Textual Visual Semantic Dataset for Text Spotting

Ahmed Sabir¹, Francesc Moreno-Noguer², Lluís Padró¹

¹ TALP Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain

 2 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain

CVPR-Workshop on Text and Documents in the Deep Learning Era

Summary

PROBLEM

• Improving the performance of pre-trained text spotting systems in a complex background with semantic information.

CONTRIBUTION

• Introducing extra prior knowledge (task and dataset) to text spotting or OCR in the wild: by reranking the candidates based on their semantic relatedness with words describing the image context.

Case: complex background

Example: case of cut-off bounding box. The correct candidate word is inside the baseline softmax k = 3

- \checkmark The objective is to re-rank the correct candidate word.
- The baseline (CNN-90k dict) is trained on oxford synthetic dataset with 90k dict [Jaderberg et al., 2016]

Baseline

Case: complex background

Example: case of cut-off bounding box. The correct candidate word is inside the baseline softmax k = 3

- ✓ The objective is to re-rank the correct candidate word.
- The baseline (CNN-90k dict) is trained on oxford synthetic dataset with 90k dict [Jaderberg et al., 2016]
- The simplest approach is to add Language model ☺

Baseline+Language model

Case: complex background

Example: case of cut-off bounding box. The correct candidate word is inside the baseline softmax k = 3 \checkmark The objective is to re-rank the correct candidate word.

 The baseline (CNN-90k dict) is trained on oxford synthetic dataset with 90k dict [Jaderberg et al., 2016]

Our approach is to add visual semantic information (word relation) [©]

Baseline+Visual Semantic

step 1

1 We extract the top-k with associate probability from the baseline.

Text spotting system

Step 2

- 1 We extract the top-k with associate probability from the baseline.
- 2 We employ visual classifier (i.e object, scene and caption) to extract the visual context from the image.

Step 3

- 1 We extract the top-k with associate probability from the baseline.
- 2 We employ visual classifier (i.e object, scene and caption) to extract the visual context from the image.
- 3 We compute the semantic similarity between the word and its visual context and then re-rank them.

Dataset generation

Text hypothesis

• We employ several off the self pre-trained Text Spotting baselines to generate k text hypotheses (i.e. CNN-90K, CRNN,..)

Visual context

- Object classifier (Resent152, Inception-ResNet-v2) 1000 label classes
- Scene classifier (365 Resent scene classifier) 365 label classes
- Caption description (standard model) tuned on COCO-caption

Text hypothesis	Object	Scene	Caption
11, il, j, m,	railroad	train	a train is on a train track with a train on it
lossing, docile, dow, dell,	bookshop	bookstore	a woman sitting at a table with a laptop
29th, 2th, 2011, zit,	parking	shopping	a man is holding a cell phone while standing
happy, hooping, happily, nappy,	childs	bib	a cake with a bunch of different types of scissors
coke, gulp, slurp, fluky,	plate	pizzeria	a table with a pizza and a fork on it
will, wii, xviii, wit,	remote	room	a close up of a remote control on a table

Resulting dataset

- ICDAR-17-V: Image + Textual dataset from IC17 Task 3
- COCO-text-Visual: Image + Textual dataset from COCO-text
- COCO-Pairs: Only Textual dataset from COCO-text

Unique Count for Textual dataset									
Dataset	image #	bbox	caption	object	words	nouns	verb	adjectives	
Conceptual [35]	3M	-	3M	-	34219,055	10254,864	1043,385	3263,654	
MSCOCO [22]	82k	-	413k	-	3732,339	3401,489	250,761	424977	
Flickr 30K [44]	30k	-	160k	-	2604,646	509,459	139128	169158	
SVT [42]	350	✓	-	-	10,437	3856	46	666	
COCO-Text [40]	66k	\checkmark	-	-	177,547	134,970	770	11,393	
Visual context dataset (proposed dataset)									
COCO-Text-V	16k	~	60k	120k	697,335	246,013	35,807	40,922	
IC17-V	10k	\checkmark	25k	50k	296,500	96,371	15,820	15,023	
COCO-Pairs	66k	-	-	158k	319,178	188,295	6,878	46,983	

Result

Evaluation

 We evaluate our approach on different baselines: 1) CNN-90k dictionary [Jaderberg et al., 2016] 2) LSTM with visual attention [Ghosh et al., 2017]. The table shows the best results after re-ranking using different re-ranker.

Model	CNN			LSTM				
	Acc.	k	MRR	Acc.	k	MRR		
Baseline (BL)	Acc.:19.7			Acc.:17.9				
Experiment 1 word-to-word relation (i.e. object and scene)								
BL+Word2vec [25]	21.8	5	44.3	19.5	4	80.4		
BL+Glove [27]	22.0	7	44.5	19.1	4	78.8		
BL+Sw2v [24]	21.8	7	44.3	19.4	4	80.1		
BL+Fasttext [17]	21.9	7	44.6	19.4	4	80.3		
BL+TWE [34]	22.2	7	44.7	19.5	4	80.2		
BL+RWE [3]	21.9	7	44.5	19.6	4	80.7		
BL+LSTMmebed [13]	21.6	7	44.0	19.2	4	79.6		
Experiment 2 word-to-sentence relation (i.e. caption)								
BL+USE-T [5]	22.0	6	44.7	19.2	4	79.5		
BL+BERT-feature [6] 🟺	21.7	7	45.0	19.3	4	81.2		
BL+BERT (fine-tune) [6] 🏺	22.7	8	45.9	20.1	9	79.1		

Examples

- Re-ranking the correct candidate word and its visual context with tuned BERT [Devlin et al. 2019] on the proposed dataset.
- BERT re-ranked the candidates based on the image description.

object: lifeboat scene: raft caption: a boat is parked in small boat text hypothesis: honor, donor, honda,...

bounding box:

HONOA

 $\overset{\bullet}{=}$ top- w_k : sim(honda, parked)

object: street scene: downtown caption: a street sign with a sign on on the side text hypothesis: nay, way, may,...

5 top- w_k : sim(way, street)

object: pencil scene: child caption: a small child's toy is sitting on a table text hypothesis: adding, adana, adam,...

bounding box:

 $\mathbf{5}$ top- w_k : sim(adam, toy)

object: american scene: hospital caption: a table with bunch of food on it

text hypothesis: il,xl,7,...

bounding box:

top- w_k : sim(7, table), ULM(7)

A.Sabir (UPC-TALP)

Conclusion

Contributions

• We defined the task of post-processing for text spotting by exploring the semantic relation between text and scene in a textual manner. Also, introducing a visual context dataset for this problem.

Final thoughts

• Text in images is **not always related** to its visual environment, there is only a fraction of cases this approach may help solving, but given its low cost, it may be useful for domain adaptation of general text spotting systems (e.g fixing false-positive and short word)

