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Abstract

Events recorded during the execution of a business process can be used to train models to predict, at run-time,

the outcome of each execution of the process (a.k.a. case). In this setting, the outcome of a case may refer to

whether a given case led to a customer complaint or not, or to a product return or other claims, or whether a

case was completed on time or not. Existing approaches to train such predictive models do not take into account

information about the prior experience of the (human) resources assigned to each task in the process. Instead,

these approaches simply encode the resource who performs each task as a categorical (possibly one-hot encoded)

feature. Yet, the experience of the resources involved in the execution of a case may clearly have an impact on

the case outcome. For example, specialized resources or resources who are familiar with a given type of case, are

more likely to execute the tasks in a case faster and more effectively, leading to a higher probability of a positive

outcome. Motivated by this observation, this article proposes and evaluates a framework to extract features

from event logs that capture the experience of the resources involved in a business process. The framework

exploits traditional principles from the literature to capture resource experience, such as experiential learning

and social ties on the workplace. The proposed framework is evaluated by comparing the performance of state-

of-the-art predictive models trained with and without the proposed resource experience features, using publicly

available event logs. The results show that the proposed resource experience features may improve the accuracy

of predictive models, but that depends on the process execution context, such as the type of process generating

an event log or the type of label that is predicted.
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1. Introduction

Business processes are often supported by enterprise software systems, such as Customer Relationship Man-

agement (CRM) systems or Enterprise Resource Planning (ERP) systems. Such systems keep detailed records

of relevant events that punctuate the execution of a process, such as the start or completion of tasks, the receipt

of messages, etc. These records can be extracted from the databases of these systems and packaged in the form

of event logs. In this context, an event log is a collection of (execution) traces, each one capturing the trail of

events that occurred during one particular execution of a process (a.k.a. case). Each trace, in turn, consists of a

sequence of events. Events are ordered in time, usually because they contain at least one timestamp. Moreover,
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an event contains a reference to a task, an identifier of the resource that performed the task, and possibly other

domain-specific attributes.

Predictive process monitoring is a family of techniques that exploits event logs of business processes in order

to generate predictions of future states or properties of each ongoing case of a process. Predictive monitoring

methods differ depending on the prediction target. For example, a subset of predictive monitoring methods

focus on predicting the remaining time of a case [53], while other methods focus on predicting the next events [9]

or the outcome of a case [50]. In this paper, we focus on the latter “outcome-oriented” methods, i.e., we aim

at predicting a case outcome expressed as a binary property of a case that is known when the case completes.

For instance, in an order-to-cash process, the outcome of a case may be that the customer is satisfied with the

delivered product (or, conversely, that the customer is unsatisfied), whereas in a helpdesk process the outcome

may be that the reported issue is resolved on time (versus late) [50]. Predictive models allow decision makers

to trigger actions pro-actively in order to prevent undesirable situations in a process.

In order to train machine learning models for predictive process monitoring, each prefix of a trace in the log

(representing a partial case execution) is transformed into a feature vector, which is then labeled by a prediction

target (e.g., the case outcome). The resulting set of labeled feature vectors is then used to train a classifier, a

regressor or other types of predictive models (e.g., structured predictors). The resulting model is then fed with

feature-encoded incomplete cases, at runtime, to generate the desired predictions.

The accuracy of a predictive monitoring method largely depends on the richness of information encoded in

the feature vectors representing the incomplete cases. A wide range of methods for encoding incomplete traces

as feature vectors have been proposed and evaluated in the literature [50]. These methods differ in terms of

how they encode the temporal information (timestamps), the sequences of tasks, the (human) resources that

perform each task, and other domain-specific attributes. As far as resources are concerned, existing approaches

treat the resource as any ordinary attribute and in doing so, they neglect the fact that the outcome of a case

(or the remaining time or other properties of a case) largely depend on the assignment of resources to tasks. In

particular, existing predictive process monitoring approaches do not take into account the prior experience of

the resources assigned to each task in a case.

Yet, resource experience plays an important role in the way a process case will unfold. In both clerical and

knowledge-based tasks, users tend to become more efficient and effective as they gain experience on a certain

task [29]. The more recent the experience, the stronger this effect may be. Also, users may be more efficient or

effective when working with other specific users, for instance, because of their good personal relations or fit of

personalities [12]. Based on these considerations, we hypothesize that resource information in an event log can

be exploited to derive an additional set of features to enhance the performance of the trained predictive models.

This article proposes a framework for deriving features capturing resource experience from the raw data

available in an event log. To this end, the paper identifies four dimensions of resource experience in business

processes, which can be combined to obtain a wide set of resource experience features. For example, the

experience of a resource may be captured by measures related to task familiarity, such as the number of times

the resource has executed the same task in previous cases of the same process.
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The proposed resource experience features are then used to extend the feature vectors used for training

the predictive models. The article then investigates the effect of these resource experience features on the

performance of the models used for predicting case outcomes. Specifically, the paper reports on an evaluation

of the proposed framework designed to address two research questions: Do the new features capturing resource

experience help to improve the performance of outcome-oriented predictive models? And, among the different

types of features capturing resource experience, which one(s) are the most important in determining the behavior

of outcome-oriented predictive models?

The paper is organized as follows. Related work and preliminaries are discussed in Section 2 . The research

problem is introduced in Section 3. Section 4 presents the framework for generating resource experience features,

while Section 5 presents the experimental evaluation. Concluding remarks are finally drawn in Section 6.

2. Background and Related Work

This section reviews related work about predictive process monitoring and resource information in event

logs (Section 2.1) and about management insights regarding business process outcomes and the development of

resource experience in the workplace (Section 2.2).

2.1. Predictive Process Monitoring and resource data in event logs

Predictive process monitoring [34] concerns various prediction tasks such as predicting the outcome of a

process [32, 50], the next event of a running case [46, 48], or a time-related measure, e.g., the remaining time

until the termination of a running case [47]. In outcome-oriented predictive monitoring, the outcome of a

case is usually a binary variable. Approaches in the literature often define outcomes as the satisfaction of

service level agreements or the satisfaction of temporal constraints defined on the order and the occurrence

of tasks in a case [35, 50]. Extensive efforts have been devoted to enhancing the performance of predictive

monitoring models from both the pre-processing and the learning sides. During pre-processing, trace clustering

techniques [13, 14, 32] and sequence encoding techniques [28, 50] have been used to efficiently extract features

from the input data. In learning, cutting-edge classification and regression algorithms, such as deep learning,

have been applied for the purpose of predicting various targets of interests in business processes [19, 27, 39, 47].

All the aforementioned approaches consider intra-case features, generated only using events within an indi-

vidual case. These are opposed to inter-case features, which are generated using events across multiple cases in

the event log [44]. For instance, given an event occurring at a certain time instant, the number of cases active

in a business process at that instant or the number of cases waiting to execute a certain activity in the process

at that time instant are typical examples of inter-case features.

While in practice different cases are correlated from the perspectives of resource involvement, remaining time

and other attributes, inter-case features have not been considered extensively in predictive process monitoring.

The importance of incorporating inter-case features has been pointed out in different prediction tasks. In

predicting the risk associated with a case, Conforti et al. [11] considers not only the local risk predictors

intended for a single instance, but also the interplay between risks associated with multiple instances of the
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same process. This is motivated by the fact that the same resource can be employed by multiple instances

running simultaneously, which may lead to multiple instances sharing some risks. Similarly, Senderovich et

al. [43] developed an inter-case encoding method that considers concurrently active cases for generating inter-

case features (e.g. the number of acute patients in the emergency department). More recent research has focused

on the modelling of interactions among cases to improve process analysis and forecasting. Klijn and Fahland [23]

have proposed an approach to model inter-case features for remaining time prediction. The features are used to

identify contexts of high remaining time prediction errors, such as when cases are batched. Fahland et al. [17]

have proposed an approach for reconstructing missing timestamps when cases share physical resources. Brunk

at al. [8] have proposed an approach for predicting unexpected events that considers also the case execution

context. Generally, we argue that inter-case features in predictive monitoring have been considered mainly from

a system load perspective. In this paper, we propose a new class of inter-case features, that is, resource-aware

features, which capture the experience of resources by referring to their historical involvement in the execution

of a process.

Nakatumba and van der Aalst [37] developed a technique to analyse the impact of resource workload on

service times using event log data. From the perspective of resource allocation, Arias et al. [3] proposed a

resource allocation recommendation framework based on metrics such as frequency, performance, quality, cost,

expertise and workload. Zhao et al. [55] propose a resource allocation optimisation model that considers the

constraints of process execution time, cost and resource availability. Bidar et al. [5] consider resource preferences

to solve the problem of resource-task allocation in business process automation. Erasmus et al. [16] also aim

at improving the resource allocation in business processes by considering the resource ability, specified using

the Fleishman’s taxonomy. As far as performance monitoring is concerned, Senderovich et al. [45] use data

mining classification and heuristic methods based on queuing theory to show how the performance of a process

can be affected by the scheduling of resources. While focusing on different objectives, these works characterise

resources in terms of their expertise or ability, i.e., the set of tasks that they usually perform, workload, i.e.,

the number of tasks or cases in which they are currently involved in, and the type of outcomes of cases in which

they are involved in.

Pika et al. [41] devised a method to mine resource profiles from event logs. These profiles characterize

resources in terms of skills, utilization, preferences, productivity and collaboration. Even though they are not

intended to serve as features for predictive process monitoring, the rationale behind the design of resource

profiles is in several ways similar to the rationale behind the framework that we propose. For instance, the skills

profile is defined by the number of tasks in which a resource participates, while the productivity profile is linked

to the outcome of the cases in which resources participate. Similarly, the number of tasks executed by a resource

and the ratio of cases involving a resource with positive outcomes are features defined in our framework. A

deeper comparison between resource profiles and our proposed features is provided later in Section 4.4.
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2.2. Business process outcomes and resource experience

Business process outcomes concern the improvement of the operational efficiency, effectiveness and flexibility

of business processes [36]. They are normally evaluated using process performance indicators [1]. While research

has scarcely investigated the direct relation between resource experience and business process outcomes, a large

body of research has focused on the positive relation between IT implementation and capabilities, in particular

ERP systems, and business process outcomes [22, 54]. In this context, the skills of the IT resources and the

actual usage of IT systems normally is positively related with positive process outcomes. In the healthcare

sector, the Donabedian conceptual model [15] assumes that the structure of a healthcare organisation, including

its human resources, influences the healthcare outcome through the process, i.e., the set of actions that make up

the provisioning of healthcare services. Finally, the reflective perspective on business process management [4]

suggests that the human resource individual experience can play a major positive role in the design, enactment,

monitoring and improvement of organisational business processes.

A number of classic theories in management have highlighted how repeating experience and developing social

ties on the workplace can positively influence invidual job performance. The commonly understood concept

of the learning curve, which has also found empirical evidence [29, 51], explains the idea that performance on

the workplace improves with experience at repeating the same or similar tasks. Similar learning dynamics are

posited by the theories of experiential learning [20, 25] and absorptive capacity at the individual level [10].

Experiential learning affirms that learning occurs mainly through experience. In the workplace, experience is

gained by repeating the same or similar tasks several times. Absorptive capacity is the ability to recognize

the value of new information, assimilate it, and apply it for commercial ends [10], which has a positive impact

on performance. At the individual level, this translates into the ability of individuals to assimilate and apply

knowledge about executing tasks in order to improve their ability to execute them in the future [40]. There is

also empirical evidence that experience learned in the workplace can be forgotten [21], which supports arguments

in favor of periodically refreshing knowledge and skills.

While most evidence of learning through experience applies to clerical and manual work, individual perfor-

mance in knowledge-intensive work is often associated with properties of both networks and ties [12]. Networks

refer to whom a resource interacts with while performing their work, whereas ties refer to the nature of such

relationships, e.g., whether resources have a personality similar to the one of the other resources with whom

they have to work. Generally, performance and creativity in knowledge-intensive work is positively influenced

by employees having a central position in organizational networks with strong ties, e.g., strong personality fit

or matching work attitudes with other employees [7, 12].

3. Problem definition

An event in an event log records the execution of a particular work item in an individual execution of a

business process, i.e., a process case. Each work item is an instance of a task.

An event log EL contains events. An event e is a tuple e = (c, a, t, r, (d1, v1), . . . , (dm, vm)), where c is the
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case id, a is the task of which the work item2 recorded by this event is an instance, t is the timestamp at which the

event has been recorded, r is the resource that executed the work item and (d1, v1), . . . , (dm, vm), with m ≥ 0, are

other domain specific attributes and their values. For instance, the event e = (45, assess, 2020.1.2, Alice, amount

= 1000, type = deep) captures the fact that, in a process case associated with loan request number 45, the

resource Alice has executed a deep assessment of a loan request of 1000 USD on January 2nd, 2020. Note that,

strictly speaking, the approach proposed in this paper requires, for each event, only the attributes c, a and r.

The timestamps, in particular, are not required as long as the events in EL are ordered in time.

The universes of all events, tasks, and resources are denoted by E , A, and R, respectively. We use a dotted

notation to identify attributes of events, e.g., e.c to identify the case id of event e. We refer to AEL ⊂ A as the

set of tasks that have at least one event in EL, i.e. AEL = {ā ∈ A : ∃e ∈ EL, e.a = ā}

The sequence of events generated in a given case form a trace σ = [e1, . . . , en], where ∀i ∈ [1, n], ei ∈ E ,

and ∀i, j ∈ [1, n], ei.c = ej .c, i.e., all events belong to the same case; events in a trace must be ordered in

time, using the timestamps when these are available. The universe of all traces is denoted by S. The function

trace : E −→ S returns the trace σ to which an event e belongs, i.e., trace(e) = σ. Note that attributes of events

ei belonging to a trace σ may be the same ∀ei ∈ σ. We refer to these attributes as case-level attributes. For

instance, the amount requested in a loan request process is a case-level attribute. Attributes that can change

for different events are called event-level attributes.

Given a trace σ of length n and an integer l ≤ n, the prefix function returns the first l events of σ, that is,

prefix (σ, l) = [e1, . . . , el]. A labeling function y : S −→ Y is a function mapping a trace σ ∈ S to its class label

y(σ) ∈ Y, with Y being the domain of the class labels. For outcome predictions, Y is a finite set of categorical

outcomes. In the context of this paper, we consider a binary outcome, i.e., Y = {0, 1}. A label can also be

associated to prefixes and all prefixes generated from a trace σ have the same class label (the one associated to

σ). Similarly, we also define an event labeling function ye : E −→ Y that associates to an event the label of the

trace to which it belongs, i.e., ye (e) = y (trace (e)), ∀e.

In the specific case of outcome-based predictive monitoring, predictions are made using a classifier that takes

as input a fixed number of independent variables (features) and learns a function to estimate the dependent

variable (class label). This implies that, in order to use the data in an event log as input to a classifier, each

trace in the log must be encoded as a feature vector. A sequence (or trace) encoder f : S −→ X1 × . . .×XP is

a function that takes a (partial) trace σ and transforms it into a feature vector in a P -dimensional vector space

X1 × . . .×XP with Xp ⊆ R, 1 ≤ p ≤ P being the domain of the p-th feature.

We divide features further into resource-aware and non-resource-aware. The former are generated using

resource information in events, while the latter are generated without considering resource information. Let us

assume that, among the P features generated from a (partial) trace σ, R features, with R ≤ P , are non-resource-

2Note that, as defined by the lifecycle extension in the event log XES standard (https://www.tf-pm.org/resources/
xes-standard), generally, in an event log, multiple events may refer to the same work item when each event captures a differ-
ent state of the lifecycle of it (e.g., ready, in progress, terminated etc.). In this paper, and in the event logs that we considered for
the evaluation, one event captures the execution of one work item in a process.
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aware, whereas the remaining (P − R) features are resource-aware. Given R non-resource-aware features with

domains X1, . . . ,XR and (P − R) resource-aware features with domains XR+1, . . . ,XP , we distinguish between

resource-aware and non-resource-aware classifiers for outcome-based predictive monitoring. A resource-aware

classifier rac is a function that estimates the probability of a class label to be assigned to a feature vector

including resource-aware features, i.e., rac : X1 × . . . × XR × XR+1 × . . .XP −→ Y. A non-resource-aware

classifier nrac is a function that estimates the probability of a class label to be assigned to a feature vector that

does not include resource-aware features, i.e., nrac : X1 × . . .XR −→ Y.

One important element to model resource-aware features is the handoff, which captures the handover of

work between resources executing consecutive events in a case. Formally, a handoff h(r1, r2), with r1, r2 ∈ R,

is a relation that associates a resource r2 that executed a given work item e2 in a trace σ to the resource r1

that executed the event e1 preceding e2 in σ, that is h(r1, r2) ⇐⇒ ∃e1, e2, σ : e1, e2 ∈ σ ∧ e1.t < e2.t ∧ e1.r =

r1 ∧ e2.r = r2 ∧ @e3 ∈ σ : e1.t < e3.t < e2.t.

4. Approach

Section 4.1 introduces the framework for encoding resource experience, while Section 4.2 defines the di-

mensions of the framework. Section 4.3 formally defines the resource-aware features considered in this paper,

whereas Section 4.4 finally draws a detailed comparison between the proposed framework with the Pika et al.’s

one referenced earlier.

4.1. A conceptual framework for encoding resource-aware features

To identify relevant features for training machine learning models to predict case outcomes, we systematically

asked the 5+1 “W” questions: Why, Who, Where, When, What, and How. We discarded the “Who” question

because the “Who” is the resource itself. We also discarded the “Why” question (“Why has a resource been

allocated to a work item?”) because an event log does not directly contain information that would allow us to

determine the reasons for a given allocation decision. In addition, in several settings, the allocation decision, as

reflected in an event log, may be determined simply by the availability of resources.

The “When” question (“When has a resource performed a given task?”) led us to identify Recency (“When

was the most recent occasion when a resource performed a task?”) as a source of features for capturing the

notion of experience. The “Where” question (“Where or, more specifically, in which context did a resource

perform a task?”) led us to identify the Context as a possible source of features. By context, we mean the

conditions under which a resource performed a given task. The “What” question led us to observe that resources

gain experience in different ways, such as performing a given task or work item, or participating in the same

case for which a prediction is being made. We introduce the Target dimension of resource experience to capture

these multiple ways for resources to gain experience. Finally, the “How” question (“How much prior experience

does a resource have?”) led us to identify the Aspect, i.e., the measure used to quantify the resource experience

in the scope identified using the previous dimensions. Accordingly, we retained four dimensions for encoding

resource experience as a feature vector: Recency, Context, Target, and Aspect (cf. Fig. 1).
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Resource experience

Long-term
(LT)

Short-term
(ST)

General
(GEN)

Current case 
(CUR-C)

Current task 
(CUR-T)

Current handoff 
(CUR-HO)

Work item 
(WORK)

Case
(CASE)

Task
(TASK)

Handoff
(HO)

Frequency 
(FREQ)

Performance 
(PER)

Generalization
(GRN)

RECENCY CONTEXT

TARGET ASPECT

Busyness
(BUS)

Specialization
(SPEC)

Figure 1: Resource experience framework

Note that the atomic actions that define experience in our framework are (i) execution of work items and (ii)

involvement in handoffs. In other words, resources gain experience through executing work items and through

interacting with other resources when receiving work from them. The former captures the experiential learning

nature of resource experience, whereas the latter captures the importance of social ties in the development of

the job experience.

Next, we discuss in detail the dimensions of the proposed framework. For each dimension, we identify the

values that it can assume. Note that our objective is to define resource-aware features for each event, when

processing a given prefix obtained from a trace.

4.2. Dimensions of resource-aware features

Recency (rec): Using the same skills and knowledge to execute work items over and over again keeps

them fresh in our memory. At the same time, when skills are not practiced for some time, they start to fade

away [21, 26]. For instance, a resource that performed a particular task two days ago is likely to perform the

same task more efficiently today than another resource who last performed the same task a year ago. The

Recency dimension of resource experience accounts for the time scope in which a resource has acquired a given

experience. Regarding values, we distinguish between long-term recency, i.e., the considered time scope starts

from the time of the earliest event in an event log, and short-term recency, i.e., the time scope is limited to

a given time in the past until the timestamp of the current event. In principle, short-term recency may also

be set considering other domain-specific criteria, such a recent number of terminated cases or a recent number

of executed work items. In the evaluation, since we did not have any such domain-specific information for the

event logs that we used, we set the value of recency to 30 days before the current event for all event logs.

Context (con): The management literature highlights that resources do not work in an organizational

vacuum, but they are positioned within an organizational network, a certain technical environment, and specific

organizational processes and policies [7, 12], all of which can influence the way in which they learn and perform
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their tasks. Based on this consideration, we propose that experience is gained by a resource when operating

in the same context, such as repeating the same type of tasks within the same process case. For example, if a

resource who has considerable experience in performing administrative tasks, such as checking the completeness

of a loan application, is asked to compile a loan offer for the first time, she is likely to be less efficient in this

task than another resource who has already compiled loan offers multiple times in the past. As far as the

values of this dimension are concerned, context can capture the general experience of a resource, e.g., how many

work items a resource has executed in a given process, but more importantly it can be restricted to a more

specific domain, such as the current case, i.e., how much experience the resource has in the currently running

case in executing work items, or the current task, i.e., how many times a resource has executed a work item

corresponding to the same task as the current one, or the current handoff, i.e., how many times a resource has

executed a work item following the same handoff as the current one.

Note that this list of values, which we consider in this paper, is not exhaustive, as other types of contexts

can be relevant depending on the data available, such as the customer, the product type, the case type, or a

cluster of (similar) tasks. Context can also be a combination of several attributes, e.g., to answer questions such

as “How much experience does the resource have with the given task-handoff pair?”. Furthermore, the context

can be related to a (sub)sequence of work items or tasks, e.g., the sequence of tasks from the last three work

items, or the tasks of a certain type, where task type is an attribute available in the event log.

Target (tar): This dimension concerns the type of atomic actions through which experience is gained by

a resource. Based on the traditional theories of the learning curve [51] and experiential learning [20, 25],

experience is gained by a resource by participating in some part of the process, i.e., executing a work item in it.

Note that often resource experience and performance benefit also from executing a diverse range of tasks in a

process [33, 42]. This is also implied by the theory of absorptive capacity at the individual level [40]. However,

resources may also improve their experience by sharing insights with other resources during the execution of

work. This can be fostered by a personality fit or similar work attitudes with other resources [12]. Since in an

event log resource information is only associated with individual work items, we assume that resources interact

when they execute consecutive work items, i.e., being involved in a handoff. Therefore, we define the following

values for the target dimension:

• Work Item: experience is gained by executing any work item;

• Case: experience is gained by being involved in a case (executing at least one work item in it);

• Task: experience is gained by executing work items(s) of a given task;

• Handoff: experience is gained by interacting with other resources, i.e., being involved in a handoff.

Aspect (asp): While, in general, resource experience is positively correlated with resource performance,

that may not always be the case in specific situations. For instance, the experiential learning theory highlights

that, in some situations, repetitive tasks may put an excessive mental strain on a resource, which may result

in a decrease of performance [20]. As far as workplace ties are concerned, the need to interact with other
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resources with a conflicting personality or a different work attitude may also lead to decreased performance [12].

Therefore, simply considering the frequency at which a resource has been involved in an atomic action (i.e.,

a target) through which experience is gained is not likely to capture the full extent of the impact of resource

experience on resource performance and, consequently, process performance.

In the proposed framework, given a target of resource experience, evaluated in a given context and in a

given time scope (recency), there can be multiple aspects that we want to encode into features. As mentioned

above, a first aspect to be considered is the frequency at which a given target of experience occurs for a given

resource, e.g., counting the number of times a resource executed a particular task, or counting the number of

work items performed by a resource in a process case, in a given period of time. However, other aspects that

link the resource experience to the type of experience and the level of process performance achieved may be

relevant in a specific context. We, therefore, consider the following additional aspects:

• Performance: this aspect concerns the outcome achieved by the cases in which a resource has gained

experience and can be calculated as the ratio between the number of cases with a positive outcome and

the number of cases with a negative one;

• Specialization and Generalization: these aspects concern the extent to which experience gained by a

resource is concentrated on a specific target, i.e., a specific case, task, or work item, or diluted across

multiple targets;

• Busyness: this aspect concerns the extent to which the experience gained is concentrated in the time scope

defined by the Recency dimension. While the Frequency aspect considers the absolute number of atomic

actions occurred in a given a time scope for a resource, this aspect relates this number of occurrences to

the duration of the considered time scope.

4.3. Definition of resource-aware features

Figure 2 gives an overview of how events in an event log are encoded for predicting outcomes. In this section,

our objective is to define the resource-aware features3 generated when processing the current event ei (event

e2 of case 3 in Figure 2), of a given trace σ, referred to as the current case in the remainder of this section

(case 3 in Figure 2). To generate the features for ei, in particular the resource-aware ones, which are inter-case,

we must consider the events in the log with timestamps that come before the one of ei (events in red on the

top-right side of Figure 2). First, we identify the targets of the current event, i.e., its resource, case id, task, and

handoff. Then, features are generated. Next, we define in detail how the resource-aware features are calculated

based on the current case id, resource, task and handoff.

Note that, for simplicity, Figure 2 does not consider features generated from case-level attributes. Also, let us

clarify that non-resource-aware features are calculated using traditional methods from the literature, e.g., [50],

and include features encoding, for instance, the task label or any other domain specific attribute characterizing

3A detailed running example exemplifying the calculation of the features defined in this section is available at https://github.

com/jckim9203/resource-aware-predictive-monitoring(DOI: 10.5281/zenodo.5081282)

10

https://github.com/jckim9203/resource-aware-predictive-monitoring
https://github.com/jckim9203/resource-aware-predictive-monitoring


Figure 2: Extracting resource-aware features from event logs

ei. The features associated with the events of a case are finally aggregated into a feature-label vector encoding

the current case. The resource-aware features associated with ei are described in detail next.

By combining the values of the four dimensions of resource experience, a number of resource-aware features

can be generated. Note that not all possible combinations of values lead to meaningful features. In the following,

we discuss in detail the ones that we consider in this paper.

Next, we group the definitions of resource-aware feature by the value of the aspect dimension. For the

sake of conciseness, we only consider the value long-term for the Recency dimension. Feature definitions for

rec = short− term can be simply derived by reducing the time scope from the general one, i.e., from the time

of the earliest event in an event log until the timestamp ei.t of the current event, to a given recent time window

defined by a given value ∆t, i.e., [ei.t−∆t, ei.t].

Frequency aspect. The resource-aware features considered for the frequency aspect (asp = frequency) are shown

in Table 1. The ones for con = general count the number of work items/cases/tasks/handoffs in which the

resource ei.r has been involved until ei.t. Additional features are obtained by restricting the context to the

current case, task or handoff.

Performance aspect. Given that we consider binary class labels, i.e., Y = {0, 1}, performance can be calculated

using the polarity of the traces S ⊂ S (or events E ⊂ E) obtained from the application of the other dimensions

in our framework, that is:

polarity(S) =

∑
σ∈S y(σ)

|S|

11



Table 1: Resource-aware features for asp = frequency

Feature Target Context Definition

n work items work item general Number of work items executed by ei.r until ei.t

n cases case general
Number of cases in which ei.r executed at least one work item
until ei.t

n tasks task general Number of unique tasks executed by ei.r until ei.t

n ho ho general
Number of unique handoffs involving ei.r executed by ei.r until
ei.t

n curr case work item curr case
Number of work items executed by ei.r until ei.t in the current
case (i.e., having the same value of ei.c)

n curr task work item curr task
Number of work items executed by ei.r until ei.t having task equal
to ei.a

n curr ho work item curr ho
Number of work items executed by ei.r until ei.t having handoff
equal to h(ei−1.r, ei.r)

Table 2: Resource-aware features for asp = performance

Feature Target Context Definition

per case case general Polarity of cases involving ei.r until ei.t

per work item work item general Polarity of work items involving ei.r until ei.t

per-curr-task work item curr-task
Polarity of work items involving at least one work item of task
ei.a executed by ei.r until ei.t

per-curr-ho work item curr-ho
Polarity of work items involving one handoff equal to
h(ei−1.r, ei.r) until ei.t

polarity(E) =

∑
e∈E ye(e)

|E|
.

For instance, given E as the set of all work items executed from the earliest timestamp in an event log until

the current timestamp, (rec = long-term, con = general, tar = work item), the polarity calculates the fraction

of events in E having class label equal to 1.

The resource-aware features considered for the performance aspect (asp = performance) are shown in

Table 2. Since polarity can only be defined at the level of set of cases or set of events, these features can only

consider the values tar = work item and tar = case for the target dimension. Note that the value of polarity

features for target tar = case differ from tar = work item if a resource executes more than one work item in

at least one case.

Specialization and generalization aspects. Specialization and generalization concern assessing whether a resource

is specialized in performing a particular task, or possesses more general experience, i.e., has performed several

tasks with rather uniform frequencies in the same process. Specialization is calculated as the ratio between the

experience of a resource related to a given target in a specific context and the experience of the resource related

to the same target in a more general context, e.g., the ratio between the number of work items performed by

12



Table 3: Resource-aware features for asp = specialization

Feature Target Context Definition

sp-work item-case work item general
A/B, with A the number of work items performed by ei.r, B the
number of cases executed until ei.t

sp-curr-case work item curr-case
A/B, with A the number of work items performed by ei.r in case
ei.c, B the number of work items executed by ei.r until ei.t

sp-curr-task work item curr-task
A/B, with A the number of work items performed by ei.r corre-
sponding to task ei.a, B the number of work items executed by
ei.r until ei.t

sp-curr-ho work item curr-ho
A/B, with A the number of work items performed by ei.r with
handoff equal to h(ei−1.r, ei.r), B the number of work items exe-
cuted by ei.r until ei.t

Table 4: Resource-aware features for asp = generalization

Feature Target Context Definition

gen-task task general Entropy of distribution of tasks executed by ei.r until ei.t

gen-case case general Entropy of distribution of cases executed by ei.r until ei.t

gen-ho ho general Entropy of distribution of handoffs executed by ei.r until ei.t

a resource in a given case and the total number of work items executed by that resource in the entire process

determines the specialization of a resource related to the target work item in the context of the current case.

Generalization is calculated as the entropy of the distribution of a given a target, e.g., the entropy of the

distribution of all tasks executed by a resource until the current event. Given a target T = {tk}, e.g., a list of

tasks, the entropy of T is calculated as follows:

entropy(T ) = −
∑
k

pT (tk) · log(pT (tk))

where pT (tk) is the relative frequency of tk in T .

The definitions of the resource-aware features considered for the specialization and generalization aspects

are shown in Tables 3 and 4, respectively.

Busyness aspect. Busyness features are calculated by dividing a feature value (obtained as a frequency) by the

time span in which that feature value was calculated. For instance, given the number of work items performed

by a resource r, the busyness of r can be calculated as the ratio between this number and the difference between

the latest and the earliest timestamp of the tasks executed by r.

As far as feature definitions are concerned, for busyness we consider one single feature busyness with

tar = work item and con = general, defined as the number of work items executed by ei.r until ei.t divided by

the time, calculated in days, between the earliest timestamp in the event log and the current timestamp ei.t.

To conclude, for a given event, there are a total of 38 resource-aware features, i.e., the 19 described in this

section, plus the dual 19 features obtained by considering the recency value rec = short− term.
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4.4. Detailed comparison with Pika et al.’s framework

To conclude this section, we can now compare more in depth the proposed resource-aware features with

the resource profiles proposed by Pika et al. [41]. Many of the resource-aware features that we propose can be

directly subsumed from resource profiles. In particular, this applies to all features involving the frequency of

work item executions and resource involvement in cases. However, while resource profiles are calculated only

using data of completed cases, the resource-aware features that we propose are designed to be calculated for

each new event executed in a trace. In addition, the proposed features consider aspects of resource behavior that

are not considered by resource profiles, such as the polarity of process outcomes, the entropy, the busyness and

the number of work items having the same value of case/task/handoff as the current event. We also consider

more detailed features involving work handoffs among resources, whereas resource profiles only consider the

total number of handoffs involving a given resource.

In addition, some of the resource profiles are calculated using domain specific attributes that normally are

unavailable in event logs, such as customer feedback or task creator, or are suitable only in specific scenarios.

Conversely, the resource-aware features that we propose require attributes that are universally available in event

logs, such as case id, activity and resource attributes. Examples of resource profiles that are suitable in specific

scenarios are found in the Preferences category. For example, the New attribute values profile in the Preferences

category refers to an attribute value never seen before in any prior event. In reality, an event log may fail to

capture all the historic events pertaining to the corresponding process, for instance because it logs events only

belonging to a specific time period. Therefore, it is uncertain whether an attribute value unseen before the

current event is actually a completely new one. Also, the Activity reassignments profile is defined as the number

of occurrences of an activity initiated by a given resource and eventually completed by a different one. This

assumes that an event log contains information about a work item execution lifecycle, which is often not the

case in reality. In addition, this situation does not necessarily model a resource reassignment as, in some cases,

tasks may require multiple resources to sequentially or simultaneously work for their successful completion.

5. Evaluation

The first objective of the evaluation is to assess to what extent and/or in which situations the features

capturing resource experience defined in this paper increase the performance of outcome-oriented predictive

process monitoring. Then, a second objective is to analyse more in detail the explanatory power of resource-

aware features. To do so, we conduct an explainability analysis, to understand the degree to which different

types of resource-aware features contribute to the predictions made by a model.

We conducted a set of experiments4 using different event logs publicly available. For each event log we

compare the performance achieved by the model trained using only non-resource-aware features (that is, nrac)

and the one that uses also resource-aware features (rac), all other conditions staying equal. As a performance

4The code used for the experiments is publicly available for testing and experiments repeatability at: https://github.com/

jckim9203/resource-aware-predictive-monitoring (DOI: 10.5281/zenodo.5081282)
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measure we consider the AUC. The AUC is the area under the Receiver Operating Characteristic (ROC) curve,

which is constructed based on true positive and false positive rates. It has been considered extensively as a

performance measure in existing research on predictive process monitoring [50, 52] because it tends to remain

unbiased even with imbalanced class labels.

In all the experiments, we consider zero-bucketing of traces and index-based sequence encoding:

• Bucketing in predictive process monitoring [50] is the practice of dividing the encoded prefixes into buckets,

i.e., groups, and then training a separate classifier using each bucket of prefixes. Zero-bucketing, which we

choose in this work, refers to a default setting in which encoded prefixes are not divided into groups and,

therefore, only one classification model is trained with all the encoded prefixes from traces in an event log.

In this configuration, prefixes of different length are encoded into feature vectors of different lengths and

zero-padding is applied when necessary to bring all feature vectors to the same length for training/testing

the classifier.

• Prefixes in predictive process monitoring can be encoded in different ways. A typical solution, which

we adopt in this work, is the index-based sequence encoding [28], whereby each event is encoded into

a sequence of features derived from its attributes. Case-level attributes are encoded only once for each

prefix. Index-based encoding is opposed to aggregation encodings, in which the features for encoding

a case (or a prefix) can be derived by aggregating the values of the attributes of different events (for

instance, the values of a numeric attribute across different events of a case may be aggregated into a single

feature by using their average). Index-based encoding naturally fits the proposed framework to generate

resource-aware features, since these features, by definition, characterize each event in a prefix.

Non-resource-aware features, including the ones derived from the case-level attributes, are generated using

the same pre-processing scripts of Teinemaa et al. [50]. A set of 38 resource-aware features are generated for

each event in a prefix as discussed in the previous section. As classifiers, we consider random forest (RF)

and Xgboost (XGB), which have emerged as the best performing classifiers across different event logs in the

benchmark published by Teinemaa et al. [50].

We also present an in-depth feature contribution analysis using SHAP (Shapley Additive Explanations) [31].

Based on the coalitional game theory, SHAP is able to calculate the degree to which each feature contributes on

average to a prediction. SHAP is a robust explainable AI technique commonly used in particular to interpret

black box models, such as deep learning models. Since, in this work, we use RF and XGB, in the experiments,

we have used TreeSHAP [30], a fast implementation of the SHAP method fit for tree-based classification models.

The metrics that we use in the feature contribution analysis are shown in Figure 3. After having ordered

all the features in descending order by contribution (calculated using the absolute value of the TreeSHAP’s

feature importance), we first calculate the sum of all the feature contributions and then we consider the top-

contributing ones in a given percentile. For instance, in Figure 3, the 75% percentile of feature contribution

includes the features F1, F3, F2, F6. For a given percentile, in the evaluation we consider (i) the ratio of features

belonging to it that are resource-aware (50% in the 75% percentile in the figure) and (ii) the ratio of the
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Feature

Name 𝐹𝑖

Feature

contribution 𝐶(𝐹𝑖)

𝐹1 0.041

𝑭𝟑 0.014

𝑭𝟐 0.011

𝐹6 0.009

𝐹7 0.009

𝐹4 0.008

𝐹5 0.008

Descending 

order

Resource-aware

features

𝐶 𝐹1 + 𝐶 𝐹3 + 𝐶 𝐹2 + 𝐶(𝐹6) = 0.075

Σ𝐶 𝐹𝑖 = 0.1

𝐶 𝐹1 + 𝐶 𝐹3 + 𝐶 𝐹2 + 𝐶(𝐹6)

Σ𝐶 𝐹𝑖
= 0.75 Filtering percentage: 75%

Filtering threshold # of resource-aware features: 2

% of # of resource-aware features: 50% = 2 ÷ 4 × 100

Σ of contribution of resource-aware features: 0.025 = 0.014 + 0.011

% of 𝛴 of contribution of resource-aware features: 33% = 0.025 ÷ 0.075 × 100 

Figure 3: Illustration of the metrics considered in the feature contribution analysis

Log Process description Outcome description # cases # events
Examples of

domain-specific features

BPIC2011 1 Treatment and diagnosis
process in the Gynaecology

department of a Dutch
academic hospital

Temporal constraint satisfaction
on the order of occurrence

of tasks in a case

1,140 67,480 Diagnosis code,
Treatment code,
Specialism code,

Age

BPIC2011 2 1,140 149,730
BPIC2011 3 1,121 70,546
BPIC2011 4 1,140 93,065

BPIC2012 accepted Application for a personal
loan or overdraft at a

global financing organization

Whether an application is
(accepted, cancelled,
or declined); or not

4,685 186,693
Amount requested,

Lifecycle of an application
BPIC2012 cancelled 4,685 186,693
BPIC2012 declined 4,685 186,693

BPIC2015 1
Application for building

permit at 5 Dutch
municipalities

Temporal constraint satisfaction
on the order of occurrence

of tasks in a case

696 28,775
Application cost,

Construction,
Area protection,

Entrance/Way out

BPIC2015 2 753 41,202
BPIC2015 3 1,328 57,488
BPIC2015 4 577 24,234
BPIC2015 5 376 1,051

Road Traffic Fines

Managing fines punishing
road traffic infractions, at an

Italian regional agency for
traffic management

Whether a fine is repaid
in full or sent for credit

collection
129,615 460,556

Article,
Vehicle class,

Infraction type,
Fine amount

Table 5: Event logs considered in the evaluation

cumulative contribution of the resource-aware features belonging to it (in the figure, 33%). The former provides

the absolute number of resource-aware features that are contributing to the predictions. The latter gives a more

detailed insight on the relative magnitude of the contribution of these features.

5.1. Datasets and experimental settings

For our experiments, we have considered all the datasets used in the benchmark published by Teinemaa

et al. [50] and containing the resource attribute. In particular, we have used the event logs of the Business

Process Intelligence Challenge 2011 (BPIC 2011, 1 dataset with 4 different labelings, which we treat as 4

different datasets in this section), the Business Process Intelligence Challenge 2012 (BPIC 2012, 1 dataset with

3 different labelings, which we treat as 3 different datasets) and the Business Process Intelligence Challenge

2015 (BPIC 2015, 5 event logs). Additionally, we have considered the Road Traffic Fines (RTF) event log. All

the event logs are publicly available at https://data.4tu.nl/. Table 5 reports the descriptive statistics of

these logs, briefly describing also the type of process generating the log, the outcome label to be predicted,

and examples of domain-specific information from which non-resource-aware features are derived. Note that

some event logs have more than one label (4 for BPIC 2011 and 3 for BPIC 2012). For these, we consider a

different log for each label available. For BPIC 2011, 19 cases are missing the 3rd label. Also, the number of

events for the BPIC 2011 event logs is different for each label because the cases are cut at the prefix in which

the satisfaction/violation of the constraint determining the label becomes known [50]. More details about the

labels used is given later while discussing the results.
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Training set 1 Test set 1

Training set 2 Test set 2

Training set 3 Test set 3

Training set 4 Test set 4

Training set 5 Test set 5

Event log:

Sliding window train-test split with stride of 1

80% 20%

Full training set Full test set

𝑟𝑎𝑐_1:

𝑟𝑎𝑐_2:

𝑟𝑎𝑐_3:

𝑟𝑎𝑐_4:

𝑟𝑎𝑐_5:

𝑟𝑎𝑐_𝑎𝑙𝑙:

Figure 4: Temporal split-based cross-validation procedure

Outcome-oriented predictive process monitoring is an instance of the early time-series classification problem,

whereby its aim is to predict the correct outcome of a case prefix as soon as possible after its beginning.

Therefore, the performance of predictive models is usually evaluated on early (i.e., short) prefixes. In this work,

similarly to others in the literature [52, 50], we consider prefixes generated using up to the first 20 events for

the BPIC event logs and up to the first 10 events for the RTF log.

Because of the time-series nature of event log data, in the experiments we consider a temporal split of

traces [49]. Given a split timestamp ts, the training set contains the traces for which the first event occurs

before the split timestamp (e1.t < ts), whereas the test set contains the traces for which e1.t > ts. The split

timestamp ts is chosen by imposing a given ratio between traces in the training/test sets (e.g., 80%/20%) The

events e of the traces in the training set with e.t > ts are then discarded. Such a temporal split is required

to ensure that a model is not trained using events that happen in the future with respect to the ones used for

testing.

To account for the variability of traces across time and achieve robust results, we also implemented a temporal

split-based cross-validation procedure, which is depicted in Figure 4. An event log is split into nine batches

containing roughly the same number of prefixes using the temporal split mechanism described above. Then,

we train and test five models (rac1-rac5). Each model uses four consecutive batches for training and the next

batch for testing (i.e., using a stride of 1). An additional model (rac) is trained and tested using the whole

event log, i.e., using 80% of traces for training and 20% for testing after applying the temporal split.

As classifiers, we consider the Python implementation of RF and XGB in the packages scikit-learn and

xgboost, respectively. For the hyperparameter configurations, we use the Tree-structured Parzen Estimator

(TPE). For RF, TPE has been applied to find the ideal value of the hyperparameter max features in the

interval max features ∈ [0, 1]. For XGB, TPE has been applied to find the 5 hyperparameters learning rate,

sub sample, max depth, colsample bytree andmin child weight in the intervals learning rate ∈ [0, 1], subsample ∈

[0.5, 1], max depth ∈ {x|x ∈ N, 4 ≤ x ≤ 30}, colsample bytree ∈ [0.5, 1] andmin child weight ∈ {1, 2, 3, 4, 5, 6}.
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BPIC 2015 1 BPIC 2015 2 BPIC 2015 3 BPIC 2015 4 BPIC 2015 5
Mean case duration 96 days 160 days 63 days 111 days 101 days

Median case duration 63 days 115 days 39 days 92 days 80 days
Number of cases 696 753 1,328 577 1,051

Number of resources 22 9 18 12 15
Mean number of events in a case 41 55 43 42 52

Table 6: Detailed descriptive statistics of BPIC 2015

The values obtained from the hyperparameter optimization are available in the github repository.

5.2. Results

The impact of the resource-aware features on the model performance and their contribution to the prediction

with respect to the non-resource-aware ones differ for each event log analysed. Therefore, this section includes

a separate discussion for each (set of) event log(s).

BPIC 2015 event logs

Figure 5 shows the performance obtained by the models that use (rac) or do not use (nrac) the resource-

aware features for prefixes of different lengths using RF and XGB. The relative performance of the two models

varies greatly depending on the event log considered.

In particular, there are two cases worth noticing: the second log, in which rac is consistently worse than

nrac, and the third log, in which rac is better than nrac. The reason behind these different behaviors could

be due to the fact that the two event logs refer to process execution contexts that are completely different.

According to van der Ham [18], who presented an in-depth analysis of the different logs used for the BPIC

2015, the second log of this set refers to a municipality executing the process in a very inefficient way, whereas

the third log refers to a municipality executing the same process efficiently. This performance difference is also

acknowledged by the data shown in Table 6, where we can see that the mean and median case duration of

the process in the third log are considerably lower than the ones in the second log. Based on these results,

we can conclude that, in this experiment, using the resource-aware features appears to be effective when the

process is executed efficiently, whereas it can be detrimental to the predictive performance when the process is

executed inefficiently. Specifically, modeling resource experience in this particular context helps building better

predictors when resources are working efficiently.

Figure 6 shows the performance obtained using the models trained on the temporally-split batches. The

results show a consistent difference in terms of performance obtained by these models. This may highlight that

the impact of the resource-aware features varies over time since also the experience of the resources varies.

Figure 7 shows the ratio of the top-contributing resource-aware features and the ratio of their cumulative

contribution for different percentiles for the rac model. From the plots, we can notice that, for all percentiles,

the resource-aware features contribute more to the predictions in the case of third event log in the BPIC 2015

set of logs, which is the one for which the rac model performs better than nrac. In addition, for the second and

the third event logs, the contribution magnitudes of the resource-aware features tend to converge to a value of

40% for the 90% percentile. This means that, when almost all the features are considered, the contribution of
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Figure 5: AUC for different prefix lengths for the BPIC 2015 event logs
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Figure 6: AUC for different prefix lengths for the BPIC 2015 event logs using the temporally-split batches
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Figure 7: Ratio of the number and cumulative contribution of the top-contributing resource-aware features in the BPIC 2015 logs

the resource-aware features to the prediction becomes rather high for these two logs. However, this contribution

leads to wrong predictions in the case of the second log, thus decreasing the performance of the model.
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Figure 8: Distribution of the top-contributing resource-aware features for the 50% percentile in the BPIC 2015 logs

Figure 8 shows the distribution of the contributions of different resource-aware features within the 50%

percentile across the dimensions defined in Section 4. Note that most of the features shown in the figure refer to

the frequency aspect of the framework, e.g., counting the number of cases or work items in which the resource

of the current event has been involved. Since this type of features mainly refer to the experiential learning

of the resource behavior, we can conclude that, in this particular context, the experience accumulated by the

resources is highly contributing to explain the predictions made by the models.

As a last remark, we have to consider that, for the BPIC 2015 event logs, the label to be predicted is

the satisfaction of the following temporal constraint: the activity “send confirmation receipt” must not be

eventually followed by “retrieve missing data” (that is, a confirmation should not be sent to the client if

additional information to close a case is still needed). This constraint appears to refer to standard working

procedures that could easily be learnt by a human resource participating in the process and may not be directly

linked to the efficacy and effectiveness of the resources in executing their job. This aspect may also justify the
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fluctuating performance achieved with these logs.

BPIC 2012 event logs

Figure 9 shows the performance obtained by rac and nrac for different prefix lengths with RF and XGB.

Figure 10 shows the performance of the models trained using the temporally-split batches.
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Figure 9: AUC for different prefix lengths for the BPIC 2012 event logs

Two insights emerge clearly: with the BPIC 2012 event logs, the models trained using the resource-aware

features are more accurate and, particularly in the case of the accepted and cancelled event logs, there is not

much variability in the performance of the models trained using traces belonging to different time batches.

The positive influence of the resource-aware features on the performance of the classifiers, in this case, may

be due to the fact that the label to be predicted explicitly captures the outcome of the process, i.e., whether a

request will be accepted, cancelled, or declined, and therefore may be directly influenced by the experience of

the resources in the process. This conclusion is supported by the fact that according to Adriansyah and Bujis
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Figure 10: AUC for different prefix lengths for the BPIC 2012 event logs using the temporally-split batches
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Figure 11: Ratio of the number and cumulative contribution of the top-contributing resource-aware features in the BPIC 2012 logs
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Figure 12: Distribution of the top-contributing resource-aware features for the 10% and 50% percentiles in the BPIC 2012 logs

[2], and Bose and van der Aalst [6], who have analyzed these datasets in detail, the resources in this process

tend to work as specialists: in particular, some resources are specialized in approving applications, while others

are specialized in dealing with more problematic applications. This level of specialization may signal the fact

that the experience developed in the workplace by these resources is important to correctly predict the outcome

of a process case.

Figure 11 shows the analysis of the feature contribution for rac. From the plots, it can be clearly seen that,

in this case, the resource-aware features contribute massively to the predictions: in the case of the accepted log,

for instance, all the features in the top 10% percentile are resource-aware, while for the cancelled event log the

number and cumulative contribution of the resource-aware features in the top 10% percentile is also very high

(50% and 65%, respectively). These results show the importance of the resource-aware features for these logs.

Figure 12 shows the distribution of different top-contributing resource-aware features within the 10% and

50% percentiles. It can be noticed that, particularly for the accepted and cancelled event logs, the number of

tasks executed by a resource is the most frequent type of highly contributing resource-aware features (specifically,

the only one appearing in the 10% percentile). This can be seen as an indication that the experiential nature of
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learning is important in this context: resources get more efficient at what they do as they execute more tasks

in the process.

BPIC 2011 event logs

Figure 13 shows the performance obtained by rac and nrac for different prefix lengths with RF and XGB.

Figures 14 shows the performance of the models trained using the temporally-split batches.

In this case, it can be seen that the resource-aware features do not seem to have an influence, either positive

or negative, on the performance of the models. This may be due to the fact that the label to be predicted, in

this case, is the satisfaction of a temporal constraint, which is not likely to indicate whether a case was executed

efficiently or not.

Figure 15 shows the ratio of the top-contributing resource-aware features and the ratio of their cumulative

contribution for different percentiles for rac. These results show that the resource-aware features do not con-

tribute particularly to the prediction (specifically, there are no resource-aware features within the 10% and 25%

percentiles). Note that the labels to be predicted in this event log are defined by temporal constraints, e.g.,

either one of the two activities “tumor marker CA-19.9” and “ca-125 using meia” must be executed in a case,

which capture the execution of standard exams dictated by clinical pathways. In this case, human resources

should simply interpret correctly the guidelines prescribing (or not) correctly the execution of the exams. The

human resource experience and/or social ties probably bear a limited impact on their behaviour in the process.

This confirms that resource-aware features are not important in this particular context. For this reason, we

omit the analysis of the distribution of the type of important resource-aware features for these event logs.

Road traffic fines event log

Figure 16 shows the performance obtained by rac and nrac for different prefix lengths with RF and XGB.

Figure 17 shows the performance of the models trained using the temporally-split batches.

Similarly to the case of the BPIC 2011 event logs, also in this case using the resource-aware features proposed

neither improves nor decreases substantially the performance of the model. This may be due to the fact that the

label to be predicted, i.e., whether a fine is repaid in full or sent for credit collection (see Table 5), concerns the

behaviour of the customer of the process (i.e., the motorist supposed to pay the fine), rather than the behavior

of the resources handling the fine.

5.3. Threats to validity

To conclude the discussion on the experimental results, we briefly discuss here the threats to validity of the

presented evaluation. Concerning the internal validity, a general problem in predictive process monitoring is

that considering prefixes as the basis for encoding the feature vectors may introduce irrelevant features and/or

spurious correlations between the feature vectors and the labels that improve the performance of a model without

having discovered higher level concepts [24]. The experiments that we present here may also suffer from the

same problem, which could be mitigated by using different predictive models, like the ones based on LSTM that

use a different type of encoding, or focusing on global predictions, i.e., considering only fully-completed traces
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Figure 13: AUC for different prefix lengths for the BPIC 2011 event logs
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Figure 14: AUC for different prefix lengths for the BPIC 2011 event logs using the temporally-split batches
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Figure 15: Ratio of the number and cumulative contribution of the top-contributing resource-aware features in the BPIC 2011 logs
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Figure 16: AUC for different prefix lengths for the RTF event log
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Figure 17: AUC for different prefix lengths for the RTF event log using the temporally-split batches
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for training. In this paper, we also considered only a limited number of combinations of bucketing and encoding

methods. This was done to maintain the number of experiments manageable and prioritizing the choice to

consider a large set of event logs. As we discussed while presenting the results of each group of event logs, the

results may also be influenced greatly by the type of label to be predicted. In some cases, the label represents

a process outcome that is most likely linked to the resource experience, while, in other cases, it represents the

satisfaction of a constraint, which may not be directly influenced by the resources, or a process outcome driven

by the behavior of the customer, rather than by the behavior of the resources involved in the process.

Concerning the construct validity of the proposed resource-aware features, in this work we only consider

features that can be extracted from an individual event log, which contains events logged for one specific

business process. As such, the proposed resource-aware features are constructed using resource task performance

measures in one process as a proxy of resource experience. We acknowledge that an event log is limited both in

time and scope and that more reliable features may be extracted by considering data spanning in time beyond

an event log time scale and/or data gathered from other contexts in which resources may have gained experience,

such as related business processes and on-the-job training. We also believe, however, to have partly mitigated

this threat, at least as far as the time scale is concerned, by considering event logs with a large time scale (often

spanning years of process execution). Therefore, we believe to have considered, for each process, a sufficient

amount of data to get an indication of the effect of the proposed resource-aware features on the performance of

a predictive model.

Concerning the external validity, for some of the event logs that we considered (BPIC 2011 and RTF) there

is no domain-specific information available to provide an in-depth analysis of the experimental results. More

generally, the experimental results show that it is not possible to draw general conclusions about the role and

the impact of the resource-aware features in predictive process monitoring, and that each process execution

context has to be considered independently in order to assess the effectiveness of the proposed framework.

6. Conclusions

This article proposes a framework for extracting features from event logs capturing the notion of resource

experience for the purpose of training models for outcome-oriented predictive process monitoring. The proposed

framework defines four dimensions of resource-aware features, i.e., Recency, Context, Target, and Aspect,

which are derived from an analysis of the management theories pertaining to resource experience.

The experimental evaluation showed that, in some cases, the proposed features can help improving the

performance of the outcome-oriented predictive models. However, the effectiveness of the proposed features

strongly depends on the process execution context and the results differ based on the event logs considered.

In particular, we found that models trained using resource-aware features are more likely to show higher per-

formance in contexts where the process is executed efficiently or when the label to be predicted captures an

outcome that clearly depends on the efficiency of the resources in executing their tasks. In other words, the pro-

posed features appear to be effective when the outcome label measures an actual business process outcome [36]

related with process efficiency, effectiveness or flexibility improvements.
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The research presented in this paper can be extended along several lines. First, the experimental evaluation

focused on predicting case outcomes. However, resource experience features can also be applied to other predic-

tive monitoring use cases, such as predicting the remaining time of a case. Second, the proposed framework is

designed to be generic, i.e., independent of a specific application domain. However, the results presented in this

paper have shown that the application domain clearly influences the effectiveness of the proposed framework.

Therefore, further refinements should be conceived for specific domains like, for example, the manufacturing

domain, where the frequent execution of the same task by a resource may lead to fatigue effects, which may

cancel out the benefits of task familiarity and recency. Moreover, since resources may be involved in several

processes within the same domain, resource-aware features could also be extended to capture the fact that

experience gained in one process may be reused in a different one. This links to the more general field of cross-

process research in process mining, which is emerging only recently in the literature [38]. Finally, the approach

presented in this article may be used as a starting point to design experiments to validate a range of disciplines

and theories from a managerial perspective. For instance, comparing in different contexts the predictive power

of features capturing the repetition of the same task and the execution of different tasks in a process could

substantiate managerial findings about the impact on performance of specialised v. general skills.
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