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Abstract A composite service is usually specified by means of a process model that captures control-

flow and data-flow relations between activities that are bound to underlying component services. In

mainstream service orchestration platforms, this process model is executed by a centralized orchestrator

through which all interactions are channeled. This architecture is not optimal in terms of communication

overhead and has the usual problems of a single point of failure. In previous work, we proposed a method

for executing composite services in a decentralized manner. However, this and similar methods for decen-

tralized composite service execution do not optimize the communication overhead between the services

participating in the composition. This paper studies the problem of optimizing the selection of services

assigned to activities in a decentralized composite service, both in terms of communication overhead and

overall Quality of Service (QoS), and taking into account collocation and separation constraints that may

exist between activities in the composite service. This optimization problem is formulated as a Quadratic

Assignment Problem (QAP). The paper puts forward a greedy algorithm to compute an initial solution

as well as a tabu search heuristic to identify improved solutions. An experimental evaluation shows that

the tabu search heuristic achieves significant improvements over the initial greedy solution. It is also

shown that the greedy algorithm combined with the tabu search heuristic scale up to models of realistic

size.

1 Introduction

One of the pillars of Service-Oriented Architecture (SOA) is the ability to rapidly compose multiple

services into a value-added business process, and to expose the resulting business process as a composite

service [6]. Composite services are generally captured by means of an orchestration model, at the heart

of which is a process model that specifies control-flow and data-flow relations between activities, where

each activity represents either an internal step (e.g. a data transformation) or an interaction with one of

the services participating in the composition (the component services). Such process models are captured

using languages such as the Business Process Execution Language (BPEL) or the Business Process Model

and Notation (BPMN).

In mainstream service composition platforms, the responsibility for coordinating the execution of a

composite service lies on a single entity, namely the orchestrator. The orchestrator handles incoming

requests for the composite service and interacts with the component services in order to fulfill these

requests. Every time a component service completes an activity, it sends a message back to the orches-

trator with its output data. The orchestrator then determines which component services need to be

invoked next and forwards them the required input data. This architecture is not optimal in terms of

communication overhead and has the usual problems of a single point of failure [6].



In previous work, we proposed a method for executing composite services in a decentralized man-

ner [14]. The idea is to group activities into partitions and to assign each partition to a separate orches-

trator. In [14], partitions are chosen manually by service designers. Designers may opt, for example, to

put all activities invoking the same service into a partition, or to put all activities invoking services in

a given organizational domain into a single partition, or any other partitioning criterion of their choice.

Clearly, the performance and robustness of a decentralized composite service would benefit from the

services in a given partition being close to one another and to the partition’s orchestrator. But neither

the above manual partitioning method nor other decentralized orchestration methods [23,11,36,6] help

designers to optimize the communication overhead between component services.

This paper presents a method for partitioning activities in an orchestration and assigning services to

activities, in such a way as to minimize the overall communication overhead, while at the same maximizing

the Quality of Service (QoS) of the composite service. The proposed method also allows designers to

keep control over the placement of activities. Specifically, designers may specify collocation and separation

constraints between pairs of activities. A collocation constraint states that two activities must be placed

in the same partition (e.g. because they are performed by services from the same company), while a

separation constraint imposes that two activities must be in different partitions.

The proposed method needs to deal with an optimization problem involving different types of con-

straints and inter-related optimization variables: QoS variables, location variables, collocation and sepa-

ration constraints. Various approaches have been proposed that deal with communication optimization

in distributed and parallel systems [7,33,35,16]. These techniques could be adapted in order to partition

the activities in a service orchestration in such a way as to minimize inter-partition communication. How-

ever, the existence of collocation and separation constraints, and the need to trade-off communication

overhead and QoS when mapping activities to concrete services, makes the problem at hand different

from previously studied ones.

In this paper, we formulate the above optimization problem as a Quadratic Optimization Problem

(QAP) [4]. Given the inherent complexity of the QAP problem, we apply well-known heuristic optimiza-

tion techniques [8] to explore the search space. Specifically, we present and evaluate a greedy algorithm

to build an initial solution, followed by a Tabu search [15] to improve over the initial solution. The crux

of these heuristics is to place activities that communicate frequently in the same partition (taking into

account the collocation and separation constraints) and to assign services to activities in such a way as

to optimize a function that captures intra-partition communication cost, inter-partition communication

cost, and aggregate QoS.

The rest of this paper is structured as follows. Section 2 introduces a motivating example and uses it to

illustrate the importance of choosing the right partitioning for decentralized orchestration. Next, sections

3-5 describe the details of the proposed method while Section 6 presents an experimental evaluation of

the method. Section 7 discusses related work and Section 8 summarizes the contribution and outlines

future directions.

2 Illustration

2.1 Motivating example

To motivate and illustrate the method presented in this paper, we make use of a sample orchestration

model taken from [38] (cf. Figure 1). This orchestration model encodes a claims handling process at an

insurance company IC. The orchestration model is captured in the BPMN notation, and it includes both

control and data dependencies. Activity nodes have labels of the form ai:S where the ai is the activity

identifier and S is the identifier of the invoked service. We assume for the time being that each activity

has already been assigned to a component service. We will discuss later how this assignment is done in

an optimized manner.

Before this process starts, it is assumed that the policyholder has contacted the Emergency Service

(ES) to report an accident. ES provides emergency call answering service to policyholders and liaises
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Fig. 1 Motivating example

with the hospital (Hospital) and the traffic patrol (Police). Some time after the accident, the policyholder

contacts IC for reimbursement. In order to handle the claim, IC executes the orchestration depicted in

Figure 1. First, IC invokes ES to obtain details about the incident (activity a0). ES provides the protocol

numbers that are required by Hospital (H) and Police (P) services, in order to release the respective

incident reports. These dependencies are denoted d1 and d2. With the details provided by ES, IC invokes

P and H concurrently. Additionally, Delivery Service (DS) is invoked in order to pick up the physical claim

documents from the customer (activity a2). Note that a2 is executed after a0 but it does not have a data

dependency with it, while there are data dependencies between a0 and a1 and a0 and a3. IC uses the

output obtained from P and H in order to invoke the Inspection Service (Ins) (activity a4). Again note

that, there are data dependencies between a1 and a4, a3 and a4 but not between a2 and a4. Service Ins

decides whether the claim must be reimbursed or not. If so, the report provided by H (data dependency

d5) and the results of inspection (d6) are sent to the policyholder by invoking DS (activity a5). Moreover,

a Bank (B) service is invoked for the reimbursement. If the claim is not reimbursable, B is not invoked.

This is why an OR-split/OR-join is used: sometimes both DS and B are invoked, and other times only

DS is invoked.

In existing service orchestration platforms (e.g. BPMN or BPEL engines), control and data depen-

dencies between services are managed centrally by IC. The resulting interactions between IC and the

component services are hence as depicted in Figure 2a. The centralized orchestrator is a bottleneck and

may cause performance degradation and availability issues. It also causes additional traffic of messages,

since every activity execution involves a back-and-forth message exchange between IC and a service,

which may be located arbitrarily apart and in a different organizational domain. An alternative is to

execute the orchestration in a decentralized manner.

Figure 2b depicts a possible decentralized execution settings for the same orchestration, where IC is

partitioned into seven partitions that are executed by seven distributed orchestrators. The orchestrator

assigned to a partition Pi is responsible for coordinating the services assigned to the activities of this

partition. In this decentralized architecture, the data produced by a service are routed directly to the

partitions of the services that consume these data (meaning to the orchestrator of that partition). For

example, hospital and police protocols (d1 and d2) generated by ES are routed directly to the partitions

of services H and P. If we consider the data exchanged only between services, then the number of data
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flow messages in figure 2a is 8 (cf. communication links labelled with data items di). Meanwhile, in

decentralized orchestration depicted in Figure 2b, the number of messages is reduced to 6 since data are

transferred directly from their sources to their points of consumption.

Now consider the case where ES and H are geographically close to each other, and the same holds for

P and Ins. Then, it is preferable to create a single partition for ES and H, and same for P and Ins. This

arrangement reduces the number of data flows exchanged between partitions to only 3 messages.

The example shows that that the communication overhead varies depending on the number of partitions,

the placement of activities into partitions, the distance between services, and the number of message

exchanges.

2.2 Problem statement

Consider the decentralized orchestration example depicted in figure 3. The example shows three ge-

ographically distributed partitions. The orchestrators corresponding to these partitions communicate

through an asynchronous messages exchange mechanism. Messages represent control or data informa-

tions. Each partition includes a set of activities each of which has at least one candidate service which

can perform this activity. For instance, partition P1 contains activities a1 and a2 which communicate

with other partitions’ activities a4 and a7 respectively. The activity a1 may invoke either s5a or s5b.

Each service has a location and a QoS determined by its response time, availability and reliability. The

bold lines represent intense communication between pairs of activities and thin lines describe a poor

communication. Arrows represent services invocations. In this example, activities a1 and a4 belong to

different partitions but communicate rather intensely. While a1 has a low communication with a3 in the

same partition P1, a4 has an intense communication with a3 in the same partition P3. This example

allows us to illustrate the tradeoffs involved, for instance:

– is it better to keep a1 in partition P1 near the service it invokes?

– or is it better to put a1 in the same partition as a4 since they communicate a lot? in this case, should

we preserve the assignment of a1 to s5a or reassign a1 to the service s5b which is nearer to P3? and

what if s5a has a better quality than s5b?

– is it more judicious to put a4 in P1 since s7 is more nearer to P1 than to P3 and a4 has an intense

communication with a3 in P3?
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Fig. 3 Decentralized orchestration model

– in partition P2 should a4 be assigned to s2a which is located near to it or the service s2b which has

better quality?

– does this number of partitions is optimal? does the placement of partitions is good? is there any risk

of overload if we increase the activities number of a partition?

– if we move an activity to another partition, is there any risk of security constraints violation?

This paper takes into consideration the above kinds of tradeoffs in order to compute an optimized

partition for decentralized orchestration of a composite service. Essentially, the idea is that the services

in the same partition should be close to one another. In this way, the orchestrator of the partition can be

placed close to all the services that it orchestrates and the communication overhead created by messages

exchanged between services in the same partition is minimal or (ideally) negligible. On the other hand,

services in different partitions may be far from one another, so the communication volume between

services in different partitions should be as low as possible.

In addition to seeking to minimize communication overhead, the proposed method also takes into

account the QoS of each service. Specifically, we consider the case where there are multiple candidate

services that can perform a given activity. Each of these services offers a QoS and has a location. The

method seeks to assign services to activities and to place activities in partitions in such a way as to

strike a tradeoff between minimizing the communication overhead and maximizing overall QoS. Relative

weights are assigned to each factor in order to capture their relative importance. Before describing the

optimized partitioning method, we define the notion of service orchestration model and related notions

(Section 3). We then show how the communication overhead between pairs of activities is computed by

analyzing the orchestration models (Section 4).

3 Preliminaries

The method for optimized service selection takes as input a service orchestration consisting of activities

related by control, data-flow and distribution constraints.

3.1 Orchestration model

In order to precisely define the notion of service orchestration, we need to adopt a model for representing

control-flow relations between activities. In this paper, we adopt a structured representation of process



models. In essence a process model is represented as a tree whose leaves represent activities and whose

internal nodes represent either sequence (SEQ), parallel (PAR), choice (CHC) or repeat loop (RPT)

constructs. Structured process models are very close to BPEL, and they have the advantage of being

simpler to analyze. And while it is possible to write unstructured models both in BPEL and in BPMN,

recent work has shown that most unstructured process models can be automatically translated into

structured ones [29]. Note that for the purpose of the proposed method, we do not need to capture

concrete branching expressions. Instead, it is sufficient to know the probability of taking each conditional

branch in a choice and the probability of taking the “repeat” branch in a loop. Also, we do not need to

capture OR-split/OR-join pairs, because when a process is structured, OR-split/OR-join can be trivially

translated into a combination of choice and parallel blocks. For example, the OR-split/OR-join pair in

Figure 1 can be transformed into a choice between executing a5 only or executing both a5 and a6 in

parallel. Formally, we capture structured process models as follows.

Definition 1 [(Structured) Process Model] A process model is a tree with the following structure (here

we use the type definition syntax of the ML language [26]):

Process ::= ProcNode

ProcNode ::= Activity | ControlNode

ControlNode ::= SEQ([ProcNode])

| CHC ([CondBranch]) |

| PAR({ProcNode})

| RPT (ProcNode × P)

CondBranch ::= COND (P × ProcNode)

where P is the range of real numbers from 0.0 to 1.0, denoting probabilities.

For example, the BPMN model in Figure 1 is represented by the following expression:

SEQ(a0, PAR(a1, a2, a3), a4, CHC(COND(p1, a5), COND(p2, PAR(a5, a6))) ).

An activity in a service orchestration represents a one-way or a bidirectional interaction with a service

via the invocation of one of its operations. Each activity has a non-empty set of candidate services that

it can be bound with. In addition, activities may be related by means of two types of distribution

constraints: collocation (activities must be placed in the same partition), and separation (activities must

be placed in different partitions). Formally, a service orchestration is defined as follows:

Definition 2 [Service Orchestration] A service orchestration is a tuple (Proc, Data. Cand, Collocate,

Separate), where:

– Proc is a process model capturing control-flow dependencies between a set of activities;

– Data is a ternary relation consisting of tuples of the form Data(ai, aj,dk) stating that, upon completion

of activity ai, data item dk needs to be transferred to activity aj

– Cand is a function that maps each activity to a set of candidate services that are able to perform that

activity.

– Collocate is a relation consisting of facts of the form Collocate(ai, aj) stating that the activities a1

and a2 must be placed together;

– Separate is a relation consisting of facts of the form Separate(ai, aj) stating that the activities a1

and a2 must be placed in different partitions.

For consistency, we impose that ∀a1, a2 ¬(Collocate+(a1, a2) ∧ Separate(a1, a2)) where Collocate+ is

the transitive closure of relation Collocate. This means that if we declare that two activities must be

collocated, we cannot state additionally that these activities must be separated.



An activity that is not related with any other activity by a collocate or separate constraint is called

an unconstrained activity. In the sequel, we write CTR to denote the set of all distribution constraints

defined in an orchestration (CTR = Collocate ∪ Separate). Also, we write Act(Orc) to refer to the set

of activities of an orchestration, CA(Orc) to denote the set of constrained activities and NCA(Orc) to

denote the set of unconstrained activities. Unconstrained activities are also called flexible activities since

we can place them in any partition. When it is clear to which orchestration we are referring to, we will

simply write Act, CA and NCA.

3.2 QoS Model

Given a service orchestration defined as above, the purpose of the method is to construct:

– A binding bind(a), that is, is a function that maps each activity a in the orchestration model to a

service s;

– A partitioning of activities, that is, a function that maps each activity in an orchestration to a

partition. This partition function is needed for decentralized service orchestration.

The method seeks to bind candidate services to activities in such a way as to minimize the commu-

nication overhead and to maximize the QoS of the services in the binding. Composite service designers

are able to influence the relative importance given to the minimization of the communication overhead

versus the maximization of the quality by setting two weights: wc ∈ [0..1] is the weight given to the

communication overhead and wq ∈ [0..1] is the weight given to the quality of service.

We do not impose a particular model for calculating the QoS of a given service. Instead, we assume

that there is a function QoS (s) that returns the QoS of a service s. For example, we could use the QoS

model presented in [39] in order to determine the QoS of each component service based on a weighted

sum of a pre-determined set of QoS attributes such as:

– Execution cost. The execution cost QoScost(s) of a service s is the fee that a service requester has

to pay for invoking the service. Web service providers either advertise the execution cost of their

services, or provide means for potential requesters to inquire about it.

– Execution time. The execution time QoStime(s) of a service s measures the expected delay in

seconds between the moment when a request is sent and the moment when the results are received.

Services advertise their processing time or provide methods to inquire about it.

– Reputation. The reputation QoSrep(s) of a service s is a measure of its trustworthiness. It mainly

depends on end user’s experiences of using the service s. Different end users may have different

opinions on the same service, hence, the average of the raking given by end users is to be considered.

– Reliability. The reliability QoSrel(s) of a service s is the probability that a request is correctly

responded (i.e., the operation is completed and a message indicating that the execution has been

successfully completed is received by service requestor) within the maximum expected time frame

indicated in the Web service description. The reliability is a measure related to hardware and/or

software configuration of Web services and the network connections between the service requesters

and providers.

– Availability. The availability QoSav(s) of a service s is the probability that the service is accessible

for immediate use. Availability is also described as the uptime of a service in a pre-determined period.

Given the QoS of each service – QoSs – computed for example as a weighted sum of the above

QoS attributes, the proposed method seeks to bind services to activities in a service orchestration in

such a way as to minimize the aggregate QoS of the service orchestration, where the aggregate QoS is

the weighted sum of the QoS of the services bound to each activity, taking as weights the frequency of

execution of the activity in question. In other words, given a service orchestration involving activities a1,

..., an, and given a binding bind that maps each activity to a service, we seek to maximize:



n
∑

i=1

QoSbind(ai)

while at the same time maximizing the communication cost of the binding as discussed later. Note that

the above aggregation function is not the only possible one. A classification of other types of aggregation

function together with methods to efficiently compute those aggregation functions can be found in [37].

4 Communication Overhead

One of the aims of the optimized partitioning approach is to produce partitions such that the commu-

nication overhead (i.e. the amount of communication) between activities inside a partition is as large

as possible and, conversely, the communication overhead across partitions is as small as possible. To

construct such optimized partitions, we need to estimate the communication overhead between pairs of

activities. Two activities a1 and a2 need to communicate if:

– Activities a1 and a2 are consecutive. If we take the representation of a process model as a graph

consisting of activities and gateways (as in Figure 1), two activities are consecutive if there is a

control-flow arc directly from a1 to a2, or there is a path from a1 to a2 that does not traverse any

other activity (i.e. only gateways are traversed). In this case, every time an instance of activity a1

completes, if activity a2 needs to be executed next, the service assigned to a1 must send a control-flow

notification to the service attached to a2.

– There exists a data-flow from activity a1 to activity a2 (a1, a2, d) ∈ Data. The presence of such a data

flow implies that every time activity a1 completes, the service assigned to a1 must send a message

containing a datum of type d to the service assigned to a2.

Without loss of generality, we measure communication overhead in bytes. We assume that control-flow

notification has a size of one byte. We also assume that the average size in bytes of a message of type

d is known, and we write size(d) to denote this size. In order to determine how many bytes will be

exchanged between the service assigned to a1 and the service assigned to a2 during one execution of an

orchestration, we need to determine two things:

– How many times a given activity will be executed (for a given execution of the orchestration)? We

write numExec(a) to denote this amount.

– Given two consecutive activities a1 and a2, what is the probability that one execution of activity a1

is immediately followed by an execution of activity a2. We write probFollows(a1, a2) to denote this

probability.

4.1 Computation of numExec(a)

To compute the number of times that a given activity is executed we reason on the structured process

model (as defined in Definition 1), and make the following observations:

– If a process node PN is a direct child of a sequence (SEQ) node, then each execution of the SEQ

node entails one execution of PN

– If a process node PN is a direct child of a parallel (PAR) node, then each execution of the PAR node

entails one execution of PN

– If a process node PN is a direct child of a conditionalBranch (COND) node that has a branching

probability of p, then each evaluation of node COND entails p executions of PN .

– If a process node PN is a direct child of a Repeat (RPT) node that has a repeat probability of p,

then each execution of the node RPT entails 1/(1 − p) executions of PN .



Algorithme 1 : Algorithm numExec(a)

Input: orc // an Orchestration

a // an activity in Act(orc)

path ← the path from the root of Proc(orc) to a

condBranches ← the list of COND nodes in path

repeatBlocks ← the list of RPT nodes in path

Output: (Πcb∈condBranchesprob(cb)× (Πrb∈repeatBlocks1/(1− prob(rb)))

Based on these observations, we conclude that the number of times an activity a needs to be executed

(for a given execution of an orchestration) is determined by the probabilities of the conditional branch

and repeat nodes that appear in the path from the root of the process model to a. Starting from one

execution of the entire process, each time a COND node with probability p is traversed, the number of

executions of its child node is multiplied by p, while every time a RPT node is traversed the number

of executions is multiplied by 1/(1 − p). This observation leads us to Algorithm 1 that calculates the

average number of times that a given activity is executed for each execution of an orchestration. In this

algorithm, prob(cb) and prob(rb) denote the probability attached to conditional branch cb or a repeat

block rb respectively.

4.2 Computation of probFollow(a1, a2)

Next, we have to compute probFollows(a1, a2): the probability that the completion of an instance of

activity a1 triggers the execution of another activity a2 – assuming that a1 and a2 are consecutive

activities. For this, it is more convenient to take the representation of the process model as a graph

consisting of activities and gateways, and to retrieve the conditional control-flow arcs traversed on the

path from a1 to a2. Here, a conditional control-flow arc is an arc in the process graph whose source is

an XOR gateway. For each traversed conditional control-flow arc, the probFollows(a1, a2) is multiplied

by the probability attached to the control-flow arc. This leads to the Algorithm 2. In this algorithm,

prob(ca) denotes the probability associated to a conditional control-flow arc ca.

Algorithme 2 : Algorithm probFollows(a1, a2)

Input: orc // an Orchestration

a1, a2 // two consecutive activities in Act(orc)

path ← the path in the process graph from a1 to a2

condArcs ← the list of conditional control-flow arcs in path

Output: Πca∈condArcsprob(ca)

4.3 Communication cost co(a1, a2)

Having defined functions numExec and probFollows and given the above observations, the communica-

tion overhead between two activities a1 and a2 – namely co(a1, a2) – is computed as follows:

co(a1, a2) = Cons(a1, a2) × numExec(a1) × probFollows(a1, a2)

+ Σ(a1,a2,d)∈DatanumExec(a1) ∗ size(d)
(1)

where Cons(a1, a2) is a function equal to one if a1 and a2 are consecutive activities, and zero otherwise.

The first term in this formula corresponds to the communication overhead induced by control-flow

notifications, while the second term corresponds to the communication overhead induced by data-flows.

Note that probFollows does not appear in the second term, because a data-flow dependency implies that

the source activity will send the corresponding datum to the target activity, regardless of whether or not

the target activity is performed.



5 Partitioning Approach

Given a centralized process specification, our decentralized orchestration is composed of two parts. The

first step consists in determining an optimized partitioning of activities and an optimized assignment

of services to activities in order to reduce communication overhead and maximize QoS. This is the

subject of this paper. The second part consists in wiring the activities in the same partition and across

partitions in order to preserve the semantics of the process model. This wiring means that data and

control dependencies need to be realized by means of message exchanges between services and distributed

orchestrators assigned to each partition. For this part, we can use a technique we presented in previous

work [14] or other techniques discussed in Section IV.
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Fig. 4 Partitioning steps

In order to compute an optimized partitioning of an orchestration, we proceed in two steps (c.f. figure

4). First, we perform a pre-partitioning in which activities that are related through Collocate relations

are put in the same partitions. In this pre-partitioning phase (Section 5.1), we also construct ”groups

of partitions” such that activities across different groups are not related neither by Separate nor by

Collocate constraints. This pre-partitioning is useful since we can then easily identify which activities

must be collocated, and which sets of activities must be kept separated. In the second step, we use this

pre-partitioning in order to form final partitions using a Greedy algorithm. We also sketch how the initial

solution computed by the Greedy algorithm can be improved using Tabu search.

Next, we introduce the pre-partitioning algorithm as well as an algorithm for calculating the minimum

and maximum amount of final partitions to be created (Section 5.1). Finally, using the pre-partitioning

and the function for computing communication overhead, we show how the final partitioning is computed

(Section 5.2).

5.1 Pre-partitioning of Constrained Activities

The purpose of the pre-partitioning phase is to partition the set of constrained activities CA so that we

can later easily identify which activities should be collocated and which activities should be separated.

To this end, we decompose the set of activities into groups {CA1 . . . CAn}, so that elements in two

groups are not related neither by a Separate nor by a Collocate constraint. In other words, if we view the

relation CTR = Separate∪Collocate as a graph, a group consists of all activities in one of the connected

components of this graph. Figure 5 shows an example involving 12 activities CA = {a1, .., a12} linked

through Separate and Collocate relations. Looking at the corresponding CTR relation, we can see that

there are three connected components in the induced graph, and thus three groups are created, namely

CA1, CA2 and CA3. If we restrict the relation CTR to the activities in each of these groups, we obtain

three restricted CTR relations, namely CTR1, CTR2 and CTR3 respectively.1 The rationale for this

1 We note that ∀i, j, i 6= j, CAi ∩ CAj={∅} and CTRi ∩ CTRj={∅}.
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initial grouping is that activities belonging to different groups can be freely combined with one another

in a final partition (or they can be left in separate final partitions), because no constraint links them.

Next, each group is further partitioned into a number of pre-partitions by looking at the relation

Collocate only. The idea is that each of these partitions is a maximal set of activities that must be

collocated. In other words, if we view the relation Collocate as a graph, a partition in a group CAk

consists of all activities in CAk that belong to one of the connected components of this graph. The pre-

partitioning of each group CAk is a set of pre-partitions such that Gk=
⋃

PP j
k . For example, in Figure 5,

CA1 is decomposed into three pre-partitions : PP 1
1 ={a1,a8}, PP 2

1 ={a6} and PP 3
1 ={a9,a11,a2}. After the

pre-partitoning phase, we know that all activities in a pre-partitions should be manipulated as a single

package and put together in one final partition.

This pre-partitioning is operationalized by algorithm 3. This algorithm first computes the groups

by calculating the connected components CTRi of CTR. Each CTRi leads to one group. Next, the

algorithm computes the partitions within each group by computing the connected components of the

Collocate relation restricted to the connected component CTRi. For convenience, we lift the relation

Separate so that it can be applied to partitions as follows:

Separate(Pi, Pj) ⇔ ∃ai ∈ Pi, aj ∈ Pj : Separate(ai, aj)

For example, with respect to Figure 5, it holds that Separate(PP 1
1 , PP 1

2 )∧Separate(PP 1
2 , PP 1

3 ). This

implies that PP 1
2 should not be combined neither with PP 1

1 nor with PP 1
3 in the same final partition.

The final partitioning algorithm presented later tries to compute partitions of different sizes. To this

end, we need to know the approximate minimum and maximum number of possible final partitions FPj .

Algorithm 4 describes how to compute the minimum required final partitions that can be obtained by

merging pre-partitions from different groups, while respecting the constraints that link pre-partitions

of the same group. However, this number does not take into consideration non-constrained activities

NCA. So, to have the exact number, consider |Act| the total number of activities, NAmax (NAmin)

the maximum (minimum) number of allowed activities by partition (fixed by user after constrained



Algorithme 3 : Constrained activities partitioning

Require: - CTR: set of all constraints

Init: Groups← {}

begin

for each CTRi in ConnectedComponent(CTR) do
CurGroup←{}

for Collocatei in ConnectedComponent(CTRi ∩ Collocate) do
NewPartition← {a|∃a′ Collocatei(a, a′)}

CurGroup← CurGroup ∪ {NewPartition}

Groups← Groups ∪ {CurGroup}

Return Groups
end

Result: groups of constrained partitions

activities partitioning), NP the output of algorithm 4, and |CA| (|NCA|) the number of constrained

(Non-constrained) activities. Then the minimum and maximum number of final partitions NPmin and

NPmax are computed by equations 2 and 3, respectively. In Section 3.4, we will vary the number of

partitions from NPmin to NPmax and try to distribute the flexible activities FA and the groups Gk over

those partitions in such a way as to minimize the communication overhead and maximize the QoS. We

will then choose the partitioning that leads to the best overall tradeoff between communication overhead

and QoS according to relative weights given by the user.

NPmin =



















NP if
|Act|

NAmax

≤ NP

NP +
|Act| − (NP ∗ NAmax)

NAmax

Otherwise

(2)

NPmax =
∑

k

Size(Gk) +
|NCA|

NAmin

(3)

5.2 Optimized partitioning process

In the previous sections, we presented algorithms to partition constrained activities into a set of in-

dependent partition groups Gk (pre-partitions), while respecting constraints defined by user. We also

introduced algorithms to compute the minimal and maximum number of final partitions FPj . In the

following, we will present our solution to optimally distribute the pre-partitions and unconstrained ac-

tivities over final partitions, and assign activities to web services. The problem can be considered as a

quadratic assignment problem (QAP) introduced by Koopmans and Beckmann [4] in 1957, as a mathe-

matical model for the location of a set of indivisible economical activities. Using the QAP formulation of

Koopmans-Beckman, we are given a cost matrix C = [coij ], where coij is the communication overhead

between activity ai and activity aj . We are also given a distance matrix between partitions Dp = [dp
ij ],

where dp
ij represents the distance between partition Pi and partition Pj , a distance matrix between ser-

vices Ds = [ds
ij ] where ds

ij represents the distance between service si and service sj and a quality matrix

Q=[qij ], where qij is the contribution to overall QoS obtained by assigning activity ai to service sj .

Given the above matrices, if activity i is assigned to service bind(i), the contribution of this assignment

to the overall QoS is equal to the QoS of service bind(i) multiplied by the average number of times that ai

is executed per execution of the orchestration, i.e. numExec(ai) as defined above. Meanwhile, if activity

i is assigned to P (i), and activity j is assigned to P (j), the inter-partition communication cost associated

with this assignment is coij ·d
p

P (i),P (j). Finally, if activity i is assigned to bind(i), and activity j is assigned

to bind(j), the intra-partition distance cost associated with this assignment is coij · d
s
bind(i),bind(j). Note



Algorithme 4 : Computing approximative minimum number of partitions after groups merging

Require: - Groups = ∪Gk // The set of all partition groups

- NAmax // The maximum number of activities by partition

Init: Ng ← |Groups|

Ngmax← Max(|Gk|), k ∈ [1..Ng]

Recursive(Groups, Ngmax)

begin
if (Gk = {}, ∀ k 6=Ngmax) then

return Groups

for (Gk in Groups, k 6=Ngmax) do

for (P k
i in Gk) do

min←Min(|P Ngmax

l |) l ∈ [1..|GNgmax |]

if (|P k
i | + |P

Ngmax

min | > NAmax) then

Add(P k
i , GNgmax)

Delete(P k
i , Gk)

repeat

Pmax←Max(P k
i ) st ¬constrained(Max(P k

i ), P Ngmax

min ) ∀k 6= Ngmax, ∀i ∈ [1..|Gk |]

Add(Pmax, P Ngmax
min )

Delete(Pmax)

until ((Gk = {}∀k 6= Ngmax) ∨ (|Pmax|+ |P
Ngmax

min | > NAmax)

Recursive(Groups, Ngmax)

end

Result: NP=Size(Recursive(Groups, Ngmax))

that bind(i) and bind(j) are subject to the constraints bind(i) ∈ Cand(i) and bind(j) ∈ Cand(j), meaning

that an activity can only be bound to one of its candidate services.

The optimization problem has three components: we have to maximize the quality of service, mini-

mize the inter-partition communication cost – because it implies communication between orchestrators

possibly located far from one another – and we have to minimize the distance between services placed

in the same partition – given that such services need to interact with a local orchestrator. Because we

wish to strike a tradeoff between three factors, we introduce three parameters wq, wout and win, where

wq is the relative weight given to maximizing QoS, wout is the weight given to minimizing inter-partition

communication cost, and win is the weight given to minimizing the distance between services assigned

to activities in the same partition.

Given these weights, the total cost of a solution to this assignment problem is given by equation 4.

An optimal solution to the problem consists of an assignment of activities to partitions and a binding

of activities to services such that this total cost is minimal. Solutions are only admissible if they respect

the binding constraints (a service can only be assigned to an activity if it is one of the candidates of

this activity), and the collocation and separation constraints for assigning activities to partitions. In

equation 4 we write 1−QoSs because we seek to maximize the sum of QoS of the services in the binding,

which is equivalent to minimizing 1−QoSs. This discussion leads us to the following objective function:

wq

n
∑

i=1

(1 − QoSbind(i)) × numExec(i)

+wout

n
∑

i=1

m
∑

j=1

coij × dP (i)P (j) + win

n
∑

i=1

n
∑

j=1

coij × dbind(i),bind(j)

(4)

We note that in this objective function, we try to optimize the weighted sum of QoS, taking into

account the number of times that each service will be invoked for a given execution of the orchestration.

In certain cases, one may wish to optimize a different QoS aggregation function (e.g. the product of the



QoS of the services) as discussed in [12]. If this is the case, one can replace the QoS term in the above

formula and replace it with the desired aggregation function. The proposed optimization technique would

need to be adapted accordingly, but the basic principles remain applicable.

It should be noted that the equation 4 includes three main terms: (i) the first concerns the quality

of service, (ii) the second describes the inter-partitions communication and (iii) the third is related to

the intra-partitions communication. In order to correctly evaluate the communication cost, these terms

should be in the same values domain. For this purpose we consider the normalization process defined in

the equations 5 as follows:

(1) wq ·

∑n

i=1(1 − QdSbind(i)) × numExcec(i)
∑n

i=1 numExec(i)
(5)

(2) wout ·

∑n

i=1

∑n

j=1 co′ij × dP (i)P (j)
∑n

i=1

∑n

j=1 dP (i)P (j)
with











N: activities number

co′ij =
coij

M
, M = Maxi,j=1..ncoij

(3) win ·
1

m × Md

×

m
∑

k=1

InDistances(Pk) with







m: partitions number

Md = Maxk=1,mInDistances(Pk)

and InDistances(Pk) =

∑size(Pk)
i=1

∑size(Pk)
j=1 coij × dbind(i)bind(j)

∑size(Pk)
i=1

∑size(Pk)
j=1 coij

In the first term (1), we assume that the quality of service varies between 0 and 1 and therefore 1-

QoSbind(i)∈ [0..1]. The execution number of a given activity varies between 0 and ∞, so we divide it by the

sum of execution numbers of all the activities. In the second term (2) (inter-partitions communication),

we divide the communication cost between each couple of activities by the highest communication cost

found. We also divide each inter-partitions distance dP (i)P (j) by the sum of inter-partitions distances

between all couples of activities. Finally to normalize the intra-partitions communication (3), we divide

each intra-partitions distance by the partitions number multiplied by the maximal internal distance. The

intra-partitions communication cost is divided by the sum of communication costs between all pairs of

activities of the same partition. Each of the terms is multiplied by the correspondent weight.

5.2.1 Heuristic optimization algorithms overview The problem of optimizing equation 4 is a QAP be-

cause dP (i)P (j) depends on the partitions to which ai is assigned and the one to which aj is assigned. If

we use a boolean (0-1) variable to encode to which partition a given activity is assigned, this term would

involve a product of two variables. A similar remark applies to dbind(i),bind(j).

Several exact algorithms have been used for solving QAP, like branch and bound, cutting plane and

branch and cut algorithms [8]. Although substantial improvements have been done in the development

of exact algorithms for the QAP, they remain inefficient to solve problems with size n>20 in reason-

able computational time (there are n! distinct permutations). This makes the development of heuristic

algorithms essential to provide good quality solutions in a reasonable time. Many research have been

devoted to the development of such approaches. We distinguish the following heuristic algorithms [8]:

Hill-climbing (HC), Tabu search (TS), Simulated annealing (SA), Genetic algorithms (GA), Greedy ran-

domized adaptive search procedures (GRASP), Ant systems (AS), etc. The simpler and faster methods

are based on local search (e.g. HC and TS). A local search procedure starts with an initial feasible

solution and iteratively tries to improve the current solution. This is done by substituting the latter

with a (better) feasible solution from its neighborhood. In HC, this iterative step is repeated until no



further improvement can be found. For a comprehensive discussion of theoretical and practical aspects

of local search in combinatorial optimization the reader is referred to [1]. In this paper we adopt the

TS to look for an optimal solution to our decentralization problem. Tabu search [15] is a local search

method where the basic idea is to remember which solutions have been already visited by the algorithm,

in order to derive the promising directions for further search. A generic procedure starts with an initial

feasible solution and selects a best-quality solution S among (a part of) the neighbors of S obtained by

non-tabu moves. Then the current solution is updated by the selected solution. If there are no improving

moves, tabu search chooses one that least degrades the objective function. The search stops when a stop

criterion (running time limit, limited number of iterations) is fulfilled.

Algorithme 5 : Greedy algorithm: initial elite solution computation

Require: - NCA(Orc), NPmin, NPmax

- Pc: Constrained partitions (pre− partitions)

- {Cand(ai), ∀ai ∈ Act(Orc)}

Init: Pc ← Pc∪{{ai}|ai ∈ NCA(Orc) }

bestQuality← +∞, bestNumber← NPmin

bestPartition← {}, bestBind← {}

Begin

for (NP←NPmin To NPmax) do
FinalPart← a set of size NP of empty sets

for (each PP in Pc) do
Quality∗ ← +∞

for (each FP ∈ [1..NP ] where ¬Separate(PP , FinalPart[FP ]) do
CurQual← 0

for (each ai in PP ) do

sai
← arg min

si∈Cand(ai)

h

wq · (1−QoS(si)) · numExec(si)

+wout ·

P

aj∈F inalPart[F P ] coai,aj
.dP (ai),P (aj))

|FinalPart[FP ]|

+win ·

P

aj∈F inalPart[F P ] dsi,bind(aj)

|FinalPart[FP ]|

i

CurQual← CurQual +
h

wq · (1−QoS(si)) · numExec(si)

+wout ·

P

aj∈F inalPart[F P ] coai,aj
.dP (ai),P (aj)

|FinalPart[FP ]|

+win ·

P

aj∈F inalPart[F P ] dsi,bind(aj)

|FinalPart[FP ]|

i

if CurQual < Quality∗ then
FP ∗ ← FP

Quality∗ ← CurQual

for (ai in PP ) do bind(ai)← sai

FinalPart[FP ∗]← FinalPart[FP ∗] ∪ PP

qualSolution← qualSolution + Quality∗

if (qualSolution < bestQuality) then
bestQuality ← qualSolution

bestPartition← FinalPart

bestBind← bind

Return(bestPartition, bestBind, bestQuality))

End



5.2.2 Greedy algorithm The first part of the Tabu Search TS algorithm is the construction of a feasible

initial solution in order to find better solutions by stepwise transformations. The simplest way to do this,

is to generate a random solution by randomly assigning activities to partitions and services to activities.

However, the obtained results proved to be not sufficient. In this sense, many recent researches in TS

deals with various techniques for making the search more effective. These include methods for creating

better starting points called elite solutions. For this purpose, we adopt Greedy algorithm to generate

a good initial solution. Greedy algorithms are intuitive heuristics in which greedy choices are made to

achieve a certain goal [25]. Greedy heuristics are constructive heuristics since they construct feasible

solutions for optimization problems from scratch by making the most favorable choice in each step of

construction. By adding an element to the (partial) solution which promises to deliver the highest gain,

the heuristic acts as a greedy constructor.

Algorithm 5 presents a method that computes a good feasible solution to activity placement and

service selection. It takes as input pre-partitions, unconstrained activities and service candidates of each

activity. Then, according to a fixed final partitions number, try to place at each step an activity (or

pre-partition) to a final partition, and assign a service (or a set of service) to it. Both assignment and

placement are based on cost estimation. The cost of assigning an activity to a service among its candidate

services depends of the latter quality. Then the cost of placing an activity in each final partition depends

of the communication overhead as well as the average distance between the activity to place and all

activities of the partition. The most favorable choice among final partitions costs is selected. For pre-

partitions placement, the same procedure is used except the fact that we take into consideration the

constraints, and a global cost of assigning it to a final partition since it includes a set of activities. Once

all activities and pre-partitions are assigned, we compute the global cost, and then change final partitions

number and iterate. After each iteration we compare the quality of the current solution to the previous

one and save the best. The output of the algorithm is an optimized feasible solution.

To analyze the complexity of Algorithm 5 , we first analyze the complexity of one iteration of the

outer loop. In one such iteration, we consider every possible binding of an activity (that has not yet

been bound) to a service. If we write MaxCand to denote the maximum number of candidate services

that any activity has, we have to consider MaxCand possible bindings per activity and thus at most

MaxCand × |Act| bindings in total. Each such binding is then compared against all activities that

have already been bound in order to compute the distances (again, there are at most |Act| such bound

activities). We also have to evaluate the QoS of each service binding, but we assume this is a constant-

time operation. Thus, the complexity of one iteration of the outer loop is O(MaxCand × |Act|2). Also,

during each iteration of the outer loop, we have to test NP times whether or not two partitions are

linked through any Separate constraint. Each such test takes at most |A|2 operations. Next, we note that

the outer loop is executed NPmax − NPmin times, with NP ranging between these two values. Thus

overall, the complexity is O((NPmax −NPmin)×MaxCand×|Act|2 +(NPmax −NPmin)2×|A|2). Thus

we can say that the complexity of the algorithm is a polynomial of order four, but one of the variables

in this polynomial is NPmax − NPmin, which can be made smaller if needed since we do not need to

consider all possible numbers of partitions.

5.2.3 Tabu search algorithm In the following we will describe a solution that combine the greedy al-

gorithm to the Tabu search algorithm in order to optimize the previously presented solution. As we

mentioned before, the key idea is to start the Tabu search with an initial good solution. For this purpose

we use the greedy solution. Then, for each iteration, possible moves will be calculated and the move

leading to the highest benefit will be performed. If the highest benefit is negative, the move will be

performed anyway, unless this move is forbidden by the tabu list. In order to guide the moves, we utilize

some heuristics that can be employed (in conjunction with the tabu search algorithm) to improve the

solution. The heuristics are described as follows:

– Put together activities which exchange lot of data to reduce inter-partitions interactions.

– Put together activities whose invoked services are geographically close.
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Fig. 6 Implementation architecture

Algorithm 6 presents a pseudo code for the tabu search where stop condition represents:

– after a fixed number of iterations.

– after number of iterations without an improvement in the objective function value.

– when the objective reaches a pre-specified threshold value.

The function quality is evaluated as described in equation 4. A move is described by an activity assign-

ment to another partition or service with respect to the constraints. At each step, the quality function

compute the cost of a set of possible moves, choses the best move and evaluates the quality of the new

partitioning. The object function is the minimization of the communication cost and the maximization

of the overall QoS. We also use an aspiration criteria to determine if a tabu move can be accepted or not.

Indeed, some of the solutions that must be avoided (tabu list) could be of excellent quality and might

not have been visited. To mitigate this problem, the aspiration criteria allow to override a solution’s tabu

state, thereby including the otherwise-excluded solution in the allowed set.

Algorithme 6 : Tabu search

Require: - Sg: greedy solution(wq , win, wout)

Init: S0 ← sg

S ← S0: current solution

S∗ ← S0: the best-known solution

f∗ ← quality(S0)

T ← {}: Tabu list

begin

while (¬ StopCondidtion()) do

S ← arg min
S′∈Na(S)

[quality(S)]

if quality(S) < f∗ then
f∗ ← quality(S)

S∗ ← S

record tabu for the current move in T (delete oldest entry if necessary)

end

return S∗



6 Implementation and Experimental Evaluation

6.1 Overview

We have implemented the proposed techniques as a prototype and used this prototype to empirically

study the performance and effectiveness of our approach in different cases by a series of experiments.

The experiments were conducted using abstract process models (BPMN) defined in XML format. These

models are available on Oryx 2 and IBM research web site 3. We also made use of the open source BPstruct
4 mainly developed to transform non structured process models into structured ones. Particularly, we

used the packages for transforming the XML process models to graphs and for loops identification. The

implementation architecture is described in figure 6. Since the BPMN models we used include only control

flow, the first step consists in completing the models by a data flow structure. In this step, we also assign

to each activity a set of candidate services and we define random collocate and separate constraints

with respect to the consistency property. In the second step, we assign values to the services (QoS), to

branching patterns (branching probabilities), to data (size) and to identified loops (loop exit and entry

probabilities). We also assign to each service a random GPS position in order to compute the distances

between them. A partition position is computed according to the positions of the the services assigned

to it (e.g. barycenter). The third step is related to the optimization methods including the Greedy and

Tabu algorithms. The output of this step is a set of partitions and a binding. The final step concerns the

decentralization and deployment process which is out of scope of this paper.
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Fig. 7 Extended insurance process example

Next, we use an extended version of the insurance process example 7. Specifically, we replaced the

OR construct by in association of XOR and AND (which is semantically equivalent), and we added a

loop on the delivery service and the bank. We also annotated the model with the transition probabilities.

The objective of these modifications is to better explain some implementation details.

The table 1 resumes the execution number of each activity of the insurance example (NumExec).

For instance, the execution number of the activity a7 : DS is equal to 0.6× 1/(1− 0.3) (where 0.3 is the

probability to stay in the loop).

a0 : ES a1 : H a2 : DS a3 : P a4 : Ins a5 : DS a6 : B a7 : DS

NbExec 1 1 1 1 1 0.57 0.57 0.85

Table 1 Execution number of the insurance process activities

2 http://oryx-project.org/backend/poem/repository
3 http://www.zurich.ibm.com/csc/bit/downloads.html
4 http://code.google.com/p/bpstruct/



The table 2 resumes for each activity the probability that it follows immediately another activity

(ProbFollows). We note that a5 : SL may be executed immediately after its first execution since it is in

a loop (0.3 × 0.4 = 0.12). The probFollows of to non-consecutive activities is equal to zero.

a0 : ES a1 : H a2 : DS a3 : P a4 : Ins a5 : DS a6 : B a7 : DS

a0 : ES 0 1 1 1 0 0 0 0

a1 : H 0 0 0 0 1 0 0 0

a2 : DS 0 0 0 0 1 0 0 0

a3 : P 0 0 0 0 1 0 0 0

a4 : Ins 0 0 0 0 0 0.4 0.4 0.6

a5 : DS 0 0 0 0 0 0.12 0.12 0.18

a6 : B 0 0 0 0 0 0.12 0.12 0.18

a7 : DS 0 0 0 0 0 0.12 0.12 0.18

Table 2 ProbFollows values of the insurance process example

6.2 DJ Graphs

In a process model, data links should respect the control flow constraints to avoid some use cases (e.g. an

activity waiting for a data that would never come or deadlocks). For instance, in the insurance process

example we can not add a data link between the hospital H and the police P since they are in parallel.

For this purpose, and in order to add random and correct data links to the tested models, we use The

DJ-graphs [34]. The latter is used to check if the add is allowed or not. Moreover, DJ-Graphs help

identifying each loop in a process model, its entry, its exit and all activities it encapsulates. This is useful

to compute the communication cost and the partitioning quality. We briefly introduce DJ-Graphs below.

In a flow-graph with a single start (source) node, a node n1 is a dominator of a node n2 if every

path from the start node to n2 goes through node n1. It is well-know [30] that this dominance relation

is a tree, where the source node is the root and every node in this tree dominates its children. This

tree is called the dominator tree. Dominator trees allow us to identify some types of loops (single-entry

loops) since the entry node dominates the others, but it does not provide a sufficient level of granularity

to identify other loops. The DJ Graph lifts this limitation by combining the dominator tree with the

original flow-graph. The DJ graph of a flow-graph consists of the same set of nodes as in the flow-graph

and two types of edges, namely D edges and J edges. D edges are the dominator tree edges. A ”J” edge

represents either a ”cross-edge” which intuitively means an edge going from one branch of the graph

to another, or a ”back-edge”, which intuitively is an edge that makes the flow of control go back to an

”earlier” edge.

An example is depicted in Figure 8 and refers to the DJ-graph of the extended insurance example.

The DJ-graph consists of the edges of the dominator tree (dashed), backedges, and the remaining edges

of the control flow called cross edges (solid). Loops in the DJ-Graph can then be found starting from the

lowest dominator level. If a backedge exists at the current level, then nodes corresponding to its ”natural

loop” are collapsed into one node. In this example, a0 : SU dominates a4 : INS but a6 : B does not

dominate a7 : SL. This means that we can add a data form a0 to a4 but not from a6 to a7 (this is logical

since they are in parallel). It should be noted that a7 is not dominated by g7 since they are in a loop

and then there is a case where g7 could be executed before a7 (execute g5, g7 and then a7). Therefore if

we consider g7 as an activity we can not add a data item from g7 to a7.
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Fig. 8 DJ Graph of running example

6.3 Results and analysis

Figure 9 represents a comparison between the results obtained by Greedy search and those obtained by

the Tabu algorithm. The tested were conducted on 105 models with various sizes (between 12 and 88

nodes with an average size of 24 nodes). The y-axis represents the quality of the corresponding process

partitioning. This includes intra and inter-partitions communication, and the QoS of the overall split

process. The x-axis represents the tested models. In the table 3, we show only a subset of the tested

models. For each process model, we apply the tests many times and we compute the average of the

corresponding results. We remind that we look to minimize the cost. Experiments shows that in most

cases, Tabu search improves the results obtained by the greedy algorithm. This is due to the fact that

Tabu algorithm explores more search space and therefore has more probability to to get a better solution.

In addition, by accepting some solutions which are worst than the current one, the Tabu algorithm may

jump to another local optimum and in some cases to the global optimum. It should be noted that, in

many cases, the Tabu algorithm gives similar results as the Greedy search (e.g. models M7 and M9).

The figure 10 describes an evaluation of the communication cost with respect to the number of

partitions in the case where the weights of QoS, intra and inter-partitions communication are equal

(wq = win = wout). We remark that the communication cost of the split process increases when the

number of partitions is very high. Indeed, when the number of partitions increases, the communication



M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Greedy 0,195 0,937 0,370 0,798 0,661 0,318 0,373 0,795 0,499 0,587 0,469

Tabu 0,160 0,167 0,343 0,133 0,554 0,184 0,373 0,103 0,472 0,475 0,112

Table 3 Comparaison between Greedy and Tabu algorithms: communication costs
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Fig. 10 Results: communication cost versus the partitions number

inter-partitions increases and becomes more significant compared to the QoS. Since wq = wout, the

overall cost increases.

Similarly, when the number of partitions is small, the number of activities by partition increases as

well as the number of services assigned to it. This reduces the flexibility in terms of the partition position

according to the services it invokes, since we look to put the partition near the services it controls.In

our experiments, we assume that each partition should be put in the barycenter of the services locations

it is assigned to, with respect to the execution number of each service. Thereby, the more the number

of services assigned to the same partition and which are geographically dispersed increases, the more

the probability of putting the partition far from these services increases. This affect directly the intra-

partition communication cost and consequently the overall cost.

Our experimental setup for testing optimized orchestration is achieved using an Intel processor Core

2 Duo, 2.5 GHz, a 4 GB memory and Eclipse Galileo environment. Figure 11 presents an evaluation of

the execution time of the tabu search algorithm according to the models sizes. The size of the model cor-

responds to the number of nodes (tasks + gateways) it includes. The y-axis is presented in a logarithmic

scale and represents the execution time (ms). The x-axis represents the models sizes. As can seen in the

figure, the time grows exponentially with respect to the size of the model. The average size is 24 nodes



Fig. 11 Computation time of our Tabu algorithm for different size of process models

and the average execution time is 4.24s. In worst case, the execution time is 7 minutes for 88 nodes. This

does not affect the quality of the optimization solution since it is executed once in design time.

6.4 Tool support

The figure 12 presents a screenshot of the optimization tool. The user should specify the number of

separation and colocation constraints, the weights for the QoS, the intra and the inter-partitions com-

munication, and the data links to add between process activities. Then, to execute the optimization

methods, the user should specify the tabu list size and the iteration number. The results presented in

the figure concerns the optimized partitioning of the insurance example. For each model it generates the

partitioning, the binding, the best quality and partitions positions (GPS positions) for both the tabu and

the greedy algorithms. With respect to this partitioning, the final decentralized partitions are depicted

in figure 13. The result is three partitions communicating through messages exchange. In the figure we

represent only control messages. This model is generated manually.

In future work, we further to complete the graphical support of the tool and give more control to the

user to allow direct specification of the collocation and separation constraints as well as the models.

7 Related Work

In recent years, several methods and systems for decentralized business process execution have been pro-

posed. One of the earliest work in the area is the Mentor project [36]. In Mentor, workflows are modeled

using state-charts that are partitioned so that each partition is delegated to a separate processing entitiy

(PE). Each PE-specific state-chart is executed locally on the PE workstation. Their approach takes into

account both control and data-flow dependencies. Sadiq et al. [31] present another method for decen-

tralized workflow execution based on partitions, but without considering data dependencies. Meanwhile,

Yildiz et al [38] consider the decentralization of processes from an abstract perspective by extending the

dead path elimination algorithm used in BPEL process execution engines. Their contribution focuses on

preserving the control-flow constraints in the centralized specification, while preventing deadlocks when

services interact with one another.

The above approaches do not consider communication overhead when splitting the process into par-

titions. Instead, they assume that the split is given by the designer or inferred from the roles specified

in the process model. Importantly, our partitioning approach could be used on top of any of the above

decentralized orchestration approaches. Thus, our work is complementary to the above ones.

Nanda et al. [11] present an approach to partition BPEL processes using program partitioning tech-

niques with the aim of reducing the communication costs between the partitions. More recently, Khalaf et

al [23][22] presented a method for decentralized orchestration of BPEL processes, focusing on the deriva-

tion of P2P interactions. Both proposals do not take into account distribution constraints (Collocate and



Fig. 12 Prototype screenshot
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Separate) and therefore the designer cannot control the partitioning. Also, they do not take into account

the possibility of an activity having multiple candidate services, each with a different location and a

different QoS. The common limitation of the current decentralization approaches is their dependency on

the underlying process specification (i.e. BPEL).

Recently, Lifeng and al. [2] proposed an extension to the BPEL partitioning approach introduced

in [11]. The extension represents a penalty-based genetic approach to optimize the partitioning process.

First, they create an initial partitioning topology, then they generate new topologies by stepwise trans-

formations using genetic operators (i.e. selection, crossover and mutation) and evaluate the fitness of

each topology. The procedure is repeated until a fixed maximal generation number is reached. The men-

tioned approach is similar to our proposal, but it deals only with BPEL processes and do not consider

collocation and separation constraints.

Safi Esfahani et al. [32] present a method for adaptable decentralization of BPEL processes. The

process of decentralization may be configured so that the produced fragments become adaptable with

different aspects of runtime environment (dynamic criteria). The decentralization is achieved in two

steps: (i) at design time, where the initial centralized process is split into a set of fragments according

to the designer criteria and, (ii) at run-time, where each of the derived fragment is in turn split into

adaptable fragments according to runtime requirements. In sharp contrast to our approach, this work

addresses only BPEL processes. Moreover, each derived partition is a strong connected component of

the initial graph. In our work, nodes composing each derived partition may not have direct connection

in the original graph. Besides, their approach do not consider collocation and separation constraints as

well as communication overhead.

Hildebrandt et al. [17] present an approach to decompose a declarative global process model described

in Dynamic Condition Respone Graphs (DCR Graphs) into declarative local sub-processes. They use a

projection technique to project DCR Graphs according to a subset of labels and events. This projection

do not take into consideration neither the QoS nor the optimization of communication overhead between

the derived partitions. Besides, the authors do not consider collocation and separation constraints which

are relevant for privacy or security concerns. Also they do not mention how they deal with repeated blocs

of activities (loops).

Other approaches to decentralized orchestration do not require any partitioning. For instance, the

Self-Serv system [6][5] is able to execute web service compositions in an entirely peer-to-peer fashion:

services send messages to one another after completing each activity in the orchestration. This approach

is equivalent to assigning each activity (service) to a separate partition (as illustrated in Figure 2b).

Another method for decentralized execution without partitioning is presented in [27][28]. The authors

developed a formal approach that takes as input the existing services, the goal service and the costs, and

produces a set of decentralized choreographers that optimally realize the goal service using the existing

services. However, the authors do not explain how they deal with Repeat blocks (i.e. loops), which have

a significant impact on communication overhead.

The graph partitioning problem is ubiquitous in many fields of computer science and engineering [7,

33,35,16]. It has important applications in areas ranging from work-load balancing in parallel program-

ming, to database storage. The graph partitioning problem is NP- complete. Therefore many heuristic

methods are proposed to find high quality partitions. Graph partitioning algorithms aim at identifying

partitions of a graph such that the weights of the edges inside a partition are high, while the weight of

the edges across partitions are low. In other words, connections inside a partition are strong, while con-

nections across partitions are weak. This is akin to our goal of partitioning the activities in a composite

service and assigning activities to services in such a way as to minimize inter-partition communication.

However, mainstream graph partitioning approaches are not designed to take into account co-location

and separation constraints, which we argue are relevant in the context of cloud deployments. Addition-

ally, in the context of decentralized service orchestration, graph partitioning methods are applicable once

the activities in the composite service are bound to concrete services, while part of the problem we

address in this paper is precisely that of assigning services to activities in such a way as to optimize



not only communication cost, but also overall QoS. This combination of factors make graph partitioning

techniques not directly applicable to the problem at hand.

Several previous studies have addressed the problem of aggregating QoS of composite services based

on orchestration models. Jaeger et al. [20,21] discuss the QoS aggregation problem for orchestration

models consisting of sequence, choice and parallel flow blocks. This approach does not deal with loops.

This restriction is lifted by Cardoso et al. [10] who proposed a Stochastic Workflow Reduction (SWR)

algorithm that takes as input a process graph and computes the expected QoS by repeatedly applying a

set of reduction rules for well-structured sequential, parallel, choice and repeat loops. In a similar vein,

Hwang et al. [18,19] represent composite services using a tree structure and compute the aggregate QoS

of composite services by traversing the tree using breadth-first search. Canfora et al. [9] propose the

same set of QoS aggregation functions and use them to tackle the problem of binding and re-binding

component services to an orchestration model in order to maximize the QoS of the final binding. One

common limitation in the works above is that all of them require that the orchestration model is well

structured. Such limitation is partially lift in a previous work reported in [37]. Also related to the

problem of QoS-aware composite service decentralization is that of QoS-aware service composition [3,24,

39]. The goal is to find a binding that optimizes a given objective function while satisfying a given set

of constraints. The input is an orchestration model and a set of service candidates for each task in the

orchestration model. Zeng et al. [39] study a local and a global optimization approach to this problem

using Simple Additive Weighting (SAW) and Integer Programming (IP), respectively. Meanwhile, Liu

et al. [24] propose a dynamic QoS computation model for web services selection in order to deal with

runtime QoS selection. The authors construct a QoS matrix and compute QoS of a composite service via

normalization and then multiplication with weights given by a user. A combination of local optimization

and global optimization approaches is studied in Alrifai et al. [3]. This latter work considers three types

of QoS aggregation functions: summation, multiplication and minimum relation. Both QoS aggregation

and QoS aware service composition problems are orthogonal to the problem of service decentralization.

In this paper, we have explicitly described the integration of additive QoS attributes. The extension of

the method to multiplicative and critical path QoS attributes is straightforward.

This paper is an extended and revised version of a previous conference paper [13]. With respect to the

conference version, the extensions include the normalization method to compute the communication cost

(which is needed in order to combine them with other costs), the detailed definition of a Tabu heuristics,

as well as the empirical evaluation of both the Greedy and the Tabu heuristics.

8 Conclusion

This paper presented a method for optimized constrained decentralization of composite web services.

The method seeks to compute a partitioning of activities and a binding of activities to services in such

a way as to minimize communication costs while maximizing QoS. In doing so, the method takes into

account the expected communication volume between partitions, the distance between partitions and

the distance between the services assigned to activities in the same partition. Because of the nature of

the objective function, the underlying optimization problem is formulated as a Quadratic Assignment

Problem (QAP). A greedy heuristic is used in order to construct an initial solution, while a Tabu search is

employed to improve over this initial solution. The experimental evaluation reported in this paper shows

that the Tabu search consistently improves over the initial solution produced by the Greedy algorithm,

and that the combined heuristic can deal with models of realistic size.

Although previous work have studied the problem of partitioning service orchestrations, the method

proposed in this paper is arguably richer insofar as it takes into account the need to optimize QoS during

the assignment of services to activities, and it is able to handle separation and colocation constraints.

A possible direction for future work is to apply other meta-heuristics to the optimization problem

formulated in this paper, such as simulated annealing or genetic algorithms. A genetic algorithm with

a suitable crossover operator to smartly combine partitions from different solutions is a particularly

appealing approach to achieve higher-quality solutions.
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37. Y. Yang, M. Dumas, L. Garćıa-Bañuelos, A. Polyvyanyy, and L. Zhang. Generalized aggregate quality of

service computation for composite services. Journal of Systems and Software, 2012.

38. U. Yildiz and C. Godart. Information flow control with decentralized service compositions. In ICWS, pages

9–17, 2007.

39. L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware Middleware for Web

Services Composition. IEEE Transactions on Software Engineering, 30(5):311–327, 2004.


	Introduction
	Illustration
	Preliminaries
	Communication Overhead
	Partitioning Approach
	Implementation and Experimental Evaluation
	Related Work
	Conclusion

