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Abstract. One important example of a transposed Poisson algebra can be constructed by means of a commutative algebra and its
derivation. This approach can be extended to superalgebras, that is, one can construct a transposed Poisson superalgebra given a
commutative superalgebra and its even derivation. In this paper we show that including odd derivations in the framework of this
approach requires introducing a new notion. It is a super vector space with two operations that satisfy the compatibility condition
of transposed Poisson superalgebra. The first operation is determined by a left supermodule over commutative superalgebra and
the second is a Jordan bracket. Then it is proved that the super vector space generated by an odd derivation of a commutative
superalgebra satisfies all the requirements of introduced notion. We also show how to construct a 3-Lie superalgebra if we are given
a transposed Poisson superalgebra and its even derivation.

Keywords: Commutative superalgebra; Lie superalgebra; transposed Poisson superalgebra; 3-Lie superalgebra; Jordan algebra and
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1. INTRODUCTION

One of the most important structures of the mathematical methods of Hamiltonian mechanics is a Poisson
bracket. If the coordinates of 2𝑛-dimensional canonical phase space are denoted by (𝑝𝑖, 𝑞𝑖), where integer 𝑖
runs from 1 to 𝑛, then the Poisson bracket of two smooth functions 𝑓,𝑔 can be written as follows

{𝑓,𝑔} =
𝑛
∑

𝑖=1

(𝜕𝑓
𝜕𝑞𝑖

𝜕𝑔
𝜕𝑝𝑖

−
𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖

)

. (1)

From (1) it follows that the Poisson bracket is skew-symmetric, that is, {𝑓,𝑔} = −{𝑔,𝑓} and it satisfies the
Jacobi identity

{

{𝑓,𝑔},ℎ
}

+
{

{𝑔,ℎ},𝑓
}

+
{

{ℎ,𝑓},𝑔
}

= 0.

Thus the vector space of smooth functions endowed with the Poisson bracket (1) is a Lie algebra [4,12].
But there is another structure on the vector space of smooth functions. If we consider pointwise product of
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two smooth functions 𝑓𝑔, then the vector space of smooth functions becomes an associative commutative
algebra and we have

{𝑓𝑔,ℎ} = 𝑓{𝑔,ℎ}+{𝑓,ℎ}𝑔. (2)
The Poisson bracket of two smooth functions defined on a phase space leads to an algebraic structure called
a Poisson algebra. A Poisson algebra (𝑃 , ⋅,{ , }) is a vector space 𝑃 with two binary operations, where (𝑃 , ⋅)
is a commutative associative algebra and (𝑃 ,{ , }) is a Lie algebra. Additionally these two binary operations
satisfy the relation

{𝑧,𝑥 ⋅𝑦} = {𝑧,𝑥} ⋅𝑦+𝑥 ⋅{𝑧,𝑦}, 𝑥,𝑦,𝑧 ∈ 𝑃 , (3)
which is usually called a compatibility condition.

A notion of transposed Poisson algebra was introduced and studied in [6]. By definition a transposed
Poisson algebra ( , ⋅,{ , }), like a Poisson algebra, is a vector space  with two binary operations, where the
first is a commutative associative multiplication (𝑥,𝑦) ∈  × → 𝑥 ⋅ 𝑦 ∈  and the second is a Lie bracket
(𝑥,𝑦) ∈  × → {𝑥,𝑦} ∈  . But a compatibility condition in the case of a transposed Poisson algebra has a
form different from the compatibility condition (3) for a Poisson algebra. The compatibility condition in the
case of a transposed Poisson algebra has the form

2𝑧 ⋅{𝑥,𝑦} = {𝑧 ⋅𝑥,𝑦}+{𝑥,𝑧 ⋅𝑦}. (4)
The compatibility condition of a transposed Poisson algebra shows that for any element 𝑥 of a transposed
Poisson algebra the operator of multiplication from the left 𝐿𝑥(𝑦) = 𝑥 ⋅ 𝑦 is similar to derivation of a Lie
bracket (if we do not take into account the factor 2 on the left). In this sense condition (4) is the transpose
of condition (3), and this makes it appropriate to use the term "transposed" in the name of an algebra. An
example of a transposed Poisson algebra can be constructed by means of a derivation of a commutative
associative algebra [6]. If (𝐴, ⋅) is a commutative associative algebra and 𝐷 ∶𝐴→𝐴 is a derivation then the
bracket

[𝑥,𝑦] = 𝑥 ⋅𝐷(𝑦)−𝑦 ⋅𝐷(𝑥), 𝑥,𝑦 ∈ 𝐴, (5)
is a Lie bracket and it satisfies the compatibility condition (4). Hence (𝐴, ⋅, [ , ]) is a transposed Poisson
algebra. An overview of recent results in transposed Poisson algebras can be found in [8].

The notion of a transposed Poisson algebra can be extended to superalgebras if in the definition of a
transposed Poisson algebra we assume that ( , ⋅) is a commutative associative superalgebra, and ( ,{ , }) is
a Lie superalgebra [14]. Using the Koszul sign rule, we write the compatibility condition (4) in the graded
form

2𝑧 ⋅{𝑥,𝑦} = {𝑧 ⋅𝑥,𝑦}+ (−1)|𝑥||𝑧|{𝑥,𝑧 ⋅𝑦}, (6)
where |𝑥|, |𝑧| are the parities of elements of a superalgebra. The notion of a transposed Poisson superalgebra
was introduced in [1] and later the same definition was given in [16], where the author proved that Kantor
double of a transposed Poisson algebra is a Jordan superalgebra. In [1] it was shown that one can construct
an important example of a transposed Poisson superalgebra using an even derivation of a commutative su-
peralgebra in a similar way to how this is done in the case of a transposed Poisson algebra (5). In more detail,
if we have a commutative superalgebra (𝐴, ⋅) and its even derivation 𝐷, then we define the bracket by the
formula

[𝑥,𝑦] = 𝑥 ⋅𝐷(𝑦)− (−1)|𝑥||𝑦| 𝑦 ⋅𝐷(𝑥), (7)
where 𝑥,𝑦 are elements of a commutative superalgebra, |𝑥|, |𝑦| are their parities and 𝐷 ∶ 𝐴→ 𝐴 is an even
derivation. Then (𝐴, [ , ]) is a Lie superalgebra called a virasorisation of 𝐴 [18]. Now it can be proved that
(𝐴, ⋅, [ , ]) is a transposed Poisson superalgebra [1]. It is worth to note that it is not possible to use bracket
(7) in the case when 𝐷 is an odd derivation, because in this case the consistency of parities is broken, that
is, the parity of the right-hand side of the equation (7) is |𝑥|+ |𝑦|+1, but it should be |𝑥|+ |𝑦|. In this paper
we investigate the question of how an odd derivation of a commutative superalgebra can be used to construct
(analogously to (7)) a structure similar to a transposed Poisson superalgebra. To this end, we consider a



Viktor Abramov and Nikolai Sovetnikov.: 3-Lie superalgebra 3

left 𝐴-supermodule  = 0⊕1, where 𝐴 = 𝐴0⊕𝐴1 is a commutative superalgebra. We assume that a left
𝐴-supermodule  is endowed with a bilinear bracket (𝑋,𝑌 ) ∈  × → {𝑋,𝑌 } ∈  which is commutative
{𝑋,𝑌 }= (−1)|𝑋||𝑌 |{𝑌 ,𝑋} (|𝑋|, |𝑌 | are the parities) and satisfies |{𝑋,𝑌 }|= |𝑋|+|𝑌 |. Next we assume that
(0,{ , }) is a Jordan algebra [10] and the mappings 0×1 → 1,1×0 → 1 defined by (𝑋,𝑌 )→ {𝑋,𝑌 }
and {𝑌 ,𝑋}→ {𝑌 ,𝑋}, where𝑋 ∈ 0,𝑌 ∈ 1, define on 1 the structure of a Jordan module over 0 [9] . Then
we propose to call a left 𝐴-supermodule structure of  transposed Poisson type compatible (TP-compatible
in short) with a Jordan structure of  if they satisfy the super transposed Poisson compatibility condition (6)
written in this case in the form

2𝑧 ⋅{𝑋,𝑌 } = {𝑧 ⋅𝑋,𝑌 }+ (−1)|𝑧||𝑋|{𝑋,𝑧 ⋅𝑌 }, 𝑧 ∈ 𝐴, 𝑋,𝑌 ∈  , (8)
where dot stands for multiplication of elements of left 𝐴-supermodule  by elements of a superalgebra 𝐴.

As an example of TP-compatible structure, we consider a commutative superalgebra 𝐴, its odd derivation
𝛿 and the super vector space 𝔇 = {𝑥 ⋅ 𝛿 ∶ 𝑥 ∈ 𝐴}, where (𝑥 ⋅ 𝛿)(𝑦) = 𝑥𝛿(𝑦) and |𝑥 ⋅ 𝛿| = |𝑥|+1. Obviously
𝔇 =𝔇0⊕𝔇1 is a left 𝐴-supermodule, where 𝔇0 ≅ 𝐴1,𝔇1 ≅ 𝐴0. We endow 𝔇 with the bracket [18]

{𝑋,𝑌 } = (𝑥𝛿(𝑦)+ (−1)(|𝑥|+1)(|𝑦|+1)𝑦𝛿(𝑥)) ⋅𝛿, (9)
where 𝑋 = 𝑥 ⋅𝛿,𝑌 = 𝑦 ⋅𝛿. We prove that (𝔇0,{ , }) is a Jordan algebra and 𝔇1 is a Jordan module over 𝔇1.
Then we prove that the left 𝐴-supermodule structure of 𝔇 is TP-compatible with the Jordan structure of 𝔇
induced by the bracket (9), that is, we prove the TP-compatibility condition (8).

The second question we consider in this paper is the the question of how one can construct a 3-Lie
superalgebra given a transposed Poisson superalgebra and its even derivation. In paper [6] the authors showed
a very important connection between transposed Poisson algebras and 3-Lie algebras. In particular, it was
shown that given a transposed Poisson algebra and its derivation, one can construct a ternary bracket that
satisfies all the requirements of a 3-Lie algebra. The concept of 𝑛-Lie algebra was introduced by Filippov
in [11]. Later, a surge of interest in these algebras [1,2,7,19] and their various generalizations was due
to their applications in generalized Hamiltonian mechanics [5,15] and M-brain theory [13,17] . An 𝑛-Lie
superalgebra is a ℤ2-extension of the concept of 𝑛-Lie algebra to the super case [2,3]. Our approach to the
question mentioned above is based on the construction proposed in [6], where it was shown how one can
construct a 3-Lie algebra given a transposed Poisson algebra and its derivation. To be more exact, we prove
that if  is a transposed Poisson superalgebra and 𝐷 is an even derivation of this algebra then the ternary
bracket

[𝑥,𝑦,𝑧] =𝐷(𝑥) ⋅ [𝑦,𝑧]+ (−1)|𝑥|(|𝑦|+|𝑧|)𝐷(𝑦) ⋅ [𝑧,𝑥]+ (−1)(|𝑥|+|𝑦|)|𝑧|𝐷(𝑧) ⋅ [𝑥,𝑦],

satisfies the super Filippov-Jacobi identity or, by other words, ( , [ , , ]) is a 3-Lie superalgebra. This theorem
was proved in [21] and we present this proof in Section 4 with some minor modifications.

2. PRELIMINARIES

In this paper we investigate the structure of a transposed Poisson superalgebra and how it can be used to
construct 3-Lie superalgebras. Throughout what follows, field 𝕂 means either the field of real numbers ℝ
or the field of complex numbers ℂ. A Poisson algebra (𝑃 , ⋅, [ , ]) is a 𝕂-vector space 𝑃 with two binary
operations, where (𝑃 , ⋅) is an associative commutative algebra and (𝑃 , [ , ]) is a Lie algebra. In addition,
these two structures must be compatible, that is, the following condition must be satisfied

[𝑥,𝑦 ⋅𝑧] = [𝑥,𝑦] ⋅𝑧+𝑦 ⋅ [𝑥,𝑧] ∀𝑥,𝑦,𝑧 ∈ 𝑃 . (10)
Thus, the compatibility condition (10) shows that each element of 𝑃 defines, by means of a Lie bracket, a
derivation of an associative commutative algebra 𝑃 . The well known example of a Poisson algebra is the
associative, commutative algebra of smooth functions on a phase space, equipped with a Poisson bracket.
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A derivation of a Poisson algebra is a linear mapping 𝐷 ∶ 𝑃 → 𝑃 which is a derivation of an associative
commutative algebra (𝑃 , ⋅) as well as a derivation of a Lie algebra (𝑃 , [ , ]). Thus, in the case of derivation
of a Poisson algebra we have

𝐷(𝑥 ⋅𝑦) =𝐷(𝑥) ⋅𝑦+𝑥 ⋅𝐷(𝑦), 𝐷([𝑥,𝑦]) = [𝐷(𝑥),𝑦]+ [𝑥,𝐷(𝑦)]. (11)
The notion of transposed Poisson algebra was first proposed and studied in [6]. This structure turned out to be
very interesting from a point of view of algebra and geometry as well as form a point of view of applications
in mathematical physics. A transposed Poisson algebra ( , ⋅, [ , ]), like a Poisson algebra, is a 𝕂-vector space
 with two binary operations, where ( , ⋅) is an associative commutative algebra and ( , [ , ]) is a Lie
algebra. The difference between the notion of a Poisson algebra and that of a transposed Poisson algebra is
a compatibility condition. In the case of a transposed Poisson algebra  , the compatibility condition has the
form

2𝑥 ⋅ [𝑦,𝑧] = [𝑥 ⋅𝑦,𝑧]+ [𝑦,𝑥 ⋅𝑧] ∀𝑥,𝑦,𝑧 ∈  . (12)
This condition shows that each element of  determines, by means of a multiplication of an associative
commutative algebra ( , ⋅), a derivation of a Lie bracket. Hence the use of the term "transposed" in this
context is relevant. We also note one more difference between the compatibility condition (12) and the
compatibility condition (10). This is the presence of the factor 2 on the left-hand side of (12). This factor
plays an important role and is related to an arity of a Lie bracket. An important example of a transposed
Poisson algebra proposed in [6] is an associative commutative algebra (𝐴, ⋅) equipped with the Lie bracket

[𝑥,𝑦] = 𝑥𝐷(𝑦)−𝑦𝐷(𝑥), 𝑥,𝑦 ∈ 𝐴, (13)
where 𝐷 is a derivation of 𝐴.

We can extend the notion of a transposed Poisson algebra to superalgebras assuming that ( , ⋅) is a
commutative associative superalgebra and ( , [ , ]) is a Lie superalgebra. As a compatibility condition for
these two structures, it is natural to take a graded version of the compatibility condition (12) for a transposed
Poisson algebra. The notion of a transposed Poisson superalgebra was introduced in [1]. Let  =0⊕1 be
a super 𝕂-vector space. The parity of a homogeneous element 𝑥∈ will be denoted by |𝑥|, that is, |𝑥|∈ℤ2.
Definition 2.1. A transposed Poisson superalgebra is a triple ( , ⋅, [ , ]), where ( , ⋅) is a commutative
associative superalgebra, ( , [ , ]) is a Lie superalgerba and for any three elements 𝑥,𝑦,𝑧 ∈  it holds

2𝑧 ⋅ [𝑥,𝑦] = [𝑧 ⋅𝑥,𝑦]+ (−1)|𝑥||𝑧|[𝑥,𝑧 ⋅𝑦]. (14)
In [1] it was shown that a transposed Poisson superalgebra can be constructed in a similar way to a transposed
Poisson algebra, which is constructed on an associative commutative algebra by means of a derivation and
the Lie bracket (13). But in the case of a superalgebra one can attribute a parity to a derivation. We remind
that a derivation 𝐷 of a superalgebra 𝐴 is called even if it does not change the parity of a homogeneous
element, that is, |𝐷(𝑥)| = |𝑥| for any 𝑥 ∈ 𝐴0 ∪𝐴1, and a derivation 𝐷 of a superalgebra 𝐴 is called odd if it
changes the parity of a homogeneous element, that is, |𝐷(𝑥)| = |𝑥|+1 for arbitrary 𝑥 ∈ 𝐴0∪𝐴1. The parity
of a derivation 𝐷 will be denoted by |𝐷|. Hence, |𝐷| = 0 if 𝐷 is an even derivation and |𝐷| = 1 if 𝐷 is odd.
The case of even derivation was considered in [1] and it was shown that if (𝐴, ⋅) is a commutative associative
superalgebra, 𝐷 ∶ 𝐴→ 𝐴 is an even derivation and the bracket is defined by

[𝑥,𝑦] = 𝑥 ⋅𝐷(𝑦)− (−1)|𝑥||𝑦| 𝑦 ⋅𝐷(𝑥), 𝑥,𝑦 ∈ 𝐴, (15)
then (𝐴, ⋅, [ , ]) is a transposed Poisson superalgebra. The case of an odd derivation will be considered in the
present paper in the next section.

One of the goals of this paper is to construct a 3-Lie superalgebra given a transposed Poisson superalgebra
and its even derivation. For this we need a graded form of the identities proved in [6]. The graded form of
these identities is given in the following theorem proved in [1].
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Theorem 1. Let ( , ⋅, [ , ]) be a transposed Poisson superalgebra. Then for any ℎ,𝑥,𝑦,𝑧,𝑢,𝑣 ∈  we have
the following identities

(−1)|𝑥| |𝑧|𝑥 ⋅ [𝑦,𝑧]+ (−1)|𝑥| |𝑦| 𝑦 ⋅ [𝑧,𝑥]+ (−1)|𝑦| |𝑧| 𝑧 ⋅ [𝑥,𝑦] = 0, (16)
(−1)|𝑥| |𝑧| [ℎ ⋅ [𝑥,𝑦],𝑧]+ (−1)|𝑥| |𝑦| [ℎ ⋅ [𝑦,𝑧],𝑥]+ (−1)|𝑦| |𝑧| [ℎ ⋅ [𝑧,𝑥],𝑦] = 0, (17)
(−1)|𝑥| |𝑧| [ℎ ⋅𝑥, [𝑦,𝑧]]+ (−1)|𝑥| |𝑦| [ℎ ⋅𝑦, [𝑧,𝑥]]+ (−1)|𝑦| |𝑧| [ℎ ⋅𝑧, [𝑥,𝑦]] = 0, (18)

(−1)|𝑥| |𝑧| [ℎ,𝑥] [𝑦,𝑧]+ (−1)|𝑥| |𝑦| [ℎ,𝑦] [𝑧,𝑥]+ (−1)|𝑦| |𝑧| [ℎ,𝑧] [𝑥,𝑦] = 0, (19)
2𝑢 ⋅𝑣 ⋅ [𝑥,𝑦] = (−1)|𝑥| |𝑣|[𝑢 ⋅𝑥,𝑣 ⋅𝑦]+ (−1)|𝑢| (|𝑥|+|𝑣|)[𝑣 ⋅𝑥,𝑢 ⋅𝑦], (20)

(−1)|𝑢| |𝑦𝑣|𝑥 ⋅ [𝑢,𝑦 ⋅𝑣]+ (−1)|𝑣| |𝑥𝑦| 𝑣 ⋅ [𝑥 ⋅𝑦,𝑢]+ (−1)|𝑥| |𝑦𝑣|𝑦 ⋅ [𝑣,𝑥] ⋅𝑢 = 0. (21)

Another notion that will play an important role in this paper is a notion of 3-Lie superalgebra. 3-Lie
superalgebra is an extension of a notion of 3-Lie algebra to the case of superalgebras. A notion of 3-Lie
algebra is a particular case of a notion of 𝑛-Lie algebra (𝑛≥ 2) proposed and developed by Filippov [11]. Let
𝐿 be a 𝕂-vector space. Then (𝐿, [ , , ]) is said to be a 3-Lie algebra if ternary bracket [ , , ] ∶ 𝐿×𝐿×𝐿→ 𝐿
is totally skew-symmetric

[𝑥,𝑦,𝑧] = −[𝑦,𝑥,𝑧], [𝑥,𝑦,𝑧] = −[𝑥,𝑧,𝑦], 𝑥,𝑦,𝑧 ∈ 𝐿,

and any five elements 𝑥,𝑦,𝑧,𝑢,𝑣 ∈ 𝐿 satisfy the Filippov-Jacobi identity
[[𝑥,𝑦,𝑧], 𝑢,𝑣] = [[𝑥,𝑢,𝑣],𝑦,𝑧]+ [[𝑦,𝑢,𝑣],𝑧,𝑥]+ [[𝑧,𝑢,𝑣],𝑥,𝑦].

Definition 2.2. Let  = 0⊕1 be a super 𝕂-vector space. (, [ , , ]) is said to be a 3-Lie superalgebra, if
a 𝕂-trilinear ternary bracket [ , , ] ∶ 3 →  has the following properties

|[𝑥,𝑦,𝑧]| = |𝑥|+ |𝑦|+ |𝑧|, (22)
[𝑦,𝑥,𝑧] = −(−1)|𝑥||𝑦|[𝑥,𝑦,𝑧], [𝑥,𝑧,𝑦] = −(−1)|𝑦||𝑧|[𝑥,𝑦,𝑧], (23)

and satisfies the super Filippov-Jacobi identity

[[𝑥,𝑦,𝑧], 𝑢,𝑣] = (−1)|𝑦𝑧,𝑢𝑣|[[𝑥,𝑢,𝑣],𝑦,𝑧]+ (−1)|𝑥,𝑦𝑧|+|𝑥𝑧,𝑢𝑣|[[𝑦,𝑢,𝑣],𝑧,𝑥]+ (−1)|𝑥𝑦,𝑧𝑢𝑣|[[𝑧,𝑢,𝑣],𝑥,𝑦], (24)
where |𝑦𝑧,𝑢𝑣| = (|𝑦|+ |𝑧|)(|𝑢|+ |𝑣|), |𝑥,𝑦𝑧| = |𝑥|(|𝑦|+ |𝑧|), |𝑥𝑦,𝑧𝑢𝑣| = (|𝑥|+ |𝑦|)(|𝑧|+ |𝑢|+ |𝑣|).

3. THE CASE OF ODD DERIVATION

A method for constructing a transposed Poisson algebra if we are given a commutative associative algebra
and its derivation was proposed in [6]. In [1] it was proved that this method can also be applied to construct a
transposed Poisson superalgebra, that is, if we are given a commutative associative superalgebra and its even
derivation, then we can construct a transposed Poisson superalgebra by equipping commutative superalgebra
with the graded Lie bracket (15). In this section we consider the question of how this method can be extended
to odd derivations of commutative superalgebra. This question is important because odd derivations play a
significant role not only in the structure of a commutative superalgebra but also in applications. In this case,
odd derivations whose square is zero play a particularly important role. For example, the exterior differential
in a graded differential algebra of differential forms and the BRST-operator in quantum field theory [20].

Thus, our goal in this section is to include odd derivations of a commutative superalgebra in the scheme
of constructing algebras like a transposed Poisson superalgebra. For this purpose we introduce the following
notion.
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Definition 3.1. Let  = 0⊕1 be a left supermodule over a commutative superalgebra 𝐴=𝐴0⊕𝐴1, that is,
(𝑥,𝑋) ∈𝐴× ↦ 𝑥 ⋅𝑋 ∈  , where |𝑥 ⋅𝑋|= |𝑥|+ |𝑋| and |𝑥|, |𝑋| are degrees (mod 2). Let { , } ∶  × → 
be a 𝕂-bilinear mapping such that

a) |{𝑋,𝑌 }| = |𝑋|+ |𝑌 |,
b) {𝑋,𝑌 } = (−1)|𝑋||𝑌 |{𝑌 ,𝑋},
c) (0,{ , }) is a Jordan algebra,
d) the mappings { , } ∶ 0×1 → 1 and { , } ∶ 1×0 → 1 define the Jordan 1 over 0.

Then we say that a left 𝐴-supermodule  is transposed Poisson type compatible with a Jordan structure of
 if for any 𝑧 ∈ 𝐴,𝑋,𝑌 ∈  we have the identity

2𝑧 ⋅{𝑋,𝑌 } = {𝑧 ⋅𝑋,𝑌 }+ (−1)|𝑧| |𝑋|{𝑋,𝑧 ⋅𝑌 }.

From this definition it follows that if 𝑋0 ∈ 0,𝑋1 ∈ 1 then {𝑋0,𝑋1} = {𝑋1,𝑋0}. This shows that the
elements of 1 obtained from 𝑋1 by the left and right actions of 𝑋0 ∈ 0 are equal as it should be in the case
of a Jordan module. Thus the only condition which should be checked is that  = 0⊕1 is a Jordan algebra
if we equip it with the multiplication

(𝑋0,𝑋1).(𝑌0,𝑌1) = ({𝑋0,𝑌0},{𝑋0,𝑌1}+{𝑋1,𝑌0}) (25)
In what follows we assume that 𝐴 is a commutative superalgebra and multiplication in this algebra will be
denoted by means of a juxtaposition, that is, writing one element after another. Then the vector space of
derivations of this algebra is a Lie superalgebra if we equip it with the bracket

[𝐷1,𝐷2] =𝐷1◦𝐷2−(−1)|𝐷1||𝐷2|𝐷2◦𝐷1, (26)
where 𝐷1,𝐷2 are derivations of 𝐴 and |𝐷1|, |𝐷2| are their parities. Now assume that 𝐷 is a derivation of
a superalgebra 𝐴 and 𝐷 has a certain parity, that is, 𝐷 is either even or odd derivation. We consider the
super vector space 𝔇𝐷 = {𝑥 ⋅𝐷 ∶ 𝑥 ∈ 𝐴} generated by 𝐷. Here 𝑥 ⋅𝐷 is a derivation of a superalgebra
𝐴 defined by (𝑥 ⋅𝐷)(𝑦) = 𝑥𝐷(𝑦) and |𝑥 ⋅𝐷| = |𝑥|+ |𝐷|. Using the terminology of differential geometry,
we will call derivations 𝑥 ⋅𝐷 vector fields. Obviously 𝔇𝐷 becomes a left 𝐴-supermodule if one defines
𝑥 ⋅ (𝑦 ⋅𝐷) = (𝑥𝑦) ⋅𝐷. Let 𝑋 = 𝑥 ⋅𝐷,𝑌 = 𝑦 ⋅𝐷 and calculating the bracket (26) we find

[𝑋,𝑌 ] =
(

𝑥𝐷(𝑦)− (−1)(|𝑥|+|𝐷|)(|𝑦|+|𝐷|)𝑦𝐷(𝑥)
)

⋅𝐷

+
(

(−1)|𝑦||𝐷|−(−1)|𝑦||𝐷|+|𝐷|

2) (𝑥𝑦) ⋅𝐷2. (27)
Assume 𝐷 is an even derivation of 𝐴, that is, |𝐷| = 0. In this case the second term (containing 𝐷2) at the
right-hand side of the above formula vanishes and we get

[𝑋,𝑌 ] =
(

𝑥𝐷(𝑦)− (−1)|𝑥||𝑦|𝑦𝐷(𝑥)
)

⋅𝐷. (28)
Thus, the super vector space 𝔇𝐷 generated by an even degree derivation 𝐷 closes with respect to the graded
commutator (27) and we obtain the structure of the Lie superalgebra on 𝔇𝐷. It is easy to see that we can
omit 𝐷 in both sides of (28) and the consistency of parities will not be broken. Figuratively speaking, we
can descend the bracket (28) from vector fields 𝔇𝐷 to elements of a superalgebra 𝐴. In this case we get

[𝑥,𝑦] = 𝑥𝐷(𝑦)− (−1)|𝑥||𝑦|𝑦𝐷(𝑥). (29)
Then it can be proved [1] that the bracket (29) satisfies the compatibility condition

2𝑧 [𝑥,𝑦] = [𝑧𝑥,𝑦]+ (−1)|𝑧| |𝑥|[𝑥,𝑧𝑦].

Hence a commutative superalgebra 𝐴 endowed with the bracket (29) is a transposed Poisson superalgebra.



Viktor Abramov and Nikolai Sovetnikov.: 3-Lie superalgebra 7

Now we consider the case of odd derivation of a commutative superalgebra 𝐴. This odd derivation will
be denoted by 𝛿, that is, |𝛿| = 1. Let us consider the super vector space 𝔇𝛿 = {𝑥 ⋅ 𝛿 ∶ 𝑥 ∈ 𝐴} induced by an
odd derivation 𝛿. In the case of an odd derivation we have |𝑦||𝛿| = |𝑦|, |𝑦||𝛿|+ |𝛿|2 = |𝑦|+1 and the second
term on the right side of (27), containing 𝛿2, does not vanish. However, if in the right side of formula (27)
we take plus instead of minus, that is, we consider the bracket

{𝑋,𝑌 } =
(

𝑥𝛿(𝑦)+ (−1)(|𝑥|+|𝛿|)(|𝑦|+|𝛿|)𝑦𝛿(𝑥)
)

⋅𝛿

+
(

(−1)|𝑦|+(−1)|𝑦|+1
)

(𝑥𝑦) ⋅𝛿2. (30)
then the term containing 𝛿2 vanishes. For 𝑋 = 𝑥 ⋅𝛿 and 𝑌 = 𝑦 ⋅𝛿 we will have

{𝑋,𝑌 } =
(

𝑥𝛿(𝑦)+ (−1)(|𝑥|+1)(|𝑦|+1)𝑦𝛿(𝑥)
)

⋅𝛿. (31)
Comparing with the case of even derivation we see that in the case of odd derivation 𝛿 we can not omit 𝛿 in
vector fields in (31) because we will break the consistency of parities, that is, we will get |{𝑥,𝑦}|= |𝑥|+|𝑦|+1
instead of what it should be |{𝑥,𝑦}| = |𝑥|+ |𝑦|. Hence we can not, so to speak, descend the bracket (31)
from the vector fields 𝔇𝛿 on to a superalgebra 𝐴.

Obviously 𝔇𝛿 becomes a super vector space if one defines the parity of a vector field 𝑥 ⋅𝛿 as |𝑥|+1. The
super vector space 𝔇𝛿 is a left 𝐴-supermodule if we define 𝑦 ⋅ (𝑥 ⋅𝛿) = (𝑦𝑥) ⋅𝛿.
Theorem 2. (𝔇𝛿

0,{ , }) is a Jordan algebra. If 𝛿2 = 0 then the bracket (31) defines on 𝔇𝛿
1 the structure of a

Jordan module over 𝔇𝛿
0 . The left 𝐴-supermodule 𝔇𝛿 is transposed Poisson type compatible with the Jordan

structure of 𝔇𝛿, that is, we have the identity

2𝑧 ⋅{𝑋,𝑌 } = {𝑧 ⋅𝑋,𝑌 }+ (−1)|𝑧||𝑋|{𝑋,𝑧 ⋅𝑌 }, (32)
Proof. First of all, we prove the transposed Poisson type compatibility condition (32). Applying (31) to the
left side of (32) we find

2𝑧 ⋅{𝑋,𝑌 } = 2
(

𝑧𝑥𝛿(𝑦)+ (−1)|𝑋||𝑌 | 𝑧𝑦𝛿(𝑥)
)

⋅𝛿. (33)
Calculating the terms at the right side of (32) we get

{𝑧 ⋅𝑋,𝑌 } =
(

𝑧𝑥𝛿(𝑦)+ (−1)(|𝑧|+|𝑋|)|𝑌 |𝑦𝛿(𝑧)𝑥+(−1)|𝑋||𝑌 |𝑧𝑦𝛿(𝑥)
)

⋅𝛿,

{𝑋,𝑧 ⋅𝑌 } =
(

𝑥𝛿(𝑧)𝑦+(−1)|𝑧||𝑋|𝑧𝑥𝛿(𝑦)+ (−1)|𝑋|(|𝑧|+|𝑌 |)𝑧𝑦𝛿(𝑥)
)

⋅𝛿.

Now multiplying the both sides of the second equation by (−1)|𝑧||𝑋| and taking the sum with the first equation
we get the right side of (33).

A proof that (𝔇𝛿
0,{ , } is a Jordan algebra can be found in [18]. Since the proof given in [18] is very short

and, in our opinion, does not explain some details, we give a more detailed proof here. It is easy to see that
the bracket (31) has the symmetry

{𝑋,𝑌 } = (−1)|𝑋||𝑌 |{𝑌 ,𝑋}. (34)
Hence if 𝑋 = 𝑥 ⋅ 𝛿,𝑌 = 𝑦 ⋅ 𝛿 ∈𝔇𝛿

0 then |𝑥| = |𝑦| = 1 and {𝑋,𝑌 } = {𝑌 ,𝑋}, i. e. the bracket (31) restricted
to the subspace 𝔇𝛿

0 is commutative. Hence, in order to prove that (𝔇𝛿
0,{ , }) is a Jordan algebra we need to

prove the Jordan identity
{

{𝑋,𝑋},{𝑌 ,𝑋}
}

=
{

{{𝑋,𝑋},𝑌 },𝑋
}

. (35)
By straightforward calculation we find

{

{𝑋,𝑋},{𝑌 ,𝑋}
}

=
(

6𝑥 (𝛿(𝑥))2 𝛿(𝑦)−2𝑥2 𝛿(𝑥)𝛿2(𝑦)+2𝑦 (𝛿(𝑥))3−2𝑥2 𝛿2(𝑥)𝛿(𝑦)
)

⋅𝛿, (36)
{

{{𝑋,𝑋},𝑌 },𝑋
}

=
(

6𝑥 (𝛿(𝑥))2 𝛿(𝑦)−2𝑥2 𝛿(𝑥)𝛿2(𝑦)+2𝑦 (𝛿(𝑥))3−4𝑥2 𝛿2(𝑥)𝛿(𝑦)+

+2𝑥2 𝑦𝛿3(𝑥)
)

⋅𝛿. (37)
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Since a superalgebra 𝐴 is commutative for any odd element 𝑥 ∈ 𝐴1 we have 𝑥2 = 0. Therefore, all terms
on the right-hand sides of the above equalities containing 𝑥2 vanish and we see that the right-hand sides are
equal. From this follows the Jordan identity.

Let us now prove that if 𝛿2 = 0 then 𝔇𝛿
1 is a Jordan module over the Jordan algebra 𝔇𝛿

0. First of all, we
have to show that the left and right actions of 𝔇𝛿

0 on 𝔇𝛿
1 determined by the bracket (31) coincide, that is, for

any 𝑋 ∈𝔇𝛿
0 and 𝑌 ∈𝔇𝛿

1 it holds {𝑋,𝑌 } = {𝑌 ,𝑋}. But this follows immediately from formula (34) when
𝑋 ∈𝔇𝛿

0,𝑌 ∈𝔇𝛿
1. Then we must show that (35) holds when 𝑋 ∈𝔇𝛿

0 and 𝑌 ∈𝔇𝛿
1. But in this case formulae

(36), (37) do not change if we assume that 𝑋 is an even vector field and 𝑌 is odd. Indeed, if 𝑋 is an even
vector field and 𝑌 is odd, the formula for the bracket (31) will have the same form as in the case of even
vector fields, that is, {𝑋,𝑌 } = (𝑥𝛿(𝑦)+𝑦𝛿(𝑥)) ⋅𝛿.

The only identity which we need to prove in order to show that 𝔇𝛿
1 is a Jordan module over the Jordan

algebra 𝔇𝛿
0 is the following
{

{

{𝑋,𝑋},𝑌
}

,𝑍
}

−
{

{𝑋,𝑋},{𝑌 ,𝑍}
}

= 2
{

{𝑋,𝑌 },{𝑋,𝑍}
}

−2
{

𝑋,
{

𝑌 ,{𝑋,𝑍}
}

}

. (38)

Now we assume 𝛿2 = 0. We have
{𝑋,𝑋} = 2(𝑥𝛿(𝑥)) ⋅𝛿,

{

{

{𝑋,𝑋},𝑌
}

,𝑍
}

=
(

2𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+2(𝛿(𝑥))2 𝑦𝛿(𝑧)+4(𝛿(𝑥))2 𝛿(𝑦)𝑧
)

⋅𝛿,
{

{𝑋,𝑋},{𝑌 ,𝑍}
}

=
(

4𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+2(𝛿(𝑥))2 𝑦𝛿(𝑧)+2(𝛿(𝑥))2 𝛿(𝑦)𝑧
)

⋅𝛿,

Hence the left-hand side of (38) is equal to
−2𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+2(𝛿(𝑥))2 𝛿(𝑦)𝑧. (39)

The terms at the right-hand side of (38) can be written as follows

2
{

{𝑋,𝑌 },{𝑋,𝑍}
}

=
(

8𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+4(𝛿(𝑥))2 𝑦𝛿(𝑧)+4(𝛿(𝑥))2 𝛿(𝑦)𝑧
)

⋅𝛿,

2
{

𝑋,
{

𝑌 ,{𝑋,𝑍}
}

}

=
(

10𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+4(𝛿(𝑥))2 𝑦𝛿(𝑧)+2(𝛿(𝑥))2 𝛿(𝑦)𝑧
)

⋅𝛿.

Hence the right-hand side of (38) is the expression
−2𝑥𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)+2(𝛿(𝑥))2 𝛿(𝑦)𝑧,

and comparing it with the expression at the left-hand side (39) we conclude that the Jordan module identity
is satisfied and this ends the proof.

4. 3-LIE SUPERALGEBRA CONSTRUCTED BY MEANS OF EVEN DERIVATION

In the article [6] the authors prove an important theorem which gives a method for constructing 3-Lie algebras
by means of transposed Poisson algebras and their derivations. This theorem can be stated as follows
Theorem 3. Let (𝐿, ⋅, [ , ]) be a transposed Poisson algebra and 𝐷 be its derivation. Define a ternary oper-
ation on 𝐿 as follows

[𝑥,𝑦,𝑧] ∶=𝐷(𝑥)[𝑦,𝑧]+𝐷(𝑦)[𝑧,𝑥]+𝐷(𝑧)[𝑥,𝑦], 𝑥,𝑦,𝑧 ∈ 𝐿. (40)
Then (𝐿, [ , , ]) is a 3-Lie algebra.
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Our aim in this section is to extend this result to the case of transposed Poisson superalgebra. We show that
given a transposed Poisson superalgebra and an even derivation of this superalgebra we can construct a 3-Lie
superalgebra.

We will start with the following lemma.
Lemma 1. If ( , ⋅, [ , ]) is a transposed Poisson superalgebra and 𝐷 is an even derivation of a Lie superal-
gebra ( , [ , ]) then

𝐷(𝑥)⋅𝐷([𝑦,𝑧])+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)⋅𝐷([𝑧,𝑥])+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧)⋅𝐷([𝑥,𝑦])
+𝑥⋅[𝐷(𝑦),𝐷(𝑧)]+ (−1)|𝑥,𝑦𝑧|𝑦⋅[𝐷(𝑧),𝐷(𝑥)])+ (−1)|𝑥𝑦,𝑧|𝑧⋅[𝐷(𝑥),𝐷(𝑦)] = 0.

Proof. Since 𝐷 ∶  →  is an even derivation of a Lie superalgebra ( , [ , ]), it satisfies the graded Leibniz
rule. Since it is an even derivation we also have |𝐷(𝑥)| = |𝑥| for any 𝑥 ∈  . Making use of the graded
Leibniz rule, the compatibility condition (14) and cyclic permutations of 𝑥,𝑦,𝑧 we get
𝐷(𝑥) ⋅𝐷([𝑦,𝑧]) = 1

2
(

[𝐷(𝑥) ⋅𝐷(𝑦),𝑧])+ (−1)|𝑥||𝑦|[𝐷(𝑦),𝐷(𝑥) ⋅𝑧]+ [𝐷(𝑥) ⋅𝑦,𝐷(𝑧)]+ (−1)|𝑥||𝑦|[𝑦,𝐷(𝑥) ⋅𝐷(𝑧)]
)

,

𝐷(𝑦) ⋅𝐷([𝑧,𝑥]) = 1
2
(

[𝐷(𝑦) ⋅𝐷(𝑧),𝑥])+ (−1)|𝑦||𝑧|[𝐷(𝑧),𝐷(𝑦) ⋅𝑥]+ [𝐷(𝑦) ⋅𝑧,𝐷(𝑥)]+ (−1)|𝑦||𝑧|[𝑧,𝐷(𝑦) ⋅𝐷(𝑥)]
)

,

𝐷(𝑧) ⋅𝐷([𝑥,𝑦]) = 1
2
(

[𝐷(𝑧) ⋅𝐷(𝑥),𝑦])+ (−1)|𝑥||𝑧|[𝐷(𝑥),𝐷(𝑧) ⋅𝑦]+ [𝐷(𝑧) ⋅𝑥,𝐷(𝑦)]+ (−1)|𝑥||𝑧|[𝑥,𝐷(𝑧) ⋅𝐷(𝑦)]
)

.

Taking the sum of these equations multiplied by (−1)|𝑥,𝑦𝑧| (second equation) and (−1)|𝑥𝑦,𝑧| (third equation)
we get the equation whose left-hand side is

𝐷(𝑥) ⋅𝐷([𝑦,𝑧])+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦) ⋅𝐷([𝑧,𝑥])+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧) ⋅𝐷([𝑥,𝑦]), (41)
and the right-hand side can be written in the form

−1
2
(

[𝑥 ⋅𝐷(𝑦),𝐷(𝑧)]+ (−1)|𝑥||𝑦|[𝐷(𝑦),𝑥 ⋅𝐷(𝑧)]+ (−1)|𝑥,𝑦𝑧|([𝑦 ⋅𝐷(𝑧),𝐷(𝑥)]+ (−1)|𝑦||𝑧|[𝐷(𝑧),𝑦 ⋅𝐷(𝑥)]

+(−1)|𝑥𝑦,𝑧|([𝑧 ⋅𝐷(𝑥),𝐷(𝑦)]+ (−1)|𝑥||𝑧|[𝐷(𝑥),𝑧 ⋅𝐷(𝑦)])
)

.

Making use of the compatibility condition for transposed Poisson superalgebra we can write the right-hand
side in the form

−𝑥 ⋅ [𝐷(𝑦),𝐷(𝑧)]− (−1)|𝑥,𝑦𝑧|𝑦 ⋅ [𝐷(𝑧),𝐷(𝑥)])− (−1)|𝑥𝑦,𝑧|𝑧 ⋅ [𝐷(𝑥),𝐷(𝑦)],

which ends the proof of lemma.
Theorem 4. Let ( , ⋅, [ , ]) be a transposed Poisson superalgebra and 𝐷 be its even derivation. Define the
ternary bracket

[𝑥,𝑦,𝑧] ∶=𝐷(𝑥) ⋅ [𝑦,𝑧]+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦) ⋅ [𝑧,𝑥]+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧) ⋅ [𝑥,𝑦], (42)
where 𝑥,𝑦,𝑧 ∈  . Then ( , [ , , ]) is a 3-Lie superalgebra.

Proof. It is easy to verify that the ternary bracket (42) is trilinear and graded skew-symmetric. Hence in
order to prove the theorem we have to prove the super Filippov-Jacobi identity (24). We begin with the
left-hand side of (24). Applying the definition of ternary bracket (42) we get

[[𝑥,𝑦,𝑧], 𝑢,𝑣] =𝐷
(

𝐷(𝑥)[𝑦,𝑧]
)

[𝑢,𝑣]+ (−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷(𝑢)[𝑣,𝐷(𝑥)[𝑦,𝑧]]+ (−1)|𝑣,𝑥𝑦𝑧𝑢|𝐷(𝑣)[𝐷(𝑥)[𝑦,𝑧], 𝑢]

+ (−1)|𝑥,𝑦𝑧|𝐷
(

𝐷(𝑦)[𝑧,𝑥]
)

[𝑢,𝑣]+ (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥,𝑦𝑧|𝐷(𝑢)[𝑣,𝐷(𝑦)[𝑧,𝑥]]

+ (−1)|𝑣,𝑥𝑦𝑧𝑢|+|𝑥,𝑦𝑧|𝐷(𝑣)[𝐷(𝑦)[𝑧,𝑥], 𝑢]+ (−1)|𝑥𝑦,𝑧|𝐷
(

𝐷(𝑧)[𝑥,𝑦]
)

[𝑢,𝑣]

+ (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥𝑦,𝑧|𝐷(𝑢)[𝑣,𝐷(𝑧)[𝑥,𝑦]]+ (−1)|𝑣,𝑥𝑦𝑧𝑢|+|𝑥𝑦,𝑧|𝐷(𝑣)[𝐷(𝑧)[𝑥,𝑦], 𝑢].
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Making use of the graded Leibniz rule for even derivation 𝐷 we obtain

𝐷
(

𝐷(𝑥)[𝑦,𝑧]
)

[𝑢,𝑣] =𝐷2(𝑥)[𝑦,𝑧][𝑢,𝑣]+𝐷(𝑥)𝐷([𝑦,𝑧])[𝑢,𝑣],

(−1)|𝑥,𝑦𝑧|𝐷
(

𝐷(𝑦)[𝑧,𝑥]
)

[𝑢,𝑣] = (−1)|𝑥,𝑦𝑧|𝐷2(𝑦)[𝑧,𝑥][𝑢,𝑣]+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)𝐷([𝑧,𝑥])[𝑢,𝑣],

(−1)|𝑥𝑦,𝑧|𝐷
(

𝐷(𝑧)[𝑥,𝑦]
)

[𝑢,𝑣] = (−1)|𝑥𝑦,𝑧|𝐷2(𝑧)[𝑥,𝑦][𝑢,𝑣]+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧)𝐷([𝑥,𝑦])[𝑢,𝑣].

Note that the sum of underlined terms is equal to the sum of the first three terms in equation in Lemma 1
multiplied by [𝑢,𝑣]. Hence using the identity of Lemma 1 we can write this sum as follows

𝐷(𝑥)𝐷([𝑦,𝑧])[𝑢,𝑣]+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)𝐷([𝑧,𝑥])[𝑢,𝑣]+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧)𝐷([𝑥,𝑦])[𝑢,𝑣] =
−𝑥[𝐷(𝑦),𝐷(𝑧)][𝑢,𝑣]− (−1)|𝑥,𝑦𝑧|𝑦[𝐷(𝑧),𝐷(𝑥)][𝑢,𝑣]− (−1)|𝑥𝑦,𝑧|𝑧[𝐷(𝑥),𝐷(𝑦)][𝑢,𝑣].

Now the left-hand side of super Filippov-Jacobi identity can be written in the following form

𝐷2(𝑥)[𝑦,𝑧][𝑢,𝑣]+ (−1)|𝑥,𝑦𝑧|𝐷2(𝑦)[𝑧,𝑥][𝑢,𝑣]+ (−1)|𝑥𝑦,𝑧|𝐷2(𝑧)[𝑥,𝑦][𝑢,𝑣]
+ (−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷(𝑢)

(

[𝑣,𝐷(𝑥)[𝑦,𝑧]]+ (−1)|𝑥,𝑦𝑧|[𝑣,𝐷(𝑦)[𝑧,𝑥]]+ (−1)|𝑥𝑦,𝑧|[𝑣,𝐷(𝑧)[𝑥,𝑦]]
)

+(−1)|𝑥𝑦𝑧𝑢,𝑣|𝐷(𝑣)
(

[𝐷(𝑥)[𝑦,𝑧], 𝑢]+ (−1)|𝑥,𝑦𝑧|[𝐷(𝑦)[𝑧,𝑥], 𝑢]+ (−1)|𝑥𝑦,𝑧|[𝐷(𝑧)[𝑥,𝑦], 𝑢]
)

−𝑥[𝐷(𝑦),𝐷(𝑧)][𝑢,𝑣]− (−1)|𝑥,𝑦𝑧|𝑦[𝐷(𝑧),𝐷(𝑥)][𝑢,𝑣]− (−1)|𝑥𝑦,𝑧|𝑧[𝐷(𝑥),𝐷(𝑦)][𝑢,𝑣].

(43)

We label every term of this expression by a pair (L, 𝑛), where L stands for the "left-hand side of the super
Filippov-Jacobi identity" and 𝑛 is the positional number of the term in this expression. For example, (L, 2)
is a label for (−1)|𝑥,𝑦𝑧|𝐷2(𝑦)[𝑧,𝑥][𝑢,𝑣].

Now we calculate the terms at the right-hand side of the super Filippov-Jacobi identity (24). We get

(−1)|𝑦𝑧,𝑢𝑣|[[𝑥,𝑢,𝑣],𝑦,𝑧] =𝐷2(𝑥)[𝑦,𝑧][𝑢,𝑣]− (−1)|𝑦𝑧,𝑢𝑣|𝑥[𝐷(𝑢),𝐷(𝑣)][𝑦,𝑧]
+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)[𝑧,𝐷(𝑥)[𝑢,𝑣]]+ (−1)|𝑥𝑦,𝑧|+|𝑦,𝑢𝑣|𝐷(𝑧)[𝐷(𝑥)[𝑢,𝑣],𝑦]
+ (−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷2(𝑢)[𝑣,𝑥][𝑦,𝑧]− (−1)|𝑥𝑦𝑧,𝑢𝑣|𝑢[𝐷(𝑣),𝐷(𝑥)])[𝑦,𝑧]
+ (−1)|𝑥,𝑦𝑧𝑢𝑣|𝐷(𝑦)[𝑧,𝐷(𝑢)[𝑣,𝑥]]+ (−1)|𝑥𝑦,𝑧𝑢𝑣|𝐷(𝑧)[𝐷(𝑢)[𝑣,𝑥],𝑦]
+ (−1)|𝑥𝑢,𝑣|+|𝑦𝑧,𝑢𝑣|𝐷2(𝑣)[𝑥,𝑢][𝑦,𝑧]− (−1)|𝑥𝑢,𝑣|+|𝑦𝑧,𝑢𝑣|𝑣[𝐷(𝑥),𝐷(𝑢)][𝑦,𝑧]
+ (−1)|𝑥,𝑦𝑧|+|𝑥𝑢,𝑣|𝐷(𝑦)[𝑧,𝐷(𝑣)[𝑥,𝑢]]+ (−1)|𝑥𝑦,𝑧|+|𝑥𝑢,𝑣|+|𝑦,𝑢𝑣|𝐷(𝑧)[𝐷(𝑣)[𝑥,𝑢],𝑦].

(44)

(−1)|𝑥,𝑦𝑧|+|𝑥𝑧,𝑢𝑣|[[𝑦,𝑢,𝑣],𝑧,𝑥] = (−1)|𝑥,𝑦𝑧|𝐷2(𝑦)[𝑧,𝑥][𝑢,𝑣]− (−1)|𝑥,𝑦𝑧|+|𝑥𝑧,𝑢𝑣|𝑦[𝐷(𝑢),𝐷(𝑣)][𝑧,𝑥]
+ (−1)|𝑥𝑦,𝑧|𝐷(𝑧)[𝑥,𝐷(𝑦)[𝑢,𝑣]]+ (−1)|𝑧,𝑢𝑣|𝐷(𝑥)[𝐷(𝑦)[𝑢,𝑣],𝑧]
+ (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥,𝑦𝑧|𝐷2(𝑢)[𝑣,𝑦][𝑧,𝑥]− (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥,𝑦𝑧|𝑢[𝐷(𝑣),𝐷(𝑦)])[𝑧,𝑥]
+ (−1)|𝑥𝑦,𝑧|+|𝑦,𝑢𝑣|𝐷(𝑧)[𝑥,𝐷(𝑢)[𝑣,𝑦]]+ (−1)|𝑦𝑧,𝑢𝑣|𝐷(𝑥)[𝐷(𝑢)[𝑣,𝑦],𝑧]
+ (−1)|𝑥,𝑦𝑧|+|𝑢,𝑥𝑧𝑣|+|𝑥𝑦𝑧,𝑣|𝐷2(𝑣)[𝑦,𝑢][𝑧,𝑥]− (−1)|𝑥,𝑦𝑧|+|𝑢,𝑥𝑧𝑣|+|𝑥𝑦𝑧,𝑣|𝑣[𝐷(𝑦),𝐷(𝑢)][𝑧,𝑥]
+ (−1)|𝑥𝑦,𝑧|+|𝑦𝑢,𝑣|𝐷(𝑧)[𝑥,𝐷(𝑣)[𝑦,𝑢]]+ (−1)|𝑧,𝑢𝑣|+|𝑦𝑢,𝑣|𝐷(𝑥)[𝐷(𝑣)[𝑦,𝑢],𝑧].

(45)
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(−1)|𝑥𝑦,𝑧𝑢𝑣|[[𝑧,𝑢,𝑣],𝑥,𝑦] = (−1)|𝑥𝑦,𝑧|𝐷2(𝑧)[𝑥,𝑦][𝑢,𝑣]− (−1)|𝑥𝑦,𝑧𝑢𝑣|𝑧[𝐷(𝑢),𝐷(𝑣)][𝑥,𝑦]
+𝐷(𝑥)[𝑦,𝐷(𝑧)[𝑢,𝑣]]+ (−1)|𝑥,𝑦𝑧𝑢𝑣|𝐷(𝑦)[𝐷(𝑧)[𝑢,𝑣],𝑥]
+ (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥𝑦,𝑧|𝐷2(𝑢)[𝑣,𝑧][𝑥,𝑦]− (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑥𝑦,𝑧|𝑢[𝐷(𝑣),𝐷(𝑧)])[𝑥,𝑦]
+ (−1)|𝑧,𝑢𝑣|𝐷(𝑥)[𝑦,𝐷(𝑢)[𝑣,𝑧]]+ (−1)|𝑧,𝑥𝑢𝑣|+|𝑥,𝑦𝑢𝑣|𝐷(𝑦)[𝐷(𝑢)[𝑣,𝑧],𝑥]
+ (−1)|𝑧𝑢,𝑥𝑦𝑣|+|𝑥𝑦,𝑣|𝐷2(𝑣)[𝑧,𝑢][𝑥,𝑦]− (−1)|𝑧𝑢,𝑥𝑦𝑣|+|𝑥𝑦,𝑣|𝑣[𝐷(𝑧),𝐷(𝑢)][𝑥,𝑦]
+ (−1)|𝑧𝑢,𝑣|𝐷(𝑥)[𝑦,𝐷(𝑣)[𝑧,𝑢]]+ (−1)|𝑥,𝑦𝑧𝑢𝑣|+|𝑧𝑢,𝑣|𝐷(𝑦)[𝐷(𝑣)[𝑧,𝑢],𝑥].

(46)

Analogously we label terms of these expressions by pairs (𝑚,𝑛), where 𝑚 is a Roman number I, II or III,
where I stands for (44), II for (45) and III for (46), and 𝑛 is the positional number of a term in corresponding
expression. For example, the pair (I, 1) denotes the term (−1)|𝑦𝑧,𝑢𝑣|𝐷2(𝑥)[𝑢,𝑣][𝑦,𝑧]. We see that the terms
(I,1) and (L, 1), (II,1) and (L,2), (III,1) and (L,3) cancel. Our next goal is to show that the remaining terms
containing a square of a derivation 𝐷 can be also cancelled. First collect all the terms with 𝐷2(𝑢)

(−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷2(𝑢)
(

[𝑣,𝑥][𝑦,𝑧]+ (−1)|𝑥,𝑦𝑧|[𝑣,𝑦][𝑧,𝑥]+ (−1)|𝑧,𝑥𝑦|[𝑣,𝑧][𝑥,𝑦]
)

.

This sum is equal to zero due to identity (19). Analogously all the terms with 𝐷2(𝑣) can be canceled. The
sum of the terms containing [𝐷(𝑢),𝐷(𝑣)] is equal to zero due to identity (16). Now making use of identity
(17) we obtain

(III,12)+ (I,11) = −(−1)|𝑥𝑧𝑢,𝑣|+|𝑥||𝑦|𝐷(𝑦)[𝐷(𝑣)[𝑥,𝑧], 𝑢], (II,7)+ (I,8) = −(−1)|𝑥𝑦,𝑧𝑢|𝐷(𝑧)[𝐷(𝑢)[𝑥,𝑦],𝑣],

(II,12)+ (III,11) = −(−1)|𝑦𝑧𝑢,𝑣|+|𝑦||𝑧|𝐷(𝑥)[𝐷(𝑣)[𝑧,𝑦], 𝑢], (I,7)+ (III,8) = −(−1)|𝑥,𝑦𝑧𝑢|+|𝑧||𝑢|𝐷(𝑦)[𝐷(𝑢)[𝑧,𝑥],𝑣],

(I,12)+ (II,11) = −(−1)|𝑥,𝑦𝑧𝑣|+|𝑦,𝑧𝑣|+|𝑢||𝑣|𝐷(𝑧)[𝐷(𝑣)[𝑦,𝑥], 𝑢], (III,7)+ (II,8) = −(−1)|𝑦𝑧,𝑢|𝐷(𝑥)[𝐷(𝑢)[𝑦,𝑧],𝑣].

After all cancellations at the right-hand side of the super Filippov-Jacobi identity we have the following
terms

−(−1)|𝑦𝑧,𝑢|𝐷(𝑥)[𝐷(𝑢)[𝑦,𝑧],𝑣]− (−1)|𝑥,𝑦𝑧𝑢|+|𝑧||𝑢|𝐷(𝑦)[𝐷(𝑢)[𝑧,𝑥],𝑣]

−(−1)|𝑥𝑦,𝑧𝑢|𝐷(𝑧)[𝐷(𝑢)[𝑥,𝑦],𝑣]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−(−1)|𝑦𝑧𝑢,𝑣|+|𝑦||𝑧|𝐷(𝑥)[𝐷(𝑣)[𝑧,𝑦], 𝑢]− (−1)|𝑥𝑧𝑢,𝑣|+|𝑥||𝑦|𝐷(𝑦)[𝐷(𝑣)[𝑥,𝑧], 𝑢]

−(−1)|𝑥,𝑦𝑧𝑣|+|𝑦,𝑧𝑣|+|𝑢||𝑣|𝐷(𝑧)[𝐷(𝑣)[𝑦,𝑥], 𝑢]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+𝐷(𝑥)[𝑦,𝐷(𝑧)[𝑢,𝑣]]+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)[𝑧,𝐷(𝑥)[𝑢,𝑣]]

+(−1)|𝑥𝑦,𝑧|𝐷(𝑧)[𝑥,𝐷(𝑦)[𝑢,𝑣]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+(−1)|𝑧,𝑢𝑣|𝐷(𝑥)[𝐷(𝑦)[𝑢,𝑣],𝑧]+ (−1)|𝑥,𝑦𝑧𝑢𝑣|𝐷(𝑦)[𝐷(𝑧)[𝑢,𝑣],𝑥]

+(−1)|𝑥𝑦,𝑧|+|𝑦,𝑢𝑣|𝐷(𝑧)[𝐷(𝑥)[𝑢,𝑣],𝑦]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−(−1)|𝑥𝑦𝑧,𝑢𝑣|𝑢

(

[𝐷(𝑣),𝐷(𝑥)][𝑦,𝑧]+ (−1)|𝑥,𝑦𝑧|[𝐷(𝑣),𝐷(𝑦)][𝑧,𝑥]

+(−1)|𝑥𝑦,𝑧|[𝐷(𝑣),𝐷(𝑧)][𝑥,𝑦]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
)

+(−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑢||𝑣|𝑣
(

[𝐷(𝑢),𝐷(𝑥)][𝑦,𝑧]+ (−1)|𝑥,𝑦𝑧|[𝐷(𝑢),𝐷(𝑦)][𝑧,𝑥]

+(−1)|𝑥𝑦,𝑧|[𝐷(𝑢),𝐷(𝑧)][𝑥,𝑦]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
)

.

(47)
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The left-hand side has the form
(−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷(𝑢)

(

[𝑣,𝐷(𝑥)[𝑦,𝑧]]+ (−1)|𝑥,𝑦𝑧|[𝑣,𝐷(𝑦)[𝑧,𝑥]]+ (−1)|𝑥𝑦,𝑧|[𝑣,𝐷(𝑧)[𝑥,𝑦]]. . . . . . . . . . . . . . . . . . . . . . . . . .
)

+(−1)|𝑥𝑦𝑧𝑢,𝑣|𝐷(𝑣)
(

[𝐷(𝑥)[𝑦,𝑧], 𝑢]+ (−1)|𝑥,𝑦𝑧|[𝐷(𝑦)[𝑧,𝑥], 𝑢]+ (−1)|𝑥𝑦,𝑧|[𝐷(𝑧)[𝑥,𝑦], 𝑢]. . . . . . . . . . . . . . . . . . . . . . . . . .
)

−𝑥[𝐷(𝑦),𝐷(𝑧)][𝑢,𝑣]− (−1)|𝑥,𝑦𝑧|𝑦[𝐷(𝑧),𝐷(𝑥)][𝑢,𝑣]− (−1)|𝑥𝑦,𝑧|𝑧[𝐷(𝑥),𝐷(𝑦)][𝑢,𝑣].

(48)

Making the following substitution 𝑥→𝐷(𝑢), 𝑢→ 𝑣, 𝑦→ [𝑦,𝑧], 𝑣→𝐷(𝑥) in identity (21), we get

(−1)|𝑥𝑦𝑧,𝑢𝑣|𝐷(𝑢)[𝑣,𝐷(𝑥)[𝑦,𝑧]] = −(−1)|𝑦𝑧,𝑢|𝐷(𝑥)[𝐷(𝑢)[𝑦,𝑧],𝑣]
+ (−1)|𝑥𝑦𝑧,𝑢𝑣|+|𝑢||𝑣|𝑣 [𝐷(𝑢),𝐷(𝑥)][𝑦,𝑧]

(49)

In this equation the left-hand side is equal to the first term at the left-hand side of the super Filippov-Jacobi
identity (48) and the right-hand side can be found at the right-hand side of super Filippov-Jacobi identity
(47) (terms underlined by solid black line). Hence these terms can be cancelled. Analogously one can see
that all underlined terms in (48) are equal to the sum in the same way underlined terms in (47).

After all cancellations the left-hand side od the super Filippov-Jacobi identity has the form

−𝑥[𝐷(𝑦),𝐷(𝑧)][𝑢,𝑣]− (−1)|𝑥,𝑦𝑧|𝑦[𝐷(𝑧),𝐷(𝑥)][𝑢,𝑣]− (−1)|𝑥𝑦,𝑧|𝑧[𝐷(𝑥),𝐷(𝑦)][𝑢,𝑣]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (50)

and the right-hand side of the same identity has the form

𝐷(𝑥)[𝑦,𝐷(𝑧)[𝑢,𝑣]]+ (−1)|𝑥,𝑦𝑧|𝐷(𝑦)[𝑧,𝐷(𝑥)[𝑢,𝑣]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +(−1)|𝑥𝑦,𝑧|𝐷(𝑧)[𝑥,𝐷(𝑦)[𝑢,𝑣]]

+(−1)|𝑧,𝑢𝑣|𝐷(𝑥)[𝐷(𝑦)[𝑢,𝑣],𝑧]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +(−1)|𝑥,𝑦𝑧𝑢𝑣|𝐷(𝑦)[𝐷(𝑧)[𝑢,𝑣],𝑥]

+(−1)|𝑥𝑦,𝑧|+|𝑦,𝑢𝑣|𝐷(𝑧)[𝐷(𝑥)[𝑢,𝑣],𝑦].

(51)

The terms that are underlined in the same way can be cancelled due to identity (21). This completes the
proof of the super Filippov-Jacobi identity and the proof of the theorem.

5. CONCLUSIONS

Given a commutative superalgebra and its even derivation, one can construct the transposed Poisson super-
algebra using bracket (7). In this paper we considered the question of how this approach can be extended to
odd derivations of a commutative superalgebra. To solve this question, we need an analogue of bracket (7)
for the case of an odd derivation. This analogue is bracket (9). However this bracket is defined not on the
elements of a commutative superalgebra but on the left supermodule over this algebra generated by an odd
derivation, and we cannot omit an odd derivation (as in the case of an even derivation) without breaking the
consistency of the parities. This leads us to consider a supermodule over a commutative superalgebra. We
equip this supermodule with the bracket (9). This bracket induces a Jordan algebra structure on the subspace
of even elements and a Jordan module structure on the subspace of odd elements. Thus, we come to the
conclusion that if our goal is to treat odd derivations within a structure similar to a transposed Poisson super-
algebra, we must, first, pass from a commutative superalgebra to a supermodule over this superalgebra and,
second, use not a Lie superalgebra but a Jordan algebra and a Jordan module over this algebra. The latter
structure is close in its properties to the notion of a Jordan superalgebra, and such a conjecture was made in
[18]. However, our calculations showed that the super Jordan identity does not hold in this case.
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Transponeeritud Poissoni superalgebra

Viktor Abramov, Nikolai Sovetnikov
Ühe olulise näite transponeeritud Poissoni algebrast saab konstrueerida kommutatiivse algebra ja selle

derivatsiooni abil. Seda lähenemist saab laiendada superalgebratele, see tähendab, et saab konstrueerida
transponeeritud Poissoni superalgebra, kui on antud kommutatiivne superalgebra ja selle paarisderivatsioon.
Selles artiklis näitame, et paaritute derivatsioonide kaasamine selle lähenemisviisi raamistikku nõuab uue
struktuuri defineerimist. See on supervektorruum kahe tehtega, mis rahuldavad transponeeritud Poissoni
superalgebra kooskõla tingimust. Esimese tehe määrab vasakpoolne supermoodul üle kommutatiivse super-
algebra ja teine on Jordani sulg. Seejärel tõestatakse, et kommutatiivse superalgebra paaritu derivatsiooni
poolt tekitatud supervektorruumi korral kõik eespool mainitud struktuuri tingimused on täidetud. On näi-
datud, kuidas konstrueerida 3-Lie-superalgebrat, kui on antud transponeeritud Poissoni superalgebra ja selle
paarisderivatsioon.
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