
A Flexible, Object-centric Approach for
Business Process Modelling

Guy Redding

Queensland University of Technology, Brisbane, Australia
g.redding@qut.edu.au

Marlon Dumas

University of Tartu, Tartu, Estonia
marlon.dumas@ut.ee

Arthur H. M. ter Hofstede

Queensland University of Technology, Brisbane, Australia
a.terhofstede@qut.edu.au

Adrian Iordachescu

FlowConnect Pty Ltd, Sydney, Australia
adrian@sws.com.au

Mainstream business process modelling techniques often promote a design paradigm wherein the

activities that may be performed within a case, together with their usual execution order, form the

backbone on top of which other aspects are anchored. This Fordist paradigm, while effective in

standardised and production-oriented domains, breaks when confronted with processes in which case-

by-case variations and exceptions are the norm. We contend that the effective design of flexible

processes calls for a substantially different modelling paradigm. Motivated by requirements from the

human services domain, we explore the hypothesis that a framework consisting of a small set of

coordination concepts, combined with established object-oriented modelling principles provides a

suitable foundation for designing highly flexible processes. Several human service delivery processes

have been designed using this framework and the resulting models have been used to realise a system

to support these processes in a pilot environment. The framework is presented in this article and we

show how it addresses different flexibility requirements using a series of illustrations.

object-centric; object-oriented; process modelling; flexible workflow.

1 Introduction

Process-Aware Information Systems, such as traditional Workflow Management

Systems, have difficulties supporting dynamic business processes because they rely

on modelling paradigms that tend to impose a given execution order between

activities and decision points. This fact has been discussed in the literature for some

time leading to many proposals for flexible workflow support (e.g. [1-4]). In this

article we demonstrate how to capture highly flexible business processes using an

object-centric (O-C) process modelling approach. The approach is inspired by, but

arguably not limited to, the delivery of human and social services.1 Modelling and

executing processes in this domain presents additional challenges compared to other

more standardised domains such as insurance and banking. A key feature of

delivering human and social services is that the type, number and order of tasks and

sub-processes needed to address a case are often not known until runtime. Also,

variations on a case-by-case basis and exceptions are the norm in these processes. An

attempt to impose a standard way of delivering social services is usually met with

resistance by the stakeholders involved in the process -- both from the providers and

consumers of social services.

In this article, we explore the hypothesis that an object-centric modelling approach

provides a suitable basis for capturing the extreme levels of process flexibility needed

to manage human social services. The main contribution is a meta-model for the

design of highly flexible processes based on object-oriented concepts. The meta-

model has been embodied in a modelling tool that allows us to design O-C process

models.

2 Patterns of Flexibility

In our experience in applying object-oriented approaches to design process-aware

systems that need to deal with ad-hoc situations, a range of requirements have been

observed that are condensed into three patterns of flexibility. A pattern of flexibility is

a recurrent problem wherein a designer needs to account for the fact that a variety of

circumstances could be encountered during the execution of a process model, yet the

scope of these circumstances needs to be captured at design-time to achieve some

uniformity (since an organisation provides a finite number of services) or to enforce

certain constraints. Each pattern of flexibility also involves a class of users (e.g. social

workers or case managers). For convenience these patterns of flexibility are referred

to as PoF1-PoF3.

1 This	
 work	
 is	
 inspired	
 by	
 a	
 project	
 involving	
 the	
 fourth	
 author.

2.1 PoF1: Creation Flexibility

Creation flexibility is the ability of a user to trigger the creation of one or more task

instances (jobs) in an unplanned manner during execution of a process. This pattern of

flexibility allows the set of task types to be instantiated as well as the ordering of

instantiations to be loosely specified at design-time. Creation flexibility is similar to

the case handling approach [18] where tasks do not need to be performed in a strict

order and do not necessarily have to be completed to complete a case (meaning that

the tasks are optional). At the same time, it is necessary to define constraints

regarding the number of task instances and/or the state(s) in a process where

unplanned task instances can be created.

Generally speaking, a task instance is created in either a planned or an unplanned

manner. A planned task is created as-specified by process model logic. An unplanned

task presents additional concerns since it is created on-demand, i.e. if and when the

task is required. For example, a Health Assessment task may require additional tasks

that correspond to subtypes of Treatment, but the additional treatments are difficult to

completely plan at design-time because the treatment(s) depend on the assessment.

2.2 PoF2: Delegation Flexibility

Delegation flexibility is the ability of a user to trigger the transfer of context and data

from an executing task to a different task. This pattern of flexibility provides support

for circumstances that may change over time (i.e.\ if a problem appears during a client

interaction, delegate the interaction to a task that can support the problem). Due to

circumstances that frequently affect the delivery of human social services, situations

regularly occur that require the context and data from a task to be fully transferred to

another (specialist) task.

To support such situations, a new task (delegatee) takes over execution of a previous

task (delegator). For the purposes of control-flow, a delegatee replaces a delegator,

meaning that when a delegatee completes, the completion is treated as if the delegator

had completed. This feature, together with the fact that data is fully transferred from

the delegator to the delegatee, distinguishes delegation flexibility from creation

flexibility. The delegation relation is transitive, meaning that a delegatee may also

transfer its execution to another task.This feature, along with the fact that data is

transferred from a delegator to a delegatee, distinguishes delegation flexibility from

creation flexibility. Note that from a data-flow perspective, the delegatee is a subtype

of the delegator, since the delegatee needs to receive as input the data collected by the

delegator and to produce as output at least the same data as the delegator.

2.3 PoF3: Nesting Flexibility

Nesting flexibility is the ability of a user to create instances of nested sub-processes as

they are needed. For example, during execution of a homelessness process a social

worker may discover an additional major issue with the client concerning an

alcoholism issue which is well beyond the scope of the original process that manages

homelessness issues. Similar to (task) creation flexibility, nesting flexibility is

sometimes only allowed under certain constraints (e.g. the number of sub-processes

can be bounded or unbounded and the type of sub-processes can only be created in

designated states of a process). However, nesting flexibility deals with creating sub-

processes rather than creating tasks -- we call this situation a referral. This pattern of

flexibility enables a system to create as many layers of ad-hoc sub-processes as

needed to manage issues as they arise, while maintaining sub-process modularity and

retaining process control.

3 Elements for Flexible Object-centric Processes

We aim to fulfill the objective of achieving flexibility in object-centric models by

proposing a design framework consisting of three abstract types of business objects,

namely the Coordination Object, Job Object and Referral Object. These objects are

used to construct process models that can capture the patterns of flexibility (PoF1-

PoF3) introduced in the previous section. In this section we describe the properties

and interactions of these objects.

We propose to achieve process flexibility via an extended meta-model that consists of

three abstract types of business objects, namely Coordination Object, Job Object and

Referral Object. As shown in Figure 1, a concrete business object type inherits from

an abstract type.

Figure 1. Abstract Types and Concrete Types

A Coordination Object (COROB) is an object that coordinates a process. The

COROB is inspired by the recognition that a clear separation must be made between

the tasks managed by a process and how the tasks are connected. The net outcome is

known as coordination, which explains how this object gets its name. A COROB is

responsible for both the creation and synchronisation of the tasks needed to complete

a process, managing the execution of a process as well as referring out of scope work

to other COROBs.

A Job Object (JOB) is an object that represents a task. A JOB manages task

execution and reports task completion to its parent object. For example, two JOBs in

the social services process model are the Report Collection and Client Visit which

both have the Client Intake COROB as their parent.

A Referral Object (ROB) is an object that allows a COROB to refer a situation

which is outside of its scope to another COROB. For example, if several unplanned

major issues appear during the execution of a Homelessness COROB such as an

Alcoholism or Drug Dependency issue, a ROB is created that operates under the

guidance of a user to create a COROB.

The base meta-model of object types and their relations can be found in our previous

work [22], which has been captured using the ORM notation [24]. The flexibility

extensions to the base meta-model are also captured using ORM and are presented in

Figure 2. We now introduce the base meta-model extensions captured by this ORM.

Figure 2. ORM for Flexibility Extensions

An object-centric process model consists of a set of object types (COROB, JOB and

ROB subtypes) and their relations. Every object type specified in a model is a subtype

of one of the three base object types: COROB, JOB or ROB. For example, a

“Homelessness Coordination Object” is a COROB subtype and a “Client

Appointment” is a JOB subtype. A subtype relation is established by using a

generalisation association. Generalisation is a classical object-oriented concept that

allows a subtype to inherit attributes and behaviour from a supertype. In the case of

object-centric process models we may make use of generalisation to organise

common process-related attributes and behaviour in a hierarchy of objects. For

example, a “Skin Treatment”, “Eye Treatment” and “Mental Health Assessment”

JOBs are subtypes of a “Treatment” JOB. The generalisation association allows a

supertype to delegate its lifecycle to a subtype at runtime and requires that each

subtype sends and receives the same signals as a supertype and sends and receives at

least the same data as its supertype, while allowing the subtype to capture an object

lifecycle that specialises the supertype. Since the correct application of behavioural

specialisation of object lifecycles (i.e. ensuring that inheritance does not lead to

behavioural inconsistencies) is a separate research question and has been covered in

works (for example) by Schrefl and Stumpter found in [25] and [26], we do not

elaborate any further on this topic.

A creation region is a collection of one or more states in a state machine from within

which it is possible to create object instances from a set of object types. A state can

belong to more than one creation region, but those states must belong to the same

state machine. From a creation region, any number of dynamic signals can be sent. A

dynamic signal allows a process designer to model object communications that may

occur, meaning that users have the possibility of triggering a dynamic signal, but they

may or may not choose to do so. The source of a dynamic signal is a creation region

and the target is an object type. If the state of a source object is within the creation

region, users are offered the possibility to trigger the dynamic signal. When the

dynamic signal is triggered, an instance of the target object type (or one of its

subtypes) is created. The target object type depends on a selection strategy associated

with the dynamic signal and input given by the user when triggering the dynamic

signal. This approach follows the principle of the Strategy Pattern [7].

There are four dynamic signal subtypes: the delegation, creation, referral and nesting

signal. A delegation signal allows delegation from a creation region within a source

delegator JOB to a target delegatee JOB. A delegator may delegate to more than one

type of delegatee, which must be a subtype of the delegator. A creation signal enables

instances of a JOB to be created from a creation region. The difference between

delegation and creation signals is the following. When a delegation signal is triggered,

the source object ceases to exist and is replaced by the target object. Meanwhile, in

the case of a creation signal, a new target object is created and the source object

continues to exist. A parent-child relationship is then established between the source

object and the newly created object.

Creation and delegation signals serve to transfer control to a JOB. On the other hand,

referral and nesting signals serve to transfer control to a COROB. A user may trigger

a referral signal if an issue arises during the execution of a COROB that falls outside

the scope of the COROB. The newly created ROB then assists users in finding a

suitable COROB type to address the issue in question. During the execution of a

ROB, a user (not necessarily the same who created the ROB) may then trigger a

nesting signal, resulting in the creation of a new COROB to handle the issue in

question. In Figure 3, we show how the COROB, JOB and ROB can be connected

using the four dynamic signal types to capture the three PoFs.

Figure 3. Patterns of Flexibility in the Framework

4 Working Example -- Social Service Provision

As a motivating scenario, we consider a process executed in the context of a charity

organisation. A recently homeless family contacts a charity and makes an application

for assistance. The charity opens a case to manage the family's homelessness issue.

During the management of the homelessness case it is discovered that there are

additional alcoholism and gambling issues that individual family members require

assistance with. Each of these issues can be mapped to a social service that are offered

by the charity, but the actual delivery of these services remains unplanned. An

unplanned situation is particularly challenging to capture using traditional process

modelling notations due to the possibility that several potential execution scenarios

for a single process model must be captured at design-time. A system that can

coordinate unplanned situations requires a framework which supports several types of

flexibility but can also enforce constraints where necessary. The elements of the

framework are represented graphically using the notation in Figure 4.

Figure 4. Extended Object Model Elements

In this section we demonstrate how the framework elements can be used to design a

flexible process. For purposes of illustration we refer to a social service process for a

charity organisation that has been modelled using the object-centric approach

presented in this article, which is presented in Figure 5. This model consists of a

Client Intake COROB that manages the process of accepting new clients who have

contacted the charity for assistance. The COROB is responsible for creating and

coordinating the tasks and sub-processes involved in new client intake such as

completing a risk assessment, visiting the client and collecting reports from social

workers, whilst also coordinating distribution of major issues to other COROBs. The

model captures several points in the process where flexibility is either allowed or

constrained. For example, a referral to a Homelessness COROB can be performed at

any time in the Review Region but at no other time. To counter the possibility of a

variety of exceptional circumstances arising at runtime the model has been designed

to capture the creation, delegation and nesting patterns of flexibility. The rest of the

section uses extracts of the process model shown in Figure 5 in order to discuss how

the framework addresses the three patterns of flexibility.

Figure 5. Object-centric Social Services Delivery Model

4.1 Demonstrating Creation Flexibility

Creation flexibility is achieved by specifying the set of JOBs that can be created on-

demand by defining a creation region within a COROB then linking the creation

region to those JOBs with the creation signal, as shown in Figure 6. In this example a

social worker tailors a plan for a client to resolve the issue(s) that the client is faced

with. Since the plan is tailored to the unique circumstances of an individual, the plan

for each client is almost always different. To operationalise the plan the social worker

then requires access to different tasks offered by the charity (represented by the

JOBs). Creation flexibility gives the social worker the ability to create instances of a

task when it is needed (i.e. in any of these states: “Wait for new plan”, “Review plan”,

“Wait for new version” and “Record case review”), rather than when it is planned.

Figure 6. Creation Pattern of Flexibility

When the Client Intake COROB is in a state contained in the Case Management

Region, 1..n instances of the Client Interaction JOB, 0..n instances of the Child

Support JOB and 0..1 instances of the Rental Assistance JOB can be created. At least

one Client Interaction JOB will be created before exiting the Case Management

Region, but more than one instance may be created. Any number of Child Support

JOBs along with a maximum of one Rental Assistance JOB may be created. Creation

flexibility allows a designer to capture on-demand task creation while also

constraining the type and number of task instances according to the business rules.

4.2 Demonstrating Delegation Flexibility

Delegation flexibility is achieved by linking a creation region in a JOB to one or more

tasks using the delegation signal. In Figure 7, we demonstrate delegation using the

Client Interaction delegator JOB. This JOB contains three states (“Make

appointment”, “See client” and “Assessment”) and one creation region (named

“Assessment Region”) that contains the “Assessment” state. This creation region

imposes two restrictions on the Client Interaction JOB. Firstly, delegation from a

Client Interaction can only be performed when it is in the Assessment Region.

Secondly, the set of allowable delegatee tasks from this creation region are the Skin

Treatment, Eye Treatment and Mental Health Assessment JOBs which are subtypes

of the Treatment JOB.

Figure 7. Delegation Pattern of Flexibility

Delegation is an optional action -- a user will make the choice at runtime of whether

or not delegation is performed because the multiplicity of each delegation signal is

0..1. If a delegator has more than one delegatee then a choice is made by the user to

select which JOB will become the delegatee. Delegation can never be mandatory, i.e.

a delegation signal must have a lower bound of 0. Delegation is not allowed if the

upper bound is greater than 1 because this implies creating clones of the delegator. If

multiple instances of a delegator are needed they would firstly be created and then

permitted to delegate as required. In case delegation does not occur during the

execution of a delegator then its execution will complete normally.

This example illustrates how object inheritance is used to capture delegation

associations between tasks in a process model. However we point out that delegation

extends the concept of inheritance since at runtime a delegatee must take the data and

context of the delegator and must also complete its lifecycle in the same way that the

delegator would have.

4.3 Demonstrating Nesting Flexibility

Nesting flexibility is achieved by linking a creation region in a COROB to a ROB

using the referral signal, then linking a creation region in the ROB to one or more

COROBs using the nesting signal. At runtime, a parent COROB may invoke the

referral signal to create an instance of a ROB. The ROB may invoke a nesting signal

to create an instance of a child COROB to manage the newly discovered real-world

issue. The type of child COROB to create is determined by a user. The ROB creates

two levels of indirection between the parent and child COROB, giving the framework

two advantages.

Firstly, COROBs are decoupled, which establishes COROB modularity. Secondly, the

ROB provides the opportunity for human intervention in a referral, since referring

major issues between in this manner often needs an approval from a third party

resource (e.g. a manager), who can either permit or deny creation of a new COROB

instance. Hence, the ROB behaves as an arbiter that separates a parent COROB from

its children, allowing children to execute in parallel and allowing a third party

resource to maintain control over nested COROBs.

In Figure 8, we see that the number of referral signals that may be sent from the Case

Management Region to a ROB is unbounded (0..n) and that the ROB is connected to

three COROB types. For example, if a social worker discovers an alcoholism issue

with a client, a ROB will be created in the system which will in turn create an

Alcoholism COROB instance. Alternatively, if an alcoholism and gambling issue are

discovered with a client the system will create two ROBs and (given management

approval) one ROB will create an Alcoholism COROB and the other will create a

Gambling Issue COROB.

Figure 8. Nesting Pattern of Flexibility

The framework places no restrictions on the levels of nesting meaning that a child

COROB can in turn create its own ROBs, which can create their own COROBs and

so on. For example, as shown in Figure 9, in the “Wait for new plan” state an issue

resolution plan is prepared for an unemployed client which identifies an

unemployment issue beyond the scope of the Client Intake COROB. The issue is

referred to a nested Work Search COROB. However, during execution of the Work

Search COROB the client unexpectedly falls into serious trouble with the police. The

Work Search COROB creates a new ROB, which creates a nested Legal Support

COROB to support the clients unemployment issue.

We observe that the main benefit of nesting flexibility for a user is the ability to call

in different sets of resources and skills in response to situations as they arise. Nesting

flexibility allows a COROB to maintain control over the type and number of all

dependent COROBs without being directly linked to them, while also establishing an

unplanned structure of nested processes.

Figure 9. Nested Unplanned Sub-processes

Using the examples in this section we have demonstrated how an O-C process model

can handle unplanned tasks and issues. The modelling notation is based on an object

behaviour meta-model that has been designed to approach exceptional circumstances

as they occur by engaging creation, delegation and nesting flexibility. The ability to

handle work in the different ways that it may appear is the point of distinction which

allows several flexibility requirements to be supported, as identified in Section 2.

The concept of creation regions in particular enables a designer to clearly define

which types of flexibility are related to which set(s) of states. This approach gives a

process model designer the ability to express that flexibility is required at particular

points and that flexibility is not required at other points, which is beneficial for the

design of flexible process models. In the next section we present a tool called

FlexConnect that supports modelling of flexible object-centric models as presented in

this article.

5 Tool Support

A modelling tool named FlexConnect has been developed that allows us to design O-

C process models as described in this article.2 FlexConnect is a tool that assists

process designers to develop O-C process models and was developed using the

Eclipse Graphical Modelling Framework (GMF). The foundation of the tool is the

UML Class diagram shown in Figure 10 that captures the FlexConnect GMF Domain

Model. The GMF Domain Model is a specification of the modelling tool elements and

their associations.

Figure 10. UML Class Diagram for Object-centric Flexibility

The modelling tool has a feature that generates and exports an initial marking to a file

that is used as input to a Coloured Petri Net (CPN) [8], which is available with the

FlexConnect tool. The CPN was developed using the CPN Tools software to provide

us with the ability to formally check, validate and simulate the behaviour of models

that have been designed using FlexConnect. The modelling tool, export feature and

the generated CPNs have been tested with 20 sample O-C process models of varying

2 FlexConnect can be downloaded from http://code.google.com/p/flexconnect/

sizes in order to evaluate the behaviour of the elements of the base model as well as

validate each pattern of flexibility. This includes the social services example

presented in this article (see Figure 5), which is shown as a FlexConnect model in

Figure 11.

Figure 11. Social Services Model in FlexConnect

We will now walk through this social services support model shown in Figure 5 at

runtime. Upon entering the Review Region the “Wait for review” state is entered. A

Risk Assessment JOB is completed for the applicant while an initial application is

being completed. At this stage it is either confirmed or not that the client has a

Homelessness Issue. A Homelessness Issue is a major issue that requires management

by a separate COROB that was designed to manage such an issue. If a Homelessness

Issue is confirmed, the Main COROB refers this new work out to a ROB which

creates a nested instance of a Homelessness COROB.

Following creation, the Homelessness COROB will execute in parallel to the Main

COROB, creating its own tasks that manage the needs of the client to do with their

homelessness issue. During the execution of the Homelessness COROB an additional

issue is discovered with the client to do with a drug dependency. The Homelessness

COROB reacts to this issue by invoking a referral. The ROB is guided by the user to

create a nested instance of a Drug Dependency COROB that executes in parallel to

the Homelessness COROB. This parallelism is handled in a structured manner due to

the concept of nesting flexibility.

After the “Client intake” state is entered, three tasks are created. A Client Visit JOB is

created along with two Report Collection JOBs. The Client Visit manages the

procedure of a social worker's visitation to a client, while the Report Collection

manages the work involved with reporting on the recovery progress of a client.

After exiting the “Client intake” state the Review Region is exited and the Case

Management Region is entered. This region consists of four states, which are: “Wait

for new plan”, “Review plan”, “Wait for new version” and “Record case review”. In

any state of the Case Management Region we have the ability to create 1..n, on-

demand, Client Interaction tasks. Specifically, at least one Client Interaction TO will

be created before the Case Management Region is exited, but more may be created.

This is an example of creation flexibility. In the “Wait for new plan” state a social

worker prepares a goal-action plan for the client, which is revised in the “Review

plan” state, and a Client Interaction TO is created by the social worker to suit the

social workers need to approach the client with clarifications regarding the case.

During the interaction with the client the social worker finds that the client needs

additional medical care and the Client Interaction is delegated to a Skin Treatment.

Here we see an example of delegation flexibility.

During the “Wait for new version” state a major alcoholism-related issue is

discovered. To handle this situation an instance of an Alcoholism Issue COROB is

created. The creation of this new COROB is performed using the same method as the

Homelessness Issue COROB, as this method allows us to manage the uncertainty

surrounding the unknown and unpredictable runtime aspects of the process. These

unknown aspects are the elements of a process that may be invoked, such as an

alcoholism issue in this case. The motivation behind supporting the invocation of

process elements in this manner is due to the unknown aspects of if and when during

the execution of a Homelessness Issue (and indeed, any other process that supports a

social service) that may be encountered.

During the “Record case review” state another major issue is discovered with the

client and an instance of a Gambling Issue COROB is created to handle the issue. The

ability to handle work in the different ways that it may appear is the point of

distinction that allows the flexibility requirements that were identified in Section 2 to

be supported.

The output of a valid model constructed using the FlexConnect modelling tool is a

Standard ML (SML) [27] file. An SML file generation feature is found on the

FlexConnect toolbar that creates an SML file from an O-C model by pressing a button

named “SML Creator”. Upon pressing this button, the syntax of the object model is

validated. To avoid creating an invalid SML file the O-C model must pass a series of

validation checks. If one or more of the checks are not passed, a list of the problems

that were found in the model are presented in a popup box and an SML file is not

created. Otherwise, the result is reported in a popup box and an SML file is created.

The checks that are performed on a model include:

• The names of all nodes except Tasks (State Machines, States, Gateways and

Creation Regions) must be unique and non-null.

• The names of all connections (Transitions, Static Signals and Dynamic

Signals) must be unique and non-null.

• The upper bound of all (static and dynamic) signals must be greater than or

equal to the lower bound.

• The upper bound of all multiple instance tasks must be greater than or equal to

the lower bound.

• Each gateway must have a configuration and a mode.

• Each message signal and finish signal must have either a parent spawn signal

or parent dynamic signal.

An SML file created by the FlexConnect modelling tool contains an initial marking

for the following places in the CPN: Signal Connections, Gateway Mode, Gateway

Configuration, State Gateways, Transitions, Creation Regions, Dynamic Connections,

Generalisation Associations and Tasks. Each place is populated by making a call to a

function in the SML file. E.g. the Transitions place calls the getTransitions() function,

which places a single token in the Transitions place that contains a list of the

transitions in the O-C process model. Successfully loading the SML file into the CPN

without receiving any error reports indicates that the O-C process model is at least

syntactically correct, because the type of each place in the CPN is directly mapped to

a concept in the O-C meta-model. For example, the “Dynamic Signal Connections”

place contains a list of the dynamic signals in the O-C process model and the

“Creation Regions” place contains a list of the creation regions.

6 Related work

There is a significant amount of research related to flexible process management.

Research in this field has focused on dealing with runtime deviations with respect to

the expected execution of a process model (dynamic change). A framework

comprising five criteria for characterizing dynamic change [9] shed some light into

shortcomings of conventional process management systems, and enabled comparative

evaluation of the change-handling capabilities of process management systems.

Weber et al. [3] built on top of this work by defining 17 change patterns. The authors

advocate that there should be alignment between computerised and real-world

processes, a position shared by work done on ADEPTflex [10] and also our proposed

meta-model, where work is allowed to be freely created and delegated by actors,

within certain bounds.

A comparison may be drawn between FlexConnect and artifact-centric process

modelling [5]. An artifact-centric model explicitly recognises the relationship between

data and control flow in a process, and advocates a modularisation of processes

around artifacts (essentially business objects). In effect, FlexConnect extends the idea

of artifact-centric process modelling to cater for flexible processes.

DECLARE [2] is an example of a Constraint-Based Workflow Modelling tool that

describes loosely-structured processes using a declarative approach that allows a

process designer to focus on the ‘what’ rather than the ‘how’. The strength of this

approach is that model constraints can be added or relaxed where needed. Our

framework goes beyond the capabilities of DECLARE by including the definition of

creation regions in which object types (or subtypes) can be instantiated within

cardinality restrictions.

A taxonomy of process flexibility by Schonenberg et al. [11] identified and defined

four types of flexibility: flexibility by design, flexibility by change, flexibility by

deviation and flexibility by underspecification. Using this taxonomy it may be

observed that our framework supports a spectrum of flexibility types. For example,

delegation is flexibility by design, creation is flexibility by deviation and nesting is

flexibility by underspecification.

The “Flexibility as a Service” (FAAS) proposal [12] is a structured approach inspired

by the taxonomy of flexibility that enables a process designer to combine the

flexibility aspects of three process modelling approaches, namely YAWL [13],

DECLARE [2] and Worklets [14]. In this paper we have shown how to design flexible

process models using OO modelling techniques as an alternative to combining

process modelling languages.

Klingemann [15] identified three types of flexible elements in process models:

alternative activities, non-vital activities and optional execution order. This

framework essentially focuses on flexibility by design. Our framework extends this

classification to cater for additional mechanisms such as task delegation and creation

regions.

Other object-based process modelling approaches have been proposed by Küster et al.

[16] and Wirtz et al. [17]. However, these proposals are not motivated specifically by

flexibility requirements. For instance, the work of Küster et al. is instead motivated by

compliance management. An alternative paradigm to process modelling is case

handling [18]. Here, the focus is on the data supporting a system rather than purely on

capturing control-flow behaviour. The reasoning behind case handling is that shifting

focus away from control-flow leads to less restrictive systems. This view is also

supported by Hull et al. [19], Weske et al. [1] and Müller et al. [6] who have proposed

process modelling approaches driven by objects and data. Hull et al. and Müller et al.

also examine the issue of dynamic changes in data-driven process models. Unlike our

approach, the approach of Müller et al. corresponds to “flexibility by change”,

meaning that the process model is adapted at runtime to deal with unforeseen cases.

In the field of workflow escalation, Georgakopoulos et al. [20] outline an approach to

support dynamic changes in workflows in emergent situations (e.g. for rescue

operations during natural disasters). Their focus is on enabling decision makers to

escalate tasks at runtime by changing the course of the workflow execution as

required, while retaining some level of control. In contrast, our work focuses on

capturing runtime variability of workflows at design-time, instead of escalation.

Some parallels can be drawn between the concept of a COROB, and the Multiple

Instance Without a priori Runtime Knowledge workflow pattern [21]. Parallels may

also be observed between the concept of a ROB and proposals such as Worklets that

provide users with a method of dynamically responding to change by taking action

not originally envisaged as part of the control-flow behaviour. Our proposal combines

these concepts and incorporates them into a process meta-model, which we have

expressed in greater detail from our earlier work [23].

7 Summary

In this article we demonstrated how a small set of coordination concepts, in

combination with established object-oriented modelling techniques, enables the

design of highly flexible processes consisting largely of unplanned activities. In

particular we demonstrated how a small set of object types (i.e. Coordination Object,

Job Object and Referral Object) can be combined to capture different patterns of

flexibility. The key principle is that a Coordination Object defines “what can happen

during a case”, rather than “how should it happen”. Any constraints regarding which

objects can or should be created and when, are overlaid on top of the basic object

model. This is in contrast with mainstream process modelling paradigms based on

flowchart-like notations, in which the activities to be performed and their control-flow

relations form the backbone of a process model.

As previously discussed, the main focus of this article is on the design of process

models that capture the flexible creation of new objects with the intent of performing

unplanned activities at run-time. Of course, while flexibility is essential in domains

such as human services, there are situations where this flexibility should be

constrained. The proposed framework supports the definition of thresholds to

constrain the minimal and maximal number of JOB and ROB objects of various types

that should be started under a COROB of a given type (cf. the multiplicity constraints

of a signal).

In addition to this feature, one may need to define more sophisticated constraints. For

example, situations have been encountered that necessitate the definition of creation

regions. A creation region allows a model designer to establish when instances of a

given JOB or ROB type can be created under a COROB of a given type -- e.g. a ROB

corresponding to “Work Search” COROB should only be started after the “Health

Treatment” tasks have completed. Also, situations can occur where one needs to

constrain the number of JOBs or ROBs of different types that need to complete before

a COROB object moves to a completion state -- e.g., a COROB to handle a case for a

homeless family will not complete until the process created to deal with their

homelessness situation has closed.

The FlexConnect modelling tool enables process designers to create O-C process

models. A formalisation of the execution semantics for the FlexConnect meta-model

is presented as a CPN. To provide object models to the CPN, an export feature was

added to FlexConnect that creates an SML file which can then be loaded into the

CPN.

This research was supported by an Australian Research Council Linkage Project (LP0562363) co-

funded by FlowConnect Pty Ltd.

References

[1] M. Weske, “Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow

Management System”, in 34th Annual Hawaii International Conference on System Sciences (HICSS-

34), Maui, Hawaii - Track 7. E. Dennis, B. Werner, L. Palagi (Eds.), IEEE Computer Society, 2001.

[2] M. Pesic, M. Schonenberg, N. Sidorova, and W. van der Aalst, “Constraint-Based Workflow

Models: Change Made Easy”, in On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,

ODBASE, GADA and IS, R. Meersman and Z. Tari (Eds.), vol. 4803 of Lecture Notes in Computer

Science, Springer, 2007, pp. 77–94.

[3] B. Weber, S. Rinderle, and M. Reichert, “Change Patterns and Change Support Features in Process-

Aware Information Systems”, in 19th International Conference on Advanced Information Systems

Engineering, J. Krogstie, A. Opdahl, G. Sindre (Eds.), vol. 4495 of Lecture Notes in Computer Science,

Springer, 2007, pp. 574–588.

[4] P. Dadam, M. Reichert, S. Rinderle, M. Jurisch, H. Acker, K. Göser, U. Kreher, and M. Lauer,

“Towards Truly Flexible and Adaptive Process-Aware Information Systems”, in Information Systems

and e-Business Technologies, 2nd International United Information Systems Conference, R. Kaschek,

C. Kop, C. Steinberger, G. Fliedl (Eds.), vol. 5 of Lecture Notes in Business Information Processing,

Springer, 2008, pp. 72–83.

[5] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, “Towards Formal Analysis of Artifact-

Centric Business Process Models”, in Business Process Management, 5th International Conference, G.

Alonso, P. Dadam, M. Rosemann (Eds.), vol. 4714 of Lecture Notes in Computer Science, Springer,

2007, pp. 288–304.

[6] D. Müller, M. Reichert, and J. Herbst, “Data-Driven Modeling and Coordination of Large Process

Structures”, in On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA and

IS, R. Meersman and Z. Tari (Eds.), vol. 4803 of Lecture Notes in Computer Science, Springer, 2007,

pp. 131–149.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: elements of reusable object-

oriented software. Boston, MA, USA: Addison-Wesley, 1995.

[8] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1.

Springer-Verlag, 1997.

[9] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for dynamic changes in workflow

systems - a survey”, Data and Knowledge Engineering, vol. 50, no. 1, pp. 9–34, 2004.

[10] M. Reichert and P. Dadam, “ADEPTflex-Supporting Dynamic Changes of Workflows Without

Losing Control”, Journal of Intelligent Information Systems (JIIS), vol. 10, no. 2, pp. 93–129, 1998.

[11] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. van der Aalst, “Towards a Taxonomy of

Process Flexibility”, in Proceedings of the CAiSE’08 Forum, Z. Bellahsene, C. Woo, E. Hunt, X.

Franch, R. Coletta (Eds.), vol. 344 of CEUR Workshop Proceedings, CEUR-WS.org, 2008, pp. 81–84.

[12] W. van der Aalst, M. Adams, A. ter Hofstede, M. Pesic, and H. Schonenberg, “Flexibility as a

Service”, Database Systems for Advanced Applications, DASFAA 2009 International Workshops:

BenchmarX, MCIS, WDPP, PPDA, MBC, PhD, L. Chen, C. Liu, Q. Liu, K. Deng (Eds.), vol. 5667 of

Lecture Notes in Computer Science, Springer, 2009, pp. 319-333.

[13] W. van der Aalst and A. ter Hofstede, “YAWL: Yet Another Workflow Language”, Information

Systems, vol. 30, no. 4, pp. 245–275, 2005.

[14] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst, “Worklets: A Service-Oriented

Implementation of Dynamic Flexibility in Workflows”, in On the Move to Meaningful Internet

Systems: CoopIS, DOA, GADA and ODBASE, R. Meersman and Z. Tari (Eds.), vol. 4275 of Lecture

Notes in Computer Science, Springer, 2006, pp. 291–308.

[15] J. Klingemann, “Controlled Flexibility in Workflow Management”, in Proceedings of the 12th

International Conference on Advanced Information Systems Engineering (CAiSE), B. Wangler and L.

Bergman (Eds.), vol. 1789 of Lecture Notes in Computer Science, Springer, 2000, pp. 126–141.

[16] J. Küster, K. Ryndina, and H. Gall, “Generation of Business Process Models for Object Life Cycle

Compliance”, in Proceedings of the 5th International Conference on Business Process Management

(BPM), G. Alonso, P. Dadam, M. Rosemann (Eds.), vol. 4714 of Lecture Notes in Computer Science,

Springer, 2007, pp. 165–181.

[17] G. Wirtz, M. Weske, and H. Giese, “The OCoN Approach to Workflow Modeling in Object-

Oriented Systems”, Information Systems Frontiers, vol. 3, no. 3, pp. 357–376, 2001.

[18] W. van der Aalst, M. Weske, and D. Grünbauer, “Case handling: a new paradigm for business

process support”, Data and Knowledge Engineering, vol. 53, no. 2, pp. 129–162, 2005.

[19] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou, “Declarative workflows

that support easy modification and dynamic browsing”, in Proceedings of the international joint

conference on Work Activities Coordination and Collaboration (WACC), D. Georgakopoulos, W.

Prinz, A. Wolf (Eds.), ACM, 1999, pp. 69–78.

[20] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki, “Managing escalation of

collaboration processes in crisis mitigation situations”, in Proceedings of the 16th International

Conference on Data Engineering (ICDE), D. Young (Ed.), IEEE Computer Society, 2000, pp. 45–56.

[21] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros, “Workflow Patterns”,

Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[22] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu, “Generating Business Process

Models from Object Behaviour Models”, Information Systems Management, vol. 25, no. 4, pp. 319-

331, 2008.

[23] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu, “Modelling Flexible Processes

with Business Objects”, In 11th IEEE Conference on Commerce and Enterprise Computing (CEC

2009), B. Hofreiter and H. Werthner (Eds.), IEEE Computer Society, 2009, pp. 41-48.

[24] T. Halpin, Information modeling and relational databases: from conceptual analysis to logical

design. Morgan Kaufmann Publishers Inc., 2001.

[25] M. Schrefl and M. Stumptner, “On the Design of Behavior Consistent Specializations of Object

Life Cycles in OBD and UML”, In Advances in Object-Oriented Data Modeling, M. Papazoglou, S.

Spaccapietra, Z. Tari (Eds.), MIT Press, 2000, pp. 65-104.

[26] M. Schrefl and M. Stumptner, “Behavior-consistent specialization of object life cycles”, ACM

Transactions on Software Engineering Methodology (TOSEM), vol. 11, no. 1, pp. 92-148, January

2002.

[27] J. D. Ullman, Elements of ML Programming. Prentice-Hall, New Jersey, 1998.

