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Abstract

Blockchain technology enables the execution of collaborative business pro-
cesses involving mutually untrusted parties. Existing tools allow such pro-
cesses to be modeled using high-level notations and compiled into smart con-
tracts that can be deployed on blockchain platforms. However, these tools do
not provide mechanisms to cope with the flexibility requirements inherent to
open and dynamic collaboration environments. In particular, existing tools
adopt a static role binding approach wherein roles are bound to actors upfront
when a process instance is created. Also, these tools do not allow participants
to collectively make choices regarding alternative sub-processes or branches
in the process model, at runtime. This paper presents a model for dynamic
binding of actors to roles in collaborative processes and an associated bind-
ing policy specification language. The proposed language is endowed with a
Petri net semantics, thus enabling policy consistency verification. Further-
more, the paper introduces a model for consensus-based control-flow flexibil-
ity, wherein participants in a process can collectively agree on how to steer
the business process within the boundaries defined by control-flow agreement
policies. The paper also outlines an approach to compile policy specifications
into smart contracts for enforcement. An experimental evaluation shows that
the cost of policy enforcement increases linearly with the number of roles,
control-flow elements, and policy constraints.
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1. Introduction

Executing collaborative inter-organizational business processes, particu-
larly in open environments where the set of participants is not fixed in ad-
vance, is a long-standing challenge. This challenge arises from a fundamental
tension between, on the one hand, the need to allow some flexibility in the ex-
ecution of the process so as to accommodate a diverse range of requirements
and, on the other hand, the lack of mutual trust between participants [1].

In recent years, blockchain technology has emerged as an appealing
medium for collaborative business process execution between mutually un-
trusted parties [2]. Several approaches have been proposed to execute and
monitor collaborative processes using high-level process specifications, such
as process models captured in the Business Process Model and Notation
(BPMN) [3, 4, 5, 6]. These approaches, however, suffer from two limitations,
which hinder their applicability in dynamic environments:

1. They either do not provide a mechanism to bind actors to roles or, when
they do, they do not allow actors to be bound to roles dynamically.

2. They assume that the schema of the business process is fixed, and do
not provide flexibility mechanisms to enable actors to steer a process
instance in order to fit their collective requirements.

To illustrate the need for the first of the above flexibility features, we
consider a business-to-business purchasing process involving a buyer, a sup-
plier and a carrier. A buyer may trust a given carrier but not others, even
though they all play the same role. Additionally, trust relations may change
dynamically. For example, a buyer may initially trust a carrier and agree to
its appointment with the endorsement of the supplier. But later, the buyer
may lose this trust (e.g. if the carrier misses a deadline). Thereafter, the
buyer may wish to re-bind the transportation task to another carrier in con-
sultation with the supplier. This example illustrates the need to support
dynamic binding and un-binding of actors to roles and collaborative decision
making about role bindings (buyer and supplier both need to agree on the
carrier).

Meanwhile, to illustrate the need for the second flexibility feature, we
consider the case where some buyers require that the carrier uses a specific
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type of customs declaration system. Other buyers however, require a dif-
ferent system. The choice of customs declaration system depends on the
carrier’s and the supplier’s capabilities and constraints, which vary from one
carrier or supplier to another. Hence, the decision on which system to use,
needs to be made dynamically by common agreement between the buyer, the
seller, and the carrier. This example illustrates the need for participants to
collectively make choices regarding alternative sub-processes or branches in
the process model, in an environment where new participants may join, and
the capabilities and constraints of the participants may change over time.

The above examples illustrate the need for flexible execution mechanisms
in collaborative processes. These flexibility mechanisms, however, need to be
designed in a way that takes into account the lack of mutual trust between
participants. In other words, flexibility in such environments needs to be
accompanied by control mechanisms allowing the participants to collectively
decide on the course of execution of each process instance. In the above
example, it should not be possible for the buyer alone to appoint a carrier,
as this appointment also affects the supplier. Similarly, it should not be
possible for the buyer alone to decide on the customs declaration system to
be used, as this choice imposes requirements on the seller and the carrier.

This article addresses the lack of flexible execution mechanisms in exist-
ing blockchain-based approaches for collaborative business process execution.
In this perspective, the article proposes three types of controlled flexibility
mechanisms: (i) dynamic binding of actors to roles of a collaborative process;
(ii) dynamic selection of sub-processes; and (iii) dynamic selection of alter-
native pathways in a given execution state of a process. The first mechanism
addresses the first of the above flexibility requirements while the latter two
mechanisms address the second flexibility requirement. In order to enable
participants to retain control, these flexibility mechanisms are associated
with policies that determine which participants can initiate or have a say in
a runtime decision, and what level of consensus needs to be achieved in such
decisions. The article also proposes an approach to analyze policy specifica-
tions for dynamic role binding, in order to prevent circular dependencies that
may prevent one or more roles to be bound to an actor under some circum-
stances. Finally, the article shows how the proposed policy specifications can
be compiled into smart contracts that, once deployed on a blockchain plat-
form, ensure that the actors exercise the flexibility captured in a collaborative
process model within the boundaries set by the policies.

The proposed approach has been implemented in Caterpillar [6] – a
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blockchain-based execution engine for collaborative business processes1. The
article reports on an experimental evaluation aimed at assessing the overhead
of the proposed flexibility mechanisms and their associated policy enforce-
ment in the context of the Ethereum blockchain.

This article is an extended and revised version of a conference paper [7].
The latter paper focused on the role-binding model and associated (role)
binding policy specification language. With respect to the conference version,
the main extensions in this article are:

• The control-flow flexibility mechanisms and their associated control-
flow agreement model and policy specification language, as well as an
approach to compile these policies into executable code.

• An extension of the policy definition language introduced in the con-
ference paper, in order to enable roles to be bound based on a voting
mechanism, instead of (or in addition to) requiring endorsement from
a fixed set of actors.

The rest of the article is structured as follows. Section 2 introduces basic
concepts of blockchain technology and discusses existing approaches for role
binding and for handling flexibility in dynamic collaborative processes. Sec-
tion 3 describes the role-binding model and its associated policy language.
Subsequently, Section 4 presents the control-flow flexibility mechanisms and
the associated agreement model and policy language. Section 5 discusses
the semantics of the proposed policy languages and presents a verification
approach to detect circular dependencies in role binding policies. Finally,
Section 6 discusses the implementation and experimental evaluation, while
Section 7 draws conclusions and sketches future work.

2. Background and Related Work

2.1. Blockchain Technology and Collaborative Processes

A blockchain is a distributed append-only store of transactions distributed
across computational nodes and structured as a linked list of blocks, each
containing a set of transactions [8]. A blockchain network is made up of
nodes, a subset of which holds a replica of the data structure. Clients use

1https://github.com/orlenyslp/Caterpillar
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a blockchain system (a concrete network) by reading data from and sub-
mitting transactions to it. Submitted transactions are grouped into blocks,
which are broadcast across the network to be appended to the blockchain.
To be accepted, a transaction must be properly formed and signed by their
creator. No trust in individual clients or nodes is required, as the trans-
actions are cryptographically signed, validated, and broadcast to the entire
network. A consensus mechanism ensures tamper-proofness without assum-
ing mutual trust between participants. In public blockchains like Ethereum,
the full distribution of the transactions among untrusted nodes guarantees
that it is almost impossible to tamper with the system. Characteristics like
public verifiability, transparency, and integrity to prevent unauthorized mod-
ifications make these blockchains powerful in the presence of untrusted par-
ticipants. However, these networks have performance problems, as the trans-
action throughput is limited, and the latency is high as a result of the mining
process [9, 10].

A smart contract is a program deployed on the blockchain, which may
be invoked via a transaction [8]. In Ethereum, smart contracts are typi-
cally written in the Solidity language, which is compiled into bytecode and
executed on the Ethereum Virtual Machine. The computational and data
storage consumption of a transaction is measured in gas, which translates to
monetary costs for the transaction’s sender. Each block has a gas limit and
hence gas consumption directly impacts throughput. Contracts are deployed
through transactions, with a gas cost that is largely proportional to the byte-
code size. During deployment, a smart contract is assigned a unique address,
used by client applications to call its functions. Such execution is also done
by means of transactions, whose costs in gas depend on the complexity of
the operations performed. External actors must hold an Ethereum account
to deploy and interact with smart contracts. An account comprises a public
address, i.e., a sort of user ID, which doubles as public key, and a private key
to sign the transactions [11].

Existing blockchain-based process management tools support the spec-
ification of collaborative processes using BPMN [6, 12] or domain-specific
languages [13], and their execution via smart contracts. These systems focus
mainly on the control-flow perspective. Lorikeet [12, 14] and the tool pro-
posed in [15] implement static access control mechanisms, where roles are
bound to accounts upon process instantiation. A method proposed in [4]
allows dynamic handoffs of process instances between actors, but does not
support the specification and enforcement of permitted handoffs. Finally,
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the work presented in [16] proposes an interpreted execution of process mod-
els relying on dynamic data structures that allows updating the process at
runtime. However, the approach has no restriction about who performs the
updates.

2.2. Binding and Delegation Models for Collaborative Processes

A recent survey [17] found that only 30% of the Business Process Man-
agement Systems (BPMSs) analyzed support inter-organizational processes.
The authors highlight, as one of the main challenges, the lack of trust be-
tween participants. At the same time, collaborative processes need to satisfy
competing demands coming from the involved participants and hence need
to incorporate some execution flexibility [18]. This is particularly the case in
open and dynamic environments, where the actors may vary from one pro-
cess instance to another and may even change during the execution of one
process instance. Given these requirements, existing rule-based automated
resource allocation mechanisms [19, 20] are not suitable, as these mechanisms
assume that the rules for determining which resource will perform a given
task can be determined upfront, at design-time. Accordingly, in this paper,
we follow an alternative approach wherein the allocation of resources (actors
in our context) to roles is determined entirely at runtime, based on consensus
between actors. In other words, we adopt a dynamic role binding approach.

The idea of dynamic role binding has previously been considered in the
context of Web service composition. For example, in the Business Process
Execution Language (BPEL) [21], role binding is supported via partner links.
A partner link is a variable that holds a reference to a service endpoint. This
variable can be modified anytime during an execution of a process. This
approach assumes that the whole process is orchestrated by a single actor
and that this actor unilaterally decides which actor (i.e. endpoint) should
be bound to each role (i.e. partner link). This assumption is also made
in [22, 23]. A task-activity-based access control (TBAC) model, presented
in [24], combines activities and dynamic permissions related to tasks in a
business process. However, these approaches are not applicable in settings
where the binding of actors to roles is not determined by a single actor.

Other studies have considered the problem of dynamic role binding in
processes that are not orchestrated by a single actor. [25] extracts dynamic
authorization policies from service choreographies. These policies are en-
forced locally by each party, but a central authority specifies all role bind-
ings. BPEL4Chor [26] allows an actor to bind other actors to the roles it has
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control over. But each role is controlled by a single actor. In other words, col-
laborative role binding is not supported, e.g. this approach does not support
the scenario where both the buyer and seller must agree on the actor who
plays the role of carrier. Also, BPEL4Chor does not support role re-binding.
In [27, 28], dynamic role bindings in decentralized processes are captured
via delegations and revocations. This approach supports un-binding (revo-
cation) but does not support collaborative binding (each actor decides on the
roles it has control over).

In summary, none of the above studies has addressed the problem of
dynamic role binding and un-binding in decentralized and dynamic processes,
where multiple actors must collaboratively agree on each decision.

2.3. Flexibility and Dynamic Execution of Collaborative Processes

Flexibility is needed, for example, to support dynamic process adapta-
tions in case of exceptions, and its evolution over the time [29]. Runtime
adaptation is the ability to deviate execution of a specific process instance,
while evolution refers to permanent changes to the process, i.e., affecting all
the future instances. Other forms of flexibility point out variability as the
possibility to maintain different variants of the same business process, and
looseness when parts of the process model can be specified at runtime (also
known as built-in flexibility) [29, 30].

Many different solutions support flexibility in the domain of process-aware
information systems. Among those, [31] addresses the problem of runtime
adaptation under the assumption that unexpected situations can be charac-
terized by some known contextual elements. Others use planning strategies
for automating business process reconfiguration at runtime [32], or automate
the construction of exclusive choices considering multiple paths under a set of
specific variable conditions [33]. Klingemann [34] introduces flexible elements
into the workflow specification to fulfill goals restricted by a controlled set
of runtime conditions. The works [35, 36] exploit the notion of worklets, i.e.,
self-contained sub-processes aligned to process tasks, to support the process
evolution and adaptation at runtime. However, these solutions, like the oth-
ers we found in the literature, mostly focus on the automation and validation
of the flexibility, keeping aside the scenarios where trust is an issue, which
makes them unsuitable for many inter-organizational processes.

Partners in a collaborative setting may be suspicious about changes dur-
ing the process execution. Indeed, a partner may gain an unfair advantage
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by arbitrarily changing the model [2]. Hence, existing blockchain-based ap-
proaches commonly use immutability to enforce conformance with a fixed
implementation of the process, avoiding all kinds of flexibility during the
process execution [3]. However, inter-organizational processes unavoidably
involve tasks performed privately or requested by some party outside of the
blockchain, and thus subject to trust issues. The latter introduces the need
for using off-chain consensus among the participants of the collaboration,
e.g., to approve a process update. Then the execution of the process can
continue on-chain where the transactions are also enforced by consensus but
among computers in the blockchain network.

Unlike existing approaches, this paper introduces the concept of flexibil-
ity by consensus, such that untrusting participants can validate the updates
of the process at runtime. To that end, the role-binding and agreement
policies described in this paper exploit the concepts of late-binding [37] and
worklets [35] in order to prevent inconsistencies resulting from the process
updates. Specifically, we follow an approach of flexibility by underspeci-
fication [37], under the basis of looseness and adaptation, where the full
specification occurs at runtime and may vary with each instance [38].

3. Dynamic Role Binding

The starting point of the proposed approach is a (collaborative) business
process model where each task is associated with a role. For a given process
instance (herein called a case), each role may be assigned to at most one ac-
tor. An actor has an identity (e.g., a blockchain account) and may represent
a user, a group, an organization, a system or a device. As a running example,
Fig. 1 shows a BPMN model of an order-to-cash process. There are six roles
represented by numbers below each task label: (1) Customer, (2) Supplier,
(3) Carrier-Candidate, (4) Carrier, (5) Invoicer and (6) Invoicee. Initially,
a customer submits a purchase order (PO) to a supplier. If the PO is re-
jected the process terminates. Otherwise, the execution continues with the
Shipment sub-process, where a supplier requests quotes from multiple car-
rier candidates (cf. the multi-instance task). Once the shipment completes,
two parallel paths are taken to handle the payments. These payments are
encapsulated in sub-process Invoicing. This sub-process is called twice: for
the supplier’s invoice and for the carrier’s invoice.

The act of assigning an actor to a role within a case is called binding.
When a role is not assigned to an actor in a case, we say that the role is
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(a) Root process: Order-to-Cash
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Correct
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o

Yes

(c) Sub-process: Invoicing

Figure 1: Running example: (1a) An Order-to-cash process linked, via call activities, to
two reusable sub-processes; (1b) Shipment and (1c) Invoicing.

unbound. The binding of an actor to a role may happen anytime during a
case. Actors may also be unbound from a role – an operation called release.
A task is performed by the actor bound to the task’s role. If a task is enabled
when its associated role is unbound, the task waits until the role is bound.
Actors may nominate themselves or other actors to play a role in a case, or
they may request to release themselves or other actors from a role. Given the
lack of trust, the nomination/release of an actor to/from a role may require
the endorsement of actors playing other roles. If an actor is nominated to
a role in a case, this nomination only leads to a binding if the required
endorsements are granted. The binding policy of a process determines which
role(s) are allowed to nominate an actor to a role, to request an actor’s release
from a role, and to endorse a nomination/release request.

3.1. Binding Policy Specification Language

A policy consists of a set of roles and a set of statements restricting how
an actor may be nominated/released to/from a role. A statement is formed
by a nominator, a nominee, and optionally a binding and/or an endorsement
constraint. The nominator is a role that nominates/releases the actors of an-
other role, namely the nominee. A binding constraint is a boolean expression
stipulating that the nominee must be bound (or not) to an actor who is also
bound to some other role(s). Binding constraints allow us to implement com-
mon resource allocation patterns such as segregation of duties and binding

9



of duties [39]. An endorsement constraint is an expression that determines
which roles need to endorse a nomination/release request. A role may be
associated with the case-creator, implying that the role is bound upon case
creation and does not need a nomination or endorsement. A policy statement
applies by default to the root process, but it can be scoped to a sub-process
call activity. Fig. 2 shows an extract of the grammar of the policy language
in Backus Naur Form (BNF).2

〈statement〉 ::= [Under 〈subprocess〉 ‘,’ ] 〈role〉 〈binding expr〉 [ 〈endorse constraint〉 ] ‘;’
| 〈role〉 is ‘case-creator’ ‘;’

〈binding expr〉 ::= (‘nominates’ | ‘releases’) 〈role〉 [〈binding constraint〉]

〈binding constraint〉 ::= (‘in’ | ‘not in’) 〈set expr〉

〈endorse constraint〉 ::= ‘endorsed-by’ 〈set expr〉
| ‘with’ 〈vote ratio〉 ‘votes’ [‘by’ 〈role list〉]

〈set exp〉 ::= 〈role〉
| 〈role〉 (‘and’ | ‘or’) 〈set expr〉
| ‘(’ 〈set exp〉 ‘)’

〈vote ratio〉 ::= 〈floating number〉

〈role list〉 ::= 〈role〉
| 〈role〉 ‘,’ 〈role list〉

Figure 2: BNF grammar describing the basic statement syntax of a binding policy.

Listing 1 shows a policy for the model in Fig. 1. The policy states that
the case creator is automatically bound to the Customer role. The Customer
nominates the Supplier (no endorsement needed here). The Supplier, in
turn, nominates the Candidate (i.e., the carrier candidate) and the Carrier.
The Carrier must be among the actors bound to the Candidate role (cf.
binding constraint “Carrier in Candidate”). Note that Candidate is a role as-
sociated with a multi-instance task (Submit Quotes), implying that multiple
actors may be bound to this role. The Customer must endorse the nomina-
tion of the Carrier. Under the Carrier Invoicing call activity, the Invoicer

is nominated by the Carrier with an endorsement from the Supplier and
Customer, and reciprocally for the Invoicee. Meanwhile, under the Supplier

2Some details (e.g. path expressions to refer to nested subprocesses) are omitted for
space reasons and can be found at http://git.io/caterpillar.
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{
Customer i s case−c r e a t o r ;
Customer nominates Supp l i e r ;
Under Shipment , Supp l i e r nominates Candidate ;
Under Shipment , Supp l i e r nominates Car r i e r in Candidate endorsed−by

Customer ;
Under Carr i e r Invo i c ing , Car r i e r nominates I nvo i c e r endorsed−by Supp l i e r

and Customer ;
Under Carr i e r Invo i c ing , Customer nominates I nvo i c e e endorsed−by Car r i e r ;
Under Supp l i e r Invo i c ing , Supp l i e r nominates I nvo i c e r endorsed−by Customer ;
Under Supp l i e r Invo i c ing , Supp l i e r nominates I nvo i c e e endorsed−by Customer ;
}

Listing 1: Binding Policy to control the execution of the processes modeled in Fig. 1.

Invoicing activity, the Supplier nominates the Invoicer with Customer en-
dorsement, and reciprocally for the Invoicee.

This example illustrates the possibilities offered by the policy language
to deal with lack of trust. For example, dishonest suppliers could try to
derive benefits by not selecting the best carrier candidate but their preferred
one. However, the customer would be able to reject such nominations. Also,
the policy prevents the supplier from selecting a carrier that has not been a
carrier candidate before.

The policy language also allows us to state that the set of actors who
endorse a nomination request must fulfil a boolean expression. For instance,
the above policy requires that both the buyer and the supplier must endorse
the Invoicer of the carrier services. This scenario is relevant in the context
of international trade, where both buyers and suppliers need to ensure that
they do not deal with black-listed entities or entities in countries banned from
trading. The boolean expressions in the endorsement constraint may contain
arbitrary combinations of conjunctions and disjunctions. They may not,
however, contain negation; e.g., it is not possible to state that the nomination
is approved if a given actor refuses to endorse it. Such scenarios are not
applicable in this setting.

Endorsement constraints can be specified as a ratio expression, which
defines the percentage of votes needed for the statement to be accepted, and
which roles can vote. The voting ratio (see grammar) is a float number
between 0 and 1, i.e., from no votes needed to everyone must accept. The
percentage is calculated based on the set of voters included in the statement.
If no set of voters is specified, all participants assigned to a role are voters.
Ratio expressions are less restrictive than boolean expressions as they rely
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Nominate(endorsement-required)

Vote(satisfiable-endorsement)Vote(unsatisfied-endorsement)

Vote(satisfied-endorsement)
Release(no-endorsement-required)

Vote(satisfied-endorsement)

Release(endorsement-required)

Vote(unsatisfied-endorsement)

Nominate(no-endorsement-required)

Vote(satisfiable-endorsement)

Text

Text

Figure 3: Lifecycle of a role within a case.

on the amount instead of who is casting the votes. We refer the readers to
Section 4 to see an example using ration expressions.

3.2. Runtime Role-Binding Operations

The role binding model relies on three operations. The nominate oper-
ation allows an actor to request that another actor (or itself) be bound to
a role within a process instance (herein called a case). Inversely, a release

operation allows an actor to request that another actor (or itself) be un-
bound from a role. The vote operation allows an actor to accept/reject a
nomination or release request.

These operations trigger transitions in the role lifecycle depicted in Fig. 3.
Within a case, a role is initially unbound. After a nominate operation, the
role changes to nominated if it requires to be endorsed, otherwise is con-
sidered bound. A role in nominated state, can transition to the bound
state after a vote operation where the endorser accepts the nomination if,
as a result of it, the endorsement constraint of this role is satisfied. On the
contrary, a vote operation where the endorser rejects the nomination and
by doing so makes the role’s endorsement constraint unsatisfiable, triggers
a transition to the unbound state. If after a vote operation, the endorse-
ment constraint remains satisfiable, then the role remains in the nominated
state. Symmetrically, a role can transit from bound to unbound as a re-
sult of a release operation, via a releasing state, which is specular to
the nominated state. If the endorsement constraint associated to a release
request becomes unsatisfiable, the role goes back to the bound state, and if
it becomes satisfied, the role moves to the unbound state.

Every binding of an actor to a role is made within a certain case scope,
which is defined by a pair (role, p-case, where p-case is the identifier of an
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instance of the root process, a sub-process, or an activity.
At any given point in time, a role can be bound to at most one actor

within a case scope. Binding an actor to a role within a child sub-process
(i.e., a child case scope) hides nominations made for this role within any
ancestor of the sub-process. For example, consider in Fig. 1 that p-case[O2C]
is an instance of the root process order to cash, and that the execution
flow has reached the point in which one instance p-case[GS] of the sub-
process Goods Shipment has already been created. Binding an actor A1

to the case scope (Supplier, p-case[O2C]), implies that A1 can perform the
tasks Validate PO and Request Quotes in p-case[O2C] and p-case[GS]
respectively. However, binding a new actor A2 in the case scope (Supplier,
p-case[GS]) allows A2 to perform Request Quotes, and restricting A1 to
perform only Validate PO. Importantly, case scopes are defined with respect
to identifiers of process, sub-process, or task instances. In the context of a
multi-instance sub-process or a multi-instance task, each instance of this sub-
process or task defines a new case scope for each role. Within each of these
instances, an actor may be bound to a role, and the actor bound to a given
role R may differ from one instance to another.

Note that the ability to bind an actor to a role within a given case scope
may be restricted by a binding policy. In this respect, the keyword Under in
the binding policy specification language allows one to restrict how an actor
may be bound to a role within a given sub-process of the process hierarchy.
Case scopes apply to the execution of tasks. In the case of binding and
endorsement constraints, all the actors bound to a role across the whole
process hierarchy are eligible, no matter in which case scope they were bound.

Binding an actor into a role follows the rules in Definition 1. Subsequently,
Definition 2 describes how to assert if an actor can perform a task.

Definition 1 (Runtime Rules). Consider the actors nominator, nominee
and endorser, who can respectively play the roles r-nominator, r-nominee
and r-endorser in a process instance p-case.

1. nominator can nominate nominee in p-case iff 3:

(a) An actor is Bound as case-creator in the hierarchy containing
p-case,

3if an only if
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(b) the state of r-nominee in p-case is Unbound,

(c) the policy asserts that r-nominator nominates r-nominee, and
nominator is Bound as r-nominator in some case scope in the
hierarchy containing p-case.4 Besides, if a binding constraint is
defined in the statement, it must be fulfilled based on the roles held
by nominee at the moment of nominating.

(d) The nomination of the case-creator is independent of the previ-
ous rules, but p-case must be root in the process hierarchy. Be-
sides, no actor could be bound to any case scope in hierarchy con-
taining p-case before. The nomination of a case creator requires
no endorsement and cannot be released. Accordingly, the state is
updated to Bound after the operation.

2. nominator can release nominee in p-case iff:

(a) nominee is Bound as r-nominee in p-case.

(b) nominator is Bound as r-nominator in some case scope in the
hierarchy containing p-case.

(c) The policy asserts that r-nominator releases r-nominee. Be-
sides, if a binding constraint is defined in the statement, it must
be fulfilled given the roles held by nominee at the moment of re-
leasing.

3. endorser can vote for a nomination/release of nominee in p-case iff:

(a) nominee is Nominated as r-nominee in p-case for voting about
a nomination, or Releasing for voting about a release operation.

(b) endorser is Bound as r-endorser in some case scope in the
hierarchy containing p-case.

(c) endorser can vote to accept or reject once. Besides, r-endorser
is included in an endorsement constraint of the statement of the
operation.

4Case scopes are defined to restrict the execution of tasks. Thus, checking that
nominator is Bound as r-nominator should consider not only the ancestors of p-case
but the full hierarchy. The same logic applies to the endorsers.
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Definition 2 (Access Control to Perform Tasks). A task T enabled in
a process instance p-case can be performed by an actor A iff:

1. One role, namely R, is related to T in the process model.

2. Then, say S is the closest case scope from p-case to any ancestor in
the process hierarchy, such that R is Bound. It must hold that S exists,
and A is the actor appointed in S.

4. Control-Flow Flexibility and Agreement Policies

Role-binding policies offer a dynamic schema on the resource perspective
but do not address how to manage updates on the control-flow perspective at
runtime. Accordingly, the actors who are bound to a role must collectively
decide how to proceed, which leads to an extension of the role-binding schema
with agreement policies.

We propose agreement policies that define, in a certain scope, which ac-
tors can participate, and reach consensus to update the control-flow perspec-
tive at runtime. For example, consider that, during the execution of a case
of the process modelled in Fig. 1, one candidate made a mistake when sub-
mitting the quotes. Accordingly, the supplier would like to allow him to
fix it before making the final decision. However, no task exists to that end
in the control-flow, and allowing to roll back the process state could intro-
duce inconsistencies. Late-binding of a non-interrupting event sub-process
(see Fig. 4), running in parallel with the current process case [40], allows the
supplier to decide, for the current instance, which tasks are required to fix
the issue before proceeding with the execution. A first approach to allow the
late-binding can require that all the participants agree on it. However, such
action in the example mainly involves the supplier and the candidates,
so it will introduce some extra and unnecessary responsibilities to the other
participants. Instead, an agreement policy can include a statement granting
that in the subprocess Shipment, a candidate can link a sub-process if the
supplier agrees.

4.1. Agreement Policies on Control Flow

An agreement consists of a set of statements restricting how an actor,
bound to a role in a given process instance, can act to update control-flow
elements, e.g., sub-processes, tasks, gateways, on the corresponding process
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Verify Goods?
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Goods

Figure 4: A more flexible variant of the sub-process Goods Shipment displayed in Fig. 1.

model at runtime. A statement is formed by a requester, an action con-
straint, and optionally an endorsement constraint. The requester is a role
that requests an action to perform on a control-flow element at runtime rep-
resented by an action constraint. Endorsement constraints work like in the
role-binding policies and determine which roles can endorse the request. Be-
sides, a policy statement applies by default to the root process, but it can be
scoped to sub-processes or call activities. Fig. 5 illustrates an extract of the
grammar of the policy language in Backus Naur Form (BNF).5

〈statement〉 ::= [Under 〈subprocess〉 ‘,’ ] 〈role〉 ’can’ 〈action constraint〉
〈endorsement constraint〉 ;

〈action constraint〉 ::= 〈action〉 ‘on’ 〈control-flow element〉

〈action〉 ::= (‘link-process’ | ‘link-role’ | ‘choose-path’)

Figure 5: BNF grammar describing the basic statement syntax of an agreement policy.

The agreement policies provide controlled flexibility relying on three ac-
tions. The first two actions supported are the late-binding of sub-processes
and roles via the actions link-process performed on call-activities and col-
lapsed sub-processes, and link-role targeting user and service tasks. Be-
sides, we use dynamic gateways (i.e., complex gateways in BPMN) to allow
actors deciding on which outgoing flow arcs to move during the process ex-
ecution via the action choose-path. Accordingly, the activation conditions
in the dynamic gateways are driven by agreement policies that rely on user
decisions instead of internal conditions that verify the process data.

5Some details (e.g., path expressions to refer to nested subprocesses) are omitted for
space reasons and can be found at http://git.io/caterpillar.
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The rationale for selecting the three flexibility mechanisms proposed in
this paper is the following:

• link-process exploits concepts extensively addressed in the literature
on flexibility in workflow systems, such as worklets [35, 41], pockets of
flexibility [38, 42], late binding and late modelling [43, 44, 45]. In these
approaches, participants can define or reuse parts of the process at
runtime. In the blockchain setting, every sub-process, or process frag-
ment, is mapped into a smart contract derived from a process model.
Then, the agreement policies offer the set of rules for the participants
to decide by consensus which smart contract to bind at runtime.

• link-role naturally enhances role-binding policies. This operation
removes the need for tagging every task of the process model with a
role at design time. Instead, the process participants can dynamically
decide by consensus not only which actors can play a role but also the
association of roles to tasks at runtime.

• choose-path complements the decision rules on the gateways. Tra-
ditional approaches use decision rules based on case data to choose
among the outgoing flow arcs. However, in collaborative processes, the
data required to make a collective decision is not always accessible, as
parties do not wish to disclose the data to each other, and they often
have conflicting interests. Thus, oftentimes, the decisions on how to
proceed must collectively be agreed by the participants, rather than
being taken based on data available to all parties.

The proposed approach could be extended with other flexibility mecha-
nisms, such as adding, skipping or removing elements in the process model.
We note, however, that these latter flexibility mechanisms may lead to dead-
locks. Checking for the possibility of deadlocks on-chain may be prohibitively
expensive in terms of computation. In this paper, we focus on the above three
flexibility mechanisms, which do not introduce deadlocks and therefore do
not require additional verification techniques to be put into place.

Listing 2 illustrates an agreement policy extending the role-binding policy
in Listing 1, and related to the models in Figs. 1 and 4. The first statement
describes how the supplier can perform a late-binding of the call activity
Shipment in the root process Order To cash if all the bound roles agree
on it. Here, supplier could decide, for example, between the sub-process in
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{
Supp l i e r can l i nk−proce s s on Goods shipment with 1 .0 votes ;
Under Shipment , Candidate can l i nk−proce s s on Error Handler endorsed by

Supp l i e r ;
Under Shipment , Customer can choose−path on Verify Goods with 0 .5 votes by

Supp l i e r , Car r i e r ;
Under Shipment , Customer can l i nk−r o l e on Fix Goods with 0 .5 votes by

Supp l i e r , Car r i e r ;
}

Listing 2: Agreement Policy to support the execution of the processes modeled in Figs. 1
and 4.

Fig. 1b, or the one in Fig. 4 which offers a more flexible execution. Besides,
if we assume that only the customer should be bound at the moment of
linking the sub-process, only his/her vote is required. The second statement
is scoped to the subprocess Shipment to allow a candidate to link the event
sub-process Error Handler if the supplier agrees. This statement is
aligned with the example we presented above if a candidate makes a mistake
when submitting the quotes. From the BPMN standard, non-interrupting
event sub-processes are enabled and can run in parallel to the (sub-)process
where they are enclosed. Thus, late-binding of event sub-processes can be
exploited to handle exceptions at runtime, e.g., for the candidate to fix
the wrong quotes. The last two statements, scoped to the Shipment sub-
process in Fig. 4, allows the verification of the goods and solving possible
issues after the delivery in the off-chain world. Specifically, the dynamic
gateway allows the customer to decide how to proceed after the delivery
based on the quality of the goods received. Note that the responsibility for
an eventual problem may be at the supplier or at the carrier. Thus, one
of them must accept/respond to the decision of the customer. Besides, the
late-binding of a role to the task Fix Goods allows appointing at runtime
the party responsible for the problem to solve it.

4.2. Runtime Agreement Operations

The agreement policies rely on three operations. The request operation
allows an actor to ask for an action to enforce a process case. A request
includes the action, the target smart contract instance, i.e., the process
case, and the metadata of the element to update. For example, to link a
sub-process in a process case, as described by [6], the request must include
the action link-process, the blockchain address of the process case, and
the information required to update the element, e.g., a factory contract to

18



Figure 6: Lifecycle of an action to be performed at runtime.

instantiate the sub-process and the hash identifying the compilation artifacts
of the subprocess to link. The vote operation allows an actor to accept/reject
a request. Finally, the execute operation enforces an (accepted) action as
described in the request. Note that these runtime operations affect only the
process case where they are triggered.

These change operations trigger transitions in the action lifecycle de-
picted in Fig. 6. Within a case, an action is initially ungranted. After
a request operation, the state changes to requested if it requires to be
accepted by agreement, otherwise is considered granted. An action in re-
quested state can transit to the granted state after a positive vote if,
as a result of the vote, the agreement policy is satisfied. On the contrary,
a negative vote might make the agreement policy unsatisfiable, and if so
triggers a transition to the ungranted state. Finally, if after a vote opera-
tion the agreement policy remains satisfiable, then the action remains in the
requested state. An action in granted state can be performed only once
in the lifecycle. Thus, the execute operation moves the action state from
granted to ungranted, i.e., re-executing the action in the future starts a
new iteration of the lifecycle.

5. Policy Consistency Verification

Binding policies have the potential to be inconsistent with a process
model, and the majority of this section is focused on such interdependen-
cies. At the end of the section, we discuss the consistency of role-binding
policies, agreement policies, and process models.

Nomination and release statements in a role-binding policy implicitly
induce precedence dependencies in the binding of roles. A statement R1

nominates R2 endorsed-by R3 implies that for R2 to be bound, R1 and

19



R3 must be bound before. Circular and unresolvable dependencies induced
in this way may lead to deadlocks. Accordingly, we define a notion of pol-
icy consistency as follows. A policy is consistent if, starting from the state
where only the roles associated with case-creator are Bound and after exe-
cuting any allowed sequence of nomination, release and endorse operations,
we always reach a state where all roles will reach the Bound state via some
(other) sequence of nomination, release and endorse operations.

To verify policy consistency, we define a mapping from a policy to a Petri
net [46], herein called a nomination net. Given the nomination net of a
policy, we map the problem of checking policy consistency to a problem of
reachability analysis over Petri nets. Algorithm 1 maps a policy to a nomi-
nation net. For the sake of conciseness, this algorithm focuses on nomination
statements, leaving aside release statements. The mapping of release state-
ments follows a similar structure. For the same reason, the algorithm leaves
aside binding constraints.

To illustrate the algorithm, we consider the binding policy in Fig. 7. The
algorithm takes as input a symbolic representation of a policy consisting of a
set of roles and a set of tuples of the form (nominator, nominee, endorsement-
constraint), with ⊥ denoting an empty constraint. For example, the symbolic
representation of the policy in Fig. 7 is given in Fig. 8. Given this input, the
algorithm will produce as output the nomination net in Fig. 9.

The algorithm proceeds as follows. After initializing variable RNets in
line 2, the algorithm builds a Petri net for each node in lines 3-4 (Step 1).
Let us consider that we are building the Petri net for role A, which is shown
in color blue in Fig. 9. In line 4, the algorithm creates such a Petri net with
three places, namely uA, nA and bA, which represent the states of the role’s
lifecycle UNBOUND, NOMINATED and BOUND, respectively. Similarly,
two transitions are added to the Petri net, namely nmA and enA, representing
the operations ’nominate’ and ’endorse’. Finally, four arcs added to complete
the Petri net, by connecting the places and transitions. The Petri nets for all
the other nodes are created in a similar way. Every Petri net thus created is
added to RNets that serves as a map that associates a role to its corresponding
Petri net.

In lines 5-9 (Step 2), all the role (Petri) nets are merged to form the initial
nomination net, which is held in variable NNet. This is done by taking the
union of the elements in the role nets. Also, the initial marking is set to the
empty set.

In lines 11-14 (Step 3), the algorithm adds double-headed arcs to the
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Algorithm 1 Construction of the Nomination Net for a given Binding Policy
1: function ConstructNominationNet(R, BP)
2: RNets ← ∅

. Step 1: Build a Petri net for each role
3: for each role r ∈ R do

4: RNets ← RNets
⋃

r 7→
〈 {ur, nr, br} . Pr

{nmr, enr} . Tr

{(ur, nmr), (nmr, nr), (nr, enr), (enr, br)} . Fr

〉
. Step 2: Merge all role nets to form the nomination net

5: let NNet = 〈P, T, F,M0〉 in
6: P ←

⋃
r∈R P(RNets[r])

7: T ←
⋃

r∈R T (RNets[r])
8: F ←

⋃
r∈R F(RNets[r])

9: M0 ← ∅
10:

. Step 3: Wire up operation nominate
11: for each 〈rnr, rne, 〉 ∈ BP do
12: select bnr ∈ P(RNets[nr])
13: select nmrne ∈ T (RNets[ne])
14: F(NNet)← F(NNet) ∪ {(brnr , nmrne ), (nmrne , brnr )}

. Step 4: Wire up operation endorse
15: for each 〈rnr, rne, eex〉 ∈ BP such that eex 6= ⊥ do
16: P(NNet)← P(NNet) ∪ {disjrne , eexrne}
17: F(NNet)← F(NNet) ∪ {(nmrne , disjrne ), (eexrne , enrne )}
18: for each conj ∈ eex do
19: T (NNet)← T (NNet) ∪ {eexconj}

20: F(NNet)← F(NNet)
⋃

r∈conj∧br∈P(RNets[r])

{
(br, eexconj), (eexconj , br),
(disjrne , eexconj)

}
. Step 5: Update NNet’s initial marking

21: let rcc ∈ R: rcc be case creator in
22: Ps ← {ur | r ∈ R \ {rcc} ∧ ur ∈ P(NNet[r])} ∪ {brcc | brcc ∈ P(NNet[rcc])}

23: M0(NNet)(p) =

{
1 if p ∈ Ps
0 Otherwise

24:
25: return NNet

Petri net to synchronize the transition that represents the nomination of
roles. To illustrate the idea of nomination, consider the double-headed arc
connecting the place bA and the transition nmB in Fig. 9, highlighted in
red. Simply put, role A will be able to nominate role B when role B is
UNBOUND and role A is BOUND (bA must hold a token). The firing of
transition nmB, that is ”nominate B”, will change the state of role B from
UNBOUND to NOMINATED. The double-headed arc will keep a token in
bA after the nomination of role B.

The encoding of endorsement conditions is handled in lines 15-20 (Step
4). Without loss of generality, we assume that the endorsement conditions
are expressed in disjunctive normal form, meaning that there is only one
disjunction that relates several conjunctions. Besides, ratio expressions are
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{ A is case-creator;

A nominates B;

A nominates C;

C nominates D, endorsed-by A and B;

}

Figure 7: Sample binding policy

R = {A,B,C,D}
BP = {〈A,B,⊥〉 , 〈A,C,⊥〉 , 〈C,D,A ∧B〉}

Figure 8: Symbolic representation of the
binding policy in Fig. 7

nmA enA

nmB enB

nmC enC

nmD enD

uA

uB

uC

uD

nC

nD bD

bC

bA

bBnB

nA

eexA^B

disjD

eexD

Figure 9: Nomination net for binding policy in Fig. 7

bB

eexA^B

disjE

eexE

eexB^C

bCbA

Figure 10: Net encoding condition (A ∧B) ∨ (B ∧ C)

considered as a single conjunction set. We consider two additional cases:
(1) no endorsement condition is specified (represented by ⊥), meaning that
no endorsement is required, and (2) only one conjunction is specified. To
illustrate this step of the construction of the nomination net, consider the
binding policy:

D nominates E, endorsed-by (A and B) or (B and C);

The Petri net in Fig. 10 encodes the endorsement condition in the above
policy: (A ∧B) ∨ (B ∧ C). The latter is bound to variable eex in line 15.

In line 16, the algorithm adds two new places: disjE which encodes the
disjunction, and eexE, which collects the outcome of the endorsement (i.e.
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{

J is case-creator;

J nominates K, endorsed-by L;

J nominates L, endorsed-by K;

}
nmJ enJ

nmK enK

nmL enL

uJ

uK

uL nL bL

bJ

bK

nK

nJ

disjL

eexK

eexL

eexL

disjK eexK

Figure 11: Binding policy with circular dependency and its nomination net

it holds a token when one of the endorsement conditions is met). In line
17, these are connected to the transitions of the role: from the nomination
nmE to disjE, and from the outcome eexE to the endorsement enE (not
shown in Fig. 10). Then, in line 18, the algorithm iterates over each one of
the conjunctions. In line 19, a new transition, representing the underlying
conjunction is added to the net, and the corresponding arc in line 20. For
instance, the net in Fig. 10 has transition eexA∧B representing conjunction
A ∧ B, and eexB∧C representing B ∧ C. Only eexA∧B or eexB∧C will be
able to consume the token held by disjE, which prevents the generation of
an arbitrary number of tokens in NNet. disjE receives a token when nmE

fires, i.e., when D nominates E. The disjunction expressed in this way means
that role E can be endorsed if at least one of the conjunctions holds true,
which corresponds to the firing of one of the transitions eexA∧B and eexB∧C .
Returning to the example in Figures 7-9, we observe that role D is endorsed
if and only if both roles A and B are BOUND. The subnet implementing the
endorsement condition is shown in green in Fig. 9.

Finally, lines 21-23 set the initial marking for the nomination net. Briefly,
line 21 will add a token to the place representing the state UNBOUND of
every single role, except for the “case creator”. In the latter case, we add a
token to the place representing the state BOUND.

To verify policy consistency, we use reachability analysis to check if the
marking where all roles are bound is always reachable starting from the
initial marking where only the roles associated to case-creator are bound.
In other words, there is no deadlock preventing a role from being bound.
Fig. 11 shows a binding policy with a circular dependency, leading to a
deadlock in the corresponding nomination net. Fig. 11 shows the marking
where the deadlock occurs. Both roles K and L have been nominated by role
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J . Hence, disjK has a token, but transition eexL cannot fire until bL has also
a token. In order for bL to have a token, however, transition eexK needs to
fire because it requires bK to have a token.

In the discussion above, we focused on the verification of the consistency
of role binding policies, which as we saw above, may contain circular depen-
dencies that lead to deadlocks. Below, we argue that the proposed control-
flow flexibility mechanisms and agreement policies are designed in such a way
that they do not lead to deadlocks.

Each statement in an agreement policy is composed of a requester, an
action constraint, and endorsement constraint. An agreement policy is con-
sistent if each statement fulfils the following criteria:

• Requester: If the role of the requester is defined within a consistent
role-binding policy, then it will always be possible to reach a state where
an actor is bound to this role. Once this happens, this actor may act
as the requester.

• Action constraint: An action constraint on link-process relates a
call-activity to an instance of a smart contract implementing a sub-
process. Assuming that the BPMN process model is semantically cor-
rect, there will be at least one execution path leading to the enablement
of the call-activity. If every role associated to a task in the sub-process
is defined within a consistent role-binding policy, these roles will even-
tually be bound to actors, and the sub-process will have bindings for all
roles required to be executed. Similarly, a dynamic gateway is consis-
tent if the roles involved in the evaluation of its associated conditions
are part of a consistent role binding policy.

• Endorsement constraint: An endorsement constraint is consistent if
every role it involves is defined within a consistent role binding policy.
If this is the case, the corresponding roles will eventually be bound to
actors and these actors will be able to provide their endorsement.

Summarizing, so long as the roles that need to participate in a control-
flow decision have been bound to corresponding actors, it is always possible
for these actors to reach agreement on which sub-process to execute or which
branch of a dynamic gateway to choose. Hence, if the role-binding policy is
consistent, and the control-flow agreement policy only refers to roles defined
in the role binding policy, then the control-flow agreement policy is consistent
as well.
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6. Implementation and Evaluation

To demonstrate the proposal’s feasibility, we developed a compiler that
takes as input a policy specification (i.e., role-binding or agreement) and
produces Solidity smart contracts to enforce the policy. This policy compiler
is designed to be used in conjunction with the Caterpillar BPMN-to-
Solidity compiler [6]. The smart contracts generated by the policy compiler
manage the association between roles, actors (represented as blockchain ac-
counts) and the requests of late-binding and dynamic gateways at runtime,
while the smart contracts generated by the BPMN-to-Solidity compiler en-
force the control-flow constraints in the process model. When a task is en-
abled, the worklist handler smart contract of Caterpillar checks if the
corresponding role is bound to an actor within the current case, and ensures
that only this actor can execute the task. The prototype allows, via REST
interactions, the validation of binding policies that are compiled later into
smart contracts. Besides, it supports to perform the runtime operations, i.e.,
nomination, release, request and vote, as well as executing process models
restricted by our access control approach, and with the added flexibility of
the agreement policies. The source code of Caterpillar, including the
binding policy compiler and the examples used in this paper, are available
at http://git.io/caterpillar. Below we discuss the generation of smart
contracts and evaluate the costs generated by these contracts.

6.1. Compiling Role-Binding Policies into Smart Contracts

From a process model and a policy specification, the compiler generates a
smart contract (named BindingPolicy) to encode the role-binding policy
and one smart contract (TaskRoleMap) encoding the task-role relations in
the process model. The BindingPolicy contract encodes the logic of who
can nominate and release each role as well as the binding and endorsement
constraints. A third contract (BindingAccessControl) implements the
runtime operations sketched in Section 3. BindingPolicy, TaskRoleMap
and BindingAccessControl are singleton contracts – only one instance
of each of them is created since these contracts only maintain schema-level
data. The BindingAccessControl contract maintains the state of each
role in each process case, as per the life-cycle in Fig. 3. When a nomination,
release, or vote operation is invoked, the BindingAccessControl contract
invokes the BindingPolicy contract. The latter checks if this operation is
allowed in the current state and computes the new state.
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<<interface>>
 BindingPolicy 

+ isCaseCreator () : bool
+ canNominate (rNominator, rNominee) : bool
+ assertNConstraint (rNominator, rNominee, nomineeRoles) : bool
+ assertNVote (rNominator, rNominee, rEndorser, endorsedBy, rejectedBy, isAccepted :bool) : uint
+ canRelease (rNominator, rNominee) : bool
+ assertRConstraint (rNominator, rNominee, nomineeRoles) : bool
+ assertRVote (rNominator, rNominee, rEndorser, endorsedBy, rejectedBy, nAgree, nDisagree, isAccepted :bool) : uint

<<interface>>
 TaskRoleMap 

+ getRoleFromTask (processIndex, taskIndex, ) :uint 

BindingPolicy

TaskRoleMap

 BindingAccessControl 

 - roleBindingState 

+ nominateCaseCreator (rNominee, nominee :address, pCase :address)
+ nominate (rNominator, rNominee, nominator :address, nominee :address, pCase :address)
+ voteN (rNominator, rNominee, rEndorser, endorser :address, pCase :address, isAccepted :bool)
+ release (rNominator, rNominee, nominator :address, nominee :address, pCase :address)
+ voteR (rNominator, rNominee, rEndorser, endorser :address, pCase :address, isAccepted :bool)
+ canPerform (actor :address, pCase :address, processIndex, taskIndex) : bool
+ findState(rActor, pCase : address) : uint
+ findRole(rActor, actor : address, pCase : address) : bool
+ linkRoleToTask(role, task, pCase : address)

Figure 12: Class diagram of the smart contracts derived from the role-binding policies.

The class diagram in Fig. 12 captures the functionality of the generated
smart contracts. Input parameters with no type specification are by default
uint. As stated above, contract BindingAccessControl implements the
runtime operations for nomination, release and voting. Since this contract
does not encode anything about a particular policy, it is not generated by
the policy compiler. However, instead, it is hard-coded and deployed once
on the target Ethereum blockchain. This contract maintains the state of
the role bindings for a given case in a variable called roleBindingState.
Given that the cost of a smart contract depends on the amount of data it
maintains, we encode the roleBindingState using bitmaps. Similarly,
the endorsement constraints are represented as bit arrays. Specifically, we
first put these constraints in disjunctive normal form, e.g., (A and B and

...) or (D and ...). Then we implement each conjunction set as a bit
array, and encode it as a 256-bits unsigned integer – the default word size in
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Ethereum.6 Besides, the contract BindingAccessControl provides the
functions findState, findRole and linkTaskToRole to query the state of
a role, to check if a given actor is bound to a role and to link a role to a task
(via an agreement policy), respectively.

Contract TaskRoleMap is generated from the process model. This
contract is straightforward (it maps tasks to roles), so we do not discuss it
further. The role-binding policy specification is compiled into the Binding-
Policy contract. These contracts, BindingPolicy and TaskRoleMap,
were compiled statically, i.e., they do not store any dynamic information on
the blockchain storage, what makes the policies immutable (once deployed),
and avoids high costs derived from accessing the storage during the pro-
cess execution. Below we discuss how the role-binding functions are gener-
ated (functions canNominate, assertNConstraint and assertNVote). The
generation of the release functions (canRelease, assertRConstraint and
asserRVote) is done in a similar way.

To generate function canNominate, for each distinct nominator in the
policy a conditional and bit array, namely nMask, is created with one bit per
role such that the presence of a nominee is represented with a one and the
absence with a zero. For example, a nominator with index 3 and nMask = 6

is translated into:

function canNominate(uint rNominator , uint rNominee) returns(bool) {

...

if (rNominator == 3)

return 6 & (1 << rNominee) != 0;

...

}

Function assertNConstraint verifies if the roles held by a nominee do
not contradict the binding constraint. Thus, a conditional instruction is
added per nomination statement that includes a binding constraint. A
statement is identified by the union of nominator and nominee, i.e., (1 <<

rNominator) | (1 << rNominee). Variable nomineeRoles is the bit array
encoding the nominee’s current roles. A constraint of the form (A and B)

or (C) or ... is satisfied if at least one conjunction set is fully included in
nomineeRoles. The latter is encoded as follows:

6Note that implementing the bitsets as 256-bits integer is not a limitation, because if
the number of roles/elements is greater than 256, we can use a list of integers instead.
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if ((1 << rNominator) | (1 << rNominee))

return nomineeRoles & ((1 << A) | (1 << B)) == ((1 << A) | (1 << B))

|| nomineeRoles & (1 << C) == (1 << C) || ...;

Function assertNVote checks if an endorser can vote for a nomination
and determines the state after this vote. In endorsement constraints writ-
ten as boolean expressions, given the input parameters endorsedBy and
rejectedBy, which are bit arrays encoding the roles that already accepted
and rejected the nomination, this function determines the resulting state as
follows:

1. Bound if all the roles in at least a conjunction set, namely CS, endorsed
the nomination, i.e., (endorsedBy | endorserRole) & CS == CS,

2. Unbound if in each conjunction set contains at least one role rejected
the nomination, i.e., for each CS, (rejectedBy | endorserRole) &

CS != 0,

3. Nominated if none of the conditions 1. and 2. are fulfilled yet, i.e.,
there is at least a conjunction set with no rejections and with roles
pending to vote.

In endorsement constraints written as a ratio expression, given the input
parameters nAgree and nDisagree, which counts the number of roles that
accepted or rejected the request, the function determines the resulting states
as follows:

if(isAccepted && nAgree + 1 >= vRequired)

return BOUND;

else if(! isAccepted && rTotal + rAgreed - nDisagree - 1 < vRequired)

return UNBOUND;

return NOMINATED;

Where rTotal and vRequired are compiled from the agreement policy,
and represent the total of roles allowed to vote and the number of votes
required to accept the request.

6.2. Compiling Agreement Policies into Smart Contracts

The class diagram in Fig. 13 captures the functionality of the smart con-
tracts generated from agreement policies. Input parameters with no type
specification are by default uint. Contract DynamicProcessManager
implements the runtime operations for request and voting as described in
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<<interface>>
AreementPolicy

+ canRequest(rRequester, action, element) :  uint
+ requirePEndorsement(reqId) :  bool
+ assertPEndorsement(reqId, rEndorser, endorsedBy, rejectedBy, nAgree, nDisagree, isAccepted : bool) : uint

AgreementPolicy

DynamicProcessManager

-requestState

+ findState(requester : address, action, element, pCase : address) : uint
+ requestAction(rRequester, action, element, pCase : address, pData : bytes32, pFactory : address)
+ requestAction(rRequester, action, element, pCase : address, dataInteger)
+ voteRequest(rRequester, action, element, pCase : address, requester : address, isAccepted : bool)
+ executeRequest(requester: address, action, element, pCase : address)

BindingAccessControl RuntimeRegistry

Figure 13: Class diagram of the smart contracts derived from the agreement policies.

Section 4. This contract maps the state of the requests for each process case
in a variable called requestState. Here, we follow the same principles as
in the BindingAccessControl, thus the DynamicProcessManager
contract is hard-coded, deployed once to the blockchain and, when possible,
the data is compressed into bitsets.

The overloaded functions requestAction in the DynamicProcess-
Manager support the different types of data to be updated at runtime,
i.e., hashes and addresses of a process to link, and integer indexes related
to roles and dynamic gateways. These functions interact with the Bindin-
gAccessControl contract to retrieve the roles of the actor starting the
requests, whose rights are verified later. Once in the state granted, a
request must be explicitly executed by the actor that started it, via the func-
tion executeRequest, which enforces the action using the data provided in
the request, and changes the request state to ungranted (implementing
the once-only execution constraint). We avoid the automatic execution of
granted requests because, in that case, the actor who voted the last would
have to pay the fees incurred by this execution, which should be covered
by the requester instead. The function executeRequest requires an inter-
action with other components/contracts, i.e., BindingAccessControl or
RuntimeRegistry [6], to update the control-flow accordingly. The remain-
ing functions findState and voteRequest follow the same logic as in the
BindingAccessControl contract, but concerning the request states.

The agreement policy specification is compiled into the Agreement-
Policy contract. Below we discuss how the compiler generates the function
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canRequest. Generating the function assertPEndorsement is similar to the
function assertNEndorsement in the BindingPolicy contract.

Function canRequest consists of nested conditional (if/else-if) blocks.
The outermost conditional blocks check which action is being triggered
(link-process, link-role or choose-path). The second-level blocks check
which role is triggering this action. Finally, the third-level conditional blocks
check to which control-flow element the action is applied in order to deter-
mine whether or not the role in question has the right to trigger the action
on this control-flow element according to the policy.

For example, the statement “2 (actor) requests 1 (action) on 3 (control-
flow element)” is translated into:

function canRequest(uint rRequester , uint action , uint element)

returns(uint) {

if (action == 1) {

if(rRequester == 3) {

if(element == 2) {

return requestID;

} else if /* remaining elements s.t. role 3 can request

action 1 */

...

} else if /* remaining roles that can request action 1 */

...

} else if /* remaining actions defined by the agreement */

...

return 0;

}

6.3. Experimental Setup

We conducted an evaluation to answer the following question: How does
the cost (in gas/ether) of enforcing role-binding and agreement policies in-
crease depending on the size and complexity of the policy statements?7 We
decompose this question into three: (Q1) How do the costs of deploying the
generated smart contracts vary with the size of the policy? (Q2) How do the
costs of executing the runtime operations vary with the size of the policy?
(Q3) How does the combined cost of enforcing a process model and policy
vary with the size of the policy?

It follows from Section 6.1 that the costs derived from a role-binding pol-
icy depend on the number of roles to nominate and the number of conjunction

7In Ethereum, gas is linearly related to throughput, see Section 2.1. So by answering
this question we also indirectly answer the related throughput question.
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sets in the binding/endorsement constraints. Thus, we designed the following
experiments. In (E1), we varied the number of nomination statements in a
policy from 1 to 40, without any binding or endorsement constraints. (E2):
we fixed the number of statements to 40, selected one statement, and grad-
ually increased the size of its conjunction set in binding constraint from 1 to
40. (E3) fixes the number of statements to 40, and gradually added a binding
constraint with one conjunction set to each of the 40 statements. (E4,E5):
the experiments E3 and E4 were repeated for the endorsement constraint
(instead of the binding constraint). For (E6), we generated a policy with
40 roles such that each statement includes a binding constraint stipulating
that the nominated actor must belong to the role in the previous statement
and that the nomination must be endorsed by all actors nominated in pre-
vious statements. (E7): starting from a BPMN model with only one task,
we iteratively expanded it, one task at a time (up to 40), and assigned each
task to a different role. In addition, from a BPMN model with 40 tasks we
iteratively increased the number of roles executing them (up to 40). In this
last experiment, once a role was bound to an actor, we checked that the
corresponding task could be performed. Note that the evaluation focuses on
nomination statements, but the release statements are symmetric.

It also follows from Section 6.1 that the costs derived from an agreement
policy depend on the number and structure of the triplets in the statements,
i.e., role, action and control-flow element, and the endorsement constraints.
Thus, we designed three experiments (E8-E10), each of which increases the
number of statements from 1 to 40, to check the cost derived from different
possible combinations of triplets (with indexes between 1 and 40) without
any endorsement constraint. (E8) fixes actor and action, and ranges the
control-flow element from 1 to 40. (E9) fixes action, and gradually incre-
ment the pair actor control-flow element from 1 to 40. This experiment is
equivalent to fixing action and control-flow element, from the code gener-
ation perspective, but grants a full execution of each statement (without
rejection) because it avoids the case that once the request is granted, it
invalidates the remaining requests to the same control-flow element. (E10)
fixes the actor and control-flow elements, and varies the number of actions
from 1 to 40. Although this paper focuses on three actions only, experiment
E10 illustrates the costs of an eventual extension of the policies with new
actions. Note that smart contracts implementing and enforcing agreement
policies are independent of the smart contracts derived from the process
models. Thus, the experiment randomizes the generation of generic actions,
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Table 1: Relationships between experiments and research questions (RQ).

RQ Exp. Relationship

Q1 E1 - E5 Retrieves the deployment costs of smart contracts generated
from role-binding policies, illustrating how they vary with
the size.

E8 - E11 Retrieves the deployment costs of smart contracts generated
from agreement policies, illustrating how they vary with the
size.

Q2 E1 - E6 Executes and retrieves the costs of the operations nominate
and vote in the smart contracts generated from role-binding
policies.

E8 - E11 Executes and retrieves the costs of the operations request

and vote in the smart contracts generated from agreement
policies.

Q3 E6 Estimates the upper bound on the deployment costs for role-
binding policies and process models up to 40 roles and tasks,
respectively.

E7 Retrieves the deployment costs of the contracts relating poli-
cies and process models, and the costs of executing the oper-
ation canPerform, illustrating how they vary with the size.

i.e., adding a random label to control-flow elements. Then, we can generate
the corresponding agreement policy, including mock actions, and perform
the operations to make the actions granted. However, we cannot perform
executeRequest because even when the mock action is in state granted,
it is not linked to an existing action to update the control-flow element in
the DynamicProcessManager contract. Finally, in (E11), we assess the
voting by ratio; to this end, experiment (E8) is repeated but including an
endorsement constraint, such that the i-th iteration contains a ratio expres-
sion where 100% out of i roles must accept the request. Here, we did not
consider boolean expressions on the endorsement constraints as they were
assessed in experiments E4-E5.

Table 1 summarizes how the experiments designed contribute to answer-
ing the proposed research questions.

We implemented a replayer in Java that generates the (role-binding and
agreement) policies, triggers their compilation and deployment, and executes

32



the runtime operations via Caterpillar’s REST API. For each transaction
included in the blockchain, Caterpillar sends some meta-data that in-
cludes block number, consumed gas, transaction hash which is collected and
assessed by the replayer. For the experimentation we run a Node.js based
Ethereum client named ganache-cli8 which is widely used to simulate a full
client for developing and testing purposes on Ethereum.

6.4. Experimental Results and Discussion

In order to answer the question Q1, deployment costs of the role-binding
policies in the experiments E1-E5 are plotted in Fig. 14. It shows that
deployment costs increase quasi-linearly with the size and complexity of the
policy9. The most straightforward role-binding contract (with a single role
bound to case-creator) costs 154,167 gas. As expected, the most pronounced
growth in cost occurs for endorsement constraints (E4-E5) as they produce
more instructions during code generation. We observe an increase of around
16.0−19.0% when adding a new endorsement constraint and 5.0−6.5% when
adding one conjunction set to a constraint. Experiments E2-E3 show that
adding a binding constraint increases the cost by 4.0−5.7% while adding one
conjunction to a constraint adds 2.4− 3.5% overhead. E1 shows that adding
one unrestricted statement to nominate a role adds 4.0− 4.5% overhead.

Continuing with experimental question Q1, Fig. 15 plots the deployment
costs of the agreement policies in experiments E8-E11. Like in the role-
binding policies, the deployment costs increase quasi-linearly with the size
and complexity of the agreement policy. The most straightforward agreement
contract (with a single role proposing one action on a control-flow element)
costs 142,293 gas. Like in the role-binding policies, the most pronounced
growth in cost occurs for ratio expressions in the endorsement constraints
(E11). We observed an increase of 8.0% on average when adding a new
ratio expression. As expected, the number of roles allowed to vote in a ratio
expression does not affect/increase the deployment costs as they are always
encoded in one bit-set, i.e., a single integer number. Accordingly, using
ratio expressions, instead of boolean expressions, leads to a reduction in the
deployment costs. Besides, ratio expressions are less restrictive as they rely
on the amount instead of who is casting the votes. Although endorsement

8https://github.com/trufflesuite/ganache-cli
9Note that figures 14 and 15 displays not the entire cost of the policies, but the growth

costs derived from the instructions assessed in each experiment.
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Figure 14: Growth of deployment costs with size of a role-binding policy.
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Figure 15: Growth of deployment costs with size of an agreement policy.

constraints with boolean expressions entail a higher cost, they allow finer
restrictions regarding the specific sets of roles that are required to achieve a
given outcome; i.e., at least one entire set must accept one operation for it
to become active.

Finally, regarding question Q1, we observed an increase of about 3.0%,
5.0%, and 7.0% on the deployment costs in experiments E8, E9, and E10,
respectively. It shows how agreement policies are less costly when only a role
is allowed to perform a single action on a set of control-flow elements. On
the contrary, agreement policies cost more if the number of actions increases.
The latter is convenient because our proposal focuses only on three actions,
i.e., link-process, link-role and choose-path. Overall, we observed that
adding a nested condition lead to an increase in the cost of about 2.0%.
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Table 2: Cost of the nomination and vote operations on the role-binding policies.

E1 E2 E3 E4 E5

N
om

. Min. 151,586 112,476 111,407 132,417 131,493
Max. 152,638 152,790 113,447 152,746 153,800
Ave. 151,948 151,270 112,277 151,738 142,660

V
ot

e Min. - - - 76,845 77,184
Max. - - - 78,136 78,184
Ave. - - - 77,463 77,541

Table 3: Cost of the request and vote operations on the agreement policies.

E8 E9 E10 E11

R
eq

. Min. 168,075 168,075 183,049 168,135
Max. 183,049 183,049 183,049 183,112
Ave. 169,118 169,118 183,049 169,178

V
ot

e Min. - - - 50,397
Max. - - - 81,399
Ave. - - - 51,889

In order to answer the experimental question Q2, we observed that costs
of the runtime operations vary slightly with the number and the order of
statements and conjunction sets in the constraints. The cost to nominate
a role is higher when the corresponding policy statement is at the end of
the policy. Similar behavior exists for binding and endorsement constraints.
From the perspective of the algorithmic computational complexity [47], the
functions generated from the policies run in constant time. However, the
cost variations are due to the specificity of Ethereum in which gas costs
are affected by the number of bytecode instructions executed. Hence, in a
function with if-else-if instructions, the cost increases with the number
of evaluated conditions.

Also related to question Q2, Table 2 shows the min, max, and average
costs to perform the nominate and vote operations in experiments E1-E5.
Similarly, Table 3 shows the costs related to perform the request and vote
operations in experiments E8-E11. Note that voting is less costly than nom-
inating, and that nomination costs are lower when restricted by binding con-
straints compared to endorsement constraints. Requesting an action in an
agreement policy is slightly costlier than nominating in a role-binding policy.
The latter is an expected result because while nomination statements in-
volve two entities, nominator and nominee, request statements contain three
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of them, action, role, and control-flow element, which indeed leads to more
instructions in the smart contract. Finally, the voting operations derived
from ratio expressions (cf. experiment E11) are less costly as they require a
more straightforward encoding than voting from boolean sets.

A critical remark when answering the experimental question Q3 consti-
tutes that smart contracts derived from process models, role-binding and
agreement policies work independently. In other words, the deployment and
execution costs of the smart contract generated from a process model are
not directly increased by the policies. However, instead, they depend on
the size and structure of the process and the control-flow generation strat-
egy. The overhead introduced by the policies on the process execution comes
from the deployment costs of smart contracts derived from the policies. An-
other source of overhead comes from the execution costs of the operations
canPerform, whose costs rely on policies and not on the process model. Ac-
cordingly, our experimentation mainly focuses on the costs derived from the
policies. However, we design the experiments E6 and E7 to approximate an
upper bound from adding the deployment and execution costs of the policies
aligned to research question Q3. Specifically, assessing the combined cost
of executing a process model with an associated role-binding policy (experi-
ments E6 and E7) has several components.

RB1 Deployment of the smart contract BindingAccessControl at a fixed
cost of 1,340,098 gas.

RB2 Deployment of the smart contract BindingPolicy generated from the
role-binding policy, with costs ranging from 154,167 (simplest with only
one role) to 1,803,898 gas (largest with 40 roles in E6).

RB3 Deployment of the smart contract TaskRoleMap to relate roles in the
policy to tasks in the process model. In experiment E7, we observed a
linear growth in the deployment cost of this contract as the number of
relations task-role increased, from 129,539 to 241,114 gas units.

BP4 The costs of executing one nominate operation range from 111,407 to
168,270 gas units, while one vote operation costs between 50,397 and
78,184 gas units.

RB5 Verifying the right of an actor to execute one task of the process requires
invoking the function canPerform in the BindingAccessControl.
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This function, in turn, invokes the TaskRoleMap contract to retrieve
the task-role relation. The costs of executing the function canPerform

also grew linearly from 31,693 to 33,066 gas units.

On average, deploying agreement policies is less costly than role-binding
policies. However, agreement policies rely on a role-binding policy to verify at
runtime whether the actor proposing the action on the control-flow is bound
to a role with the right to perform it. In numbers from the experiments
E8-E11, the costs of the components derived from agreement policies are the
following:

A1 Deployment of the smart contract DynamicProcessManager at a
fixed cost of 1,055,851 gas.

A2 Deployment of the smart contract AgreementPolicy generated from
the agreement policy, with costs ranging from 142,293 (simplest with
only one request) to 674,851 gas (largest with 40 requests). We ex-
cluded here the costs derived from endorsement constraints as they are
proportional to those in the role-binding policies.

A3 The costs of executing one propose operation range from 168,075 to
183,112 gas units, while one vote operation costs between 50,397and
78,184 gas units.

A4 The cost of the function executeRequest in the DynamicProcess-
Manager contract depends on the process model, as it triggers opera-
tions defined as part of the control-flow, e.g., linking a process involves
its instantiation and possible execution of enabled elements. Therefore,
the costs depend on the control-flow implementation, and not on the
structure or size of the agreement policy.

It is essential to consider that the smart contracts derived from the role-
binding and agreement policies can be reused (after being deployed only
once). In contrast, the contracts handling the process models (i.e., control-
flow) typically require a new deployment for each process case. Accordingly,
several executions of a process model lead to the amortization of the deploy-
ment costs incurred for the policies (if these are reused).

Estimating the overhead added by the policies to the process execution
is not straightforward due to the many combinations and scenarios coming
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Table 4: Comparison of deployment and execution costs between role-binding policies and
business process models; with amortization by reuse (A) and without.

Smart Contract Depl. Exec. Depl. (A) Exec. (A)

BindingAccessControl 1,340,098 343,657 252 343,657
TaskRoleMap 241,114 - 45 -
BindingPolicy (min) 154,167 111,407 28 20
BindingPolicy (max) 1,803,898 67,714,320 339 12,735

Process Model (C) 2,830,063 1,088,315 2,830,063 1,088,315
Process Model (I) 543,503 652,784 543,503 652,78

from the design choices when creating and putting together process models
and policies. To that end, we considered a BPMN model and the correspond-
ing event log of a real-world business process, named Invoicing, used in the
experiments in [6, 16]. The process model has 60 BPMN elements, and 40
of them involve the interaction of an external actor. The event log contains
5317 traces and 55,260 events.

To estimate the overhead, we collected the deployment and execution
costs (without any policy) of the process from the two engines implemented
by Caterpillar; i.e., following compiled [6] and interpreted [16] approaches,
respectively. We also calculated minimum and maximum deployment and ex-
ecution bounds for the role-binding policies by combining the data collected
in the experiments E1-E11. Specifically, the minimum cost comes from a
policy, including a unique role, which in turn executes all the tasks in the
process model (no voting required). In contrast, the maximum cost corre-
sponds to a policy with 40 roles (one role per task) in which the nomination
of an actor requires the endorsement of all the previously nominated actors.
Also, we calculated the costs under two possible scenarios: (i) the policies
are deployed and the operations performed for each process case, (ii) they are
deployed/executed once and then reused in all the process cases to estimate
the amortized costs.

Table 4 illustrates the values in which deployment and execution are ex-
pected to range. The letters C and I, following the process models label,
correspond to the variants compiled and interpreted, respectively. The total
costs10 without reusing the policies would add an overhead between 1,735,379

10The total costs include the fixed cost contracts BindingAccessControl and
TaskRoleMap, and the corresponding BindingPolicy (min or max accordingly). Be-
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Figure 16: Variation of the amortized deployment and execution costs of role-binding
policies by reusing them across different process cases.

to 3,385,110 gas units for deployment, and between 455,064 to 68,057,977
gas units for execution. However, the calculation of the upper bound as-
sumes the extreme scenario with 40 nominations and 780 endorsements in
the worst-case scenario. Instead, for example, the traces in the event log of
the invoicing process include between 4 and 27 events, meaning that many
nomination/voting operations are not required. In contrast, these costs sig-
nificantly amortize when reusing one single policy with the same actors in all
the process cases (labelled with A in Table 4). Then, the total costs range
from 325 to 636 gas units for deployment, and from 343,677 to 356,392 gas
units for execution. Note that only the operation canPerform needs to be
executed for each event in each process trace (i.e., to verify the actor rights).
The remaining policy operations are not dependent on a specific process case,
thus performed only once and reused.

Fig. 16 illustrates how the total deployment and execution costs amortize
when reusing the policy in multiple process cases. The deployment costs for
the max bound (in yellow) falls below deployment cost of the compiled and
interpreted process execution approaches after reusing the policy 2 and 7
times, respectively. The execution is more costly, thus requiring reusability
of 91 and 220 times for the costs to fall below of those obtained from the
compiled and interpreted approaches, respectively. However, considering the
lower bound, the deployment and execution costs are always smaller than the
compiled version and falling below the interpreted method after being used

sides, the execution costs of the smart contract TaskRoleMap are included in Bindin-
gAccessControl, i.e., from the execution of the function canPerform.
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4 times. Note that, the numbers offer a rough estimation of the overhead
when combining role-binding policies to control the process execution. A
similar analysis can be applied to agreement policies. We observed in the
experiments that agreement policies are less costly than role-binding policies.
Thus, the upper bound for role-binding policies offer a suitable approximation
for agreement policies as well.

7. Conclusion

This paper presented an approach to extend blockchain-based collabo-
rative process execution platforms with controlled flexibility mechanisms.
Specifically, the contributions of the paper are:

1. A role-binding model and an associated binding policy language that
support collaborative binding and unbinding of actors to roles at run-
time.

2. An approach for late binding of sub-processes and dynamic selection
of execution branches in a process model, together with an associated
control-flow agreement policy language, allowing actors to collectively
steer the execution of a process instance according to their require-
ments.

3. A method to verify the consistency of policies defined in the proposed
policy specification languages.

4. An approach to compile role binding and control-flow agreement poli-
cies into smart contracts for runtime enforcement.

The proposed flexibility mechanisms and associated policy specification
languages have been implemented and integrated into the Caterpillar
blockchain-based collaborative process execution tool. We evaluated the
costs of deploying and executing smart contracts generated from the pol-
icy statements on the Ethereum platform. The evaluation shows that the
deployment and runtime policy enforcement costs grow linearly with the
number of roles, control-flow elements and the complexity of the constraints.

The proposed flexibility mechanisms allow actors in a collaborative pro-
cess to dynamically adapt the resource and control-flow perspectives of a
business process. However, the proposal does not take into account the data
perspective. In particular, the proposal does not consider the implications
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of dynamic role binding and unbinding on the way data is stored and shared
between participants. When a participant is bound to a role, in view of
performing certain tasks of the process, one expects this participant to have
access to the data required to fulfill the role in question. On the other hand,
when an actor is unbound from a role, one expects this participant to stop
having access to the data associated to this role. A future direction for fu-
ture work is to develop a role-based data access layer on top of a blockchain
platform, which would take into account these interactions between dynamic
role binding and data access.

The policies proposed in this paper have been integrated into an ap-
proach that compiles process models into smart contracts [6]. This means
that, once deployed, the smart contracts that enforce the business process are
immutable. Although the proposed approach supports late-bindings and dy-
namic gateways, other adaptations of the control-flow schema are not allowed.
We foresee that the notion of control-flow agreement policy, in conjunction
with an interpreted execution of blockchain-based processes [16], may allow
us to achieve further flexibility. This is another avenue for future work.

In this paper, we presented a method to detect inconsistencies in role
binding policies that may lead to states where an actor cannot be bound to a
policy due to circular dependencies between role binding constraints. Other
potential inconsistencies in role binding policies may lead to certain parts of
a role binding policy being unnecessary. Consider the following example:

A nominates B endorsed-by C

A nominates D in B endorsed-by C, E

In this role binding policy, and assuming that there are no multi-instance
activities, role D can only be bound to the actor assigned to role B, and
hence the endorsement by role E is irrelevant. Another direction of future
work is to design verification methods to detect such irrelevant endorsement
statements.

While the proposed approach has been designed with the goal of sup-
porting collaborative process execution on blockchain, its field of possible
applications is wider. Another future work avenue is to study the applica-
bility of this approach to other blockchain applications where dynamic role
binding may be required, e.g., in crowdsourcing and computer-supported
collaborative work scenarios.
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