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Abstract

We address the problem of detecting and diagnosing behavioral differences
between business process models. We rely on a translation from process mod-
els into asymmetric event structures (AESs), a formalism for the abstract
representation of concurrent processes in terms of events and behavioral re-
lations between events. A näıve version of this translation suffers from two
limitations. First, it produces redundant difference diagnostic statements be-
cause an AES may contain unnecessary event duplications. Second, it is not
applicable to process models with cycles. In order to tackle the first limita-
tion, we rely on a technique for reducing duplication of events in AESs while
preserving the behavior. For the second limitation, we propose a method
for constructing a finite unfolding prefix and a corresponding AES, which
captures all the possible causal dependencies between activities in the given
process model. For comparison purposes, exploiting the AESs extracted from
the process models, we build a sort of partial synchronized product, easing
the identification of behavioral differences which can be possibly expressed
in terms of behavioral relations and of repetition behaviors.
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1. Introduction

Comparing models of business process variants is a basic operation when
managing collections of process models [1]. In some cases, syntactic match-
ing of nodes or edges are sufficient to understand differences between two
variants. However, two variants may be syntactically different and still be
behaviorally equivalent or they may be very similar syntactically but quite
different behaviorally, as changes in a few gateways or edges may entail sig-
nificant behavioral differences.

This paper presents a technique to compare business processes in terms
of behavioral relations between tasks. The technique diagnoses differences
in the form of binary behavioral relations (e.g., causality and conflict) that
hold in one model but not in the other. For example, given the models in
Figure 11 we aim at describing their differences via statements of the form:
“In M1, there is a state after Prepare transportation quote where Arrange deliv-
ery appointment can occur before Produce shipment notice or Arrange delivery
appointment can be skipped, whereas in the matching state in M2, Arrange
delivery appointment always occurs before Produce shipment notice”. The di-
agnosis also considers cyclic behavior, e.g. “In M1 activity Arrange delivery
appointment occurs 0,1 or more times, whereas in M2 it occurs at most once”.
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Figure 1: Variants of business process models

The key idea of the proposal is to compare abstract representations of
the input process models based on binary behavioral relations. Then exist-
ing behavioral differences between the process models can be expressed as
binary relations that hold in one process and not in the other. To this end,
process models are abstracted to a well-known model of concurrency, namely
event structures [3], where computations are represented via events (activity

1Based on an order fulfillment process presented in [2].
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occurrences) and binary behavioral relations between events. Clearly, if two
process models have isomorphic event structures, then they are behaviorally
equivalent, since they represent the same behavioral relations between the
corresponding events. There are various types of event structures compris-
ing different types of relations, such as prime event structures [3] (PESs)
and asymmetric event structures [4] (AESs). For the purpose of comparison,
more compact representations are desirable as they lead to more concise di-
agnosis of relations that exist in one process and not in the other. In this
respect, AESs are more compact than PESs in the sense that the occurrence
of the same activity in different contexts (determined by the possibility of
task skipping) are necessarily represented as distinct events in PESs, leading
to a duplication of events which is possibly avoidable in AESs. In a prior
work [5], we proposed a method for behavior-preserving folding (reduction) of
AESs based on a so-called folding operation which, roughly speaking, merges
events corresponding to occurrences of the same activity in different contexts
while preserving the behavior. However, the work in [5] shows that in some
cases multiple non-isomorphic “minimal” AESs exist that represent the same
behavior.

In this setting, the contributions of the paper are threefold: (i) we extend
our previous work [5], by proposing a deterministic order on the folding of
an AES that leads to a uniquely determined minimal representation of the
behavior of a given process model; (ii) we rely on the theory of unfolding
prefixes for determining, for a given process model with cycles, a finite struc-
ture describing all possible causal dependencies between activities; this gives
also information on which activities are repeated and which are not; (iii) we
propose a method for calculating an error-correcting (partial) synchronized
product of two event structures from which differences can be diagnosed at
the level of repetition or binary behavioral relations that exist in a state of
a process model but not in the matching state of the other model.

For the sake of presentation, we assume that the input process models
are represented as Petri nets. Transformations from other process modeling
notations (e.g., BPMN) to Petri nets are defined elsewhere [6].

This paper is a revised and extended version of [7]. With respect to the
conference version, the main extension is the definition of the partial syn-
chronized product of two AESs and its application to diagnosing behavioral
differences. In the conference version, the difference diagnostic was derived
from an error-correcting graph matching over the folded AESs which, as ex-
plained later, can produce scarcely intuitive results as it does not take into
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account the semantics of the relations in the AESs. In particular, the diag-
nostic method based on error-correcting graph matching disregards the order
of occurrence of activities in the process models. A secondary extension is a
refined specification of the method for identifying and verbalizing differences,
which was only incompletely sketched in the conference version.

The paper is structured as follows, Section 2 discusses related work. Sec-
tion 3 provides definitions of notions used in the rest of the paper. The meth-
ods for calculating AESs (both for acyclic and cyclic models) are presented
in Section 4. Next, Section 5 presents the notion of partial synchronized
product and how this product allows us to identify and verbalize the differ-
ences between a pair of process models. Finally Section 6 summarizes the
contributions and discusses future work.

2. Related work

Approaches for process model comparison can be divided into those based
on node label similarity, process structure similarity and behavioral similar-
ity [1]. We remark that node label similarity plays an important role in
the alignment of nodes (e.g., tasks) across the process models being com-
pared. In this paper we focus on behavioral similarity, assuming that such
an alignment is given, i.e., for each node label in one model we are given the
corresponding (“equivalent”) node label in the other model.

There are many equivalence notions for concurrent systems [8], ranging
from trace equivalence (processes are equivalent if they have the same set
of traces) to bisimulation equivalence, to finer equivalences which preserve
some concurrency features of computations (two models are equivalent if they
have same sets of runs taking into account concurrency between events). Few
methods have been proposed to diagnose differences between processes based
on these notions of equivalence. The paper [9] presents a technique to de-
rive equations in a process algebra characterizing the differences between two
labeled transition systems (LTSs). The use of a process algebra makes the
feedback difficult to grasp for end users (process analysts in our context) and
the technique relies on a notion of equivalence that does not take into account
the concurrent structure in the process (a process model with concurrency
and its sequential simulation are equivalent). In [10], a method for assessing
dissimilarity of LTSs in terms of “edit” operations is presented. However,
such feedback on LTSs does not tell the analyst what relations exist in one
model that do not exist in the other. Also, it is based on a notion of equiv-
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alence that again does take concurrency into account. The same remarks
apply to [11], which presents a method for diagnosing differences between
pairs of process models using standard automata theory. In addition, in [11]
the set of reported differences is not guaranteed to be complete.

Behavioral profiles (BP) [12] and causal behavior profiles [13] are two
approaches to represent processes using binary relations. They abstract a
process using a n × n matrix, where n is the number of tasks in the process.
Each cell contains one out of three relations: strict order, exclusive order or
interleaving ; plus an additional co-occurrence relation in the case of causal
behavioral profiles. Both techniques are incomplete as they mishandle several
types of constructs, e.g., task skipping (silent transitions), duplicate tasks,
and cycles. In this case, two processes can have identical BPs despite not
being behaviorally equivalent in any standard sense.

Alpha relations [14] are another representation of processes using binary
behavioral relations (direct causality, conflict and concurrency), proposed in
the context of process mining. Alpha causality however is not transitive
(i.e., causality has a localized scope) making alpha relations unsuitable for
behavior comparison [15]. Moreover, alpha relations cannot capture so-called
“short loops” and hidden tasks (including task skipping). Relation sets [16]
are a generalization of alpha relations. Instead of one matrix, the authors
use k matrices (with a variable k). In each matrix, causality is computed
with a different look-ahead. It is shown that 1-look-ahead matrices induce
trace equivalence for a restricted family of Petri nets. The authors claim
that using k matrices improves accuracy. But it is unclear how a human-
readable diagnostic of behavioral differences could be extracted from two
sets of k matrices and it is unclear to what notion of equivalence would this
diagnostic correspond.

3. Preliminaries

This section introduces some fundamental notions on Petri nets, branch-
ing processes and event structures that will be used in subsequent parts of
the paper.

3.1. Petri nets

Definition 1 (Petri net, net system). A tuple N = (P,T,F ) is a Petri
net, where P is a set of places, T is a set of transitions, with P ∩ T = ∅, and
F ⊆ (P ×T )∪(T ×P ) is a set of arcs. A marking M ∶ P → N0 is a function that
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Figure 2: The net N2 corresponding to model M2 in Figure 1b

associates each place p ∈ P with a natural number (viz., place tokens). A net
system N = (N,M0) is a Petri net N = (P,T,F ) with an initial marking M0.

Hereafter the components of a net system N will be implicitly named P ,
T , F and M0, possibly with superscripts.

Places and transitions are conjointly referred to as nodes. We write ●y =
{x ∈ P ∪ T ∣ (x, y) ∈ F} and y● = {z ∈ P ∪ T ∣ (y, z) ∈ F} to denote the preset
and postset of node y, respectively. By F + and F ∗ we denote the irreflexive
and reflexive transitive closure of F , respectively.

The operational semantics of a net system is defined in terms of mark-
ings and transition firings. A marking M enables a transition t, denoted as
(N,M)[t⟩, if ∀p ∈ ●t ∶M(p) > 0. Moreover, the occurrence of t leads to a new
marking M ′, with M ′(p) =M(p)−1 if p ∈ ●t∖t●, M ′(p) =M(p)+1 if p ∈ t●∖●t,
and M ′(p) =M(p) otherwise. We use M

t
Ð→M ′ to denote the occurrence of

t. The marking Mn is said to be reachable from M if there exists a sequence
of transitions σ = t1t2 . . . tn such that M

t1
Ð→ M1

t2
Ð→ . . .

tn
Ð→ Mn. The set of

all the markings reachable from a marking M is denoted [M⟩. A marking M
is coverable if there exist a reachable marking M ′ such that M ′(p) ≥ M(p)
for every p ∈ P . A marking M of a net is safe if M(p) ≤ 1 for every place
p. A net system N is said to be safe if all its reachable markings are safe.
In the following we restrict ourselves to safe net systems and we will often
identify a safe marking M with the set {p ∈ P ∣ M(p) = 1}.

Our Petri nets (and net systems) will be labeled, i.e., they will be asso-
ciated with a function λ ∶ T → Λ ∪ {τ} where Λ is a fixed set of labels. A
transition t will be called visible if λ(x) ≠ τ , otherwise x is silent. An exam-
ple of a labeled net system is shown in Figure 2, where the label of visible
transitions is inside the corresponding rectangle. Silent transitions are unla-
beled (and they possibly have a name τi, located outside the corresponding
rectangle).
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3.2. Deterministic and branching processes

The partial order semantics of a net system can be formulated in terms
of runs or, more precisely, prefixes of runs that are referred to as determin-
istic processes [17].2 A process can be represented as an acyclic net with
neither branching nor merging places, i.e., ∀p ∈ P ∶ ∣●p∣ ≤ 1∧ ∣p●∣ ≤ 1. Alterna-
tively, several (possibly all) runs can be accommodated in a single tree-like
structure, called branching process [3], which can contain branching places
and explicitly represents three behavior relations: causality, concurrency and
conflict defined as follows.

Definition 2 (behavior relations). Let N be a Petri net and x, y ∈ P ∪T
two nodes in N . Then

• x is a cause of y, denoted x <N y, if (x, y) ∈ F +. The inverse causal
relation is denoted >N . By ≤N we denote the reflexive causal relation.

• x and y are in conflict, denoted x #N y if (a) x, y ∈ T are distinct
transitions such that ●x∩ ●y ≠ ∅ (direct conflict) or there are x′, y′ such
that x′#y′ and x ≤N x′, y ≤N y′ (inherited conflict).

• x and y are concurrent, denoted as x ∥N y if neither x <N y, nor y <N x,
nor x #N y.

We next provide a formal definition of branching process. With a slight
abuse of notation, given a function f ∶X → Y and a subset X ′ ⊆X, we write
f(X ′) as a shorthand for {f(x) ∣ x ∈X ′}.

Definition 3 (branching process). Let N = (P,T,F,M0) be a net sys-
tem. A branching process β = (B,E,G, ρ) of N is a net (B,E,G) gener-
ated by the inductive rules in Figure 3. The rules also define a function
ρ ∶ B ∪E → P ∪ T that maps each node in β to a node in N .

For a branching process β = (B,E,G, ρ), places in B and transitions in E
are often referred to as conditions and events, respectively. The set Min(β)
of minimal elements of B ∪ E with respect to causality corresponds to the
set of places in the initial marking of N , i.e., ρ(Min(β)) =M0. A co-set is a
set of conditions B′ ⊆ B such that for all b, b′ ∈ B′ it holds b ∥ b′. A cut is a
maximal co-set w.r.t. set inclusion.

2Note that in this section, the term process refers to a control-flow abstraction of a
business process based on a partial order semantics.
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p ∈M0
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Figure 3: Branching process, inductive rules
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Figure 4: The unfolding U(N2)

There exists a largest branching process, representing any possible be-
havior of the net system N , called the unfolding of N and denoted by
Unf (N ) [18, 3].

A branching process does not contain merging conditions. As a result,
some nodes in the net system need to be represented more than once in the
branching process. For example, the branching process in Figure 4 contains
multiple instances of b, c and d, and all the events d come from a single
transition in the net system in Figure 2.

Definition 4 (configuration and deterministic process). Let β = (B,
E,G, ρ) be a branching process.

• A configuration C of β is a set of events, C ⊆ E, which is (i) causally
closed, i.e., ∀e′ ∈ E, e ∈ C ∶ e′ ≤β e ⇒ e′ ∈ C, and (ii) conflict free, i.e.,
∀e, e′ ∈ C, ¬(e #β e′). We denote by Conf (β) the set of configurations
of the branching process β and by MaxConf (β) the subset of maximal
configurations w.r.t. set inclusion.

• The local configuration of an event e ∈ E is its set of causes ⌊e⌋ =
{e′ ∣ e′ ≤ e}. The set of strict causes of an event e ∈ E is ⌊e) = ⌊e⌋/{e}.

• A deterministic process π = (Bπ,Eπ,Gπ, ρ) is the net induced by a
configuration C, where Bπ = ⋃

c∈C(
●c ∪ c●), Eπ = C, and Gπ = G ∩ (Bπ ×

Eπ ∪Eπ ×Bπ).

For a condition b ∈ B we will write ⌊b⌋ as a shorthand for ⌊●b⌋.
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Given a branching process β of a net system N , the target cut for a con-
figuration C ∈ Conf (β) is defined as Cut(C) = (Min(β) ∪ ⋃

c∈C c
●)/(⋃

c∈C
●c). Its

image in N , ρ(Cut(C)), is a reachable marking in N denoted by Mark(C).
Let C and C ′ be configurations of β, such that C ⊂ C ′, and let π and π′ be
their corresponding deterministic branching processes. If X = C ′ ∖ C, then
we write π′ = π ⊕X and we say that π′ is an extension of π.

Throughout this paper, we use visible-pomset equivalence [19] as the no-
tion of behavioral equivalence. A pomset is a tuple ⟨X,≤X , λX⟩, where X
is a set of events, ≤X is a partial order and λX is the labeling function. An
isomorphism of pomsets X and Y is an isomorphism between the underlying
sets, which respects labels and order, i.e., a bijection f ∶ X → Y such that,
λX = λY ○ f , and e <X e′⇔ f(e) <Y f(e′) for all e, e′ ∈X.

A configuration C can be seen as a pomset with the order and labeling
which are the restriction of those of the corresponding net. For this reason
we will refer as C to the configuration and its corresponding pomset inter-
changeably. For a configuration C, we denote by CΛ = {e ∈ C ∣ λ(e) ≠ τ} the
subset of visible events in C or the corresponding pomset, which is called the
visible pomset underlying C. Moreover, we denote by Conf (β)Λ the set of
visible pomsets underlying the configurations of a branching process β, i.e.,
Conf (β)Λ = {CΛ ∶ C ∈ Conf (β)}. Armed with the concepts above, we can
now formally define visible-pomset equivalence [19].

Definition 5 (visible-pomset equivalence). Let Unf (N ) and Unf (N ′)
be the unfoldings of the net systems N and N ′. Then N visible-
pomset approximates N ′, written N ⊑pt N ′ when for every visible-
pomset XΛ ∈ Conf (Unf (N ))Λ there is an isomorphic visible-pomset Y Λ ∈
Conf (Unf (N ′))Λ. We way that N and N ′ are visible pomset equivalent,
denoted N ≡vp N ′, if each is ⊑vp to the other.

3.3. Event structures

This section introduces two variants of event structures, which are the
cornerstones of our comparison technique, prime event structures [3] and
asymmetric event structures [4].

Definition 6 (prime event structure). A labeled prime event structure
(PES) is a triple P = ⟨E,≤, ,#, λ⟩, where ≤ (causality relation) is a partial
order on E, # (conflict relation) is irreflexive, symmetric and hereditary w.r.t.
≤, namely if e#e′ ∧ e′ ≤ e′′ ⇒ e#e′′ for all e, e′, e′′ ∈ E. Finally, λ ∶ E → Λ is
the labeling function.
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Given a branching process β = (B,E,G, ρ) of a net system N , we can de-
fine the corresponding PES in an obvious way, just forgetting the conditions
and keeping the visible events, and causality, conflict and labeling on events.

a

b c

c d b d

d d

#

# #

Figure 5: PES P

Figure 5 shows the PES with all the observable behav-
ior of the net system N2 from Figure 2. Solid arrows
represent causality, and annotated dotted lines repre-
sent conflict. For the sake of readability, it is common
practice to represent only direct causality, omitting the
transitive closure, and direct conflicts, omitting the in-
herited ones.

The configurations of a PES are defined exactly as
for branching process. We will denote the set of config-
urations of a PES P by Conf (P).

We now turn our attention to Asymmetric Event Structures (AESs).

Definition 7 (asymmetric event structure). An AES is a triple A =
⟨E,≤,↗, λ⟩, where E represents the set of events, ≤ is the causality relation,
↗ is the asymmetric conflict relation and λ ∶ E → Λ∪{τ} is the labeling func-
tion. Moreover, for all e, e′, e′′ ∈ E the following holds: (1) ⌊e⌋ = {e′ ∣ e′ ≤ e}
is finite, (2) e < e′⇒ e↗ e′, (3) if e↗ e′ and e′ < e′′ then e↗ e′′, (4) ↗ ∣⌊e⌋ is
acyclic, (5) if ↗ ∣⌊e⌋∪⌊e′⌋ is cyclic then e↗ e′. We will write ΨA to refer to the
pair (<,↗) of behavior relations of A.

AESs have two relations: causality, with the same interpretation as in
PES, and asymmetric conflict, which is an asymmetric version of the conflict
in PES. Graphically, causality is represented by a solid arrow and asymmetric
conflict with a dashed arrow. Intuitively, for a↗ b there are two interpreta-
tions: (i) the occurrence of b prevents the occurrence of a, or (ii) a precedes
b in all computations where both events occur. By (ii), asymmetric conflict
can be seen as a weak form of causality. Similarly to what done for PESs,
two events are said concurrent when they are neither in causal nor in asym-
metric conflict relation. In the graphical representation only non transitive
relations are depicted, either causality or asymmetric conflict, and causality
takes precedence over asymmetric conflict.

Definition 7 expresses different properties of the asymmetric conflict rela-
tion. Specifically, as mentioned in the intuition above, asymmetric conflict is
a weak form of causality and then ↗ includes <, see point (2) in Definition 7.
Asymmetric conflict is inherited along causality, point (3) in Definition 7,
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and if a ↗ b < c then a ↗ c, since a has to occur necessarily before c when
they occur in the same computation. Cycles of asymmetric conflict define
conflict over events, i.e., events forming a cycle of ↗ cannot appear in the
same computation since they have to occur before themselves, see points (3)
and (4). The notion of conflict over sets of events #X in AESs is defined by
the following rules

e0 ↗ e1 ↗ . . .↗ en ↗ e0

#{e0, . . . , en}

#(X ∪ {e}) e ≤ e′
#(X ∪ {e′})

The first rule captures the fact that events in a cycle of asymmetric conflict
cannot occur in the same computation. The second rule expresses inheritance
of conflict with respect to causality: if events in the set X ∪{e} cannot occur
in the same computation and e ≤ e′, then also events in X∪{e′} cannot occur
in the same computation. The reason is that the presence of e′ requires the
prior occurrence of e. Figure 6 shows an example where #{a, b, c} by the
first rule of conflict over sets and, by the second rule, applied three times,
we deduce #{a′, b′, c′}. Note that the second rule is essential: in fact, by
Definition 7(2) we have that c↗ a′, a↗ b′ and b↗ c′, but events a′, b′, c′ are
not in a cycle of asymmetric conflict, hence the first rule would be insufficient
to prove #{a′, b′, c′}.

a b

c

a′ b′
c′

Figure 6: Inheritance of conflict along causality in AESs.

A configuration of an AES A is a set of events C ⊆ E such that i) for
any e ∈ C, ⌊e⌋ ⊆ C (causal closedness) ii) ↗ ∣C is acyclic (conflict free). The
set of configurations of A is denoted by Conf (A). Also configurations of
AESs will be identified with pomsets taking as order on events the transitive
closure of asymmetric conflict, namely a configuration C ∈ Conf (A) will be
associated with a pomset ⟨C,↗∗

C , λC⟩, where ↗C and λC are the restriction
of the asymmetric conflict relation and of the labeling to events in C.

In the case of PESs, given two configurations C,C ′ such that C ⊆ C ′,
we have that C can be extended by executing the events in C ∖ C ′ in any
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order compatible with causality. Hence subset inclusion can be interpreted
as an configuration extension relation. This is no longer true for AESs. For
instance, consider the AESs in Figure 7. Note that {a, b} can evolve to
{a, b, c}, while {a, c} cannot because the occurrence of c prevents that of b.

a b

c

Figure 7: A0

Given, if C,C ′ ∈ Conf (A) configurations, we say that C ′ ex-
tends C, written C ⊑ C ′, if C ⊆ C ′ and for all e ∈ C1, e′ ∈ C2∖C1,
¬(e′ ↗ e).

Clearly any PES can be seen as a special
AES where the conflict relation is replaced with
asymmetric conflict relations in both directions.
In general, as already mentioned, AESs are more expressive
than PESs and they can provide a more compact representation of a given
set of configurations. As an example, consider the AESs in Figure 8. The
AES A1 can be seen as the direct translation of a PES, hence including
event duplications. Instead, A2 and A3 are smaller, visible-pomset equivalent
versions of A1. In some sense, both A2 and A3 are minimal, namely there is
no smaller AES representation for the same behavior.

4. Canonical folding of process models

b c′

c b′
(a) A1

b c′

c

(b) A2

b c′

b′
(c) A3

Figure 8: Equivalent AESs

This section consists of two
parts. The first part addresses the
problem of finding a way of produc-
ing a canonical reduced version of a
given AES, by leveraging the notion
of canonical labeling of graphs. The
second part extends the method to
support the comparison of process
models that possibly include cycles.

4.1. Canonical representation of
acyclic process models

In order to exploit the reduced event structure model for comparison
purposes the result of the reduction should uniquely determined from the
original model. In other words, starting from two isomorphic PESs and
repeatedly applying the behavior preserving folding operation, the resulting
minimal AESs should be isomorphic.



4 CANONICAL FOLDING OF PROCESS MODELS 13

Space limitations prevents from reporting the details of the reduction
technique for AESs introduced in [5]. Briefly, given a business process model,
one consider the underlying PES. This can be seen as a special AES, from
which the reduction starts. The basic idea is that of identifying sets of
events which intuitively represent different instances of the same activity,
with the property that such events can be merged without modifying the
behavior represented by the AES. A set X of events with this property in
an AES A is called a set of combinable events and merging operation is
called folding. The AES resulting from A by folding the set of events X
is denoted A/X . In [5] it is shown that the folding preserves visible-pomset
equivalence (actually it preserves history preserving bisimilarity, which is a
stricter behavioral equivalence). At every iteration a combinable set of events
is chosen for folding, until one reaches a “minimal” AES, where no further
folding steps are possible.

Unfortunately, different choices of the sets of events to be folded can lead
to different minimal representations. For instance, the AESs A2 and A3 in
Figure 8 can be obtained from A1 by folding events b, b′ or c, c′, respectively.
They are not further foldable and thus they provide minimal representations
of the same AES.

In order to address this problem, we leverage some concepts from graph
theory. More specifically we rely on the concept of canonical labeling of a
graph [20], that originates as an approach to deciding graph isomorphism.
Let Canon(G) be a function that maps a graph G to a canonical label in the
sense that, given graphs G and H, we have Canon(G) = Canon(H) iff H
and G are isomorphic. If we use the string representation of the adjacency
matrix of a graph, then a canonical label for a graph G can be determined
by computing all permutations of its adjacency matrix and selecting the
largest (some authors take the smallest) lexicographical exemplar among
them. Clearly, this approach is computationally expensive, but state-of-
the-art software implement several practical heuristics to compute canonical
labels.

Formally, let G = (V,A) be a graph, where V is the set of vertices and A
the set of arcs. Moreover, let M(G) be the adjacency matrix of G, in some
fixed linear representation. For any order of the set of vertices, represented
as a numbering γ ∶ V → {0,1, ...∣V ∣}, we get a corresponding string M(G)γ.
Then the canonical label of G is the string induced by an order γ̂, s.t.,
M(G)γ ≤lex M(G)γ̂ holds for every possible order γ. The order γ̂ is referred
to as the canonical order.
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In our implementation, we use nauty (http://pallini.di.uniroma1.
it/) for computing the graph canonical label and the corresponding order γ̂
on the vertices which is mostly of interest for us. Nauty and other similar
tools work on graphs with unlabeled edges, while AESs can be naturally seen
as graphs with labeled edges. The problem is easily overcome by using some
isomorphism preserving transformation of edge-labeled into edge-unlabeled
graphs (we used the one in [21]).

The canonical order on the vertices of the graph associated to an AES can
be easily used to establish a total order on the folding that yields a minimal
and canonical AES for a PES. For a combinable set of events X, we denote
by X γ̂ the ordered string of numbers corresponding to the events in X.

Definition 8 (deterministic folding). Let A be an AES, and γ̂ ∶ E → N0

be the canonical order of events given by nauty. Let X,Y ⊆ E be combinable
sets of events. Then the precedence of X over Y in a deterministic folding is
defined by the following conditions, listed in decreasing relevance:

(i) λ(e) >lex λ(e′) where e′ ∈ Y and e ∈X, or

(ii) λ(e) =lex λ(e′) ∧ ∣X ∣ > ∣Y ∣, or

(iii) λ(e) =lex λ(e′) ∧ ∣X ∣ = ∣Y ∣ ∧X γ̂ >lex Y γ̂.

Whenever, applying folding according to such order, we reach an AES where
no further folding steps are possible, this is denoted by f+(A) and referred
to as minimal canonical folding.

Figure 9 illustrates the canonical folding of A4, which corresponds to the
PES P in Figure 5. A4 shows the order γ̂ assigned by nauty. The combinable
sets of events in A4 are {{b(1), b(2)},{c(3), c(4)},{d(5), d(6)},{d(7), d(8)}},
and from Definition 8 we know that {b(1), b(2)} takes precedence over the
others. The folding of {b(1), b(2)} is depicted in Figure 9b. Note that a fresh
event b is added, replacing the set {b(1), b(2)}, and the order γ̂ is recalculated
for the new AES. Finally, Figure 9c depicts the minimal and canonical AES.
In this particular case, it was necessary to keep two events with label c and
two with label d to preserve the behavior.

The fact that the order on folding steps given in Definition 8 is clearly
total, and thus folding is essentially deterministic, ensures that the reduction
of an AES will produce a uniquely determined result.

http://pallini.di.uniroma1.it/
http://pallini.di.uniroma1.it/
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Figure 9: Canonical labeling and folding

Proposition 1 (canonical folding of AES). Let A1 and A2 be isomorphic
AESs. Then the deterministic folding of A1 and A2 produces a canonical
AES, such that f+(A1) is isomorphic to f+(A2).

4.2. Finite representation of cyclic process models

A fundamental problem with cyclic process models is that their branching
processes, in the presence of cyclic behavior, are infinite. The seminal work
in [22], later developed by many authors (see, e.g., [23] and citations therein)
introduced sophisticated strategies for truncating the unfolding to a finite
level, while keeping a representation of any reachable state, thus getting
what is referred to as the complete unfolding prefix (CP). In particular, the
authors in [24] introduced a framework where a canonical unfolding prefix,
complete with respect to a suitable property, not limited to reachability, can
be constructed. Our own work relies on such a framework.

In the following we restrict ourselves to Petri nets without duplicate tasks
(namely, the labeling of the visible events is assumed to be injective). Con-
sider the net system N1 and the complete unfolding prefix β1 presented in
Figure 10. Note that both b1 and b4 correspond to the place p1 in N1. To
compute a marking complete unfolding prefix, we start applying the induc-
tive rules in Figure 3. In this case, it is possible to stop unfolding once we
reach b2 and b4 roughly because any addition to the prefix would duplicate
information already represented. Events b and c are called cutoff events. Al-
though this prefix includes a representation of all reachable markings and all
executable transitions, it does not include the information that we require
to diagnose the behavioral differences of business processes. For instance,
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the fact that c causally precedes b and d is not explicitly represented in this
prefix. For this reason, we will use a stronger cutoff condition, leading to a
larger prefix of the unfolding that makes explicit all the causal relations be-
tween activities. In the case of the net system N1 in Figure 10a the required
unfolding prefix is β2 (Figure 10c).

Formally, we resort to the notion of cutting context introduced in [24].
A cutting context is a tuple Θ = (≈,⊲,C) where ≈ is an equivalence relation
over configurations, ⊲ is a total order over configurations, and C is the set of
configurations used at the time of the computation of the unfolding prefix
– e.g., the cutting context used in McMillan [22] is ΘMcMillan = (≈mark,⊲size
,Cloc), where ≈mark equates two configurations when they produce the same
marking, ⊲size is the total order induced by the size of configurations, and
Cloc = {⌊e⌋ ∣ e ∈ E} is the set of local configurations. As already mentioned,
the complete unfolding prefix β1 is computed by using McMillan’s cutting
context. In fact, if we consider the local configurations ⌊c⌋ = {a, τ, c} and
⌊a⌋ = {a}, then one can easily check that Mark(⌊a⌋) = Mark(⌊c⌋) = {p1}.
Moreover, since ∣⌊a⌋∣ < ∣⌊c⌋∣, then event c is a cutoff event. The cutting
context in [25], denoted ΘERV = (≈mark,⊲slf ,Cloc), differs from that in [22] for
the definition of the partial order ⊲slf , which is refined by considering action
labels thus leading to more cut-offs and smaller prefixes (see [25] for details).
For our purposes, consider a cutting context which is a modification of ΘERV

with a refined equivalence relation over configurations taking into account
also the labels of the events that produced the current marking. Roughly
speaking, each token stores also the labels of the events in its history.a
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Figure 10: Petri net and two different unfoldings
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Definition 9 (≈Pred). Let β = (B,E,G, ρ) be a branching process of a
labeled Petri net system with a net N = (P,T,F, λ). A pair of config-
urations C1,C2 ∈ Conf (β) are equivalent, represented as C1 ≈Pred C2, iff
eMark(C1) = eMark(C2), where

eMark(C) = {⟨ρ(b), ρτ(⌊b⌋)⟩ ∣ b ∈ Cut(C)}.

where for X ⊆ E, we define ρτ(X) = {ρ(x) ∣ x ∈ X ∧ λ(x) ≠ τ}, namely the
set of non-silent transitions which are images of event X.

We rely on the cutting context ΘPred = (≈Pred,⊲slf ,Cloc). According to
the theory in [24] once we have proved that the equivalence ≈Pred and the
adequate order ⊲slf are preserved by finite configuration extensions, we im-
mediately have an algorithm for constructing a canonical, finite prefix of the
unfolding, complete with respect to the equivalence ≈Pred. The latter means
that for any configuration C in the full unfolding there will be a configuration
in the finite prefix such that C ≈Pred C ′.

Since our cutting context is a slight variation of that in [25], we can rely
on their work for the proof.

Proposition 2 (equivalence is preserved by extension). Let β = (B,E,G, ρ)
be the branching process of a net system N , with a net N = (P,T,F ), and
C,C ′ ∈ Conf (β) be a pair of configurations, s.t. that C ≈Pred C ′. Therefore,
for every suffix V of C, there exists a finite suffix V ′ of C ′ s.t.:

C ′ ⊕ V ′
≈Pred C ⊕ V

Proof. Let C,C ′ be configurations such that C ≈Pred C ′ and let V be a suffix
of C. We can assume that V consists of a single event, namely V = {e}. The
general case easily follows by an inductive argument. This means that there
is a transition t in N such that ρ(e) = t and Mark(C)[t⟩.

According to Definition 9, eMark(C) = eMark(C ′), which in turn implies
that Mark(C) = Mark(C ′). Hence Mark(C ′)[t⟩, which implies the existence
of an extension V ′ = {e′} of C ′, where ρ(e′) = t.

Clearly Mark(C ⊕ {e}) = Mark(C ′ ⊕ {e′}). So, the fact that
eMark(C ⊕ {e}) = eMark(C ′ ⊕ {e′}) is quite immediate. Take any condi-
tion s′ ∈ Cut(C ′ ⊕ {e′}). There are two possibilities:

• s′ ∈ e′●
We have that ⌊s′⌋ = {e}∪⋃s′′∈●e′⌊s′′⌋. Consider the only condition s ∈ e●
such that ρ(s′) = ρ(s). We have that
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ρ(⌊s′⌋) = {ρ(e)} ∪⋃s′′∈●e′ ρ(⌊s′′⌋)
= {ρ(e)} ∪ ⋃s′′∈●e ρ(⌊s′′⌋) [since ρ(e) = t = ρ(e′) and
C ≈Pred C ′]
= ρ(⌊s⌋)

Therefore ⟨ρ(s), ρ(⌊s⌋)⟩ = ⟨ρ(s′), ρ(⌊s′⌋)⟩.
• s′ ∈ Cut(C ′) ∖ ●e′

In this case, if we take the only condition s ∈ Cut(C) ∖ ●e such that
ρ(s′) = ρ(s), since C ≈Pred C ′, we immediately get that ⟨ρ(s), ρ(⌊s⌋)⟩ =
⟨ρ(s′), ρ(⌊s′⌋)⟩.

Therefore we conclude that eMark(C ′) ⊆ eMark(C). However, since the
argument is perfectly symmetric, we can deduce equality.

The following proposition shows that the canonical unfolding prefix con-
structed with ΘPred contains witnesses for all the causal relations that would
be exhibited in the (possibly infinite) unfolding of a business process with
cycles.

Proposition 3 (causal dependencies in the prefix). Let N be a net system,
let Unf (N ) = (B,E,G, ρ) be its unfolding and let βΘ = (B′,E′,G′, ρ′) be the
CP unfolding based on the cutting context ΘPred = (≈Pred,⊲slf ,Cloc). Then βΘ

is “complete with respect to the causal dependencies”, i.e., for any pair of
events e1, e2 ∈ E ∶ e1 < e2 then

∃e′1, e′2 ∈ E′ ∶ e′1 < e′2, where ρ(e1) = ρΘ(e′1) and ρ(e2) = ρΘ(e′2).

Proof. Let e1, e2 ∈ E be events of the unfolding such that e1 < e2. This means
e1 ∈ ⌊e2). Consider the configuration C = ⌊e2). By completeness there is a
configuration C ′ in the prefix such that eMark(C) = eMark(C ′). Certainly
Mark(C ′) = Mark(C) enables ρ(e2) hence C ′ admits an extension with event
e′2 such that ρ(e′2) = ρ(e2). Moreover, since e1 < e2 there is a condition
s ∈ ●e2 ∩Cut(C) such that e1 < s and thus ρ(e1) ∈ ρ(⌊s⌋). If we take the only
condition s′ ∈ Cut(C ′) such that ρ(s) = ρ(s′), we have that s′ ∈ ●e′2 and, since
eMark(C) = eMark(C ′), it holds that ⟨ρ(s′), ρ(⌊s′⌋⟩ = ⟨ρ(s), ρ(⌊s⌋⟩. This
means that there is e′1 ∈ ⌊s′⌋ such that ρ(e′1) = ρ(e1). Note that e′1 ∈ ⌊s′⌋
means e′1 < s′, whence e′1 < e′2, as desired.



4 CANONICAL FOLDING OF PROCESS MODELS 19

4.2.1. Multiplicity of activities

We now show how to identify the multiplicity of each activity (i.e., labeled
transition in the original net) given the canonical unfolding prefix induced
by ΘPred. Specifically, we seek to determine if a labeled transition t in a net
system can be executed at most once or possibly more than once. Restricting
to the class of free-choice sound workflow nets, which have been observed to
be sufficiently expressive in most cases [26], we can also show that activities
that can occur more than once in a computation can actually occur any
number of times, hence they are part of some cyclic behavior.

Since we deal with safe nets, we observe that if a transition can occur
twice in a configuration, the corresponding events must be causally related.

Proposition 4 (repetition). Let β be a branching process of a net system
N . Let C ∈ Conf (N ) be a configuration such that there exists e, e′ ∈ C, e ≠ e′
and ρ(e) = ρ(e′) = t. Then either e < e′ or e′ < e′.
Proof. Observe that e#e′ cannot hold, otherwise C would not be a configu-
ration. If we had neither e < e′ nor e′ < e′, then e and e′ would be concurrent.
As a consequence also ●e ∪ ●e′ would be concurrent. Therefore, the corre-
sponding marking in N would be coverable and it would have two tokens in
any place in ●t, contradicting the assumption that N is safe.

The above observation motivates the interest for the following definition
in the study of repetitive behaviors.

Definition 10 (self-preceding transitions). Let β = (B,E,G, ρ) be the
unfolding prefix induced by ΘPred for a net N = (P,T,F, λ). The set of self-
preceding transitions of N is defined as R = {ρ(e1) ∣ ∃C ∈ Conf (β). e1, e2 ∈
C ∧ ρ(e1) = ρ(e2) ∧ e1 < e2}.

Note that the possibility of reducing the repetition to a causal depen-
dency ensures that the finite prefix (which contains full information about
causal dependencies) will be also sufficient to identify repeated events. As
an example it can be checked that C = {e0, e2, e6}, C ′ = {e0, e1, e5} and
C ′′ = {e0, e1, e3, e7, e13} are configurations in the unfolding prefix β2 from
Figure 10c. Activity b is part of repetitive behavior as C ′′ includes two
(causal dependent) occurrences of b. This holds despite the fact that there
are (maximal) configurations including only a single occurrence of b (like C)
or none (like C ′).
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Definition 10 tells us which transitions in the original net system may
occur more than once. By the same token, we can determine which transi-
tions occur at least once. The latter correspond to events that occur in the
intersection of all completed configurations.

Definition 11 (necessary transitions). Let β = (B,E,G, ρ) be the un-
folding prefix induced by ΘPred for a net system N . The necessary transitions
K of N is defined as K = %(⋂MaxConf (β)).

Based on the above definitions of R and K, we classify transitions in
a net system into three disjoint categories: those fired “0 or more times”
(denoted as “∗”); “1 or more times” (denoted as “+”); and at most once
“0..1”. Formally:

Definition 12 (multiplicity of a transition). Let β = (B,E,G, ρ) be the
unfolding prefix induced by ΘPred for a net system N , the multiplicity of a
labeled transition is defined as:

• 0..1 = {e ∈ E ∣ ρ(e) ∉R}
• + = {e ∈ E ∣ ρ(e) ∈R ∩K}
• ∗ = {e ∈ E ∣ ρ(e) ∈R ∧ e ∉ +}

In the case a transition may be fired zero or more times (∗), the above def-
inition does not tell us whether the transition can be repeated an unbounded
number of times or a bounded number of times. Below, we refine the notion
of multiplicity for a class of workflow nets, for which we show that when an
activity is classified as ∗, it means it can be fired any number of times.

4.2.2. Multiplicity of transitions in free-choice workflow nets

Transitions which, according to Definition 10 are marked as repetitive,
namely either “+” or “*” can surely occur more than once in a computation,
but still they could occur at most a bounded number of times. We next
show that if we focus on the class of sound free-choice workflow nets [26],
a transition which is marked as “+” or “*”, may fire any number of times,
namely it is part of a cyclic behavior.

Workflow nets [26] are a class of nets with one single source and sink place
such that every transition is on a path from the source to the sink.

Definition 13 (WF-net, WF-system). A Petri net N = (P,T,F ) is a
workflow net (WF-net) if it includes a distinguished source place i ∈ P , with
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●i = ∅, a distinguished sink place o ∈ P , with o● = ∅, and the short-circuit net
N∗ = (P,T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}), where t∗ ∉ T , is strongly connected.
A net system N = (N,M0), where N is a WF-net and M0 = {i}, is a WF-net
system.

Soundness [27] is a commonly adopted criterion of correctness for WF-
nets. A sound WF-net system guarantees that any of its executions always
ends with a token in the sink place and no other token is left in the net when
a token reaches the sink place. Recall that a net system N = (N,M0) is live,
if for every reachable marking M ∈ [N,M0⟩ and t ∈ T , there exists a marking
M ′ ∈ [N,M⟩, such that M ′[t⟩. It is N is bounded when the set [N,M0⟩ is
finite.

Definition 14 (soundness). A WF-net system N = (N,M0) is sound
when the net system (N∗,M0), where N∗ is the short-circuit net of N , is
live and bounded.

Free-choice Petri nets [28, 29] are a well-behaved family of nets, where
several properties, which are hard to check for general Petri nets, admit
efficient verification technique.

Definition 15 (free-choice Petri net). A Petri net N is free-choice if for
any pair of places p1, p2 ∈ P then either p1

● ∩ p2
● = ∅ or p1

● = p2
●.

In words, in a free-choice net whenever two places share a transition
it their postsets, they share all transitions in their postsets. As mentioned
before free-choice WF-nets represent a good compromise between expressive-
ness and analyzability. In particular, parallelism, sequential routing, condi-
tional routing and iteration can be modeled without violating the free-choice
property.

Armed with the definitions above, we show that for the class of (safe)
free-choice sound WF-nets, the self-preceding transitions captured by the
proposed cutting context ΘPred = (≈Pred,⊲slf ,Cloc), namely those transitions
marked as “*” or “+” according to Definition 10 represent unbounded repet-
itive behavior.

We first need a preliminary technical result.

Lemma 5 (sequences of firings). Let N be a free-choice sound WF-net. Let
t0, . . . , tn be transitions such that ti

● ∩ ●ti+1 ≠ ∅ for any i ∈ {0, . . . , n − 1} and
let M be a marking such that M[t0⟩. Then there are sequences of transitions
σi ∈ T ∗, i ∈ {0, . . . , n − 1}, such that M[t0σ0t1σ1 . . . σn−1tn⟩.
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Proof. The proof is by induction on n. The base case n = 0 is trivial. Let us
assume the result for n and prove it for n+ 1. By inductive hypothesis there
are σ0, . . . , σn such that M[t0σ0t1σ1 . . . σn−1tn⟩Mn. Moreover, by hypothesis,
there is at least one place p ∈ tn

● ∩ ●tn+1 and we know that p ∈Mn. Since N
is a sound WF-net, from marking Mn there is a firing sequence which leads
to a marking consisting of one token only in the sink place

Mn[σ⟩{o}.

Since p ∈ ●tn+1, surely p ≠ o. Hence the token in p is consumed by some
transition in σ, namely σ = σ′tσ′′ with p ∈ ●t.

Since N is free-choice, and ●t ∩ ●tn+1 ⊇ {p} ≠ ∅ we deduce ●t = ●tn+1.
Therefore, since Mn[σ′t⟩ we also have Mn[σ′tn+1⟩. Therefore

M[t0σ0t1σ1 . . . σn−1tnσ′tn+1⟩

as desired.

We can now easily conclude with the desired result.

Proposition 6. Let N be a free-choice sound WF-net and let t be a transition
marked as repetitive (“*” or “+”). Then there are firings sequences in which
transition t fires any number of times.

Proof. Let t be a transition marked as repetitive (“*” or “+”). This means
that there are events e, e′ in the prefix βΘ, such that ρ(e) = ρ(e′) = t ∧ e < e′.
We show that for any marking M , such that M[t⟩, there is a sequence σ ∈ T ∗
such that M[tσt⟩. From this the result immediately follows.

Since e < e′, there must be a causal chain of e = e0 < e1 < . . . < en = e′ such
that ei●∩●ei+1 ≠ ∅ for any i ∈ {0, . . . , n−1}. Therefore, if we consider the image
through ρ in N , we get corresponding sequence of transitions ρ(e0) = t0 = t,
ρ(e1) = t1, . . . , ρ(en) = tn = t, with ti

● ∩ ●ti+1 ≠ ∅ for i ∈ {0, . . . , n − 1}.
Now, given any marking M such that M[t⟩, we can simply apply

Lemma 5, to deduce that there are σi ∈ T ∗, i ∈ {0, . . . , n − 1}, such that

M[t0σ0t1σ1 . . . σn−1tn⟩.

recalling that t = t0 = tn and denoting σ = σ0t1σ1 . . . σn−1, we get that as
desired

The insights we got from this section are used later in the verbalization
of differences involving repeated tasks (Section 5.3).
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5. Comparison of process models

When comparing process models, differences can concern the nature of
the involved activities and the way such activities are related. The presence
of different activities reduces, at the level of event structures, to the presence
of events with different labels, which are easy to detect and describe. Instead,
properly diagnosing and reporting differences in the way common activities
(i.e., events carrying the same label in both process models) are related in
the process is a more complex problem.

Since an AES can be seen as a labeled graph, the comparison of AESs can
be approached by approximate graph matching techniques. This is in fact
the approach used in [7]. Clearly, if two AESs are diagnosed as isomorphic,
it seems sensible to conclude that they are behaviorally equivalent. More-
over, if an error-correcting graph matching is used, the same algorithm would
gather the information about the differences on event occurrences (process
activities) and mismatching behavior relations. Given the intuitive interpre-
tation of behavior relations used by AESs, the verbalization of differences is
straightforward. Unfortunately, a conventional approximate graph matching
would not take into account the order induced by the behavioral relations of
an AES, as illustrated by the optimal matching shown in Figure 11, between
the folded AESs of the running example (cf. Figure 1).

a1 (0)

c1 (3)

b1 (1)

d1 (5)

c′1 (2)

d′1 (4)

(a) A5

a2 (0)

c2 (3)

b2 (1) d2 (5)

c′′2
c′′′′2 b′2 c′′′2

b′′2
c′2 (2) d′2 (4)

(b) A′d

Figure 11: Event mappings computed with an error-correcting graph matching technique
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The numbers inside the parenthesis in Figure 11 correspond to the optimal
matching computed by an error-correcting graph matching technique on the
folded AESs. Since the occurrence of c′2 causally depends on the occurrence of
c′′2 , it seems more natural to consider c′′2 be a better matching for c′1 than the
matching identified by the graph matching technique. It is clear, therefore,
that we need an new approach to compute the pairwise optimal matching
of AESs, that is, one taking into account the order induced by the behavior
relations on AES. Moreover, it is also clear that we need not only to diagnose
the similarities but also to keep track of the differences found on the input pair
of AES, in the same spirit of the error-correcting graph matching techniques.

One additional concern is to provide a systematic approach to produce
intuitive diagnostic describing the differences found while comparing a pair
of AESs. Therefore, in the remainder of this section we present the elements
of our approach to compare AESs: matching behavior, identifying differences
and verbalizing differences.

5.1. Matching behavior

The first challenge is to determine the behavior similarity between a pair
of AESs. As mentioned above, we take visible-pomset equivalence as the ref-
erence for behavioral equivalence between AESs. Two processes are deemed
visible-pomset equivalent when they have isomorphic sets of visible-pomsets.
So, if two AESs exhibit different behavior (due to differences in the set of
events or in the underlying behavioral relations), it is clear that their cor-
responding visible-pomsets would differ as well. Hence, we are interested
in finding the best (or at least a good) approximated behavioral matching
between AESs

We start by introducing the concept of partial match between two config-
urations, which is intended to capture the idea of an approximated isomor-
phism between the corresponding visible-pomsets. Note that the definitions
in this section are formulated around the notion of configuration and exten-
sion, thus the definitions can be easily extrapolated to other types of event
structures besides AES. For a partial function f , the notation f(x) =⊥ indi-
cates that f is undefined on x.

Definition 16 (partial match). Let A1 and A2 be AESs and let Ci ∈
Conf (Ai), for i ∈ {1,2} be configurations. A partial match between C1 and
C2 is a partial injective function ξ ∶ C1 ↛ C2, such that for all e1, e′1 ∈ E1,
with ξ(e1), ξ(e′1) ≠ �, the following holds:
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C1
e1
Ð→a C

′
1 C2

e2
Ð→a C

′
2 ξ′ = ξ[e1 ↦ e2] partial match

(C1, ξ,C2)
match e1,e2
ÐÐÐÐÐÐ→ (C ′

1, ξ
′,C ′

2)

match e1, e2

C1
e1
Ð→a C

′
1

(C1, ξ,C2)
hide e1
ÐÐÐÐ→ (C ′

1, ξ,C2)

hide e1

C2
e2
Ð→a C

′
2

(C1, ξ,C2)
hide e2
ÐÐÐÐ→ (C1, ξ′,C ′

2)

hide e2

Figure 12: Partial matching operations

1. λ2(ξ(e1)) = λ1(e1)

2. e1 ≤1 e′1 iff ξ(e1) ≤2 ξ(e′1)
In words, a partial match is a function ξ that establishes a correspondence

between events of the two pomsets, respecting both labeling and order. Note
that match is a partial and non surjective function, meaning that some events
in C1 may not have a mapping to any event in C2, and vice versa.

We now notice that a partial match between configurations can be
thought as the result of applying two operations over “growing” pomsets

1. matching of events (both pomsets synchronously evolve a pair of events
that have the same label), and

2. hiding of an event (only one pomset evolves with a single event while
the other remains the same).

Matching and hiding operations can be expressed as inductive rules, as
shown if Figure 12, that applied to a partial match ξ between C1 and C2

produce another partial match involving larger configurations. Since the
same partial match can be associated with different pairs of configurations,
we write (C1, ξ,C2) to refer to ξ seen as a partial match between C1 and
C2. Above, we write ξ[e1 → e2] ∶ C1 ∪ {e1}) → (C2 ∪ {e2}) to denote ξ[e1 →
e2](e1) = e2 and ξ[e1 → e2](e3) = ξ(e3) for e3 ∈ C1/{e1}. Finally, we write

C
e
Ð→λ(e) C∪{e} to denote C∪{e} ∈ Conf (A), for a configuration C ∈ Conf (A)

and an event e /∈ C.
Starting from the above concepts, we aim at defining a technique that

allows to optimize the matching of pomsets or, equivalently, to minimize
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the number of hiding operations in a partial match. Clearly, whenever it
is possible to establish a mapping between the pomsets of two AESs using
only matching operations, the AESs will be equivalent. Conversely, when
the AESs are not equivalent then the optimal match of their pomsets –the
one with the minimum number of hidings– would capture both the largest
approximate visible-pomset (or common behavior) and the corresponding
differences, in the form of hiding operations.

Let A1 and A2 be AESs. The “quality” of a partial match s = (C1, ξ,C2)
is captured by a value g(s)

g(s) = ∣C1∣ + ∣C2∣ − ∣ξ∣ ⋅ 2. (1)

The function g(s) above is aimed at quantifying the “quality” of the
matchings between a pair of pomsets. When g(s) = 0 ξ is a visible-pomset
isomorphism between pomsets (or configurations) C1 and C2. When g(s) > 0
the partial match ξ required one or more hiding operations. This case can be
interpreted as an approximate (or non complete) visible-pomset isomorphism
of pomsets C1 and C2.

Note that given two AESs A1 and A2, for any two configurations C1 and C2

there is always a partial match. However, only a subset of the possible partial
matches would have a minimum cost. The partial matches with minimum
cost are said optimal and formally defined as follows.

Definition 17 (optimal match). Let A1 and A2 be AESs and let Ci ∈
Conf (Ai), for i ∈ {1,2} be configurations. A partial match s = (C1, ξ,C2),
where ξ ∶ C1 ↛ C2, is called optimal when

g(s) = min{g(s) ∣ ξ′ ∶ C1 ↛ C2}

The partial matches between configurations of two AESs can be collected
in what we call a partial synchronized product.

Definition 18 (partial synchronized product). Let A1 and A2 be AESs.
The partial synchronized product is the graph G = ⟨S,T ⟩ where:

• S is the set of triples (C1, ξ,C2), where ξ ∶ C1 ↛ C2 is a partial match;

• T is the set of transitions (C1, ξ,C2)
op
Ð→ (C ′

1, ξ
′,C ′

2) defined by the rules
in Figure 12.
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It is immediate to see that the partial synchronized product is inductively
built starting from an “initial” node (∅,∅,∅) corresponding to the unique
partial matching for the empty configurations, and then expanding the graph
by using the rules in Figure 12.

The partial synchronized product obviously contains all optimal matches
(as it contains all partial matches). However, the size of a partial synchro-
nized product is exponential, making its full construction computationally
unfeasible.

We adopt a branch an bound approach, more specifically an adaptation
of the well-known A∗ algorithm [33], in order to build an informative part of
the partial synchronized product. As usual, the A∗ algorithm requires two
cost functions: one to evaluate the cost from the root of the state space to a
given path, referred to as the function g or past-cost function, and a heuristic
function to estimate the distance to the goal state, referred to as the function
h or future-cost function.

Given a partial partial match s = (C1, ξ,C2), the past-cost function g(s)
is that defined in Equation 1. The future cost function h(s) is shown in
Equation 2, where E′

i = {e ∈ Ei ∣ ∄e′ ∈ Ci ∶ e↗ e′} for i ∈ {1,2}.

h(s) = ∣(λ(E′
1) ∪ λ(E

′
2)) ∖ (λ(E′

1) ∩ λ(E
′
2))∣ (2)

Intuitively, h provides a measure of the number of events to be hidden
in the future of C1 and C2. It optimistically assumes that events with the
same label will indeed contribute to a one-to-one match between the two
configurations. It can be seen that this estimate is admissible in the sense
required in [30] for the use of the algorithm A∗.

The function for the A∗ algorithm is then η(s) = g(s)+h(s) for any partial
match s = (C1, ξ,C2). The pseudo-code for the search algorithm is presented
in Algorithm 1 and uses function η.

In this context, the A∗ algorithm is tightly coupled with the semantics
of the underlying AESs, because the match and hide operations are based
on the possible extensions of the configurations. In other words, the nodes
expanded by the A∗ algorithm from a partial match represent extensions in
both configurations in the case of match, or extension in only one configura-
tion in the case of hide.

Figure 13 shows two AESs and a part of their partial synchronized prod-
uct, which contains the optimal matches for the maximal configurations.
Observe that, in the partial synchronized product, the fact that a pair of op-
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erations can be applied independently is captured by diamonds-like shapes in
the graph. E.g., in Figure 13, after ({a1}, ξ = [a1 ↦ a2],{a2}), it is possible
to match the events with label b ({a1, b1}, ξ′ = ξ[b1 ↦ b2],{a2, b2}) and then
hide the c-labeled event ({a1, b1, c1}, ξ′,{a2, b2}), or vice versa.

a1

b1 c1

(a) Aa

a2

b2 c2

(b) Ab

(∅,∅,∅)
({a1},Υ = [a1 ↦ a2],{a2})

({a1, b1},Υ′ = Υ[b1 ↦ b2],{a2, b2}) ({a1, c1},Υ,{a2}) ({a1, c1},Υ′′ = Υ[c1 ↦ c2],{a2, c2}) ({a1, b1},Υ,{a2})
({a1, b1, c1},Υ′,{a2, b2}) ({a1, b1, c1},Υ′′,{a2, c2})

match

match
match

hide

hide

hide
match hide

match

(c) partial synchronized product for Aa and Ac

Figure 13: AESs and their partial synchronized product with the optimal matches

5.2. Identifying differences

The partial synchronized product is a rich structure that represents the
hide and match operations, which lead to some partial matches (possibly
optimal or simply good, when determined with some heuristic approach).

In order to explain the behavioral differences, a possibility consists in sim-
ply verbalizing the hide operations. Note that differently from a purely syn-
tactical approach this will capture how early a discrepancy can arise during
the execution of the processes. More specifically, the closer a hide operation
is from the “initial” node (∅,∅,∅), the sooner the discrepancy can occur.

Note that the partial synchronized product explicitly represents the state
(partial match) where a discrepancy occurs, hereinafter called the con-
text. Then, a hide operation be expressed as an event that occurs in
one model but not in the other. For instance, in Figure 13 there is a

node representing the hide operation ({a1}, ξ = [a1 ↦ a2],{a2})
hide c1
ÐÐÐ→

({a1, c1}, ξ,{a2}) and another representing the hide operation ({a1, b1}, ξ′ =
ξ[b1 ↦ b2],{a2, b2})

hide c1
ÐÐÐ→ ({a1, b1, c1}, ξ′,{a2, b2}). The behavioral differ-

ence represented by these two nodes is the same, namely: “In model 1, there
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Algorithm 1 Optimal matches

Algorithm
Input: A1 = ⟨E1,≤1,↗1, λ1⟩ and A2 = ⟨E2,≤2,↗2, λ2⟩
Output: Multiset of optimal matches for the maximal configurations
// Initialization

foreach C ∈ Conf (A1) ∪Conf (A2) do
GW (C) =∞

MATCHES[C] = ∅

end
s0 = ⟨∅,∅,∅⟩

OPEN ← {s0}
while OPEN ≠ ∅ do

Choose any s = ⟨C1, ξ,C2⟩ ∈ OPEN, with minimum η(s)
OPEN ← OPEN ∖{s}
// Pruning

if isCandidate(C1, s,A1) ∨ isCandidate(C2, s,A2) then
// Best match

if C1 ∈MaxConf (A1) ∧C2 ∈MaxConf (A2) then
updateMatches(C1, s)
updateMatches(C2, s)

end

foreach C1
e1
Ð→ C ′

1,C2
e2
Ð→ C ′

2, s.t. λ1(e1) = λ2(e2) do
OPEN ← OPEN ∪{⟨C ′

1, ξ[e1 ↦ e2],C
′

2⟩} ▷ MATCH
end

foreach C1
e1
Ð→ C ′

1 do
OPEN ← OPEN ∪ {⟨C ′

1, ξ,C2⟩} ▷ HIDE e1
end

foreach C2
e2
Ð→ C ′

2 do
OPEN ← OPEN ∪ {⟨C1, ξ,C

′

2⟩} ▷ HIDE e2
end

end

end
return MATCHES

Procedure isCandidate(C, s,A)
return ∃M ∈MaxConf (A) ∶ C ⊂M ∧ η(s) ≤ GW (M)

Procedure updateMatches(C, s)
if η(s) ≤ GW (C) then

MATCHES[C]←MATCHES[C] ∪ {s}
GW [C]← η(s)

end
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(a1, a2) (b1, b2)

(c1, ) (<, ) (∣∣, )

(a)

(a1, a2) (b1, b2)

(c1, c2) (<,<) (∥,#)

(b)

Figure 14: (a) Matrix representations for (a) partial match ({a1, b1, c1}, ξ,{a2, b2}) and
(b) extended partial match ({a1, b1, c1}, ζ,{a2, b2})

is a state where c always occurs, whereas in the matching state in model 2,
it cannot occur”. These two differences however differ in terms of the state
where the difference is observed. In the first case, the state in question is the
one reached immediately after we execute activity a, whereas in the second
case, it is the state reached immediately after we execute activity b. We can
therefore see that if we map each hide operation in the partial synchronized
product into a difference diagnostic statement, the resulting statements can
be largely redundant and difficult to interpret.

For this reason a more abstract explanation of the differences, e.g., in
terms of behavioral relations that hold in one process and not in the other,
can be more convenient and understandable for the user. Thus, we next
present an approach that aims at gathering the differences in the behavioral
relations which are capable of explaining discrepancies represented as hide
operations in the partial synchronized product.

In this approach, the behavioral difference between the AESs in Figure 13
can all be expressed using one single diagnostic statement, that is: “In model
1, b and c are in parallel, whereas in model 2, b and c are mutually exclusive”.

To implement this latter approach, we have to select the set of behavioral
relations that best helps with the verbalization of the discrepancies captured
by a given hide operation. To this end, we observe that a partial matching
(C1, ξ,C2) can be seen as a matrix of behavioral relations, denoted as Ψξ.
In this alternative representation, the columns represent the matched events
in ξ and the rows represent the hidden (unmatched) events. Note that Ψξ

represents a partially filled matrix. For instance, the matrix representation of
the matching ({a1, b1, c1}, ξ,{a2, b2}) (Figure 13) is displayed in Figure 14a.

The overall idea in order to diagnose the differences in terms of behavioral
relations is the following. Given a partial match ξ the idea is to extend it as
far as possible to the unmatched events, renouncing to the requirement that
the match should respect the order in the pomsets, but still trying, following
some heuristic to match events, which have the same label and dependencies
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as similar as possible. Also events outside the configurations can be involved.

Definition 19 (extended partial match). Let A1 = ⟨E1,≤1,↗1, λ1⟩ and
A2 = ⟨E2,≤2,↗2, λ2⟩ be AESs and let ξ ∶ C1 ↛ C2 a partial match between
configurations C1 and C2. A extended partial match for ξ is an injective
partial function ζ ∶ E1 ↛ E2 such that (i) ξ ⊆ ζ, (ii) for any e1 ∈ C1 such that
ζ(e1) ≠ � it holds λ2(ζ(e1)) = λ1(e1) and (iii) for any e1 ∈ E1 if ζ(e1) ≠ � then
e1 ∈ C1 or ζ(e1) ∈ C2.

In words, an extension for a partial match ξ is any label-preserving partial
function extending ξ. Condition (iii) says that extensions are only allowed
when they permit to match some previously unmatched event in C1 or in C2.

Then we introduce some measure of the “quality” of an extension.
Roughly, we try to minimize the number of dependencies on which the
matched events differ, still matching any possible pair of events with the
same label.

Definition 20 (cost of extensions). Let ζ ∶ E1 ↛ E2 be an extension of
the partial match ξ, between configurations C1 and C2. The cost of an
extension is defined as

K(ζ) = ∣{((e1, e2), rel, (e′1, e′2)) ∶ rel ∈ {↗∗,<} ∧ ζ(e1) = e2 ∧ ζ(e′1) = e′2 ∧
¬(e1 rel e′1 ⇐⇒ e2 rel e′2)}∣

We are interested in maximal extensions of a partial match (namely ex-
tension where all pairs of events with the same labels have been matched),
which minimize the cost. If the explicit computation of a maximal exten-
sion with least cost is computationally too expensive, one can use a local
search criteria, i.e., start from a partial match and add a single pair of events
each time (thus applying the rule in Figure 15, where e1 ∈ C1 or e2 ∈ C2,
minimizing the cost at each step).

ζ(e1) =⊥= ζ
−1

(e2) λ1(e1) = λ2(e2)

ζ[e1 ↦ e2]
synthetic match e1, e2

Figure 15: Synthetic matching operation

Consider for example the optimal matching ({a1, b1, c1}, ξ,{a2, b2}) (Fig-
ure 13). The corresponding optimal maximal extension is shown in Fig-
ure 14b, i.e., ({a1, b1, c1}, ζ = ξ[c1 ↦ c2],{a2, b2}). This example is very
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simple because there is only one possibility to match the event c1 in Ab (with
event c2).

The partial synchronized product may contain more than one optimal
match for a maximal configuration (and also more than one extended partial
match), each of which leads to the same number of differences. In the absence
of any other intuitive criteria for distinguishing optimal matches, we select
any such matching to generate a verbalization of differences. The following
section describes the verbalization step.

5.3. Verbalizing differences

We propose to verbalize each discrepancy by means of a statement con-
sisting of two parts: a description of the context where the discrepancy occurs
and a description of the difference itself.

The context describes the configuration (herein called “state”) in the ex-
ecution of the process model where a given discrepancy occurs. A full repre-
sentation of the context consists of a partially ordered set of events (activity
executions) leading to a given state where the discrepancy is observed. In
the case of visual feedback, this can be visually represented by animating the
process model in order to show to the user an execution path leading to the
state in question. On the other hand, listing all the events in an execution
path leading to a given state is arguably less readable in textual form. In-
stead, when verbalizing a context in textual form, it may be more convenient
to refer only to a partial description of the context, consisting only of the
last event (i.e., last activity) executed before the configuration in question
is reached. In the examples given below we opt for this latter (highly ab-
breviated) verbalization approach for the context. The problem of accurate
abbreviation of execution paths leading to a given state (configuration) in a
process model is further studied in [31].

The difference itself is described by referring to either a behavioral re-
lation in one model that is not present in the other, or by stating that the
multiplicity of an activity in one model differs from the multiplicity of the
same activity in the other model. To this end, a behavioral relation between
activity a and b is verbalized as follows:

• Causality (<): “a always occurs before activity b”.
• Asymmetric conflict (↗): “a can occur before b or a can be skipped”.
• Conflict (#): “a and b are mutually exclusive”.
• Concurrency (∣∣): “a and b are parallel”.

The multiplicity of an activity is verbalized as follows:
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(∅,∅,∅)
({a1},Υ = [a1 ↦ a2],{a2})

({a1},Υ,{a2, c2})
({a1, d1},Υ,{a2, c2, d2})

match

match

match

Figure 16: Partial synchronized product for the optimal matching of a pair of configura-
tions in the AESs in Fig. 11

• 0..1: “occurs at most once”,
• +: “occurs at least once”, and
• ∗: “occurs 0,1 or more times”.

Whereas, for safe and sound free-choice workflow nets, the multiplicity of an
activity is verbalized as follows:

• +: “occurs any number of times, but at least once”, and
• ∗: “occurs any number of times”.
Based on the above verbalizations of context, behavioral relations and

multiplicity, we use the following templates to verbalize a given discrepancy
between two models M1 and M2 :

1. Case of unmatched event: “In M1, there is a state after < context >
where < activity > always occurs, whereas it cannot occur in the
matching state in M2”

2. Case of mismatching relations. “In M1, there is a state after <
context > where < verbalization of relation 1 >, whereas in the

matching state in M2, < verbalization for relation 2 >”

3. Case of mismatching multiplicity: “In M1, < activity > <
verbalization of multiplicity in M1 >, whereas in M2, it <
verbalization of activity multiplicity in M2 >.

For illustration, Figure 16 shows the partial synchronized prod-
uct representation of the optimal matching for the configurations:
({a1, d1},{a2, c2, d2}), they are configurations of the AES of the run-
ning example (Figure 11). It is worth mentioning that the runs
{a, b, d},{a, c, d},{a, b, c, d},{a, c, b, d} can be performed by both process
models. Therefore, the corresponding pomsets will be mapped only with
match operations.
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The following are the resulting verbalizations of the differences captured
in Figure 16:

• c,d = (↗,<): In M1, there is a state after a where c can occur before
d or c can be skipped, whereas in the matching state in M2, c always
occurs before d

• b(∗,0..1): In M1, b occurs any number of times; whereas in M2, it
occurs at most once

• c(∗,0..1): In M1, c occurs any number of times; whereas in M2, it
occurs at most once

In the case of tasks with repetitive behavior, one event is randomly cho-
sen and the feedback is generated with respect to this event (note that the
feedback from other instances would be the same). In the last step, we need
to produce the feedback for the set of unmatched events. In this case, we
also include the set of direct causally preceding events to give a context in
the feedback. For the running example, the feedback would be:

• b, = (<, ): In M1, there is a state after b, where b always occurs,
whereas it cannot occur in the matching state in M2

This latter verbalization illustrates one type of confusion that can arise
due to the abbreviation of the context: in this case it is unclear after which
occurrence of b is it the case that b always occurs again in M1.

6. Conclusion

This article presented a method for comparing business process models
based on binary behavioral relations, specifically those supported by AES.
The proposed method involves four sub-methods that constitute distinct con-
tributions of the article:

1. A method to calculate a canonically reduced AES from an acyclic Petri
net.

2. A method to compute a finite representation of repetitive behavior that
preserves all causal dependencies of each transition in a Petri net with
cycles (i.e., each activity in a cyclic process model).

3. A method for constructing a partial “error-correcting” synchronized
product of two event structures.

4. A method that, given the AESs extracted from two process models,
verbalizes their behavioral differences in terms of activity repetition
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and binary behavioral relations that are present in one process model
but not in the other. This verbalization can be complemented with a
visualization of the partial configurations (states) of the input process
models where the differences occur.

The presented methods are implemented in a prototype tool, namely BP-
Diff [32]. BP-Diff takes as input a pair of process models captured in the
BPMN notation and produces a visual and/or textual diagnostic of their
differences. A command-line version of the tool that provides textual diag-
nostic is available at https://code.google.com/p/fdes/. A software-as-a-
service version that provides both visual and textual diagnostic is available
at http://diffbp-bpdiff.rhcloud.com/.

A direction for future research is the optimization of the proposed method
in order to address scalability concerns. The method involves an unfolding
step to calculate an AES, followed by a folding step to reduce the AES, a
calculation of a synchronized product of two event structures, and a traversal
of the synchronized product in order to identify behavioral differences and to
recast them in terms of behavioral relations. In order to enhance scalability,
it may be possible to partially merge some of these steps or to perform some
steps incrementally, only inasmuch as needed in order to detect representative
differences between a pair of process models. Another direction for future
work is an empirical usability evaluation of the proposed method, which
would provide input to fine-tune the visualizations and templates used to
provide the difference diagnostic.
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