_1, \alpha_2, \beta_1^1 + \beta_2^1, \beta_1^1, \beta_2^1, \gamma_1^1, \gamma_2^1)$$

such that $\beta_1^0 + \beta_2^0 \neq \beta_1^1 + \beta_2^1$, we can extract a colliding sub-transcript

$$\begin{cases} (\alpha_1, \beta_1^0, \gamma_1^0), (\alpha_1, \beta_1^1, \gamma_1^1), & \text{if } \beta_1^0 \neq \beta_1^1 \\ (\alpha_2, \beta_2^0, \gamma_2^0), (\alpha_2, \beta_2^1, \gamma_2^1), & \text{if } \beta_2^0 \neq \beta_2^1 \end{cases}$$

Monotone access structures

Let a binary properties π_1, \ldots, π_n denote possible roles of participants and let sk_1, \ldots, sk_n denote the corresponding secrets that the participant knows if the corresponding property π_i is set.

Now assume that $\psi : \{0,1\}^n \to \{0,1\}$ is a monotone predicate that maps the property vector (π_1, \ldots, π_n) to a final access verdict for some object. Then there exists a sigma protocol for the corresponding relation.

As a result, we can construct identification protocols that are sound and secure and leak only the value $\psi(\pi_1, \ldots, \pi_n)$.

- ▷ Anonymous group authentication
- Anonymous verification of credentials