Superpositional graphs

Binary graph is directed acyclic weakly connected graph, which has root node and two terminal nodes - 0 and 1. Every intermediate node \(v \) has two successors: \(\text{low}(v) \) and \(\text{high}(v) \). Therefore, edge \(a \to b \) is 0-edge (1-edge) if \(\text{low}(a) = b \) (\(\text{high}(a) = b \)).

Definition 1. A superposition of \(E \) into \(G \) instead of \(v \) (\(G_{v \leftarrow E} \)) is a graph, which we receive by deleting \(v \) from \(G \) and redirecting all edges, pointing to \(v \), to the root of \(E \), all edges of \(E \) pointing to terminal 1 to the node \(\text{high}(v) \) and all edges pointing to the terminal 0 to the node \(\text{low}(v) \).

We define binary graphs \(A, C \) and \(D \), whose descriptions are in Fig. 1. We define inductively set of superpositional graphs (SPG):

Definition 2.

1° Graph \(A \in \text{SPG} \).

2° If \(G \in \text{SPG} \) and \(v \in V(G) \), then \(G_{v \leftarrow C} \in \text{SPG} \) and \(G_{v \leftarrow D} \in \text{SPG} \).

Let the Hamiltonian path of \(n \)-node SPG \(G \) consists of nodes \(v_1, \ldots, v_n \); and \(v_{n+1} \) represents terminal 0 and also terminal 1. The meaning of the propositional variables \(x_{i,j} \) and \(y_{i,j} \) is respectively existence of 0-edge and 1-edge from node \(v_i \) to node \(v_j \):

\[
 x_{i,j} = \begin{cases}
 1, & \text{if there exists 0-edge } v_i \to v_j; \\
 0, & \text{otherwise.}
 \end{cases}
\]

\[
 y_{i,j} = \begin{cases}
 1, & \text{if there exists 1-edge } v_i \to v_j; \\
 0, & \text{otherwise.}
 \end{cases}
\]

Therefore propositional formulae for class \(\text{SPG} \) is defined on the set

\[
 X = \{ x_{i,j}, y_{i,j} : 1 \leq i < j \leq n + 1 \} \]
Description of SPG by means of propositional formulae

The formula is

\[F = P_1 \& P_2 \& P_3 \& P_6 \& P_7 \& P_8 \& P_9 \]

where

\[P_1 = \bigwedge_{1 \leq i \leq (n-1)} \text{xor}(x_{i,i+1}, y_{i,i+1}) \]

\[P_2 = \bigwedge_{1 \leq i \leq n-1} \text{exactlyone}(x_{i,j} : i < j \leq n + 1) \]

\[P_3 = \bigwedge_{1 \leq i \leq n-1} \text{exactlyone}(y_{i,j} : i < j \leq n + 1) \]

\[P_6 = \bigwedge_{1 \leq k < l < p < r \leq (n+1)} (x_{k,p} \& x_{l,r}) \]

\[P_7 = \bigwedge_{1 \leq k < l < p < r \leq (n+1)} (y_{k,p} \& y_{l,r}) \]

\[P_8 = \bigwedge_{1 \leq k < s < l < p < r \leq (n+1)} (x_{k,p} \& y_{l,r} \& y_{s,t}) \]

\[P_9 = \bigwedge_{1 \leq k < s < l < p < r \leq (n+1)} (y_{k,p} \& x_{l,r} \& x_{s,t}) \]