
Semantics, Analysis and Simplification of DMN
Decision Tables

Diego Calvanesea, Marlon Dumasb, Ülari Laursonb, Fabrizio M. Maggib, Marco
Montalia, Irene Teinemaab

aFree University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
bUniversity of Tartu, J. Liivi 2, 50409 Tartu, Estonia

Abstract

The Decision Model and Notation (DMN) is a standard notation to capture de-
cision logic in business applications. A central construct in DMN is that of a
decision table. The increasing use of DMN decision tables to capture critical
business knowledge raises the need to support analysis and refactoring tasks on
these tables. This article puts forward a formal semantics for DMN decision ta-
bles and a formal definition of analysis tasks on such tables. The article then
proposes a general approach to analyze and refactor decision tables based on a
geometric interpretation thereof. This general approach is used to design efficient
algorithms for two analysis tasks (detection of overlapping rules and of missing
rules) and one refactoring task (simplification of tables via rule merging). The
algorithms have been implemented in an open-source DMN editor and tested on
large decision tables derived from a credit lending dataset.

Keywords: Decision Table, Decision Model, Notation, Sweep-Line

1. Introduction

Business process models often incorporate decision logic of varying complex-
ity, typically via conditional expressions attached either to outgoing flows of de-
cision gateways or to conditional events. The need to separate this decision logic

Email addresses: calvanese@inf.unibz.it (Diego Calvanese),
marlon.dumas@ut.ee (Marlon Dumas), laurson17@gmail.com (Ülari Laurson),
f.m.maggi@ut.ee (Fabrizio M. Maggi), montali@inf.unibz.it (Marco Montali),
irene.teinemaa@ut.ee (Irene Teinemaa)

Preprint submitted to Information Systems March 21, 2018

from the control-flow logic [1] and to capture it at a higher level of abstraction
has motivated the emergence of the Decision Model and Notation (DMN) [16]. A
central construct of DMN is that of a decision table, which stems from the concept
of decision table proposed in the context of program decision logic specification
in the 1960s [19]. A DMN decision table consists of columns representing the
inputs and outputs of a decision, and rows denoting rules. Each rule is a conjunc-
tion of basic expressions captured in an expression language known as S-FEEL
(Simplified Friendly Enough Expression Language).

The use of DMN decision tables to capture complex and critical business deci-
sions raises the need to support the analysis and refactoring of these tables. In this
respect, two common correctness criteria imposed on decision tables are that their
rules should be disjoint and complete, meaning that every possible input should
match exactly one rule. A table violates these criteria if it has overlapping rules
(multiple rules match a given input) or missing rules (no rule matches a given
input). Meanwhile, a common refactoring task is to simplify a decision table by
merging pairs of rules into a single more general rule.

Given the above setting, this article provides a foundation for analyzing and
refactoring DMN decision tables. The contributions of the article are: (i) a formal
semantics and a formalization of correctness criteria for DMN decision tables;
and (ii) efficient algorithms for detecting overlapping rules and missing rules and
for simplifying decision tables via rule merging. The latter algorithms are based
on a novel geometric interpretation of DMN decision tables, wherein each rule in
a table is mapped to an iso-oriented hyper-rectangle in an N-dimensional space
(where N is the number of columns). Under this geometric interpretation, the
problem of detecting overlapping rules is mapped to that of detecting maximal sets
of overlapping hyper-rectangles; the problem of finding missing rules is mapped
to that of determining if the union of the rules in the table (viewed as hyper-
rectangles) covers the N-dimensional space identified by the cartesian product of
the domains of the input columns of the table; and finally, the problem of sim-
plifying a decision table is mapped to that of finding maximal sets of adjacent
hyper-rectangles and merging them into a minimal set of hyper-rectangles cover-
ing the same space. Based on this geometric interpretation, the article presents
scalable algorithms for the two analysis tasks and for the refactoring task.

The article is an extended and revised version of a previous conference arti-
cle [5]. With respect to the conference version, the main additional contributions
are: (i) the technique for decision table simplification and an empirical compari-
son against an approach to this problem proposed in the context of classical de-
cision tables [18]; and (ii) an improved technique for detecting overlapping rules

2

that achieves lower execution times than the one proposed in the conference arti-
cle. The techniques have been implemented atop the dmn-js editor and evaluated
using decision tables of varying sizes derived from a credit lending dataset.

The rest of the article is structured as follows. Section 2 introduces DMN
decision tables and discusses related work. Section 3 presents the formalization of
the decision tables and their associated correctness criteria. Section 4 presents the
algorithms for correctness checking and simplification while Section 5 discusses
their empirical evaluation. Finally, Section 6 summarizes the contributions and
outlines future work directions.

2. Background and Related Work

Below, we provide an overview of DMN decision tables and discuss previous
work related to their analysis.

2.1. Overview of DMN Decision Tables
A DMN decision table consists of columns corresponding to input or output

attributes, and rows corresponding to rules. Each column has a type (e.g., a string,
a number, or a date), and optionally a more specific domain of possible values,
which we hereby call a facet. Each row has an identifier, one expression for each
input column (a.k.a. the input entries), and one specific value for each output
column (a.k.a. the output entries). For example, Table 1 shows a DMN decision
table with two input columns, one output column and four rules.

Loan Grade
U C Annual Loan Grade

Income Size
[0..2000] [0..1500] VG,G,F,P

A [0..1000] [0..750] VG
B [250..750] [1200..1500] G
C [500..1500] [250..1000] F
D [1600..2000] [0..850] P

Table name
Hit indicator

Completeness
indicator

Input attributes

Facet

Output
attribute

Rule
Priority
indicator

Input entries Output entry
Table 1: Sample decision table with its constitutive elements

Given a vector of input values (one entry per column), if every input entry of
a row holds true for this input vector, then the vector matches the row and the

3

output entries of the row are evaluated. For example, vector 〈500, 1400〉 matches
rule B in Table 1, thus yielding G in the output column. To specify how output
configurations are computed from input ones, a DMN decision table has a hit in-
dicator and a completeness indicator.1 The hit indicator specifies whether only
one or multiple rows of the table may match a given input and, if multiple rules
match an input, how should the output be computed. The completeness indicator
specifies whether every input must match at least one rule or potentially none. If
an input configuration matches multiple rules, this may contradict the hit indica-
tor. Similarly, if no rule matches an input configuration, this may contradict the
completeness indicator. The former contradiction leads to overlapping rules while
the latter leads to missing rules.

2.2. Analysis of DMN Decision Tables
The need to analyze decision tables from the perspective of completeness (i.e.,

detecting missing rules) as well as consistency and non-redundancy (i.e., detecting
overlapping rules) is widely recognized [6]. Several algorithms addressing these
two analysis tasks have been proposed [17, 13, 24]. However, these algorithms
require the domain of each input attribute to be either boolean or categorical. If an
attribute has a numerical domain, meaning that the input entries of this attribute
are intervals, then these intervals must be disjoint.

Concretely, the above approaches cannot handle situations where multiple
overlapping intervals appear as input entries of the same attribute (e.g., attribute
A has input entry [151..300] in one rule and [200..250] in another rule). If this
happens, the table needs to be expanded so that these intervals do not overlap
(e.g., intervals [151..300] and [200..250] need to be broken down into [151..200),
[200..250) and [250..300]). In the worst case, this expansion increases the
size of the table exponentially in the number of numerical attributes. Alterna-
tively, instead of breaking down the entries under a numerical attribute into non-
overlapping intervals, we can instead define one boolean variable for each interval.
For example, if a numerical attribute A has input entries [151..300] in one rule and
[200..250] in another rule, we can rewrite the table into an equivalent table with
two boolean attributes, A1 and A2, where A1 is true iff the value of the original
attribute A is in the interval [151..300], and A2 is true iff the value of the original

1In the new version of DMN released in 2016 (DMN 1.1), the notion of completeness indicator
was eliminated. However, this is purely a standardization decision. The problem of identifying
missing rules remains a relevant problem from a tooling perspective. In this article, we refer to the
completeness and hit indicators of DMN 1.0.

4

attribute A is in the interval [200..250]. This rewriting approach does not increase
the number of rules in the table, but instead it may significantly increase the num-
ber of columns. To the best of our knowledge, the approach for analyzing decision
tables we propose is the first one that deals with numerical attributes without re-
quiring the input entries of each numerical attribute to be previously broken down
into disjoint intervals.

Similarly, several algorithms for simplifying decision tables via rule merging
have been proposed [18, 20, 15, 22]. The Pollack’s algorithm [18] selects two
rules that have the same output and coincide on all inputs but one. Every time
that such a pair of rules is identified, they are merged into a single rule by do-
ing the union of the sets of values in the two cells where the difference occurs
(all other cells remain the same in the merged rule). Shwayder [20] proposes an
optimization of the Pollack’s algorithm applicable in the case where certain rules
do not depend on all attributes, but only on a subset of them. Maes [15] pro-
poses further optimizations in cases where there are logical relations between the
attributes (e.g., if two attributes are true, then a third attribute is also true). The
latter approach specifically optimizes the order in which the attributes are scanned
(to identify possible rules to be merged) so as to obtain a minimum set of rules
after simplification. In this approach, only one pair of rules is merged at a time.
Vanthienen et al. [22] extend the latter approach by considering situations where
groups of more than two rules can be merged together into a smaller set of rules.

All these algorithms suffer from the same limitations mentioned above in the
context of algorithms for finding missing and overlapping rules. In other words,
these algorithms operate over attributes with boolean domains (and by extension
they can be applied to categorical domains). If the table has numerical domains,
the intervals under each attribute must be made disjoint as explained above.

From these observations, we can conclude that, while the verification and sim-
plification of decision tables with discrete or discretized domains has received
much attention, the case where columns have both discrete domains and numer-
ical domains with arbitrary interval expressions has not been considered in the
literature. In this article, we propose a geometric approach to diagnose and sim-
plify decision tables that overcome the above limitations. Geometric approaches
to analyze equivalence or overlap of expressions have been studied in the context
of arithmetic expressions [11], but they have never been applied to decision tables
before.

Another related body of research deals with using decision tables as output of
classification algorithms (as an alternative to decision trees) [14]. Such techniques
have been applied to extract DMN decision tables from business process event

5

logs [2]. This body of research however is not concerned with the analysis of
decision tables, but rather with their discovery.

To conclude our analysis of the literature, we report that several tools are
available for modeling executing, and analyzing classical decision tables. Pro-
loga [21, 23] supports the construction of decision tables in a way that prevents
overlapping or missing rules. It also supports the simplification of decision tables
via rule merging. However, the underlying techniques implemented in Prologa
are designed for boolean and categorical attributes. When attributes are numeri-
cal, their input entries need to be decomposed as explained above.

Signavio’s DMN editor2 detects overlapping and missing rules without requir-
ing the entries of numerical attributes to be broken down. However, the employed
techniques are undisclosed and no empirical evaluation thereof has been reported.
Also, the diagnosis of overlapping and missing rules produced by Signavio is
unnecessarily large: it often reports the same rule overlap multiple times. This
behavior will be further explained in Section 5.

OpenRules3 uses constraint satisfaction techniques to analyze business rules,
in particular rules encoded in decision tables. While using a general solver to
analyze decision tables is an option (e.g., an SMT solver such as Z3 [7]), this
approach leads to a boolean output (is the set of rules satisfiable?), and cannot
natively highlight specific sets of rules that need to be added to a table (missing
rules), nor specific overlaps between pairs of rules that need to be resolved.

3. Formal Semantics

In this section, we provide a formalization of DMN decision tables, defining
their input/output semantics, and, at the same time, introducing several analysis
tasks focused on correctness checking. We do not consider forms of aggregation
for output values here, as they are orthogonal to correctness checking. Hence, we
focus on decision tables returning the output of one rule only. These are called sin-
gle hit tables. As a concrete specification language for input entries, we consider
the S-FEEL language introduced in the DMN standard itself.

Our formalization is based on classical predicate logic extended with data
types, which are needed to capture conditions that employ domain-specific predi-
cates such as comparisons interpreted over the total order of natural numbers. This
formalization is important per se, as it defines a clear, unambiguous semantics of

2http://www.signavio.com
3http://openrules.com/

6

http://www.signavio.com
http://openrules.com/

decision tables, and also it represents an interlingua supporting the comparison of
different analysis techniques.

3.1. Data Types and S-FEEL Conditions
We first introduce the building blocks of decision tables, i.e., the types of

the modeled attributes, and the conditions over such types expressed using the S-
FEEL language. A data type T is a pair 〈∆T ,ΣT 〉, where ∆T is an object domain,
and ΣT = ΣP

T] ΣF
T is a signature, consisting of a set ΣP

T of predicate symbols,
and a set ΣF

T of function symbols (disjoint from ΣP
T). Each predicate symbol

R ∈ ΣP
T comes with its own arity n, and with an n-ary predicate RT ⊆ ∆n

T
that rigidly defines its semantics. Similarly, each function symbol f ∈ ΣF

T comes
with its own arity m, and with a function ∆m

T → ∆T that rigidly defines its
semantics. To make the arity explicit in predicate and function symbols, we use
the standard notation R/n and f/m. As usual, we assume that every data type is
equipped with equality as a predefined, binary predicate interpreted as the identity
on the underlying domain. Hence, we will not explicitly mention equality in the
signatures of data types. In the following, we show some of the S-FEEL data
types4:
• TS = 〈S, ∅, ∅〉 – strings.
• TB = 〈{true, false}, ∅, ∅〉 – boolean attributes.
• TZ = 〈Z, {</2, >/2}, {+/2,−/2, ·/2,÷/2}〉 – integer numbers equipped

with the usual comparison predicates and binary operations.
• TR = 〈R, {</2, >/2}, {+/2,−/2, ·/2,÷/2}〉 – real numbers equipped

with the usual comparison predicates and binary operations.
The set of all such types is denoted by T.

S-FEEL allows one to formulate conditions over types. These conditions con-
stitute the basic building blocks for facets and rules, which in turn are the core of
decision tables. The syntax of an (S-FEEL) condition Q over type T is:

Q ::= “-” | Term | “not(”Term“)” |
Comparison | Interval | Q1,Q2

Comparison ::= COp Term
Interval ::= (“(” | “[”)Term1“..”Term2(“)” | “]”)

Term ::= v | f(Term1, . . . ,Termm)

where (i) COp is a binary predicate symbol in ΣT , (ii) v is an object from ∆T ,
and (iii) f is an m-ary function in ΣT .

4Date/time data types are also supported, but can be considered as simple numerical attributes.

7

Concretely, S-FEEL supports the following conditions on a given data type T :
• “-” indicates any value, i.e., it holds for every object in ∆T .
• “=Term” indicates a matching expression, which holds for the object in ∆T

that corresponds to the result denoted by term Term. A term, in turn, corre-
sponds either to a specific object in ∆T , or to the recursive application of an
m-ary function in ΣT to m terms. It is worth noting that, in the actual S-FEEL
standard, the symbol “=” is usually omitted, that is, when resolving the scope
symbol Q, Term is interpreted as a shortcut notation for “=Term”.
• Comparison is only applicable when T is a numerical data type, and indicates

a comparison condition, which holds for all objects that are related via the
comparison predicate to the object resulting from expression Term.
• Interval is only applicable when T is numerical, and allows the modeler to

capture membership conditions testing whether an input object belongs to the
given interval.
• “Q1,Q2” indicates an alternative condition, which holds whenever one of the

two conditions Q1 or Q2 holds.

Example 1. The fact that a risk category is either high, medium or low can be
expressed by the following condition over TS: “high,medium,low”. By using
TZ to denote the age of persons (in years), the group of people that are underage
or elder (i.e., older than 70 years) is captured by condition “[0..18),≥ 70”.

3.2. DMN Decision Tables
We can now define DMN decision tables. See Table 1 for a reference example.

A decision table D is a tuple 〈T, I, O,Type,Facet, R,Priority, C,H〉, where:
• T is the table name.
• I and O are disjoint finite sets of input and output attributes, respectively.5

• Type : I]O → T is a typing function that associates each input/output attribute
to its corresponding data type.
• Facet is a facet function that associates each input/output attribute a ∈ I] O

to a condition over Type(a), defining the acceptable objects for that attribute.
Facet functions are also referred to as “optional lists of values”.
• R is a finite set {r1, . . . , rp} of rules. Each rule r is a pair 〈If,Then〉, where
If is an input entry function that associates each input attribute ain ∈ I to a

5Attributes are called “expressions” in the DMN standard because the entries in the table are
expressions over attributes.

8

condition over Type(ain), and Then is an output entry function that associates
each output attribute aout ∈ O to an object in Type(aout).
• Priority : R → {1, . . . , |R|} is a priority function injectively mapping rules in
R to a corresponding rule number defining its priority.
• C ∈ {c, i} is the completeness indicator, where c is the default value and

stands for complete table, while i stands for incomplete table.
• H ∈ {u, a, p, f} is the (single) hit policy indicator defining the policy for the

rule application, where: (i) u is the default value and stands for unique hit
policy, (ii) H = a stands for any hit policy, (iii) H = p stands for priority hit
policy, and (iv) H = f stands for first hit policy.

The notion of priority deserves a dedicated discussion. According to the DMN
standard, two different notions of priority are respectively induced by a set of
rules. The first notion of priority, which we call rule priority, is simply determined
by the ordering of rules. The second notion of priority, which we call output
priority, is induced by ordering the rules according to the lexicographic ordering
of the output values (e.g., alphabetical order for strings or the usual total ordering
for numbers). Since rule and output priorities never interact (either none or only
one of them is actually used), we employ the abstract Priority function introduced
before to accommodate both types of priority.

Next, we informally review the semantics of rules and of completeness/hit
indicators in DMN, moving to the formalization in Section 3.3.
Rule semantics. Intuitively, rules follow the standard “if-then” interpretation.
Rules are matched against input configurations, which map the input attributes
to objects in such a way that each object (i) belongs to the type of the corre-
sponding input attribute, and (ii) satisfies the corresponding facet. If, for every
input attribute, the assigned object satisfies the condition imposed by the rule on
that attribute, then the rule triggers, and bounds the output attributes to the corre-
sponding objects mentioned by the rule.

Example 2. Consider the decision table in Table 1. The input configuration
where Income is 500 and Loan is 1 230, triggers rule B.

Completeness indicator. When the table is declared to be complete, the intention
is that every possible input configuration must trigger at least one rule. Incomplete
tables, instead, have input configurations with no matching rule.
Hit policies. Hit policies specify how to handle the case where multiple rules are
triggered by an input configuration. In particular:
• “Unique hit” indicates that at most one rule can be triggered by a given input

9

configuration, thus avoiding the need of deciding which output is selected when
multiple rules trigger simultaneously.
• “Any hit” indicates that when multiple rules trigger, they must agree on the out-

put objects, thus guaranteeing that the output is always unambiguously com-
puted.
• “Priority hit” indicates that whenever multiple rules trigger, then the output is

unambiguously computed by only considering the contribution of the triggered
rule that has the highest output priority.
• “First hit” (or “Rule order”) indicates that whenever multiple rules trigger, then

the output is unambiguously computed by only considering the contribution of
the triggered rule that has the highest rule priority.

3.3. Formalization of Rule Semantics and Analysis Tasks
We first define how conditions map to the corresponding formulae. Since each

condition is applied to a single input attribute, the corresponding formula has a
single free variable corresponding to that attribute. Given a condition Q over
type T , the condition formula for Q, written ΦQ, is a formula that captures the
semantics ofQ by suitably using predicates/functions in ΣT and objects from ∆T ,
as well as (possibly) a single free variable. Specifically, ΦQ =

true if Q = “-”

¬ΦTerm if Q = “not(Term)”

x = Term if Q = Term

x COp Term if Q = “COp Term” and COp ∈ {<,>,≤,≥}
x > ΦTerm1 ∧ x < ΦTerm2 if Q = “(Term1..Term2)”

x > ΦTerm1 ∧ x ≤ ΦTerm2 if Q = “(Term1..Term2]”

x ≥ ΦTerm1 ∧ x < ΦTerm2 if Q = “[Term1..Term2)”

x ≥ ΦTerm1 ∧ x ≤ ΦTerm2 if Q = “[Term1..Term2]”

ΦQ1 ∨ ΦQ2 if Q = “Q1,Q2”

As usual, we sometimes use notation ΦQ(x) to explicitly mention the free variable
of the condition formula.

Example 3. Consider the S-FEEL conditions in Example 1. The condition
formula for risk category is Risk = high ∨ Risk = medium ∨ Risk = low. The
condition formula for person ages is: (Age ≥ 0 ∧ Age < 18) ∨ Age ≥ 70.

10

With condition formulae, we now formalize the key notions of: (i) correctness
of rule specifications, (ii) semantics of rules, (iii) semantics of completeness, and
(iv) semantics of hit indicators. These notions are, in turn, basic building blocks
for a global notion of table correctness.

Let D = 〈T, I, O,Type,Facet, R,Priority, C,H〉 be a decision table with m
input attributes I = {a1, . . . , am}, n output attributes O = {b1, . . . ,bn}, and
p rules R = {r1, . . . , rp}. Throughout the formalization, we use notation ~x =
x1, . . . , xm for object variables filling the m input attributes, and ~y = y1, . . . , yn
for object variables filling the n output attributes.
Facet correctness. We first consider the facet correctness of D, which intuitively
amounts to check whether all mentioned input conditions and output objects agree
with the facets associated to their corresponding attributes. First, we say that
object x is legal for attribute a ∈ I ∪O, written Legala(x), if x belongs to the set
of objects defined by the facet associated to a:

Legala(x) , ΦFacet(a)(x)

Consider now a condition Q over a. We say that object x matches Q, written
MatchesQa (x), if x agrees with the facet associated to a, and at the same time x
satisfies Q:

MatchesQa (x) , Legala(x) ∧ ΦQ(x)

Note that for an output attribute with associated object o, ΦQ(x) corresponds to
an atomic, equality formula testing whether x = o. Starting from this notion of
matching, we formalize that condition Q is compatible with attribute a, written
CompatibleQa , if it is possible find at least one object that matches Q (i.e., it is
not the case that the facet attached to a is completely disjoint to the set of objects
satisfying Q). Formally:

CompatibleQa , ∃x.MatchesQa (x)

Rule semantics. A rule r = 〈If,Then〉 ∈ R is triggered by a configuration ~x of
input objects, written TriggeredByr(~x), whenever each such object matches the
corresponding input condition:

TriggeredByr(~x) ,
∧

i∈{1,...,m}

Matches If(ai)
ai

(xi)

Two configurations ~x and ~y of input and output objects respectively are input-
output related by a rule r = 〈If,Then〉 ∈ R, written IORel r(~x, ~y), if r is triggered

11

by the input configuration ~x, and the output configuration ~y agrees with the output
specified by r:

IORel r(~x, ~y) , TriggeredByr(~x) ∧
∧

j∈{1,...,n}

Matches
Then(bj)

bj
(yj)

Completeness. When declaring that a table is (in)complete, there is no guarantee
that the rules contained in the table indeed behave as declared. Checking whether
the rules of the table imply completeness amounts to checking that the input con-
ditions “cover” the domains of the attributes, as specified by their facets. Formally,
we say that decision table D is complete if for every input configuration consti-
tuted by objects that agree, position-wise, with the facets of their corresponding
attributes, there exists at least one rule in D that is triggered by that configuration:

CompleteD , ∀~x.
(∧

i∈{1,...,m}

Legalai
(xi)

)
→

∨
k∈{1,...,p}

TriggeredByrk
(~x)

Hit policies. Like for the completeness indicator, when declaring that a table
works under a given (single) hit policy, there is no guarantee that the rules in the
table actually behave in a way that is compatible with the policy itself. We then
review each policy indicator, and introduce the corresponding formulae over the
rules of the table so as to capture this notion of compatibility.

We start with the unique hit policy, which prescribes that each input config-
uration triggers at most one rule. To properly mirror such an indication, table D
must be unique, written UniqueD, i.e., D must guarantee that whenever a rule is
triggered by a given input configuration, that input configuration does not trigger
any other rule:

UniqueD ,
∧

i∈{1,...,p}

∀~x.
(
TriggeredByri

(~x)→
∧

j∈{1,...,p}\{i}

¬TriggeredByrj
(~x)
)

We then continue with the any hit policy. To behave consistently with such
a policy, D must be such that whenever multiple rules are triggered by the same
input configuration, they must agree on the output. This is formalized as follows:

AgreesOnOutputD ,
∧

i,j∈{1,...,p},i 6=j

∀~x, ~y.

TriggeredByri
(~x)

∧ TriggeredByrj
(~x)
)

∧ IORel ri(~x, ~y)

→(IORel rj(~x, ~y)
)

12

We now consider the case of priority and first hit policies. Both policies de-
pend on (respectively, the output and rule) priority. Hence, in the presence of such
hit policies, the rule semantics needs to be properly reformulated, by considering
the Priority function. In particular, we say that rule r ∈ R is triggered with priority
by input configuration ~x, written TriggeredWithPriorityByr(~x), if it is triggered
by ~x in the normal sense, and in addition no rule of higher priority is triggered by
the same input ~x:

TriggeredWithPriorityByr(~x) , TriggeredByr(~x)∧
∧

rh∈{r′|r′∈R and Priority(r′)>Priority(r)}

¬TriggeredByrh
(~x)

This new formula, in turn, can be used to define the input-output relation induced
by the entire table D in the presence of priority. Specifically, we say that two
configurations ~x and ~y of input and output objects are input-output related by D
in the presence of priority, written IORelPD(~x, ~y), if there exists a rule r in D
such that r is the highest-priority rule triggered by ~x, and ~x and ~y are input-output
related by r (in the sense defined before):

IORelPD(~x, ~y) ,
∨
r∈R

TriggeredWithPriorityByr(~x) ∧ IORel r(~x, ~y)

In addition, we observe that the presence of priority may lead to the wrong sit-
uation where some rules are never triggered. This happens when other rules of
higher priority have more general input conditions, thus subsuming the one hav-
ing lower priority. We formalize this notion as follows: rule r1 ∈ R is masked by
rule r2 ∈ R, written MaskedByr2

r1
, if for every input configuration, whenever r1 is

triggered by that input configuration, then this is also the case for r2:

MaskedByr2
r1
, Priority(r2) > Priority(r1)
∧∀~x.TriggeredByr1(~x)→ TriggeredByr2(~x)

Clearly, checking redundancies and subsumption between rules is of general inter-
est, not just in the presence of priorities. This will be in fact extensively discussed
in Section 4.
Correctness formula. We now combine the previously defined formulae into a
single formula that captures the overall correctness of a decision table.

We say that D is correct, written CorrectD, if the following conditions hold:
1. Every table cell, i.e., every input condition or output object, is legal for the

corresponding attribute (considering the attribute type and facet).

13

2. The completeness indicator corresponds to c iff the table is indeed complete.
3. The rules are compatible with the hit policy indicator:

(a) if the hit policy is u, each input configuration triggers at most one rule;
(b) if the hit policy is a, all overlapping rules (i.e., rules that could simul-

taneously trigger) have the same output;
(c) if the hit policy is p or f, all rules are “relevant”, i.e., no rule is masked

by a rule with higher priority.
Based on the previously introduced formulae, we then formalize correctness as:

CorrectD ,
∧

〈If,Then〉∈R

(∧
a∈I

Compatible If(a)a ∧
∧
b∈O

Compatible
Then(b)
b

)
∧
(
(C = c)↔ CompleteD

)
∧
(
(H = u)→ UniqueD

)
∧
(
(H = a)→ AgreesOnOutputD

)
∧
(

(H = p ∨H = f)→
∧

r1,r2∈R

¬MaskedByr2
r1

)
Global input-output formula. We conclude our formalization by defining a sin-
gle formula that captures the overall input-output relation induced by D, consid-
ering its rules as well as its hit policy. Specifically, we say that an input con-
figuration ~x and an output configuration ~y are input-output related by D, written
IORelD(~x, ~y), if:

1. The hit policy is either u or a, and there exists a rule that relates ~x to ~y.6

2. The hit policy is either p or f, there exists a rule r that relates ~x to ~y, and
there is no other rule with higher priority that is triggered by ~x.

This is formalized as follows:

IORelD(~x, ~y) ,
(

(H = u ∨H = a)→
∨
r∈R

IORel r(~x, ~y)
)

∧
(

(H = p ∨H = f)→ IORelPD(~x, ~y)
)

6In the case of any hit policy, several matching rules may exist, but since they establish the
same input-output relation, it is sufficient to pick one of them.

14

4. Analysis and Simplification Algorithms

In this section, we introduce a general approach to represent a DMN deci-
sion table in terms of geometric objects and we apply this approach to design
algorithms for analyzing and refactoring DMN decision tables. First, we apply
this general approach to design an algorithm for detecting overlapping rules in a
DMN decision table. The detection of overlapping rules allows us to check if a
given table fulfills a unique-hit policy. It also allows us to check if a table with an
“any hit” policy is correct. Indeed a table with “any hit” should be such that any
group of overlapping rules should have the same output. Finally, in the case of
“priority hit” and “first hit” policies, this operation allows us to detect situations
where a rule partially or totally masks a set of other rules, because it overlaps with
these rules while having a higher priority or order. Next, we apply the general ap-
proach for representing DMN tables in order to design an algorithm for detecting
missing rules. This operation allows us to verify the correctness of a table with a
“Complete” indicator. Finally, we show how the approach can be used to simplify
a decision table by merging multiple “adjacent” rules with the same output into a
smaller set of rules.

4.1. General approach
The proposed algorithms rely on a geometric interpretation of a DMN deci-

sion table. Every rule in a table is seen as an iso-oriented hyper-rectangle in an
N-dimensional space (where N is the number of columns). Indeed, an input entry
in a rule can be seen as a constraint over one of the columns. In the case of a
numerical column, an input entry is an interval (potentially with an infinite upper
or lower bound) and thus it defines a segment or line over the dimension corre-
sponding to that column. In the case of a categorical column, we can map each
value of the column’s domain to a disjoint interval – e.g., “Refinancing” to [0..1),
“Card payoff” to [1..2), “Car leasing” to [2..3), etc. – and we can see an input
entry under this column as defining a segment (or a set of segments) over the di-
mension corresponding to the column in question. The conjunction of the entries
of a row hence defines a hyper-rectangle, or potentially multiple hyper-rectangles
in the case of a multi-valued categorical input entry (e.g., {“Refinancing”, “Car
leasing”}). The hyper-rectangles are iso-oriented, because only constraints of the
form “attribute operator literal” are allowed in S-FEEL and such constraints define
iso-oriented lines or segments.

15

The geometric interpretation of Table 1 is shown in Figure 1.7 The two di-
mensions, x and y, represent the two input columns (Annual income and Loan
size), respectively. The table contains 4 rules: A, B, C, and D. Some of them
are overlapping. For example, rule A overlaps with rule C. Their intersection is
the rectangle [500, 1000]× [250, 750]. The table also contains missing values. For
example, vector 〈200, 1000〉 does not match any rule in Table 1.

Figure 1: Geometric representation of the DMN decision table shown in Table 1. The x-axis is
the annual income while the y-axis is the loan size. The colored rectangles A-D represent the four
rules in the table. The white rectangles 1-8 represent a set of rectangles such that the union of
rectangles A-D and 1-8 cover all possible combinations of annual income and loan amount.

4.2. Finding Overlapping Rules
Given the geometric interpretation of a decision table discussed above, the

problem of detecting overlapping rules becomes that of finding intersections in
a set of hyper-rectangles. A straightforward approach to this problem is to scan
through all possible pairs of hyper-rectangles and to check each pair for intersec-
tion. This algorithm has a complexity of O(d · |R|2), where |R| is the number
of rules in the table and d is the number of columns (which is also the number
of dimensions in the hyper-space under consideration). A more sophisticated ap-
proach [9] combines a sweep-line algorithm with data structures for range queries
in order to achieve a lower complexity: O(|R| · logd|R|).

The above approaches produce as output the set of all pairs of overlapping
rules in a table. This output is arguably not useful from an end-user perspective
as this set of pairs can be too large for manual inspection. Also, if the goal is

7For simplicity, the figure is purely schematic and does not preserve the scale along the axes.

16

ultimately to repair the table so as to obtain a non-overlapping one, it is not con-
venient to reason at the level of pairs of overlapping rules, but rather at the level
of larger groups of rules that overlap with each other.

Inspired by this observation, we formulate the problem of finding overlapping
rules in a DMN decision table as that of computing maximal subsets of rules such
that every two rules in a subset overlap with each other. We approach this problem
by first computing all intersecting pairs of hyper-rectangles in order to construct an
overlap graph. In this graph, each vertex represents a rule (i.e., a hyper-rectangle).
There is an edge between two vertices if their corresponding rules overlap. For
example, consider the set of overlapping rectangles shown in the left-hand side of
Figure 2, which includes the four rectangles in Figure 1 and two additional ones
(E and F). The corresponding overlap graph and its maximal cliques are shown on
the right-hand side of the figure. Note that rectangles B and D do not appear in
the overlap graph since they do not overlap with any other rectangle.

Figure 2: Extended version of the example in Figure 1 (left) and corresponding overlap graph with
maximal cliques thereof (right)

The subsets of rules that we are looking for are cliques in the overlap graph
(e.g., the two cliques shown in Figure 2). Since we aim at minimizing the number
of such subsets, the problem is then that of listing the maximal cliques in the over-
lap graph. For example, the maximal cliques of the running example are delimited
as ovals in Figure 2. Finding maximal cliques is an NP-hard problem [10]. How-
ever, existing algorithms such as the Bron-Kerbosch [4] algorithm perform well
in practical scenarios, particularly when the input graph is sparse, which is likely
to be the case in our setting, as we expect that rule overlaps will be an exception
rather than a norm.

In summary, the proposed procedure to identify overlapping rules from a de-
cision table is as follows:

17

1. Map the rules into hyper-rectangles in an N-dimensional space (where N is
the number of columns in the table).

2. Build the overlap graph by computing all the pairs of intersecting hyper-
rectangles (this can be done either by scanning through all possible pairs
of hyper-rectangles and checking each pair for intersection or by using the
algorithm in [9]) and eliminate rules that do not overlap with any other rule.

3. Generate the maximal cliques of the overlap graph using the Bron-Kerbosch
algorithm.

4. Output each maximal clique as a set of overlapping rules.

4.3. Finding Missing Rules
The proposed geometric interpretation of decision tables can also be applied to

the problem of detecting missing rules. Below we outline an approach to this prob-
lem based on the sweep-line algorithmic paradigm [3]. The idea of sweep-line
algorithms is to pick one dimension (e.g., x-axis), project all geometric objects (in
this case hyper-rectangles) on this dimension, and then sweep an imaginary line
orthogonal to this axis (i.e., parallel to the y-axis). The line stops at every point
in the x-axis where either a hyper-rectangle starts or ends. In Figure 1, the stop
points are depicted as vertical lines. When the line makes a “stop”, we gather all
(hyper-)rectangles that intersect the line. This set of hyper-rectangles is called the
active list and they are such that they overlap along their x-axis projection. The
idea of sweep-line is to analyze the hyper-rectangles in the active set, then move
the line to the next position, and so on until the last hyper-rectangle has been
processed along the x-axis.

The specific procedure we propose for missing rules detection is described in
Algorithm 1. This algorithm takes as inputs five parameters:

1. ruleList – the set of rules of the input DMN decision table;
2. missingIntervals – the current set of missing intervals;
3. i – the index of the dimension (column) that is being swept through;
4. N – the total number of columns;
5. MissingRuleList – the set of missing rules.
The algorithm starts by sweeping through the first column of the table (axis

x). To illustrate this first pass, we consider the projection of the table in Figure 1
on the x axis:

18

A

B
C

D

The upper and lower bounds of each interval are sorted in ascending order (line
3). The algorithm iterates over the list of sorted bounds (line 5). Considering
the rules above, the algorithm first analyzes the lower bound of IxA. Therefore,
IxA is added to the active list of intervals for the first column x, Lx. An interval
is added to the active list if its lower bound is processed (line 16). If the upper
bound of an interval is processed, the interval is removed from the list (line 18).
Next, the algorithm processes the lower bound of IxB. Since Lx is not empty,
IxB is not added to Lx yet (line 12). Starting from the interval IA,B (line 13)
having the lower bound of IxA as lower bound and the lower bound of IxB as upper
bound, the following column of the table is analyzed (in this case y) by invoking
findMissingRules recursively (line 14).

All the interval projections on y of the rules corresponding to intervals con-
tained in Lx (in our example only A) are represented in terms of upper and lower
bounds, obtaining in this case the following simple situation:

A

The bounds are sorted in ascending order. The algorithm iterates over the list of
sorted bounds. The first bound taken into consideration is the lower bound of IyA
so that IyA is added to Ly (since Ly is empty). Since this bound corresponds to the
minimum possible value for y, there are no missing values between the minimum
possible value for y and the lower bound of IyA (line 6). Next, the algorithm
processes the second bound in Ly that is the upper bound of IyA. Considering that
the upper bound of IyA is the last one in Ly, the algorithm checks if this value
corresponds to the maximum possible value for y (line 6). Since this is not the
case, this means that there are missing values in the area between the upper bound
of IyA and the next bound over the same column (in this case area 1). The algorithm
checks if the identified area is adjacent to an area of missing values previously
found (line 8). If this is the case the two areas are merged (line 9). If this is not
the case, the area is added to a list of missing value areas (line 11). In our case,
area 1 is added to the list of missing value areas. Note that the algorithm merges
two areas of missing values only when the intervals corresponding to one column
are adjacent and the ones corresponding to all the other columns are exactly the
same. In the example in Figure 1, areas 4 and 6 are merged.

At this point, the recursion ends and the algorithm goes back to analyze the
intervals in the projection along the x axis. The last bound processed was the

19

Algorithm 1: Procedure findMissingRules.
Input: ruleList; missingIntervals; i; N ; missingRuleList.

1 if i < N then
2 Lxi = []; // initializes the current list of bounds
3 sortedListAllBounds = ruleList.sort(i);
4 lastBound = 0;
5 foreach currentBound ∈ sortedListAllBounds do
6 if !areAdjacent(lastBound, currentBound) then
7 missingIntervals[i] = constructInterval(lastBound, currentBound);
8 if missingRuleList.canBeMerged(missingIntervals); then
9 missingRuleList.merge(missingIntervals);

10 else
11 missingRuleList.add(missingIntervals);

12 if !Lxi .isEmpty() then
13 missingIntervals [i] = constructInterval(lastBound, currentBound);
14 findMissingRules(Lxi ,missingIntervals,i +1, N , missingRuleList); /* recursive

invocation */

15 if currentBound.isLower() then
16 Lxi .put(currentBound);
17 else
18 Lxi .delete(currentBound);

19 lastBound = currentBound;

20 return missingRuleList;

lower bound of IxB, so that IxB is added to Lx. Next, the algorithm processes the
lower bound of IxC (since Lx is not empty, IxC is not added to Lx yet). Starting
from the interval IB,C having the lower bound of IxB as lower bound and the lower
bound of IxC as upper bound, the following column of the table is analyzed (in this
case y) again through recursion.

All intervals projections on y of the rules corresponding to intervals contained
in Lx (in this case A and B) are represented in terms of upper and lower bounds:

A B

The bounds are sorted in ascending order. The algorithm iterates over the list of
sorted bounds. Considering the rules above, the algorithm first processes the lower
bound of IyA so that IyA is added toLy (Ly is empty). Then, the upper bound of IyA is
processed. When the algorithm reaches the upper bound of an interval in a certain
column the interval is removed from the corresponding active list. Therefore, IyA
is removed from Ly. Next, the lower bound of IyB is processed. Since Ly is empty,
the algorithm checks if the previously processed bound is adjacent to the current
one (line 6). Since this is not the case, this means that there are missing values in
the area between the upper bound of IyA and the next bound over the same column

20

(in this case area 2). The algorithm checks if the identified area is adjacent to an
area of missing values previously found and, if this is the case, the two areas are
merged. If this is not the case, the area is added to the list of missing value areas
(in our case area 2 is added to the list of missing value areas). The list of missing
areas (stored in missingRuleList) is returned by the algorithm (line 20).

4.4. Decision Table Simplification
The proposed approach to table simplification proceeds in three phases as

sketched in Figure 3. In the first phase, the set of rules are divided into groups
on the basis of their output (i.e., all rules with the same output are put into one
group). This grouping is needed, because two rules can be merged only if they
have the same output. The second and third phases are applied to each group
resulting from this first phase.

Figure 3: Decision table simplification phases

In the second phase, each rule is mapped to a hyper-rectangle as previously
explained. Using this viewpoint, we construct an adjacency graph. In this graph,
each rule in the table is represented as a vertex. Two vertices are connected by an
edge if their corresponding hyper-rectangles are adjacent, meaning that they over-
lap across all dimensions but one, and they are contiguous along the dimension
where they do not overlap (i.e., they share a common side). We observe that two
adjacent hyper-rectangles can potentially be merged either into a single hyper-
rectangle (if they fully share a side), or into multiple ones if they partially share
a side. We also observe that, if two hyper-rectangles are in different connected

21

components of the adjacency graph, they cannot be merged into a single rule (nei-
ther fully nor partially). This observation allows us to apply a divide-and-conquer
approach: instead of testing arbitrary pairs of rules to find potential rule merging
opportunities, we consider one connected component of the adjacency graph at a
time, and merge rules only within that connected component.

The computation of the adjacency graph can be done in a similar way as that
of the overlap graph, either by testing every possible pair of hyper-rectangles to
check if they have a common side – O(d · |R|2) – or by using the algorithm in [9] –
O(|R| · logd|R|). The computation of the connected components is done using the
Tarjan’s algorithm, which has a linear-time complexity in the number of edges.

The output of the second phase is thus a set of connected components in the
adjacency graph. The third phase will be applied for each connected component
containing more than one rule. For example, Figure 4 shows a decision table (sim-
ilar to the one in Table 1 but without overlaps) and its corresponding geometric
interpretation. As depicted in the figure, the corresponding adjacency graph has
three connected components called G1, G2, and G3. The latter two connected
components contain only one rule each, so no simplification is possible. The rule
merging will thus be applied to component G1 only.

Loan Grade
U C Annual Loan Grade

Income Size
≥ 0 ≥ 0 VG,G,F,P

R1 [0..500) [0..1000) G
R2 [500..1000) [0..250) G
R3 [500..1000) [250..1000) G
R4 [1000..1500) [250..1000) G
R5 [1600..2000) [0..850) G
R6 [250..750) [1200..1500) G

Figure 4: Decision table and its corresponding geometric interpretation

To this aim, we split the hyper-rectangles in the connected component in such
a way that, if two hyper-rectangles are adjacent, they fully share one of their sides
(as opposed to sharing only part of a side), and we then re-merge the resulting
set of hyper-rectangles as much as possible. The first step in this third phase
(splitting) is performed by running a sweep-line along each dimension in turn.
Every time that the line crosses the projection of a hyper-rectangle over the axis
along with the sweep is being performed, we break down the hyper-rectangle into

22

two parts (left-side and right-side) with respect to the current position of the line.
As an example, if we apply this procedure to the rectangles shown in Figure 4
and assuming that all the rules have the same output (and thus can potentially be
merged), we obtain the set of rectangles in Figure 5.

Figure 5: Decision table simplification example

The procedure for re-merging the resulting set of rules is given in Algorithm 2.
This procedure (simplifyRules) takes as inputs two parameters:

1. ruleList – the list of rules to be merged;
2. N – the total number of input columns in the table.
3. i – index of the column being analyzed. In the initial call to simplifyRules,

this is 1.

Algorithm 2: Procedure simplifyRules.
Input: ruleList; N ; i

1 if i < N then
2 B = {};
3 F = {};
4 sortedListAllBounds = ruleList.sort(i);
5 foreach currentBound in sortedListAllBounds do
6 if currentBound.isIn(ruleList) then
7 if (currentBound.isUpper() && F .isEmpty()) then
8 B.put(currentBound);
9 else if (currentBound.isLower() && !B.isEmpty() && (areAdjacent(lastBound,

currentBound) ‖ (lastBound.value == currentBound.value)) then
10 F .put(currentBound);
11 else if (!B.isEmpty() && !F .isEmpty()) then
12 ruleList = mergeRules(ruleList, B, F , i);
13 B = {};
14 F = {};
15 B.put(currentBound);
16 lastBound = currentBound;

17 ruleList = simplifyRules(ruleList, N, i+1);

18 return ruleList;

23

The algorithm starts analyzing the first column (axis x) of the considered con-
nected component (G1). In the case of Figure 5, the rules of component G1 are
projected on x as:

2

6

1

3

4
5

7

Upper and lower bounds of each interval are sorted in ascending order (line
4) and the algorithm iterates over the list of sorted bounds (line 5). Considering
the rules above, the algorithm first analyzes the lower bound of Ix1 and the lower
bound of Ix3 . Then, the algorithm processes the upper bound of Ix1 . Ix1 is added
to list B (line 8), because the bound processed is an upper bound and F is empty
(line 7). Next, the algorithm processes the upper bound of Ix3 , which is also added
to B (line 8). Then, the lower bound of Ix2 is processed and Ix2 is added to F (line
10), because the bound processed is a lower bound, it is adjacent to the last bound
processed and B is not empty (line 9). Next, the algorithm processes the lower
bound of Ix4 , which is added to F (line 10), because this is a lower bound with
the same value as the previously processed bound and B is not empty (line 9).
Similarly, Ix6 is also added to F . Then, the algorithm processes the upper bound
of Ix2 . At this point, the procedure mergeRules (line 12) is invoked to merge rules
corresponding to intervals in B andF (since all intervals in B andF are adjacent).

Procedure mergeRules compares rules corresponding to intervals in B and
rules corresponding to intervals in F in a pairwise manner. The comparison of
two rules is needed to understand if they have the same inputs in all the input
columns except for the current one (in which they are adjacent). If the inputs are
the same, then the two rules are merged into one. In the example in Figure 5, since
B contains {Ix1 , Ix3 } and F contains {Ix2 , Ix4 , Ix6 }, rules corresponding to intervals
Ix1 and Ix2 , and rules corresponding to Ix3 and Ix4 are merged into one rule (we call
the new intervals Ix2 and Ix4 , respectively).

Procedure mergeRules also tries to merge these resulting rules with each
other. Two rules are merged if they have the same inputs in all the input columns
except for the current one. In our example, rules corresponding to intervals Ix2 and
Ix4 are merged (into Ix2). mergeRules returns ruleList, which contains Ix2 , Ix6 ,
Ix5 , and Ix7 (see Figure 6).

At this point, the algorithm makes B and F empty (lines 13, 14). The last
processed bound was the upper bound of Ix2 , which is added to B (line 15). Next,
the algorithm processes the upper bound of Ix4 . Since the rule corresponding to

24

Figure 6: Rules after the first merge

this interval has already been merged with the rule corresponding to Ix2 (the rule
is not in ruleList anymore), the algorithm ignores it (line 6). Then, the upper
bound of Ix6 is processed and is added to B (line 8). The algorithm processes the
lower bound of Ix5 and adds it to F (line 10), because the bound processed is a
lower bound and is adjacent to the last bound processed (line 9). Next, the lower
bound of Ix7 is processed and this interval is added to F (line 10). At this point,
the algorithm processes the upper bound of Ix5 and invokes mergeRules again
(line 12).

Again, procedure mergeRules compares rules corresponding to intervals in B
and F to check if there are rules that can be merged. In our example, B contains
{Ix2 , Ix6 } and F contains {Ix5 , Ix7 }. Then, rules corresponding to Ix6 and Ix7 are
merged into one rule (Ix7). Therefore, ruleList contains {Ix2 , Ix5 , Ix7 }. In this
case, it is not possible to further merge these rules with each other. Therefore,
mergeRules returns ruleList, which contains rules {Ix2 , Ix5 , Ix7 }. The resulting
set of rules is shown in Figure 7.

At this point, the algorithm makes B and F empty (lines 13, 14). The last
processed bound was the upper bound of Ix5 , which is added to B (line 15). Next,
the algorithm processes the upper bound of Ix7 , which is added to B (line 8). At
this stage, no rules can be merged along the current dimension. Since there are
no other bounds to be processed along the current dimension, the algorithm starts
sweeping the following dimension (line 17). The next dimension in our example
is the y axis. All interval projections on y corresponding to rules in Figure 7 are
shown in terms of upper and lower bounds below:

2

7
5

Lower and upper bounds of each interval are sorted in ascending order (line
4). The algorithm iterates over the list of sorted bounds (line 5) and processes the

25

Figure 7: Rules after the second merge

bounds as for dimension x. In this case, there are no rules that can be merged.
Therefore, the algorithm finishes and returns ruleList (line 18), which in the
running example consists of the rules depicted in Figure 7.

We observe that the end-to-end procedure for table simplification is dominated
by the complexity of the third phase, i.e., of Algorithm 2, which has a complexity
of O(d · |R|2), where d is the number of dimensions and |R| is the number of rules
in the connected component (which in the worst case is equal to the number of
rules in the entire table). This complexity comes from the fact that for each di-
mension, the algorithm computes the subsets of rules B and F and then compares
the rules in these sets in a pairwise manner.

In computational geometry, the problem addressed by Algorithm 2 is known
as the optimal rectangulation of a hyper-polygon, which means decomposing a
hyper-polygon into a minimal set of hyper-rectangles. Indeed, if we merge all the
hyper-rectangles in a connected component of the adjacency graph, we obtain an
iso-oriented hyper-polygon (a.k.a. an orthogonal hyper-polygon). The goal of the
simplification procedure is then to decompose this hyper-polygon into a minimal
set of hyper-rectangles. As shown in [8], the problem of optimal rectangulation of
an orthogonal hyper-polygon is, in general, NP-complete in the case of 3 or more
dimensions. Algorithm 2 is hence a polynomial heuristic that attempts to find the
best decomposition in a best-first approach based on one single “sweep” across
each dimension.

In Algorithm 2, the dimensions are considered in one fixed order. We hereby
call this approach one-permutation approach since it only considers one possible
permutation of the set of dimensions. A more exhaustive approach is to apply
Algorithm 2 once for each possible permutation of the dimensions (e.g., we first
sweep along the x-axis followed by the y-axis, and then we repeat the procedure
the other way around). Each permutation leads to a simplified set of rules. We can
then pick the set with the smallest number of rules. In the running example, if we

26

apply Algorithm 2 starting from the y-axis, we would obtain three rectangles ver-
tically aligned with each other. These rectangles are different from those shown
in Figure 7, but the number of rectangles is still the same. In more complex ex-
amples however, the order in which dimensions are visited may affect the number
of rectangles obtained after the simplification procedure.

The above all-permutations approach has a complexity of O(d! · |R|2), mean-
ing that it is combinatorial in the number of dimensions, but is still polynomial
in the number of rules. Below, we empirically evaluate the performance of these
one-permutation and all-permutation variants, in terms of their execution times
and sizes of the simplified tables they produce.

5. Evaluation

We implemented the algorithms on top of dmn-js: an open-source rendering
and editing toolkit for DMN decision tables.8 Our dmn-js extension with ver-
ification and simplification features can be found at https://github.com/
ulaurson/dmn-js and a deployed version is available at http://dmn.cs.
ut.ee.

Based on this implementation, we experimentally evaluated the scalability of
the proposed algorithms and the conciseness of their output relative to existing
baselines. We first discuss the evaluation of the algorithms for overlapping and
missing rules detection, followed by that of the table simplification algorithm.

5.1. Evaluation of Overlapping and Missing Rules Detection
Dataset. For this evaluation, we created decision tables from a loan dataset of
LendingClub – a peer-to-peer lending marketplace.9 This dataset contains data
about all loans issued in 2014 (235 629 loans). For each loan, there are attributes
of the loan itself (e.g., amount, purpose), of the lender (e.g., income, family status,
property ownership), and a credit grade (A, B, C, D, E, F, G).

Using Weka [12], we trained decision trees to classify the grade of each loan
from a subset of the loan attributes. We then translated each trained decision tree
into a DMN decision table by mapping each path from the root to a leaf of the
tree into a rule. Using different attributes and pruning parameters in the decision
tree discovery, we generated DMN decision tables containing approx. 500, 1000

8https://github.com/bpmn-io/dmn-js
9https://www.lendingclub.com/info/download-data.action

27

https://github.com/ulaurson/dmn-js
https://github.com/ulaurson/dmn-js
http://dmn.cs.ut.ee
http://dmn.cs.ut.ee
https://github.com/bpmn-io/dmn-js
https://www.lendingclub.com/info/download-data.action

and 1500 rules and 3, 5, 7, 9, 11, 13, and 15 columns (21 tables in total). The 3-
dimensional (i.e., 3-column) tables have one categorical and two numerical input
columns; the 5-dimensional tables have two categorical and three numerical input
columns; the 7-dimensional tables have two categorical and five numerical input
columns; the 9-dimensional tables have three categorical and six numerical input
columns; the 11-dimensional tables have three categorical and eight numerical
input columns; the 13-dimensional tables have four categorical and nine numer-
ical input columns; and the 15-dimensional tables have five categorical and ten
numerical input columns.

By construction, the generated tables do not contain overlapping or missing
rules. To introduce overlapping rules in a table, we selected 10% of the rules. For
each of them, we randomly selected one column, and we injected noise into the
input entry of the selected column by decreasing its lower bound and increasing its
upper bound in the case of a numerical domain (e.g., interval [3..6] becomes [2..7])
and by adding one value in the case of a categorical domain (e.g., {Refinancing,
CreditCardPayoff} becomes {Refinancing, CreditCardPayoff, Leasing}). These
modifications make it that the rule will overlap others. Conversely, to introduce
missing rule errors, we selected 10% of the rules, picked a random column for
each row and “shrank” the corresponding input entry.

Execution times. We ran the missing rule and the overlapping rule detection meth-
ods on each generated table and measured the execution times averaged over 5
runs on a single core of a 64-bit 2.2 Ghz Intel Core i5-5200U processor with
16GB of RAM. The results are shown in Tables 2 and 3. The execution times for
overlapping rules are under 2 minutes, except for the 13-columns and 15-columns
tables with 1 500 rules. Similarly, the execution times for missing rule detection
are 1 minute and below, except for the 13-columns and 15-columns tables with
1 500 rules. These results suggest that the theoretical exponential complexity of
the algorithms we employ does not prevent the analysis of tables with large num-
bers of rules, provided that the number of columns is relatively small (less than a
dozen in the reported experiments). On the other hand, the algorithms do not scale
well when confronted to tables with a over a dozen columns and a large number
of rules.

Feedback conciseness. In addition to implementing our algorithms, we imple-
mented the algorithms designed to produce the same output as Signavio. In Sig-
navio, if multiple rules have a joint intersection (e.g., rules {r1, r2, r3}) the output
contains an overlap entry for the triplet {r1, r2, r3}, but also for the pairs {r1,

28

3 COLUMNS 5 COLUMNS 7 COLUMNS 9 COLUMNS

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496 507 1 012 1 524
overlapping rules 117 503 1 263 160 600 1 370 1 374 2 069 13 405 1 100 4 935 30 554
missing rules 160 611 1 672 163 820 1 942 2 173 7 029 18 263 529 6 557 17 649

Table 2: Execution times (in milliseconds) for tables with 3, 5, 7, and 9 columns
and noise 10%

11 COLUMNS 13 COLUMNS 15 COLUMNS

#rules 489 1 026 1 484 515 987 1 527 731 1 038 1 514
overlapping time 767 20 934 93 175 1 023 19 641 320 105 11 175 34 387 195 868
missing time 1 083 15 809 65 450 3 116 50 574 316 138 15 598 41 448 704 510

Table 3: Execution times (in milliseconds) for tables with 11, 13, and 15 columns
and noise 10%

r2}, {r2, r3} and {r1, r3} (i.e., subsets of the overlapping set). Furthermore, the
overlap of pair {r1, r2} may be reported multiple times if r3 breaks r1 ∩ r2 into
multiple hyper-rectangles (and same for {r2, r3} and {r1, r3}). Meanwhile, our
approach produces only maximal sets of overlapping rules with a non-empty inter-
section. In the case of missing rules, Signavio may report multiple missing rules
separately even when these missing rules can be merged together. Our approach,
instead, merges missing rules that are adjacent to each other into a smaller number
of missing rules.

Tables 4–6 show the number of sets of overlapping rules and the number of
missing rules identified by our approach vs. the baseline (i.e., the style of out-
put implemented in Signavio). In all runs, both the number of overlapping and
missing rules is drastically lower in our approach. Also, the results show a linear
growth in the number of sets of overlapping and missing rules produced by our
approach, compared to sharp jumps in the case of the baseline (e.g., from 1.2K for
the 3× 500 table to 10.9K for the 3× 1000 one).

3 COLUMNS 5 COLUMNS 7 COLUMNS

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496
#overlapping Our approach 131 447 812 110 225 378 139 227 371

rule sets Baseline 1 226 10 920 23 115 679 3 692 8 921 23 175 22 002 62 217
#missing Our approach 117 330 726 136 254 462 134 322 518

rules Baseline 668 2 655 5 386 563 2 022 4 832 5 201 18 076 43 552

Table 4: Number of reported errors of type “overlapping rules” & “missing rule”
for tables with 3, 5, and 7 columns and noise 10%

We decided to inject noise in 10% of the rules in each table since our goal was
to stress test the techniques by running them with very large numbers of rules and

29

9 COLUMNS 11 COLUMNS

#rules 507 1 012 1 524 489 1 026 1 484
#overlapping Our approach 93 198 341 102 293 364

rule sets Baseline 16 634 71 263 291 978 13 584 238 704 1 011 268
#missing Our approach 126 195 176 106 211 374

rules Baseline 3 359 36 398 101 905 5 667 150 256 361 861

Table 5: Number of reported errors of type “overlapping rules” & “missing rule”
for tables with 9 and 11 columns and noise 10%

13 COLUMNS 15 COLUMNS

#rules 515 987 1 527 731 1 038 1 514
#overlapping Our approach 95 212 589 129 211 371

rule sets Baseline 14 683 252 083 1 652 964 121 813 361 389 1 152 632
#missing Our approach 159 290 267 196 192 211

rules Baseline 13 360 161 878 551 604 40 245 70 756 254 675

Table 6: Number of reported errors of type “overlapping rules” & “missing rule”
for tables with 13 and 15 columns and noise 10%

high numbers of overlapping/missing rules. Indeed, as shown in Tables 4-6, the
amount of overlapping/missing rules with this level of noise is already in the order
of hundreds in the case of the table with 1500 rules and 15 columns (after merging
the overlapping rules into maximal sets). At this level, the execution times reach
several minutes. We repeated the same experiments by injecting noise in 15% of
the rules in each table. As expected, the execution times were significantly higher
(over an hour in the case of tables with 1500 rows and ≥ 11 columns) due to the
large number of overlapping and missing rules.

5.2. Evaluation of Table Simplification
Dataset. To evaluate the table simplification approach, we constructed decision
tables from the LendingClub dataset using a procedure similar to the one previ-
ously outlined. Specifically, we used Weka [12] to train decision trees to classify
the grade of each loan from a subset of the loan attributes, and translated each deci-
sion tree into a DMN decision table. We tuned the pruning parameters to generate
tables containing approximately 100 rules, with 3 input columns (one categorical
and two numerical), 5 input columns (two categorical and three numerical), and 7
input columns (two categorical and five numerical).

Given the way decision trees are constructed, there are no rule merging op-
portunities in the resulting decision tables. Indeed, every time the decision tree
learning algorithm splits an internal node into two leaves, it ensures that the class
label of one leaf (which will become one rule) is different from the class label
of the other leaf (which will become a rule with which it could potentially be

30

merged). To introduce rule merging opportunities, we inject noise as follows. We
randomly select 10% of the rules. For each such rule r, we “enlarge” the range of
a randomly selected column as described Section 5.1. As a result of this enlarge-
ment, rule r overlaps with other rules. Whenever the enlarged version of rule r
overlaps with other rules, we break down these overlapping rules in such a way
that the resulting rules do not overlap each other.

This procedure ensures that the rules in the resulting table do not overlap,
while at the same time altering the geometric relations between the set of hyper-
rectangles induced by the table in such a way that some pairs of hyper-rectangles
with the same output are adjacent and hence can potentially be merged. In order
to create a higher number of rule merging opportunities, we applied the same
procedure as above, but instead of enlarging one column per selected rule, we
enlarged 2 columns and 3 columns, respectively. As a result, we obtained nine
tables: three with 3 columns, three with 5 columns, and three with 7 columns.

As a baseline, we took the decision table simplification approach proposed
for classical decision tables by Pollack [18]. This approach simply selects two
rules that have the same output and coincide in all inputs but one. When such a
pair of rules is identified, they are merged into a single rule by doing the union
of the sets of values in the two cells where the difference occurs (all other cells
remain the same in the merged rule). The procedure is repeated until there is
no pair of rules that can be merged. This approach was originally designed for
tables over categorical domains. To make it applicable to tables with numerical
domains, we further require that whenever two cells with numerical values are
merged, they should have contiguous ranges. For example, if in one rule the
range of the loan amount is [200..300), while in the other rule, the range of the
loan amount is [500..1000), then these rules are not merged because the result
would not be a single range. On the other hand, if these ranges are [200..300) and
[300..1000), then the two rules are merged and the range of this column in the
simplified decision table is [200..1000).

Execution times. We simplified each of the nine tables mentioned above and mea-
sured the execution times averaged over five runs on a 64-bit 2.6 GHz Intel Core
i5-3230M processor with 4GB of RAM. The executions were timed-out after three
hours for practical reasons. The results are shown in Table 7. The last three rows
in the table show the execution times of: (i) our approach when performing the
sweep-line following one single permutation of the set of columns; (ii) our ap-
proach when all possible permutations are explored; and (iii) the Pollack’s ap-
proach. We observe that in all cases, the execution times of our approach (in both

31

variants) are considerably lower than those of the Pollack’s approach. This speed-
up can be attributed to the fact that we first compute the connected components
in the graph of adjacent rules and then merge along each connected component
separately, rather than globally as in the Pollack’s approach. As expected, the ex-
ecution times of the all-permutations variant of our approach are higher than those
of the one-permutation variant. For the tables with 7 columns produced by enlarg-
ing two and three columns per row, the all-permutations variant reaches the three
hours time-out. The Pollack’s approach reaches the time-out for the table with 5
columns produced by enlarging three columns per row and for all the tables with
7 columns.

3 COLUMNS 5 COLUMNS 7 COLUMNS

#Columns enlarged: 1 2 3 1 2 3 1 2 3
Our approach (one-permutation) 0.52 1.1 5.7 3.5 5.5 30.1 5.6 61.5 774
Our approach (all-permutations) 1.2 2.1 10.3 8.5 13.5 660 6 480 - -
Pollack 840 720 900 3 480 3 060 - - - -

Table 7: Execution times (in seconds) for table simplification

The results suggest that the proposed rule simplification algorithm is applica-
ble to tables with large number of rules, provided that the number of columns is
small (less than 6). However, the algorithm does not scale up well for tables with
larger number of columns. Further research is required to design algorithms that
would address this latter limitation.

Size of simplified tables. Table 8 shows the number of rules obtained after
simplification using both variants of our approach (one-permutation and all-
permutations) and using the Pollack’s approach [18]. The results show that both
variants of our approach produce considerably fewer rules than the Pollack’s ap-
proach. This is attributable to the fact that our approach tries to merge entire sets
of adjacent rules, whereas the Pollack’s approach performs local (pairwise) merg-
ing. When selecting a given pair of rules for merging, the Pollack’s approach
disables other possible rule merging opportunities that could lead to rules with
larger ranges and hence to a lower overall number of rules. We also observe from
the results that the all-permutations variant manages in all cases to reduce the
number of rules with respect to the one-permutation, but the difference is rela-
tively marginal. These results suggest that the one-permutation variant (which is
more scalable) is sufficient for practical applications.

32

3 COLUMNS 5 COLUMNS 7 COLUMNS

#Columns modified 1 2 3 1 2 3 1 2 3
Our approach (one-permutation) 104 107 96 105 104 119 123 124 158
Our approach (all-permutations) 97 101 90 102 100 110 107 - -
Pollack 178 178 158 165 163 - - -

Table 8: Number of rules after table simplification

6. Conclusion and Future Work

This article presented a formal semantics of DMN decision tables, a definition
of decision table correctness based on this semantics, and a framework for analysis
and refactoring of decision tables based on a geometric interpretation of the rules
composing them. Specifically, the article showed how the rules of a decision table
can be seen as iso-oriented hyper-rectangles in an N-dimensional space (where N
is the number of input columns).

Given this geometric interpretation, the article outlined algorithms that opera-
tionalize two primitive operations for checking the correctness of decision tables,
namely detection of overlapping rules and detection of missing rules. We also
showed that this interpretation can be used to simplify decision tables by merging
rules when they have the same output and the corresponding hyper-rectangles are
adjacent (i.e., they share a common side).

The proposed algorithms have been implemented atop the dmn-js toolkit. An
experimental evaluation on large decision tables has shown the potential for scal-
ability of the proposed algorithms, their ability to generate concise feedback of
overlapping and missing rules, and their ability to produce smaller tables relative
to traditional approaches to decision table simplification [18].

The experimental evaluation also showed that the proposed algorithms scale
well in practice to tables with a large number of rules. The overlapping and miss-
ing rule detection algorithms can handle tables with over a thousand rules and a
large proportion of overlapping and missing rules. Similarly, the rule simplifica-
tion algorithm can handle tables with hundreds of rules. However, the algorithms
do not scale well as the number of attributes increases. This lack of scalability
is particularly visible for the rule simplification algorithm, which does not scale
well to tables with over half a dozen attributes and a few hundred rules. Further
research is required to design algorithms that can handle this latter limitation.

The proposed geometric interpretation of DMN decision tables can be applied
to design algorithms for other refactoring tasks besides those discussed in this
article. For example, we foresee that the proposed geometric interpretation can
be applied to transform decision tables with first-hit or priority-hit policies into

33

equivalent tables with unique-hit policy. Exploring further applications of the
proposed general approach is a possible direction for future work.

Finally, the algorithms proposed in this article are limited to DMN decision
tables where the expressions are written in S-FEEL (i.e., expressions of the form
attribute-operator-literal). Hence, another direction for future work is to extend
them in order to support more complex types of expressions supported in the more
expressive FEEL version of the DMN standard.

Acknowledgement. This research was supported by the Estonian Research Coun-
cil (grant IUT20-55) and by the Research Committee of the Free University of
Bozen-Bolzano (project Knowledge-driven ENterprise Distributed cOmputing –
KENDO).

References

[1] Kimon Batoulis, Andreas Meyer, Ekaterina Bazhenova, Gero Decker, and
Mathias Weske. Extracting decision logic from process models. In Proc. of
CAiSE. Springer, 2015.

[2] Ekaterina Bazhenova, Susanne Bülow, and Mathias Weske. Discovering
decision models from event logs. In Proc. of BIS, volume 255 of Lecture
Notes in Business Information Processing, pages 237–251. Springer, 2016.

[3] Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and
counting geometric intersections. IEEE Trans. Computers, 28(9):643–647,
1979.

[4] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 16(9):575?577, 1973.

[5] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio Maria Maggi,
Marco Montali, and Irene Teinemaa. Semantics and analysis of DMN deci-
sion tables. In Proc. of BPM, pages 217–233. Springer, 2016.

[6] CODASYL Decision Table Task Group. A Modern appraisal of decision
tables : a CODASYL report. ACM, 1982.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Proc. of TACAS, pages 337–340. Springer, 2008.

34

[8] Victor J. Dielissen and Anne Kaldewaij. Rectangular partition is polynomial
in two dimensions but np-complete in three. Inf. Process. Lett., 38(1):1–6,
1991.

[9] Herbert Edelsbrunner. A new approach to rectangle intersections part II.
International Journal of Computer Mathematics, 13(3-4):221–229, 1983.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman and Co, 1979.

[11] Mohammad Ali Ghodrat, Tony Givargis, and Alexandru Nicolau. Expres-
sion equivalence checking using interval analysis. IEEE Trans. VLSI Syst.,
14(8):830–842, 2006.

[12] Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[13] D. N. Hoover and Zewei Chen. Tablewise, a decision table tool. In Proc. of
COMPASS, pages 97–108, 1995.

[14] Ron Kohavi and Dan Sommerfield. Targeting business users with decision
table classifiers. In Proc. of KDD, pages 249–253, 1998.

[15] Rik Maes. An algorithmic approach to the conversion of decision grid charts
into compressed decision tables. Commun. ACM, 23(5):286–293, 1980.

[16] Object Management Group. Decision Model and Notation (DMN) 1.0, 2015.

[17] Zdzislaw Pawlak. Decision tables – a rough set approach. Bulletin of the
EATCS, 33:85–95, 1987.

[18] Solomon L. Pollack. Conversion of limited-entry decision tables to computer
programs. Commun. ACM, 8(11):677–682, 1965.

[19] Udo W. Pooch. Translation of decision tables. Comp. Surv., 6(2):125–151,
1974.

[20] Keith Shwayder. Combining decision rules in a decision table. Commun.
ACM, 18(8):476–480, 1975.

35

[21] Jan Vanthienen and Elke Dries. Illustration of a decision table tool for spec-
ifying and implementing knowledge based systems. International Journal
on Artificial Intelligence Tools, 3(2):267–288, 1994.

[22] Jan Vanthienen and Elke Dries. A branch and bound algorithm to optimize
the representation of tabular decision processes. Technical Report 9602,
Katholieke Universiteit Leuven, 1996.

[23] Jan Vanthienen, Christophe Mues, and Ann Aerts. An illustration of veri-
fication and validation in the modelling phase of KBS development. Data
Knowl. Eng., 27(3):337–352, 1998.

[24] Abbas K. Zaidi and Alexander H. Levis. Validation and verification of deci-
sion making rules. Automatica, 33(2):155 – 169, 1997.

36

	Introduction
	Background and Related Work
	Overview of DMN Decision Tables
	Analysis of DMN Decision Tables

	Formal Semantics
	Data Types and S-FEEL Conditions
	DMN Decision Tables
	Formalization of Rule Semantics and Analysis Tasks

	Analysis and Simplification Algorithms
	General approach
	Finding Overlapping Rules
	Finding Missing Rules
	Decision Table Simplification

	Evaluation
	Evaluation of Overlapping and Missing Rules Detection
	Evaluation of Table Simplification

	Conclusion and Future Work

