Complete and Interpretable Conformance
Checking of Business Processes

Luciano Garcia-Banuelos, Nick R.T.P. van Beest, Marlon Dumas, Marcello La Rosa and Willem Mertens

Abstract—This article presents a method for checking the conformance between an event log capturing the actual execution of a
business process, and a model capturing its expected or normative execution. Given a process model and an event log, the method
returns a set of statements in natural language describing the behavior allowed by the model but not observed in the log and vice
versa. The method relies on a unified representation of process models and event logs based on a well-known model of concurrency,
namely event structures. Specifically, the problem of conformance checking is approached by converting the event log into an event
structure, converting the process model into another event structure, and aligning the two event structures via an error-correcting
synchronized product. Each difference detected in the synchronized product is then verbalized as a natural language statement. An
empirical evaluation shows that the proposed method can handle real datasets and produces more concise and higher-level difference
descriptions than state-of-the-art conformance checking methods. In a survey designed according to the technology acceptance
model, practitioners showed a preference towards the proposed method with respect to a state-of-the-art baseline.

Index Terms—process mining, conformance checking, process model, event log, event structure.

1 INTRODUCTION

ROCESS mining [1] is a family of methods concerned

with the analysis of event logs produced by software
systems that support the execution of business processes.
Process mining methods allow analysts to understand how
a business process is actually executed on top of the software
system, and to detect and analyze deviations with respect to
performance objectives or normative executions.

The main input of a process mining method is an event
log of a business process. An event log is a set of traces, each
consisting of the sequence of event records produced by one
execution of the process (a.k.a. a case). An event denotes the
start, end, abortion or other relevant state change of a task.
As a minimum, an event record contains a timestamp, an
identifier of the case to which the event refers, and an event
class, that is, a reference to a task in the business process.

This article is concerned with a recurrent process mining
operation, namely business process conformance checking [1].
Given an event log recording the actual executions of a
business process, and given a process model capturing its
intended or normative executions, the goal of conformance
checking is to pinpoint and to describe differences between
the behavior observed in the event log and the behavior
captured in the process model.

Business process conformance checking is used in a
variety of settings, including compliance auditing, model
maintenance and automated process model discovery. In
the context of compliance auditing, a typical task is to
detect deviations in the process execution with respect to

e L. Garcia-Bafiuelos and M. Dumas are with the University of Tartu,
Estonia.
E-mail: {luciano.garcia, marlon.dumas}@ut.ee

o N.R.T.P. van Beest is with Data61, CSIRO, Brisbane, Australia.
E-mail: nick.vanbeest@data61.csiro.au

e M. La Rosa and W. Mertens are with the Queensland University of
Technology, Australia.
E-mail: {m.larosa, w.mertens }@qut.edu.au

a normative model, that is, discovering behavior observed
in the log that does not fit with what the model stipulates
(i.e. unfitting behavior). In the context of process model
maintenance, conformance checking allows one to identify
both behavior observed in the log that does not fit with
the model (unfitting behavior) as well as behavior observed
in the model but not in the log (additional behavior). The
former situation indicates that the model may need to be
extended to capture the unfitting behavior, while the latter
situation suggests that some execution paths in the process
model have become spurious, meaning that these paths are
no longer used and may be pruned if they are found to have
lost relevance. Finally, conformance checking is used in the
context of iterative automated discovery of process models.
In this setting, an initial process model is discovered from
the event logs using one of various existing automated pro-
cess discovery algorithms. Conformance checking is then
applied to assess the extent to which this process model
captures all the behavior in the log as well as the amount of
additional behavior allowed by the model but not observed
in the log. Given the output of conformance checking, the
discovered process model may be adjusted by restricting
its behavior in order to remove paths in the model that are
never observed (to avoid over-generalization) or conversely,
by extending the model in order to capture behavior ob-
served in the log but not captured in the model [2], [3]. In
summary, conformance checking allows analysts to monitor
the use of a software system by process workers in order
to detect undesired deviations, to align the model so as to
reflect reality, or to reverse-engineer an accurate model of
the process that is being executed on top of the system.
These tasks in turn support the continuous alignment of the
intended process and the supporting software system [4].
Previous approaches to business process conformance
checking are designed to identify the number and the lo-
cation of the differences between the model and the traces

in the log, rather than providing a diagnosis that would
allow analysts to understand these differences. For example,
these approaches can identify that there is a state in the
process model where the model has additional behavior not
observed in the log, but without describing this additional
behavior. Similarly, these approaches can find points in a
trace where the behavior observed in the trace deviates from
the model, but without explaining what behavior the trace
has that the model does not.

This article addresses these limitations by proposing a
method for business process conformance checking that: (i)
identifies all differences between the behavior in the model
and the behavior in the log; and (ii) describes each difference
via a natural language statement capturing task occurrences,
behavioral relations or repeated behavior captured in the
model but not observed in the log, or vice-versa.

The proposed method, namely behavioral alignment, is
built on the idea of representing process models and event
logs using a unified model of concurrent behavior, specif-
ically event structures [5]. In other words, both the input
process model and the event log are transformed into
event structures. The two resulting event structures are
then aligned via an error-correcting synchronized product
that identifies all the behavioral differences between the
process model and the event log. This synchronized product
is used as a basis for enumerating the differences and
verbalizing them as natural language statements. The choice
of event structures is driven by the fact that they allow us to
characterize the detected differences in terms of behavioral
relations corresponding to well-accepted elementary work-
flow patterns [6], namely causality (sequence pattern), con-
currency (parallel split & syncronization patterns), conflict
(exclusive choice & merge patterns) and repetition (cycles).

As a running example, Fig 1 presents a model of a loan
application process using the Business Process Model and
Notation (BPMN). The process starts with the receipt of
a loan application. Two tasks are performed in parallel —
“Check credit history” and “Check income sources”. Next
the application is assessed, leading to two possible branches.
In one branch, a credit offer is made to the customer and
the process ends. In the other, a negative decision is com-
municated to the customer. In some cases, the customer is
asked to provide additional information. Once the customer
provides this information, the application is assessed again.

Consider now a log {ABCDEH, ACBDEH, ABDEH,
ABCDFH, ACBDFH, ABDFH} where, for convenience,
traces are represented as words over the single-letter labels
A-H shown in the top-right corner of each model element
in Fig 1. Given this log, the proposed method identifies the
following differences: (i) task C is optional in the log; (ii)
the cycle including IGDF is not observed in the log. The
first statement characterizes the behavior observed in the
log but not in the model, while the second characterizes the
behavior captured in the model but not observed in the log.

The rest of the article is structured as follows. Section 2
discusses previous work on conformance checking. Sec-
tion 3 introduces event structures so as to make the article
self-contained. Next, Section 4 gives an overview of the
proposed conformance checking method, which relies on
the construction of event structures from process models
and from event logs (Section 5), a partially synchronized

Check
credit
history

Make
credit offer

Notify
rejection
Receive G Request I
additional information additional information

Fig. 1: Example: loan application process model

Credit
application
processed

Credit
application
received

Check
income
sources

outright
rejection

product of event structures (Section 6) and a method for
extracting and verbalizing differences from the partially
synchronized product (Section 7). Section 8 presents an
empirical evaluation using both synthetic and real logs
as well as a usability survey with process management
researchers and professionals. Finally, Section 9 summarizes
the contributions and outlines directions for future work.

2 BACKGROUND AND RELATED WORK

The purpose of conformance checking is to identify two
types of discrepancies:
1) Unfitting log behavior: behavior observed in the log
that is not allowed by the model.
2) Additional model behavior: behavior allowed in the
model but never observed in the log.

The identification of unfitting log behavior has been
approached using two types of methods: replay and trace
alignment.

Replay methods take as input one trace at a time and
determine the maximal prefix of the trace (if any) that can
be parsed by the model. When it is found that a prefix can
no longer be parsed by the model, this “parsing error” is
corrected either by skipping the event and continuing with
the next one, or by changing the state of execution of the
process model to one where the event in question can be
replayed. A representative replay method is token fitness [7],
which replays each trace in the log against the process
model (represented as a Petri net) and identifies two types of
errors: (i) missing tokens: how many times a token needs to be
added to a place in the Petri net in order to correct a replay
(parsing) error; and (ii) remaining tokens: how many tokens
remain in the Petri net once a trace has been fully replayed.
De Medeiros [8] proposed two extensions of this technique:
continuous parsing and improved continuous semantics fitness
(ICS). These extensions rely on the same principle, but
sacrifice completeness of the output in order to gain in
performance. Another extended replay method has been
proposed by vanden Broucke et al. [9]. This method starts
by decomposing the process model into single-entry single-
exit (SESE) regions, so that the replay can be done on each
region separately. This decomposition allows the replay to
be performed independently in each region, thus making
it more scalable and suitable for real-time conformance
analysis. It also produces more localized feedback, since
each replay error can be traced back to a specific region. An
analysis of different approaches to decompose the model
into regions for the purpose of measuring unfitting log
behavior is provided in [10].

A general limitation of replay methods is that error
recovery is performed locally each time that an error is

encountered. Hence, these methods might not identify the
minimum number of errors that can explain the unfitting
log behavior. This limitation is addressed by trace alignment
fitness [11], [12]. This latter method identifies, for each trace
in the log, the closest corresponding trace parsed by the
model and computes an alignment showing the points of
divergence between these two traces. The output is a set of
pairs of “aligned traces”. Each pair shows a trace in the log
that does not match exactly a trace in the model, together
with the corresponding closest trace(s) produced by the
model. For example given the model shown in Fig. 1 and
log {ABCDEH, ACBDEH, ABDEH, ABCDFH, ACBDFH,
ABDFH}, trace alignment produces two aligned traces: one
between trace ABDEH of the log and trace ABCDEH of the
model; and another between trace ABDFH of the log and
trace ABCDFH of the model. From this, the user can infer
that the unfitting log behavior is that task C is optional in
the log but always executed in the model.

The number of aligned traces produced by the above
method is often too large to be explored exhaustively. Vi-
sualizations are proposed to cope with large sets of aligned
traces. Fundamentally though, the limitation of trace align-
ment fitness (also shared with replay methods) is that it
identifies differences at the level of individual traces rather
than at the level of behavioral relations observed in the
log but not captured in the model. This observation is
one of the starting points for the method proposed in this
article. Instead of aligning traces produced by the model
with traces produced by the log, our idea is to compute an
optimal alignment between an event structure representing
the entire behavior of the model and an event structure
representing all the behavior observed in the log.

Methods to identify additional behavior include those
based on negative events and those based on prefix automata.
An exemplar of the former class is negative event preci-
sion [13]. This method works by inserting inexistent (so-
called negative) events to enhance the traces in the log. A
negative event is inserted after a given prefix of a trace if this
event is never observed preceded by that prefix anywhere
in the log. For example, if event ¢ is never observed after
prefix ab, then ¢ can be inserted as a negative event after ab.
The traces extended with negative events are then replayed
on the model. If the model can parse some of the negative
events, it means that the model has additional behavior.
This approach to detect additional behavior is however
heuristic: it does not guarantee that all additional behavior
is identified. An extension of this method [14] addresses its
scalability limitations and can also better deal with noisy
logs, but again it does not guarantee that all additional
behavior is identified.

A method to detect the presence of additional model be-
havior based on prefix automata is outlined in [15]. The first
step in this method is to generate a prefix automaton that
fully represents the entire log. Each state in this automaton
corresponds to a unique trace prefix. For each state S, in
the automaton, the corresponding trace prefix is replayed in
the model in order to identify a matching state S, in the
model. The set of tasks enabled in S,,, is then determined.
If there is a task enabled in state .S, in the model but not
in state S, in the automaton, this is marked as additional

3

model behavior by adding a so-called “escaping edge” to
state S, of the automaton. This edge is labelled with the
task in question and considered as a sink state in the au-
tomaton. The edge represents the fact that in state S, there
is additional behavior in the model that is not observed in
the log. This basic method suffers from two limitations: (i)
it cannot handle tasks with duplicate labels in the model
nor tasks without labels (so-called invisible tasks), which are
needed to capture decisions based on the evaluation of data
conditions; and (ii) it assumes that all traces in the log fit the
model. These limitations are addressed in [16]. The idea of
this latter method is to first calculate an alignment between
the traces in the log and traces in the model, using the trace
alignment technique mentioned above. This leads to a log
with aligned traces, which include invisible tasks. These
aligned traces and any prefix thereof can always be replayed
by the model. The prefix automaton is then computed from
the model-projection of the aligned traces rather than from
the original traces. The automaton is then used to detect
“escaping edges” in the same way as described above.

The methods described in [15] and [16] are able to
pinpoint states in the model where behavior is allowed that
is not present in the log. However, they cannot characterize
the additional allowed behavior, beyond stating that the
additional behavior starts with the execution of a given task.
For example, given the model in Fig. 1 and log {ABCDEH,
ACBDEH, ABDEH, ABCDFH, ACBDFH, ABDFH}, these
methods identify an escaping edge after a prefix in the
automaton that finishes with “Notify Rejection”. However,
they do not detect that there is repetitive behavior in the
model whereas there is no such repetitive behavior in the log
(e.g. in the model task “Assess application” can be repeated
whereas this repetition is not observed in the log).

To recap, existing conformance checking methods can be
characterized along the following dimensions:

e Scope: whether the method detects unfitting (Unfit-
ting) behavior, additional (Additional) behavior or both
(Both).

o Completeness (Comp.): whether the method detects a
complete (Complete) or a partial (Partial) set of differ-
ences within its scope.

o Unit of feedback: elementary unit of output of the
method; in other words, how does the method char-
acterize one difference between the model and the log?
The unit of feedback may be a missing or additional
token in a place (Tokens), a pair of (aligned) traces (2
x Traces), a negative event occurrence (Neg. events), an
escaping edge (Escap. edges) or a behavioral relation
between a pair of tasks (Behavioral rel.).

o Modality of feedback: whether the method produces vi-
sual feedback over the model (VisualM), visual feedback
over the traces (VisualT), or textual feedback (Text).

Table 1 characterizes the overviewed methods (including
the behavioral alignment method herein proposed) in terms
of the above dimensions. We observe that the method herein
proposed is the only one that covers both unfitting and
additional behavior (under the same conceptual umbrella).
It provides complete feedback and it is also the only one
to provide feedback in terms of behavioral relations. One
could combine a (complete) technique for unfitting behavior

and another one for additional behavior to obtain a hybrid
method that is comparable to ours except for the feedback
unit and modality. Accordingly, in the experimental eval-
uation, we compare our method with a combination of
the trace alignment and prefix automata methods. We opt
for trace alignment (as opposed to token fitness) because
it returns more detailed feedback. Indeed, whereas token
fitness only tells us the places in the model where there is
a parsing error for a given unfitting trace, trace alignment
gives us for each unfitting trace in the log: (i) one or all
of the closest corresponding traces in the model; and (ii)
the locations of the differences between the trace in the log
and the closest corresponding trace(s) in the model. On the
other hand, we opt for prefix automata because of its higher
accuracy compared to negative event precision.

Dimension Feedback | Feedback

Method Scope Comp. unit mod.
Token fitness [7] Unfitting | Complete Tokens VisualM
Continuous parsing [8] Unfitting Partial Tokens VisualM
ICS [8] Unfitting Partial Tokens VisualM
SESE replay [10] Unfitting | Complete Tokens VisualM
Alignments [11] Unfitting | Complete 2xTraces \\//1151‘1‘:11]\1;[
Neg. event prec. [13] Additional Partial Neg. events -
Prefix automata [16] Additional Partial Escap. edges | VisualM
Behavioral alignment Both Complete | Behavioral rel. Text

TABLE 1: Comparison of conformance checking methods

The method proposed in this paper relies on the con-
struction of an event structure from the model, an event
structure from the log, and the computation of a synchro-
nized product between these two event structures, from
which a set of differences are extracted and verbalized.
Some of these ideas are inspired from our previous work
on model-to-model comparison [17] and model-to-log com-
parison [18]. In our work on model-to-model comparison,
we developed an unfolding algorithm to create an event
structure from a process model and an algorithm to cal-
culate a synchronized product from two event structures
representing the behavior of two process models. This latter
algorithm however differs fundamentally from the algo-
rithm introduced in the present article because the algo-
rithm in [17] is not designed to produce complete feedback;
specifically, it cannot enumerate all differences when the
model contains repeating behavior, instead it is only able
to assert that a given task can occur multiple times in a
model and at most once in the other. In particular, the
technique in [17] cannot identify the start and the end
of the repeated behavior, while the one presented in this
paper can. Meanwhile, in [18] we presented an algorithm
to calculate a synchronized product of two event structures,
which is complete (it detects all differences) but it operates
over event structures representing finite behavior (that is
extracted from a log), while in the present article the event
structure extracted from the model can represent infinite
(cyclic) behavior. In summary, the synchronized product
proposed in this article is both complete and can handle
cyclic behavior in the event structure produced from the
process model. Additionally, the difference extraction and

1. There are two versions of the trace alignment technique: “one
alignment” and “all optimal alignments”. The former is more scalable
but produces only partial results (it may miss some differences) while
the latter produces complete results.

4

verbalization algorithm is finer-grained than the ones pre-
sented in [17] and [18]. In particular, the algorithm presented
here detects situations where a task in the model is observed
in the log but in a different state relative to the model, as
well as situations where a task in the model is substituted
by a task with a different label in the log.

In a previous short paper [19], we briefly sketched the
idea of using a synchronized product of event structures for
conformance checking. The present article elaborates this
idea by providing formal definitions and algorithms both
for the computation of the product and for the extraction
and verbalization of differences. The article also adds an
empirical evaluation and a comparison against existing con-
formance checking techniques.

3 EVENT STRUCTURES

A Prime Event Structure (PES) [5] is a graph of events,
where an event e represents the occurrence of an action (e.g.
a task) in the modeled system (e.g. a business process). If a
task occurs multiple times in an execution, each occurrence
is represented by a different event. The order of occurrence
of events is defined via three binary relations: i) Causality
(e < €') indicates that event e is a prerequisite for e’;
ii) Conflict (e#te€’) implies that e and e’ cannot occur in the
same execution; iii) Concurrency (e || €’) indicates that no
order can be established between e and ¢’. Formally:

Definition 1. A Labeled Prime Event Structure is the tuple £ =

(E,<,#,) where E is the set of events, < C E' x E is
a partial order, referred to as causality, # C E x E is an
irreflexive, symmetric relation, referred to as conflict, and
A: E — LU{r} is a labeling function.
The irreflexive version of causality is denoted as <. The
concurrency relation, in turn, can be derived from causal-
ity and conflict relations, i.e. | £ Ex E\ (< U <"1 U#).
Moreover, conflict is “inherited” via the causality rela-
tion, i.e. efte’ A < € = efte’ for e e e’ € E.
The relations <, <, # and || are together referred to as
behavioral relations.

Fig. 2 presents a variant of the process model introduced
in Fig. 1? and its corresponding PES £!. In the PES, nodes
are labelled by an event identifier and a task label, e.g.
“e9:C” tells us that event ey represents an occurrence of task
“C”. For brevity, we will often omit the event label. Causal
dependencies are drawn as solid arcs, whereas conflict
relations as dotted edges. In order to simplify the graphical
representation of an event structure, transitive causal and
hereditary conflict relations are not drawn. Every two events
that appear neither directly nor transitively connected are
considered to be concurrent.

An execution context (i.e. a “state”) in an event struc-
ture is described in terms of sets of events that can occur
together in an execution of the underlying system. Such
a set of events is called a configuration. Formally, we say
that a set of events C C FE is a configuration iff (i) C
is causally closed: for each event e € C, the configu-
ration C also contains all causal predecessors of e, i.e.

2. In this variant of the process, task C can be skipped — e.g. “Check
income sources” may not be required for existing customers — and
applicants cannot request for reviewing a rejected application.

es:E - eg:F er:E - eg:F
4 4 + 4
eg:)H ejo:H ej1:H eqa:H

(a) BPMN

(b) Prime event structure £*

Fig. 2: Sample process model and event structure

Ve' e B,ec C:e <e=¢ € C,and (ii) C is conflict free:
C' does not contain any pair of events in mutual conflict,
ie. Ve, € C = —(e#e). An event e is an extension of
a configuration C, denoted C @ e, if and only if C U {e}
is also a configuration. We distinguish between observable
and silent (or 7) events. In the following, we write C|y to
denote the restriction of configuration C' to its subset of
observable events, i.e. C|y = {e € C | A\(e) # 7}. We denote
by F(&) the set of all the configurations of £ and by Fp,(£)
the set of configurations that are maximal with respect to set
inclusion. Moreover, we define the concept of set of possible
extensions of a configuration C as PE(C) £ {e | C & e}.

For example, let C; be the set of events {eg,e1} -
highlighted in Fig. 2(b). Intuitively, the configuration C of
E' represents the state of computation in which tasks “A”
and “B” have occurred. Moreover, given the configuration
C1 we say that the computation can evolve by executing
an event from the set {eg, e3}, given that this set of events
corresponds to the possible extensions of C1, that is PE(C}).
Now, if we consider the occurrence event e3, we would
have to consider a new configuration, say Cy = {eg, €1, €3},
which we can also denote as C; & e3. Note that in the
context of configuration Cy the occurrence of ey is no
longer possible because the event es is in conflict with es.
Finally, in this same example the set of maximal configu-
rations is Fin (1) = {{eo, e1,e3,¢€5,€9}, {€0, €1, €3, €6, €10},
{eo,e1,e9,eq,e7,e11},{eo, e1,€2,€4,€5,€12}}.

We use the term local configuration of an event e to refer
to [e] £ {€' | ¢ < e}, and the term strict causes of an
event to refer to [e) £ [e] \ {e}. Finally, we say that events
e1 and ey are in immediate conflict, denoted eq#,es, if and
only if e;#eo and they are both possible extensions of the
same configurations. Formally, the latter property can be
verified by checking if [e;) U [e2] and [e;]| U [ez) are both
configurations or not.

4 OVERVIEW OF BEHAVIORAL ALIGNMENT

The proposed behavioral alignment method takes as input
a process model captured in the standard BPMN language
and an event log (cf. Fig. 3). In order to leverage Petri net-
based techniques for constructing event structures, the input
process model is first converted into a Petri net using the
transformation proposed in [20]. The resulting Petri net is
then unfolded into a prime event structure (cf. PES,, in
Fig. 3) using Petri net unfolding techniques [21]. Each event
in the resulting PES corresponds to an occurrence of a task in
the process model. The procedure for constructing an event
structure from a Petri net is outlined in Section 5.1.

[
ITT PES,
LA UNFOLD

In the model, “Add

Input AN Partially I~ penalty” occurs before
Model ALIGN Synchronized | “Appeal to judge”, while
Product (PSP) EXTRACT in the log they are
' DIFFERENCES concur[g,n,p,,\
PES, " Difference

statements

\: Event Iui; :\
\ \/ | MERGE
Vv

Fig. 3: Overall view of the behavioral alignment method

Meanwhile, the input event log is transformed into
another prime event structure (cf. PES; in Fig. 3) by first
transforming the set of traces in the log into a set partially-
ordered runs and then “prefix-merging” the resulting set of
runs. The procedure for constructing an event structure from
a log is elaborated upon in Section 5.2.

Given the prime event structures PES,, and PES; ob-
tained from the model and the log respectively, we compute
a so-called Partially Synchronized Product (PSP) of the two
event structures. In a nutshell, a PSP is a representation
of an error-correcting synchronized traversal of two input
PESs, such that when a discrepancy between the PESs is
detected, it is explicitly recorded and the traversal resumes
from a“suitable” configuration in each of the two PESs. The
procedure for calculating the PSP is presented in Section 6.

If two event structures PES,,, and PES; have a behavioral
difference of type unfitting log behavior, this difference will
be captured in a node of the PSP. Thus, we can enumerate
all unfitting log behavior by traversing their PSP. To expose
additional model behavior, we define a notion of coverage
of a PES extracted from a model by a PES extracted from
a log. The parts of PES,,, not covered by PES,; can then be
isolated and enumerated.

Differences between two event structures can be of sev-
eral types. For example, one type of difference is that a task
t is always executed according the model, but it is skipped
in some traces in the log. Another type of difference occurs
when two tasks ¢; and ¢, are causally related in the model
(e.g. t1 occurs always before t3), but the corresponding
events appear in any order in the log (i.e. sometimes ;
occurs before ¢2, sometimes the other way around). In order
to generate an interpretable difference diagnosis from the
PSP, we define a set of disjoint and complete mismatch
patterns, as well as rules to verbalize each mismatch pattern
as a natural language statement. The patterns and their
verbalization are presented in Section 7.

5 CONSTRUCTION OF EVENT STRUCTURES

This section shows how event structures are derived from a
Petri net and from an event log.

5.1 From Petri nets to PES

A Petri net is a bipartite graph, consisting of transitions
(rectangles), places (hollow circles), tokens (filled circles)
and arcs. A transition represents a system action (e.g. a
task). Each transition has a set of input places and a set
of output places. At a given point in the execution of a Petri
net, a place can hold a number of tokens. The distribution
of tokens across places on the net is called a net marking.
A transition is enabled and can “fire” when all its input

places have at least one token. When a transition fires, one
token is removed from each input place and one token is
put into each output place. A Petri net is called safe iff in
every possible marking each place holds at most one token.

Definition 2. A tuple (P, T, F, \) is a labeled Petri net, where
P is a set of places, T' is a set of transitions, with P N
T =0,F C(PxT)U(T x P)is a set of arcs, and
A: PUT — LU {7} alabeling function. A net marking
M : P — Ny is a function that associates a place p € P
with a natural number (viz., place tokens). A net system
N = (P,T,F, M) is a Petri net (P, T, F) together with
an initial marking M.

Places and transitions are conjointly referred to as nodes.
We write oy = {x € PUT | (z,y) € F} and ye = {z €
PUT | (y,z) € F} to denote the preset and postset of node y,
respectively. F't and F* denote the irreflexive and reflexive
transitive closure of F, respectively.

The dynamics of a net system can be expressed in terms
of markings. A marking M enables a transition ¢ if Vp € ot :
M (p) > 0. Moreover, the firing of ¢ leads to a new marking
M', with M’ (p) = M(p)—1ifp € et\te, M'(p) = M(p)+1
ifpete\ ot and M'(p) = M(p) otherwise. We also use
M - M’ to denote the firing of t. The marking M,, is
said to be reachable from M if there exists a sequence of
transtition firings 0 = t1ty...t, such that M by My BN
... = M,,. A marking M of a net is n-safe if M (p) < n for
every place p. A net system N is said n-safe if all its reachable
markings are n-safe. In the following we restrict ourselves to
1-safe net systems. Hence, we identify the marking M with
theset {p € P| M(p) = 1}.

Fig. 4: Petri net for BPMN model in 2(a)

Fig. 4 presents a Petri net corresponding to the BPMN
process model in Fig. 2(a). Each task, start and end event is
mapped into a transition, which carries the same label as the
corresponding BPMN construct. The Petri net additionally
contains some unlabeled transitions. These transitions cor-
respond to parallel gateways in the BPMN process model
as well as branches stemming out of decision gateways.
The materialization of gateways and decision branches as
unlabelled (a.k.a. silent or 7) transitions is an artifact of the
transformation from BPMN to Petri nets [20]. These unla-
beled transitions will be eliminated during the construction
of the event structure as discussed later.

An alternative approach to represent the dynamics of a
net system is by means of another Petri net that explicitly
represents all partially-ordered runs of the original net sys-
tem. A run of a system is a partially-ordered set of events
that can occur in one execution thereof. All the partially-
ordered runs can be accommodated in a single tree-like
structure, called branching process [5]. Fig. 5 presents the
branching process of the net system in Fig. 4.

Branching processes are intimately related with prime
event structures because they explicitly represent the same

Fig. 5: Branching process of the marked net in Fig. 4

set of behavioral relations. This fact is formally captured in
the following definition.

Definition 3. Let N = (P,T,F) be anetand z,y € PUT
two nodes in N.
o x and y are causal, written z <y vy, iff (z,y) € F'T,
o z and y are in conflict, denoted = #y y, iff 3¢,¢' € T :
t£t NetNet' LDA(t,x),(t',y) € F*,
o x and y are concurrent, denoted x || i y, iff neither x <y
Yy, nor y <y T, Nor rH#Ny.

Armed with the above, we can now provide a formal
definition of a branching process.

Definition 4. Let N = (P,T,F,M;) be a net system.
The branching process § = (B, E,G,p) of N is the net
(B, E,G) defined by the inductive rules in Figure 6.
The rules also define the function p : BUE — PUT
that maps each node in 3 to a node in V. Given the set
X C BUE, p(X) is a shorthand for {p(z) | x € X}.

p € My
b=(0,p) € B p(b) =p
teT B'CB B?Clz ofB)=set
e= (B t)e FE ple) =t
e=(B',t)ye E te={p1,...,pn}
bi = (t'.pi) € B p(bi) = pi

Fig. 6: Inductive construction of a branching process

The elements of B and E in a branching process 3 are re-
spectively called conditions and events. G in turn denotes the
flow relation of the branching process. Min (/) denotes the
set of minimal elements of B U E with respect to the transi-
tive closure of G and, hence, Min(3) corresponds to the set
of places in the initial marking of N, i.e., o(Min(B)) = M.
Labels on a net N can be carried over to its branching
process 3 by composing X and p, i.e., Ag £ Ay 0 p.

Clearly, the behavioral relations derived from the
branching process generate a prime event structure [5].
Events in the branching process correspond to events in the
event structure. Consequently, the notion of configuration
can be extrapolated from prime event structures to branch-
ing processes. Specifically, given a branching process 3 =
(Bg, Eg,Gga, \g) of a marked net N, the event structure £
of N is defined as E(N) £ (Ep, <p N E3,#5 N E3, Asli,)”’
The latter definition maps both observable and silent tran-
sitions to events in the event structure. In [17], the authors

3. We use A? to denote the cartesian product of a set A.

proved that silent events can be abstracted away (i.e. re-
moved) in a behavior-preserving manner, under a well-
known notion of behavioral equivalence, namely visible-
pomset equivalence.* The PES presented in Fig. 2(b) is the
one that corresponds to the branching process in Fig. 5 after
removing all silent events. Accordingly, in the rest of the
paper we assume, without loss of generality, that the event
structures we manipulate do not have silent transitions.

The branching process of a Petri net with cycles may be
infinite. In [21], McMillan showed that for safe nets a prefix
of a branching process fully encodes the behavior of the
original net. Such prefix of a branching process is referred
to as the complete prefix unfolding of a net. We will use 3,
to denote a maximal branching process and 3 to denote a
complete prefix unfolding of 3,,.

Definition 5. Let 8, = (Bm, Em, G, pm) be the maximal,
possibly infinite branching process of the net system N.

o A local configuration [e] of an event e in a branching
process is the set of events that causally precede e, i.e.
[e] ={e € E, | (¢,e) € G}

e The reachable marking of a local configuration, denoted
Mark(Je]), is the set of places in N that get marked
after all the transitions in o([e]) fire.

o Anadequate order <1is a strict well-founded partial order
on local configurations, such that [e] C [e/] implies
[e] < [e']°.

o An event e of a branching process is a cutoff event if there
exists a corresponding event €/, such that Mark([e]) =
Mark([e']) and [e’] < [e]. The pair cutoff/correspond-
ing events (e, ¢’) is referred to as a cc-pair.

o Let £y C E,, be the set of events of /3, such that e €
Ey iff no event ¢’ <g, e is a cut-off event. A complete
prefix unfolding By is the subnet of 3, having E; as set
of events.

The complete prefix unfolding for the net system in Fig. 4
(and its branching process in Fig. 5) is given in Fig. 7.

Fig. 7: Complete prefix unfolding of the marked net in Fig. 4

To illustrate the intuition behind a complete prefix un-
folding, let us consider the local configurations [ta] =
{t() :A, t1:T, tQZT} and |_t4.| = {t() :A, t1:7,t3:T, t4:C}. To ease
the tracking of events in the aforementioned local config-
uration from the unfolding in Fig. 7 back to events in the
branching process and to transitions in the net system in
Figures 4 and 5, we added labels ¢y, ¢;, etc., next to the cor-
responding graphical element (transition or event). Clearly,
the “future” of event t9, denoted [t 1), is isomorphic to that

4. This result holds on condition that every sink event in the event
structure is a labeled (non-silent) event — something that we can easily
ensure by adding, when needed, a “fake” labelled final event to the
Petri net from which the event structure is generated.

5. Several definitions of adequate order exist; we use the one defined
in [22], because it has been shown to generate compact unfoldings.

7

of t4. Indeed, the firing of the transitions that correspond

with the events in [t3] would lead to a marking where

places colored orange and yellow in Fig. 4 would hold a

token each, which would be the same making that would

produce the firing of the transitions that correspond with
set of events in [¢4]. Therefore, we can safely stop unfolding
the branching process once we reach t4:C provided that
we continue unfolding from t5:7 and onwards. Following

Def. 5, the pair (t4,t2) is called a cc-pair. Moreover, the

isomorphism on the future of the events in a cc-pair (e, f),

that is [e]ft and [f]f, will be denoted as Zf.1,rs7)- In

the graphical representation of unfoldings and PESs (as
introduced later), a cc-pair is indicated via a dashed red
arrow from the cutoff event to the corresponding event (cf.

for example the dashed red arc between t4 and ¢; in Fig. 7).
To represent the behavior specified by a BPMN process

model, we will use the prime event structure derived from

the complete prefix unfolding of the model’s Petri net. The
latter is herein called the PES prefix unfolding of a model and
is formally defined as follows:

Definition 6. Let By = (B, E;,Gy,p) be the complete
prefix unfolding of the net system N, with labelling
function Ag. Let E7f C Ey be the set of events of 3y
such that e € Ey iff e is labelled (i.e. Ag(e) # 7), or e is
cutoff or corresponding event. The PES prefix unfolding
of N, denoted £(N), is defined as:

- — —2 —2
S(N) £ (Ef,SgﬂEf ,#ﬁ N Ef ,Ag|?f)

From the previous definition
we can see that the computation

of a PES prefix unfolding is the v g(lA ~
same as that for a regular prime 1B 92:7 --- g3:C
event structure except for the fol- D S
lowing: (i) we keep track of cc- P 940 N
pairs, and (ii) for convenience, we G5iE renrenienies g6:F
do not abstract away a silent event A
when such event is either a cut- grH

off or a corresponding event. For
example, Fig. 8 presents the PES
prefix unfolding corresponding to
the marked net in Fig. 4 and, hence,
with the process model in Fig. 2(a).
Reasoning about possible executions of a PES prefix
unfolding is not convenient because some configurations
are not explicitly represented. To make it more convenient
to explore the configurations of a PES prefix unfolding, we
adapt to our setting the “shift” operation on net unfoldings
introduced in [23]. Intuitively, given a cc-pair (e, f), since
the futures of [e] and [f] are isomorphic, we can “shift”
from one configuration to the other. The shift operation is
thus a “step” function that allows us to move from one
configuration to another. This intuition is captured below.
Definition 7. Let (e, f) be a cc-pair of the PES prefix £ and
Z(1e1,17) the isomorphism from [e]{} to [f]{. Moreover,
let C' be a configuration of £. The (e, f)-shift of C,
denoted S, 5)(C), is defined as follows:

S(e.n(C) = [FTUZre1, 1) (C\ Tel)

We say that S(. ;) (C) is a backward shift iff [f] C [e],
that is, the corresponding event f is included in the local

Fig. 8: PES prefix un-
folding £, of the net
in Fig. 4

configuration of the cutoff event e, otherwise S(. 7)(C) is
called a forward shift. Moreover, an event e is said a back-
ward cutoff event iff it entails backward shift. Intuitively, a
backward shift “moves back” to a configuration that has
already be observed in the past of the run.

With abuse of notation, we will use the following variant:

= c if e is not cutoff event
Se(C) = { Se corr(e)) (C) otherwise
Consider for example configuration C =

{90°A, g1:B, g3:C} of event structure &, in Fig. 8. (4
contains the cutoff event g3, which is associated with the
ce-pair (g3, g2). Given that Sy, ,1(C1) = {g0:A, 91:B, g2:7},
we infer that g5:D is a possible extension of C'.

Esparza [23] shows that any property that holds over a
branching process (and thus on a maximal PES) also holds
on its prefix unfolding by applying a sequence of shift oper-
ators. In other words, if we wish to compare a maximal PES
with a PES prefix unfolding, we can apply shift operations
on the PES prefix in order to materialize behavior that is not
explicitly represented. This latter observation is used later
when simultaneously traversing a PES prefix derived from
a process model and a maximal PES derived from a log.

The extraction of a complete prefix unfolding from a
Petri net (and the size of the prefix unfolding itself) is
exponential on the size of the net [23]. This entails in turn
that the derivation of the event structure from an input
BPMN model is worst-case exponential.

5.2 From log to PES

As stated in Section 1, an event log consists of a set of traces
such that each trace records one execution of a process. A
trace is a totally ordered sequence of events. Each event
corresponds to a transition in the lifecycle of a task (e.g.
a task became enabled, the execution of a task started or
completed). Event logs are formally defined as follows:
Definition 8. Let L be a set of task labels and let £ be a
universe of possible event occurrences, each denoting a
transition in the lifecycle of some task. Let A : £ — L be
a labeling function that maps every event occurrence to
a task label. A trace o of length n is a function that maps
each i € [0,n — 1] to an event (occurrence) in E, C FE.
For convenience, we will refer to a trace and its elements
as follows: 0 = (A(eg), Ae1), ..., A(en—1)). An event log
L is a set of traces, i.e. L € P(E™*).

In previous work [18], we presented a method to gen-
erate a PES from an event log. The method consists of
two steps. First the event log, seen as a set of traces, is
transformed into a set of partially-ordered runs by invoking
a concurrency oracle. A concurrency oracle is a function that
given a log, returns a set of pairs of event labels that are in a
concurrency relation. Given a concurrency oracle, each trace
is turned into a run by relaxing the total order induced by
the trace into a partial order such that two events are not
causally related if the concurrency oracle has determined
that they occur concurrently. Several approaches have been
proposed to extract concurrency relations between pairs of
events from an event log [24], [25], [26]. Here we use the a+
concurrency oracle [26] which is a refinement of the well-
known « concurrency oracle [25], but other approaches can

8

be similarly used. Two event labels A and B appearing in
an event log are a—concurrent if A is sometimes observed
immediately after B and vice-versa. The latter intuition is
formalized as follows [25]:

Definition 9. Let L be an event log over the set of event
labels £ and o € L be a log trace. A pair of tasks with
labels A, B € L are said to be in alpha directly precedes
relation, written A <, () B, if there exists a trace 0 =
<A(60), A(@l), ey)\(6n_1)> in L, s.t. A=)\(61) and B =
A(ei+1). A pair of tasks A, B € L are alpha concurrent,
written A Ha(L) B,if A <a(r) BN B <a1) A.

The notion of a—concurrency is inaccurate when the
process model that generated the log contains loops in-
Volving one or two tasks. For instance, an event trace
(A,B,C,B,C,B,D) might be generated by a process
model that contains a loop involving tasks B and C. An
« oracle would assert that B ||o(z) C, which is false. The
a+ concurrency approach extends the basic a oracle such
that (1) short loops involving one task are identified and
removed from the event log in a preprocessing step; and (2)
concurrency detected on pairs of tasks that are involved in
short loops are rectified in a post-processing step.

Once the concurrency relation is computed, the set of
runs are merged into an event structure in a lossless manner,
meaning that the set of maximal configurations of the result-
ing event structure is exactly equal to the set of runs. In this
way and modulo the accuracy of the concurrency oracle,
we ensure that the resulting event structure is a lossless
representation of the input log.

ag:A bg:A CoIA doZA
Y Y Y N + +
FX%CEDEH Rfef 1\37 a1B a3:C b:B b::C c1:-B diB
2%

ABCDFH | t, | 3 N i v v
ACBDEH ts 2 a3.D bg.D CQ.D d2.D
ACBDFH | t4 | 2 ¥ + ¥ v
ABDEH ts 3 aq:E by:F c3:E ds:F
ABDFH te 3 + 4 + +
asH bs:H cq:H dy:H

(a) Event log (b) Runs

{ao, bo, co, do }:A
« ~
{a1,b1,¢1,d1}B {az,b2}:C
e 1
{c2,d2}:D {as,b3}:D
v N\ v N
{CK}E {dS}F {a4}:E {b4}F
N + 1 N
{ca}H {ds}H {as}H {bs}H

(c) Induced PES
Fig. 9: Example of construction of a PES from a set of traces

For example, consider the log given in Fig. 9(a), where
the last column lists the number of instances of each distinct
trace. Using the o oracle we conclude that event classes B
and C are concurrent. Thus, we construct the set of runs
in Fig. 9(b), where the notation e:A indicates that event ¢
represents an occurrence of event class A in the original log.
By merging events with the same label and the same history
(i.e. same prefix), we obtain the PES in Fig. 9(c), where the

notation {e1, ez . ..e;}:A indicates that events {ej,eq...¢;}
represent occurrences of event class A in different runs.

The algorithms to transform traces into runs (given a
concurrency oracle) and to merge runs into event structures,
are illustrated in [18]. This latter paper also shows that the
complexity of this transformation is O(|o,,|?), where |0y, | is
the length of the longest trace in the event log.

6 PARTIALLY SYNCHRONIZED PRODUCT

The Partially Synchronized Product (PSP) of two event struc-
tures [17] is a state machine in which the states correspond
to pairs of configurations visited during an error-correcting
synchronized traversal of the two input event structures,
starting from their empty configurations and ending with all
pairs of maximal configurations of the two event structures.
A technique for constructing a PSP of two acyclic PESs
(without cc-pairs) has been proposed in [17]. In this section,
we extend the notion of PSP and the PSP construction
technique proposed in [17] in order to handle the case where
one of the input event structures is the PES prefix of a
process model (and thus contains cc-pairs), and the other is
a PES derived from an event log as discussed in Section 5.2.

To illustrate the notion of PSP,
consider the pair of event struc-
tures shown in Fig. 10. The syn-
chronized product starts with the

aop A

{

a1B bo:A b1:B
empty configurations. In this initial 1 \ /
state, events ag from £* and by and 4:C bo:C
by from E° are enabled. Since ay
i (a) &« (b) £°
and by carry the same label (i.e.

A), an event match is asserted in
the PSP via a so-called “match”
operation. This operation leads to a
state corresponding to the pair of configurations containing
the occurrences of ag and bg. In this state of the PSP, events
a1 from £% and b; from E are enabled. Although events a;
and b, carry the same label (i.e. B), they cannot be matched
because of the discrepancy in the causal relation of the PESs:
in £% it holds that ag < a; whereas in &? it holds that
bo || b1. In other words, there is an error in the synchronized
product of the two event structures. To recover from this
error, events a; and b; are declared as “hidden” in the
PSP and the synchronized simulation can proceed. This
example illustrates two requirements for two events to be
matched in the PSP, namely that an event matching must be
label preserving (i.e. both events must have the same label)
and order-preserving (i.e. event matchings in the PSP are
consistent with the causal relation of the input PESs).

Fig. 11 presents a fragment of the PSP of event structures
£ and &’ shown in Fig. 10. In the general case, the PSP of
a pair of event structures is not commutative. Therefore,
we fix the following convention: the left-hand side PES is
the one that is derived from an event log, while the PES
derived from a process model is always at the right hand
side. Correspondingly, we use “lhide” to denote the hiding
of an event from the PES at the left-hand side and “rhide”
when the hidden event comes from the other PES.®

Fig. 10: Sample PESs

6. In Fig. 11 the operations are equipped with parameters indicat-
ing the affected event. However, this is shown for understandability
purposes only, as the event is implied by the difference in the configu-
rations in the state and as such it is not included in Algorithm 1.

Cl = 0’5: 0 rhide (b:A)

Cr=0,Cr=0

og =

T
rhide (b:B)

match (A/ Thide (ag:A)
o) = C' = {ao}, € = {(a0. bo)a} C'={ao}, £ =0
C" = {bo}, C" = {bo} Ccr=0,C" =10
J’Ihide (a1B) lmatch B)
Cl= {ag, a1}, §f {(ao,bo)a} Cl= {ag, a1}, §f {(a1,b1)s}
€ = {bo}, C" = {bo} cr={b},C" = {b1}
lrhido (b1:B) lrhido (bo:A)
C' = {ag, a1}, € = {(ao, bo)a} C' = {ao, a1}, € = {(a1,b1)8}
Cr = {by,b1}, C" = {bo, br } C" = {bo, b1}, C" = {bo, b1}

lmatch ©) lmatch ©)
Cl = {ag,a1,a2}, € = {(ao, bo)a; (az, ba)c} C!' = {ag, a1, as}, € = {(ar,b1)s, (a2, b2)c}

C" = {by, b1, b2}, C" = {bo, b1, b2} C" = {by, b1, b2}, C" = {bo, b1, b2}

Fig. 11: Fragment of the PSP of £ and £°

Note that the fragment of the PSP shown in Fig. 11 has
two branches. The leaf state in each branch corresponds to
states that can no longer be extended, because their state
refers to maximal configurations. Informally, the left-hand
side branch states that, without considering the occurrence
of events a; and by, in both PESs we observe the execution
of a task A followed by the execution C. If we consider
the other branch, we would have a somehow symmetric
conclusion. We note also that we could also find in the PSP
a sequence of PSP operations hiding all the events from both
event structures. However, such sequence would not be
informative. Instead, we are interested only in sequences of
PSP operations that maximize the number of event matches
or, symmetrically minimize the number of hide operations,
which we will call optimal event matchings.

From a conceptual point of view, a PSP is a directed
acyclic graph. A node in a PSP represents a state in the
synchronized simulation. An arc in a PSP, on the other hand,
represents a transition between states in the simulation and
is labeled by the type of operation that was used in the
transition. Formally, a PSP is denoted as a tuple (X, OP, A),
where Y is a set of states; OP is the set of operations in a
PSP, i.e. OP £ {match, lhide, rhide}; and A C X x OP x X
is the set of directed labeled arcs. A state in the PSP stores
the configurations of the input event structures, as a way
to keep track of the moves in the synchronized simulation.
Given a pair of event structures £' and €7, astate o € ¥
of a PSP is defined as a tuple (Cl¢,0m,Cr). There, C!
and C" represent configurations from F (€Y and F(E7),
respectively. Since £ is a PES prefix, C” may be the result
of a shift operation. In the tuple, C" is a multiset of events
from £, which records not only the set of events but also
the number of event occurrences during the synchronized
simulation. Finally, ¢ C E(&') x E(E") holds a set of
event pairs, representing the event matches that have been
observed in a path from the root state of the PSP to state o.

We approached the problem of computing the set of
optimal event matchings in the PSP with Algorithm 1, which
is based on the well-known A* heuristic search [27]. The
problem at hand can be naturally mapped into a multi-
objective heuristic search. However, as for other domains,
the memory requirements of a multi-objective approach
are high. As a result, Algorithm 1 is designed as a single-
objective heuristic search, which matches one maximal con-

figuration from the event log at a time. The result of this
algorithm is later combined to produce the entire PSP. With
abuse of notation, we use C < C’ to denote the extension
of the configuration C' with event e, such that ¢’ = C @ e.

Algorithm 1 Partially synchronized product

1: function BUILDPSP(E!, €7, Crln)

2 OPEN <+ {(0,0,0,0)}

3: Initialize PSP

4: while OPEN # 0 do

5: Choose o = (C!,¢,C", C™) € OPEN, with min. (o, CL,)
6 OPEN + OPEN \ {c}

7 return (PSP, o) if C! € Fm(E) A CT € Fin(ET)

ot ov,F LT st
8: foreach | cc !l AX(e)=A"(f) A do
FINDCAUSALINC(PSP, o, ¢, f) = L
9 o' (CV,€U{(e,)}, CTU{f},S5(C))
10: ADDARC(PSP, (o, “match”, o))
11: PUSH(OPEN, ¢’)
12: end for
13: for each C! 5 OV, st.e € CL, do
14: o'« (CV,¢,Cm,CT)
15: ADDARC(PSP, (o, “lhide”, o))
16: PUSH(OPEN, ¢’)
17: end for
18: for each C™ i) C™ do -
19: o'+ (CLECTU{f},Sf(C™))
20: ADDARC(PSP, (o, “rhide”, o))
21: PUSH(OPEN, ¢’)
22: end for

23: end while
24: end function

Given two event structures £ and €7, and a maximal
configuration C%, of £, Algorithm 1 proceeds as follows. It
starts by considering the root state (all configurations are
set to empty set) in line 2 and enters a while loop in line 4,
which will be repeated as long as there is an unprocessed
state in OPEN. In line 5, a state o is taken from OPEN such
that ¢ has minimum cost ¢. The cost function ¢ will be
discussed later. In lines 8-12, the algorithm identifies the set
of event matches. To this end, given the configurations c!
and C7 in the state o, we iterate over the set of possible
extensions for both configurations. When a pair of events
is found to be label-preserving and order-preserving, a new
state ¢’ is instantiated and an arc (o, match, ¢’) is added to
the PSP in line 10. Label preservation is straightforwardly
checked by comparing the event labels, i.e. Al(e) = A"(f).
Order preservation, on the other hand, is checked by calling
the function FINDCAUSALINC: if this function returns L a
pair of events is found order-preserving in state o. The
function FINDCAUSALINC will be further discussed later
in this Section. Then, the new state o’ is added to OPEN.
Note that the configuration C” is updated accordingly (i.e.
it is shifted) when the event f is a cutoff event. Then, a
hide operation is processed, i.e. a new state and an arc are
added to the PSP, for each possible extension found in the
configuration C! (lines 13-17) and C" (lines 18-22). Note that
we restrict the processing of events from £! to those that are
part of C!,. This is done by checking f € C. in lines 8
and 13. In this way, the search is explicitly directed to find
an optimal matching for C%. The algorithm stops in line 7
when it first reaches a state where C! has been matched.

10

Let us now focus on the problem of checking if a candi-
date event match is order-preserving. A key challenge is to
consider the shift operations that have occurred in the path
that leads to a given state in the PSP. Algorithm 2 provides
a solution to this problem.

Algorithm 2 Find causally inconsistent events in the PSP
w.r.t. a given pair of events

1: function FINDCAUSALINC(PSP, o, ¢, f)

2 cutoffs « 0

3 while 3(opreq, op, o) € A(PSP) do

4 (¢/, f') < GETDELTAEVENTS(0, Opred)
5: if f is cutoff event then

6: cutoffs < cutoff o f’

7 f TS

8 end if

9 if op is “match” then

10: return (e, e, f, f', cutoffs) if ~(e’ <e < f' < f)
11: end if

12: 0 < Opred

13: end while

14: return L

15: end function

The algorithm backward-traverses the PSP from a given
state to the root state, checking if the input pair of events are
causally consistent with the matched events as recorded in
a path of the PSP. If a pair of events is found that is causally
inconsistent, the algorithm returns a tuple containing the
input events (possibly updated to compensate the effect
of shift operations), the causally inconsistent events, and
the sequence of cutoff events that are traversed during the
search. This algorithm is used later in the characterization
of behavior mismatches as explained in Section 7.

coiA do:A

/N AN
c1:D cq:G di:B de dsz:D

l J JSNINSN
co:E ds:C (\ds:H dG:H‘_ d7E
! /\ 1 ------ :
c3'F csH dg:F «++ dg:7

\ BRI

cel dyocl

(a) &° (b) &4

Fig. 12: Sample PESs (@ is the PES prefix of (c))

To illustrate Algorithm 2, we will use the pair of PESs in
Fig. 12. Here, £7 is the PES prefix of the Petri net shown
in Fig. 12(c). Assuming that the PSP, shown in Fig. 13,
has been computed up to state sz, events ¢z of £¢ and dy
of £4 are enabled. As a result, function FINDCAUSALINC
is called by Algorithm 1 (line 8). In the call, the input
parameter PSP refers to the excerpt of the PSP shown of
Fig. 13 comprising states sg, s; and s; o refers to state
so; € refers to ¢y and f to dy. In line 2, variable cutoffs —
which stores the sequence of cutoff events found during the
traversal — is initialized with an empty sequence. The while

€' ={eo}, € = {(co do)a}
C" = {do}, C" = {do}

match (D)

C' = {eo,e1}, € = {(co. do)a, (c1, ds)o} ‘

C" = {dy,d3}, C" = {do, d3}

53 =

match (E)

C' = {co, c1,¢2}, & = {(co,do)a, (1, d3)o, (2, d7)e}

53 :‘ C" = {do, d3, dr}, C" = {do, dy, ds}

match (F)
51 :‘ C' = {co, ¢1,¢2,¢3}, & = {(co, do)a, (c1,d3)o, (c2, d7)e, (c3,do)r} ‘

C" = {do, d3,dr.do}, C" = {do, dy,das,ds}

match (G)

C' = {eo, e1,¢2,¢3,¢a}, € = {(co, do)as (c1,d3)o, (e2,dr)E, (c3, do)r, (ca,da)a} ‘

C" = {do, d3, dr.dy, ds}, C" = {do, d. dy, ds, ds}

Thide (c5:H)

56 = C' = {co,e1,¢2,¢3,c4,¢5}, € = {(co, do)a, (c1, ds)p, (e2,dr)e, (¢3, do)F, (ca, d2)a }
C" = {dy,ds,d7,dg,ds}, C" = {do.dy,dy,ds,ds}

rhide (d5:H)
6 = C'={cop,c1,09, 03, 04,05}, € = {<CO-(IO)A~/ECI«(13)D- (c2,dr)e, (c3,do)F, (ca, d2)a }
! C" = {do,d3,d7,dy,da,ds}, C" = {do,dy,dy, dg,d,ds5}
match (1)
S5 = Cl= {co,c1,¢2,¢3,04,05,¢6}, € = {(CO-dO)A~(Q’~\d3)Dy (e2,d7)e. (e, do)F, (ca, d2)a, (¢, dio)i}
C" = {dy,ds, dr,dg, ds, d5,dro}, C" = {do, dy, d1,ds, d2, d5,d1o}

Fig. 13: Excerpt of the PSP of £¢ and £¢

loop in lines 3-13 traverses the PSP backwards, processing
one arc from the input PSP at a time. In the first iteration,
the algorithm analyzes arc (s1,“match”, s2). Next, in line
4, function GETDELTAEVENTS is called to determine the
set of events involved in the operation associated with arc
(s1,“match”, s2). This function GETDELTAEVENTS can be
straightforwardly implemented by computing the difference
of C' and C" in the states sy and s;. In this case, the
function returns and set ¢’ = ¢; and f’ = dg3, respectively.
Then, the block in lines 9-11 is executed because op is a
“match” operation. Let us consider the expression in line
10, i.e. =(¢/ < e & f' < f), which in this case is false,
because it holds that ¢; < ¢z and d3 < dy. Clearly, the latter
condition checks the consistency of the causal relations of
input events (e.g. a pair of events that form candidate event
match to be added to the PSP) with all the event matches
recorded in the PSP that precede the state that activated the
input events. In addition to validating the requirement of
order preservation, as explained before, this function also
returns the pair of events for which causal consistency does
not hold if any pair is found. The first iteration concludes
by updating o with the value s; in line 12. In the second
iteration, the algorithm processes arc (s, “match”, sq) in
a similar way as in the first iteration. Since ¢y < ¢y and
dp < d7 hold true, order preservation is also decided true.
This is the last iteration of the loop and the function returns
1, indicating the absence of causal inconsistencies.

Let us now assume that the PSP has been computed
up to state s5 and function FINDCAUSALINC is called with
events e = ¢5 and f = ds. In this case, this function pro-
cesses the arcs associated with operations “match (G)” and
“match (F)” in a similar way as described before. We further
analyze the iteration where FINDCAUSALINC processes the
arc associated with operation “match (E)”. In this iteration,

11

GETDELTAEVENTS returns and set ¢/ = co and f' = dy,
respectively. In line 6, event d is appended to cutoff that, at
this point, is set to [dy, d7]. Next, variable f is updated from
ds to dg in line 7 (i.e. Id_; [d5] = dg). It is because of this
update that, in the following iteration of the while loop, the
function finds that ¢; || ¢5 and d3 < dg, and hence concludes
that the matching of c5 and ds is not order-preserving.

We now turn our attention to defining the cost function
©, used in Algorithm 1. As for any conventional A*-based
algorithm, the cost function is used as a criterion for select-
ing the next state to expand while constructing the PSP. As
usual, the function ¢ relies into two other functions. The first
function, called g, accounts for the cost of the PSP operations
(i.e. match and hide operations) incurred in building the PSP
from the root state up to a given state. The second function,
referred to as h, corresponds to an optimistic approximation
to the cost of PSP operations that will be required to reach
the target state (the one that matches with a minimal cost the
run that comes from the event log with one of the runs stem-
ming from the model PES). Although all possible runs can
be dynamically recomputed from the model PES prefix by
applying the shift operation, we need a finite representation
that could be used for formulating the function h. To this
end, we will define a way to compute representative acyclic
and cyclic runs in the form of an acyclic graph, where nodes
are configurations and edges are configuration extensions.
Inspired from the notion of elementary paths of a graph,
we call such representation elementary acyclic/cyclic pomsets.”
Specifically, we compute the set of all acyclic runs and that of
cyclic runs, with the restriction that cyclic runs correspond
to the unrolling of cyclic behavior once.

Let us first define acyclic runs, that is elementary acyclic
pomsets. Let X4 (C') be the set of elementary acyclic pomsets
that extend configuration C'. Specifically, we say that X4 €
X4(C) is an elementary acyclic pomset iff there exists an
orderi € [0...n—1]and aset of events X4 = {eg...ep_1}
with | X 4| =nsuch that Se, (... (Se,(C))...) € Fm.

For defining cyclic runs, we need first to compute the
unrolling of cyclic behavior until one full iteration is com-
pleted. Let Xr(C) be the set of elementary cyclic pom-
sets that extend configuration C'. Specifically, we say that
Xgr € Xg(C) is an elementary cyclic pomsets iff there
exists an order ¢ € [0...n — 1] and a set of events X =
{eo...en—1} with |X| = n such that e, is cutoff event,
Sep (... (S (0))...) € F and corr(e,—1) € C U Xp.
Moreover, we will say that corr(e,_1) is the entry event
to the elementary cyclic pomset and will be denoted by
entry(Xr(C)). Note that a repetitive suffix never reaches a
maximal event because it finishes in the event that reenters
a (possibly nested) loop, entailing the repetitive behavior.
Finally, we will denote by Xy (C) the set of maximal ele-
mentary pomsets that extend configuration C. Intuitively,
a maximal suffix of a configuration represents a complete
run. Clearly, Xy (C) includes all the acyclic suffixes of con-
figuration C, i.e. X4(C) C X (C). In the case of repetitive
suffixes, we need to complement them with acyclic suffixes
to complete sets of possible runs. The idea is that, once

7. Pomset (standing for partially ordered multiset) is a widely known
formalism in the literature of concurrency theory [28], which corre-
sponds with the intuition described here.

repetitive behavior has been executed one or several times,
the computation should follow the sequence captured by an
acyclic suffix. The set of possible acyclic suffixes to consider
depends on the entry event of the repetitive suffix. We now
can formally define Xy (C') as follows:

Xw(C) = XA(C) U {XA UXr

Xr € Xr(C)N X4 € Xa(C)
Aentry(Xgr(C)) € XaUC

The notion of elementary pomsets along with an algo-
rithm to compute them all (e.g. as a preprocessing step) are
further discussed later in Subsection 7.3.

Armed with the above, we define function ¢ as follows:

Definition 10. Let o = (C,£,C7, (/77) be a state in PSP and
Cm € Fn(E') be a maximal configuration of &' (the PES
of the event log), such that C! C C,. With abuse of
notation, given a configuration C' we will use A\(C') to
denote the set of labels of the events in C, i.e. A(C) =
{A\(e)|e € C}. The function ¢ is defined as

¢(0,Cm) = g(0) + (0, Cn)

where
g(0) = [C'| +|CT|xr| — I€] * 2
and
— : l l T X
W Co) = mmin N(Cn\)\ X (X))

Intuitively, the cost function g corresponds to the number
of hide operations incurred in the path starting from the root
state in the PSP and leading to a given state. Clearly, we
would like to find a sequence with only match operations,
if such a sequence exists, or the path that includes the min-
imum number of hide operations. Note that in the case of
C", we restrict our attention to the set of observable events,
denoted C7|yr. In fact, we are interested in characterizing
differences in terms of visible events, but we have to keep
some of the invisible events in the PES prefix to maintain the
information about cc-pairs in the complete prefix unfolding.
Thus, in our definition of g we search to not penalizing
operations that involve invisible events recorded in C”.

As per the conventional A*-based algorithm, function h
corresponds to an optimistic approximation to the “future
cost”: the cost of a path starting from a given state up to a
goal state. In our context, the goal state corresponds to the
optimal state in which a maximal configuration Cy, (coming
from the PES of the event log) is matched. To this end, we
consider the possible futures for both configurations. In the
case of C', we consider only the set of events in Cy, \ cl,
because Algorithm 1 looks at finding an optimal matching
for Ch,. In the case of C”, we consider the set of elementary
acyclic/cyclic pomsets that can extend the configuration C".
Note that we take into account all the possible elementary
pomsets, and select the minimal cost of matching C! with
each elementary pomset as the value for h. The idea is
that only the elementary pomset with minimal cost will
eventually be used in the future, if that leads to the optimal
matching. Since we are matching the set of event labels, the
repetition of cycles is abstracted away. That is, the cost will
be the same regardless of the fact that repetitive behavior

12

occurs once or more times, provided that the matching of
the full behavior is found to use the same number of hide
operations. Since h is an optimistic cost function, it follows
that Algorithm 1 is admissible [27] and hence it returns an
optimal solution.

When the input PESs have concurrent behavior, the PSP
may contain paths with redundant information. This redun-
dancy stems from the interleaved enablement of concurrent
events. Fig. 14 gives an example of this situation.

[ool
match (A) / \match (B)
ide [on] [o2]
i di(c/) Q)tch ® ﬁatch (A)
[os]

1
az:C bg:A b1:B [os]
\1 \1 \/ | match (D)
b2:D

az:D [oe]

ag:A a1:B

Fig. 14: PSP with redundant information due to concurrency

From this figure it can be easily checked that the PSP
contains three different paths, all capturing the same in-
formation. This is a well known problem in areas such as
Model Checking, where techniques have been developed
to discard some paths when exploring the underlying state
space [29]. Therefore, we can leverage results from that
field to reduce redundant information at the time of the
construction of the PSP. In that context, it is well known
that the exploration of the state space can be reduced by
analyzing the commutativity of the transitions in the state
space, which translates to our setting to the notion of com-
mutativity of operations. Intuitively, we say that a pair of
operations can be commuted if their underlying events are
enabled concurrently. For instance, the event ag and a; are
concurrently enabled by the empty configuration and so are
the events by and b; in the example on Fig. 14. As shown in
the PSP, the operations “match (A)” and “match (B)” appear
in two distinct orders, in paths that start in state oy and
finishing in o4. We will say that operations “match (A)” and
“match (B)” are commutative. A similar situation happens
at state o1 with operations “lhide (C)” and “match (B)”,
because the events a; and as are concurrent.

Commutativity of operations is closely inspired by the
notion of commutativity of transitions in model checking.
This property is at the heart of a large number of partial
order reduction techniques used in model checking [29].
What is more, we can recover their theoretical results to
claim that one path encodes the same information as the
other paths, reducing significantly the size of PSP. In this
respect, Algorithm 3 presents the modifications to apply on
Algorithm 1 to achieve the partial order reductions.

This modified algorithm would build a reduced PSP
for the example in Fig. 14 as follows. When the algorithm
analyzes the root state in the PSP, that is oy in Fig. 14,
it processes the operations “match (A)” and “match (B)”.
Observe that we assume that configuration extensions are
ordered according to the event labels. This heuristic allows
us to implement the partial order reduction in a more
straightforward way. Therefore, “match (A)” will be ap-
pended first to the PSP and the variable E, standing for
enablements, will be set to {(ag,bp)}. In the next iteration

Algorithm 3 Partially synchronized product with partial
order reductions

> Replace lines 8-12 with the following block

1: E«~ 0

> Consider configuration extensions according to the lexicographical
order of the event labels

ct & o or L, o s

e € CL AN (e) = A"(f) A

2: for each () do
FINDCAUSALINC(PSP, o, ¢, f) = L

3 if3(e/, f') €E,ste| eV f]| f then
4 continue

5 else

6: E <+ EU{(e f)}

7 end if

8 > Keep lines 9-11 as they are

9: end for

> Replace line 13 with the following one

foreach C! 5 CV,st.ec CL ANH(e,f)ER e ¢ do

> Replace line 18 with the following one

for each C7 L+ C st.i(e,f)eR: f| f do

of the for loop, the algorithm will no longer consider
the operation “match (B)” as a successor of oy, as if the
events a; and b; were not enabled in such a state. For the
same reason, the hide operations associated with events
a1 and b; will not be appended to o either. In the next
iteration, the algorithm will consider the operations “match
(B)”, which was warranted because of the commutability
of the operations “match (A)” and “match (B)”. Once the
operation“match (B)” is appended, the algorithm proceeds
as usual (following the path highlighted in Fig. 14), because
all the remaining operations are not commutative.
We observe that in Algo-

rithm 3 the testing of commuta- A b
tivity has been slightly modified. 7/ \ /
It is by means of the expression =~ @8 «C 08
inline 3, namely e; || €} Vea | €5, oo n

that the algorithm checks com-
mutativity of operations. In fact,
line 3 will discard any match operation that is found
commutative with one that has been previously appended
during a previous iteration of the for loop. Let us further
analyze the condition in line 3. First, if both terms in
e1 || €] Vea || € hold true, then it is because we have two
potential match operations that are clearly commutative.
Fig. 15 presents an example that illustrates the second case.
Assume that events a; and b; have already been processed
(i.e. (a1,b1) € E). When we want to process the match
operation associated with the events as and b2, we will have
that the first term in the expression e; || €] Ves || €5 hold true
whereas the second term does not, because b #0bs. Fig. 15
shows ey, ey, etc. in red font to ease the mapping of the
example to the expression. Due to the presence of conflict,
the operation “match (C)” will not be appended to the PSP
in the path that follows the operation “match (B)” and, as

0:A
\
= by:C

,
€2

Fig. 15: Example of PESs

13

a result, we will see a “lhide (a;)” and this operation is
commutative with “match (B)” The remaining case, that is
when the first term in e; || €] V ea || €} is false and the
second term is true, is the symmetric of the second case.

Complexity analysis. The complexity of the PSP computa-
tion depends on the size of the state space explored by the
A* search. This state space is in O (317 (FUI7(E2)) where
F(E) is the set of configurations of E. Indeed, each con-
figuration in E; is associated with a configuration from F»
via three possible operations (i.e. match, lhide and rhide).
This worst case complexity may be reached when the event
structures are completely different. Conversely, when the
event structures are identical, the heuristic search converges
in linear time. In practice, we expect a high behavior overlap
between a process model and the corresponding log, and
hence a complexity far below the worst case.

7 DIFFERENCE EXTRACTION AND VERBALIZATION

In the previous section, we showed that a PSP contains
a minimal set of hide operations required to capture all
behavioral discrepancies between the PES of an event log
and the PES of a process model. In this section, we show
how to traverse the PSP in order to extract a set of difference
statements that characterize the behavior observed in the log
and not captured in the model and vice-versa.

In order to extract such difference statements, we rely
on a collection of nine mismatch patterns classified into the
following disjoint categories:

o Unfitting behavior patterns, capture behavior observed
in the log but not allowed by the model. Unfitting
behavior patterns are further classified into two sub-
categories:

— Relation mismatch patterns, capture cases where two
events in the PES of the log are related via a given be-
havioral relation (immediate causality, direct conflict
or concurrency) but they are related via a different
relation in the PES prefix of the model - e.g. they are
related via immediate causality in the log while they
are related via direct conflict in the PES of the model.

— Event mismatch patterns, capture all other cases of
unfitting behavior. These patterns capture events in
the PES of the log that cannot be directly matched to
an event in the PES prefix of the model.

o Additional behavior patterns, cover all cases where behav-
ior is allowed in the model but not observed in the log.

In the following we describe each pattern.

7.1 Relation mismatch patterns

The first category of mismatch patterns corresponds to
situations where a pair of events — one from the log PES
and one from the model PES prefix — have the same label
but they are not matched in the PSP because they have
different behavioral relations with at least one other event.
In other words, there is a pair of events in the PES of the
log linked via a given relation, which could be matched
to a corresponding pair of events in the PES prefix of the
model, if it was not for the fact that these pairs are related
via different behavioral relations. Since there are only three
behavior relations, there are also three possible (symmetric)

relation mismatches: Immediate Causality vs. Concurrency,
Immediate Causality vs. Direct Conflict, and Concurrency vs.
Direct Conflict® As we will see later, the last two types
of mismatches (those involving conflict) have very similar
manifestations in the PSP and hence we will treat them as
one single pattern. Hence below we introduce two patterns,
namely Causality/Concurrency and Conflict.

Like all other patterns introduced later, relation mis-
match patterns occur in a given context, characterized by
a pair of configurations (one configuration from each PES).
Consider the example shown in Fig. 16. We note that a; || a2
whereas b; < by and these two pairs of events have
matching labels. Thus, there is a Causality/Concurrency
mismatch. This mismatch is observed in the state of the PSP
associated with the pair of matching configurations {ag, a1}
and {bg, b1} (the mismatch context). We also note that one
of the events that is hidden in the PSP (ub2) is the target of
an immediate causality relation stemming from an event in
the configuration {bg, b1} (specifically note that b; <, bs).

[c=n¢=0c ==y

bo:A lmatch)
A —
\?) y b¢B [= {an}, € = {(a0, b)a}, € = T = {bo}]
1
a1’B as:C 1 lmamh ® _
\ / G [C = {an,ar}, € = {(a0.bo)a, (ar.br)a}, €" = €7 = b0, b1}]
ag:D { 1 [hide @>:0)
b3:D Enabling state :
| mhide (>:C)
lmatch (D)

Fig. 16: Causality /Concurrency mismatch

We also observe that a relation mismatch pattern mani-
fests itself in the PSP in the form of two “hide” operations. In
the example shown in Fig. 16, the pair of “hide” operations
are contiguous in one path of the PSP. However, the hide op-
erations do not necessarily happen always contiguously in
the PSP as shown in the example of Fig. 17. The reason why
the “hide” operations are not contiguous in the PSP of this
second example stems from the fact that “match (C)” and
“lhide (a1:B)” are commutative. Hence, the identification of
this type of mismatches requires one to take into account the
commutativity of operations.

1match (A)

ag’A az:C bo:A b1:C
1 \/ [ihide @18) | commutative
al.il b18 Enabslti:é . lmatch © operations
az:D b3:D | rhide (b2:B)
1match (D)

Fig. 17: Another Causality/Concurrency mismatch

The proposed approach to identify Causality/Concur-
rency relation mismatches (later referred to as CAUSCONC
mismatches) is formalized in Algorithm 4. This algorithm
analyzes one path from the PSP at a time (line 2). In line
3, it selects three arcs each corresponding to an “lhide”,

8. We only report mismatches involving immediate causality (not
transitive causality) and direct conflict (not transitive conflict), because
we are only interested in reporting the origin of a difference.

14

an “rhide” and a “match” operation respectively. Next, in
lines 4-6 it determines the set of events that are involved
in the three operations. In line 7, it maps cutoff with its
corresponding event, if required. Note that in lines 8-10,
the algorithm discards the operations being analyzed (i.e.
the loop is forced to proceed with the next iteration in
line 9), if the same pattern can be built with another hide
operation that is causally predecessor of one of the hide
operations being processed. This situation is checked by
function CHECKPREDS. Finally, in line 11 the algorithm
checks the conditions defining an elementary Causality/-
Concurrency mismatch: the pair of hidden events carry the
same label and one pair of events are in immediate causal
relation whereas the other pair is concurrent.

Algorithm 4 Finding Causality /Concurrency mismatches

1: procedure INDCAUSALCONCMISMATCHES(PSP)
for each PATH in PSP do
for each (o1, lhide, 07), (02, thide, 03), (03, match, o) € PATH do
(L, f) + GETDELTAEVENTS(07, 01)
(e, L) + GETDELTAEVENTS(05, 02)
(e/,_f") + GETDELTAEVENTS(0%, 03)
f' « 1sCUTOFE(_f") ? corr(_f') : _f’
i (CHECKPREDS(PSP, o, o1, “lhide”, e, A (e)) V
CHECKPREDS(PSP, 0}, o1, “rhide”, f, A (f))

) then

9 continue

10 end if

11: i X0(e) = An(F)A (e < eV f <, A [eV || f) then

12: assert(CAUSCONC (o3, ¢, f,e',_f', f'))

13: end if

14 end for

15 end for

16: end procedure

17: function CHECKPREDS(PSP, 0¢, 02, op, e, label)

18: > This function returns true if there does not exist an arc
(o, (op),c’) € A(PSP) that involves an event that carries the label label
and that causally precedes event e, and false otherwise

19: end function

Let us now turn our attention to the two other cases,
namely Causality/Conflict and Concurrency/Conflict. Again,
we observe that these mismatches show up in the PSP in
the form of two “hide” operations, but these two “hide”
operations appear in different branches. The latter holds
because configurations are conflict-free (i.e. two conflicting
events cannot occur in the same computation).

Enabling state

agp:A bo:A match (A)l
/ \ /\ [C* = {ao}, € = {(a0, bo)a}, €7 = C" = {bo}]
a1:B -+ az:C biB ba:C match (B) / "\ rhide (b1:B)
a;L'D a;l"D }’ ‘g rhide (b2 :C)l lmatch ©)
3t ; .

match ({a, bs}o) | | match ({as, bs}o)

Fig. 18: Concurrency/Conflict mismatch

The example shown in Fig. 18 corresponds to a case of
Concurrency/Conflict mismatch. There, it can be seen that the
hide operations occur in different branches of the model on
the right. As the left model allows either B or C (whereas
they are concurrent in the right model), either one of the
two events needs to be hidden in the model on the right.
Due to the presence of concurrency, the hide operation and
the conflicting match operation can appear in either order.
Fig. 19 presents a more complex situation. In this example,

a Causality/Conflict mismatch is intertwined with a pair of
concurrent events. This leads to the hide operation and
the conflicting match operation being separated. Therefore,
an approach to identify these mismatches must take into
account the commutativity of operations, in the same way
as for the Causality/Concurrency mismatch pattern.

bo:A
/N
ap:A b1:B b3:D
LN /
a1:B as:C az:D by:C
NoX \
as'E asE by E

. Enabling state
match (A)l

[C7=(a}, € = {lan.boa} O = & = {bo}]
match (8) /\ rhide (5 :B)l

Commutative

operations

Commutative
operations

match (D)l lmatch (D)

rhide (0:0)| | match (©)

match (E)j jmatch E)

Fig. 19: Causality /Conflict mismatch

The above observations on the characteristics of mis-
match patterns involving conflict are formalized in Al-
gorithm 5, which can identify both Causality/Conflict and
Concurrency/Conflict mismatches (herein referred to as CON-
FLICT mismatches). Algorithm 5 is similar way to Algo-
rithm 4, except for two key points. First, Algorithm 5 pro-
cesses three arcs at a time, but the arcs are not required to
come from the same path. Recall that the hide operations
associated with a Causality/Conflict or a Concurrency/-
Conflict mismatch pattern will be located in two different
branches. Second, the conditions in line 10 are the ones that
define a conflict-related mismatch: the hidden events carry
the same label and one pair of events are in immediate
conflict relation whereas the other pair are in either causal or
in concurrency relation. Note that the symmetric condition

holds, i.e. =(e'#e) A (f'#F).

Algorithm 5 Finding Conflict mismatches

1: procedure INDCAUSALCONCMISMATCHES(PSP)
2: for each (o1, lhide, 07), (02, thide, 05), (03, match, o3) € A(PSP) do

3 (L, f) + GETDELTAEVENTS(07, 01)
4 (e, L) + GETDELTAEVENTS(o5, 0'2)
5 (e/,_f") + GETDELTAEVENTS(0%, 03)
6: f' < 1SCUTOFF(_f’) ? corr(_f") : _f’
. . CHECKPREDS(o%, o1, “lhide”, A\;(e)) V
7 f (CHECKPREDsEaz, o1, “rhide”, /\T((f))))) then
8 continue
9: end if
10 if Ar(e) = M (f) A (e'#pneV f#,uf) A—(e'#e A f'#f) then
11: assert(CONFLICT (o3, e, f,e’, _f', ')
12: end if
13: end for

14: end procedure

Complexity analysis. Algorithms 4 and 5 are O(n?), where n
is the number of arcs in the PSP. However, with some techni-
cal optimizations, the identification of all relation mismatch
patterns can be implemented using a single depth-first
search traversal of the PSP — hence with an O(n) complexity.

15

Details of how the two algorithms can be combined into a
single depth-first search traversal are omitted as they are
purely technical optimizations.

7.2 Event mismatch patterns

In this category of patterns, we group together all cases of
unfitting behavior that cannot be characterized via a relation
mismatch. A naive way of characterizing such cases would
be to simply state that there are some events in the PES of the
log that are not matched to any event in the PES prefix of the
model. However, such an approach to diagnose differences
is too low level and would lead to a high number of
difference statements. Instead, we introduce four mismatch
patterns that capture possible reasons for the presence of an
unmatched event at a higher level of abstraction, namely
task skipping, unmatched repetition, task substitution and task
relocation. When a given unfitting behavior cannot be char-
acterized using any of these four patterns, we use a fifth
“catch all” pattern (namely Task absence), which essentially
states that there is an event that can occur in the PES of the
log in a given configuration but not in the corresponding
configuration in the PES prefix of the model. Below we
present these five patterns in turn.

Task skipping (TASKSKIP). This pattern is illustrated in
our running example and, for discussion purposes, in the
PSP fragment presented in Fig. 20. The way this pattern
shows up in the PSP bears some similarity with how the
Causality/Conflict mismatch pattern shows up, in the sense
that it requires us to combine information coming from two
branches of the PSP stemming at a given state. What makes
this pattern different from the Causality/Conflict mismatch is
that the operation “match ((as, b2)c)” (which is interfering
with the event a; (i.e. a1 #, a2) has a counterpart match
operation in the other branch, namely “match ((as, b2)c)”
and both match operations involve the event bs.

ag:A bo:A match (A)l
v N\ l _ .
a;:B -+ as:C b, :B match (B).j\{rhlde (b1:B)
a;L:C bj?C match ({a:s,bz}c)l lmatch ({az,ba}c)

Fig. 20: Task skipping

The identification of this pattern requires a second
traversal of the PSP. In the first traversal, a Causality/Conflict
mismatch is identified and the information about the state
where this mismatch is enabled is also gathered. In the
second traversal, we analyze the sibling branches to look
for the counterpart match operation. If the latter is found,
we assert an occurrence of a Task skipping pattern instead of
asserting an occurrence of a Causality/Conflict pattern. We do
not provide a separate algorithm to detect this pattern as it
would be largely redundant with Algorithm 5.

Unmatched repetition (UNMREPETITION). A second sce-
nario where one hide operation cannot be matched is when
the event log is capturing repetitive behavior that is not
specified in the process model. In that context, every oc-
currence in the log of the same label will be mapped to a

different event. Every time an event is repeated in the log
that cannot be matched a hide operation will be appended
to the PSP. Fig. 21 presents a simple example of this pattern.

ag:A 1
. lmatch B)
bo:A
a1:B l |f: {(aO:bO)A7(alabl)B}|
aiA b | hide a2:A)
1 lmatch (©)
as :C ba :C .

Fig. 21: Unmatched repetition

This pattern can be straightforwardly detected in the PSP
by analyzing the set of matchings &, which is stored along
with every state in the PSP. In our example, we observe that
¢ contains the match (ag, by)a that carries the same label as
event ap. We can therefore conclude that there is an activity
with label A that occurs twice in the same trace, but cannot
be matched to the behavior specified in the model. This test
can be piggybacked in Algorithm 4 in line 12 and not adding
the hide operation to n_chs if it has been found to be an
unmatched repetition.

Note that the symmetric case (where repetitive behavior
specified in the process model cannot be matched with
behavior observed in the event log) cannot be processed
in the same way. This is because the PES corresponding to
the process model explicitly represents repetitive behavior
by means of cc-pairs and shift operations. The problem of
identifying repetitive behavior captured in the model but
not observed in the log is discussed later (cf. additional
behavior patterns).

Task substitution (TASKSUB). In some cases, an event can-
not be matched because its counterpart has been substituted
by a task with a different label. Fig. 22 presents an example
of this pattern.

imatch (A)
a[i:A bjiA ilhide (a1:B)
a1:B by:X Lrhide (b3:X)
4y C biC ~i,match ©)

Fig. 22: Task substitution

Our assumption is that a task substitution must happen
in the same execution context. Concretely, we require that
the candidate events are enabled immediately after the
events involved in a “match” operation. Given this require-
ment, the identification of this mismatch matching can be
done with a variant of Algorithm 4. The changes to that
Algorithm are basically to modify the condition of line 11
to eliminate the requirement about the equality of the event
labels, checking that the events are immediately activated
after a match operation (¢’ <, e A f’ <, f) and, addition-
ally, that the hide operations are causally consistent with
all the operations that precede the event match. To make
this analysis deterministic, we order the hide operations in
alphabetic order of the event labels.

16

Task relocation (TASKRELOC). Let us now consider the case
where a pair of events carrying the same labels cannot
be matched because they appear in different places in the
same path of a PSP. The main difference with respect to the
relation mismatch patterns is that the events are not enabled
after the same event. One simple case is the one where
the order of a pair of events in two PESs is inverted. For
instance, let us assume that in one PES it holds a1:A < a2:B
whereas in the other PES it holds b1:B < bs:A, and there
exists one state in the PSP where a1 and b; are both enabled.
Evidently, the PSP would have two different branches, each
one with two hide and one match operation, respectively.
This situation can be generalized to the case the events are
not contiguous, as illustrated in Fig. 23.

ag:A bo:A imatch (A)
aiB b;l?C |1hide (a;'B)
1 l |match (C)

ai:C bjiD lmatch (D)
az:D b3:B Lrhide (b3:B)
a;L:E bj?E imatch (E)

Fig. 23: Task relocation

Occurrences of the relocation pattern can be identified by
keeping track of the events that were not found to be part
of a relation mismatch pattern, and then checking equality
of the labels associated with the hidden events.

Task absence/insertion (TASKABS). Any hide operation in
the log of the PES that is not involved in any occurrence of
one of the previous patterns is treated as an occurrence of a
Task absence pattern, meaning that a task is observed in the
log but missing in the model.” In other words, Task absence is
a “catch all” pattern for all remaining cases of unfitting log
behavior, thus ensuring that the set of patterns is complete.
In the simplest case, an occurrence of the Task absence pattern
corresponds to the situation where a task label is observed
in the event log despite the fact no task with such label is
specified in the process model. However, this pattern also
captures the case where there exists at least a pair of events
(one from each PES) with the same label, which are enabled
in different states. The example shown in Fig. 24 illustrates
the latter situation.

ag:A bo:A)

v N v N\ | match (A)
aIB aij biB bjic match (B)‘/.\match (@)
asz:D asE bs:F by:D lhide ((l,;;ZD)l llhide (by:D)
aiF biE match (E) l i,match F)

Fig. 24: Task absence/insertion

Complexity analysis. As said before, Task skipping requires
traversing the PSP twice, making its complexity linear on

9. Symmetrically, we can state that a task has been inserted in the log.

ag:A

- v N\ v N\
o AT snennne a:T Q1T ennennns az:T

/N N oo

b1:B -+ b2:C azB 7 asgC azB 7 as:C
Ny N

‘- /N AN N A LN
b3:C bsB as:T 2 A6:T A7:T =+ AT A5:T v A6:T Q7T «» A8:T
. b S y S -
bs:D bg:D ag:D ag:D

(a) Log’s PES

(b) Model

(c) PES prefix (duplicated to show paths)

Fig. 25: Additional (cyclic) model behavior

the size of the PSP. All the other patterns in this section can
be computed as part of one of the traversals.

7.3 Patterns of additional model behavior

The seven patterns presented above characterize behavior
observed in the event log but not allowed in the process
model. We now seek to characterize behavior allowed in the
model but not observed in the log. Such additional behavior
is captured by two patterns:

o Unobserved acyclic interval (UNOBSACYCLICINTER) — an
acyclic fragment of a process model not observed in the
log. Each such fragment is characterized by an initial
task and a final task and is thus called an inferval.

o Unobserved cyclic interval (UNOBSCYCLICINTER) - a
cyclic fragment (interval) of a process model not ob-
served in the log.

An example of additional model behavior is depicted
in Fig. 25. Fig. 25(a) denotes a PES constructed from a log.
Next, Fig. 25(b) shows a process model (in the form of a Petri
net), while Fig. 25(c) shows the PES prefix derived from the
model. The PES prefix appears in two copies, in order to
show how each of the two paths in the PES of the log is
also found in the PES of the model. In other words, there
is no unfitting behavior in this example. On the other hand,
there is additional behavior: the PES of the log does not
contain any repetitive behavior, while the process model has
a loop with two entry points and two exit points. Yet, if
we constructed the PSP, we would find that it contains no
hide operations and it covers all events and causal relations
in both PESs. This is because the PSP is constructed with
the goal of finding optimal matchings for every maximal
configuration of the log’s PES, and does not try to achieve
full coverage of the model’s PES prefix. In other words, a
PSP with no hide operations only means that all behavior
observed in the event log is fully captured in the process
model, but not vice-versa.

Hence, in order to characterize additional model behav-
ior (both acyclic and cyclic), we need to define a notion of
coverage of the PES prefix of a process model. In other words,
we need to answer the question: What does it mean that all
the behavior captured in a process model is “covered by”
(i.e. observed in) an event log? To answer this question, we
use the notions of elementary paths and elementary cycles
from the field of graph theory [30], [31]. Intuitively, we will
say that an event log “covers” the behavior of a process
model, if every elementary path and elementary cycle in the
PES prefix of the model is represented by a path in the PSP,

17

and thus represented by a maximal configuration in the PES
of the log after hide operations have been applied to account
for unfitting log behavior.

We recall some basic definitions from graph theory. A
directed graph is a set of vertices and a set of directed edges.
A path is a sequence of vertices connected by edges. A path
is said elementary if no vertex is contained twice. A cycle
is a path where the initial and the final vertex are the same.
A cycle is said to be elementary if, after removing the last
vertex in the sequence, the resulting path is elementary.

The above concepts provide a straightforward approach
to define a notion of coverage of a graph by a set of traces.
However, we cannot directly apply the above concepts to
characterize the possible executions a PES prefix. Indeed, a
path (along the direct causality relation) in a PES prefix does
not characterize a possible execution, because an execution
may contain concurrent events, and a single path in the PES
prefix necessarily misses some of these events. Instead, we
characterize the executions of a PES prefix by means of the
set of elementary paths on a graph where the vertices are
the configurations explicitly represented in the PES prefix,
and the edges are the possible configuration extensions
(i.e. direct transitions from one configuration to the next),
including possible extensions induced by a cc-pair in the
PES prefix.

In order to reason over this graph of configurations and
configuration extensions, we rely on the notion of pomset
from the literature of concurrency theory [28], which we in-
troduced in Section 6. A pomset is a Directed Acyclic Graph
(DAG) where the nodes are configurations, and the edges
represent direct causality relations between configurations.
An edge is labeled by an event. Unlike an event structure, a
pomset does not have any conflict relation, since a pomset
represents one possible execution. The behavior of a PES can
be characterized by the set of pomsets it induces.'”

In the case of a PES prefix, the set of induced pomsets is
infinite when the PES prefix captures cyclic behavior via cc-
pairs. Hence in general we cannot enumerate all pomsets of
a PES prefix in order to check if each of them is observed in
the PES of the log. However, we can extract a set of elemen-
tary pomsets (inspired by the notion of elementary paths),
which collectively cover all the possible pomsets induced by
a PES prefix without unfolding the cyclic behavior infinitely.
Intuitively, this corresponds to unfolding every cycle so that
it is traversed once only.

This intuition is formalized by Algorithm 6, which com-
putes the set of elementary pomsets of a PES prefix. Fig. 26
illustrates the execution of this algorithm taking as input
the PES shown in Fig. 25. Function FINDEPOMSETS builds
an expanded prefix by successively applying configuration
extensions and shift operations (cf. Section 5.1) on the PES
prefix. Specifically, function INDEPOMSETS adds one path
(or branch) to the expanded prefix every time an elementary
pomset is found (in lines 10 and 17). The result is a directed
acyclic graph reflecting the configuration extension relation.
For illustration purposes, Fig. 25 presents the expanded
prefix as a PES prefix, with the corresponding label in the
right-hand side of each “event” in the expanded prefix.

10. This is exactly the definition of a notion of equivalence known as
visible pomset equivalence: two PESs are equivalent iff they induce the
same set of pomsets.

- _SC_OEf_:_{[_lU_}_ “\)
" -c(;n? : {_a-o-a_l} - l/

.. T

: sconf = {ag, a1} by
o

h conf = {ap, a1, a3} g el

1 sconf = {ap,ar,az}

conf = {ap, a1, as,as} - Eo;f-—_{_a(; ai,as,ac} l
sconf = {ag, az,a3,as} r ' sconf = {ag, a2} |17'

Eo;lf—_{_a; Ja1,as, ag, as} IC
sconf = {ag, az, as} !

conf = {ag, a1, as,as, ag}
sconf = {ap, a1, as, as, a9}

conf = {ag, a1, as, as, a4, as} '
' sconf = {ag, az, as,as} |i7'

conf = {ag, a1, a3, as,as,ar} __ |
sconf = {ag, ay } o

conf = {ao, a1,as, as, as, as, as} p
\ sconf = {ag, az, a4, as, a9}

[ool
match (A)|
[on]
rhide (ul:,')/ \;hide (as:T)
[o2] los]
match (B)] | match (C) {llo 1)
[es] fesl e
rhide (ag:7) | | rhide (a7:7)
[oa] [o10]
match (C) | |match (B)
[os] [o11] {{ag 01,03, a5, u"} i
rhide (ag:7) | L rhide (as:7)
[o6] [o12]
match (D) | | match (D)
[o7] [o1s]

18

conf = {ap}

conf = {ap, az}
sconf = {ag, az}

conf = {ag, az,as} ~<
sconf = {ag, az, as}

conf = {ao, az,as,as}
sconf = {ao, az, as,as} Ly

conf ={ag, az, as, ar}:7
sconf = {ao, a1} T

conf = {ag, az, as,as, a9} conf = {ag, az, a4, ar, az}

sconf = {ag, az, as,as,ag} sconf = {ag, a1, a3} B
conf = {aog, az, as,az,as,as} conf = {ao, az, as,az,as,as} __
sconf = {ag, a1, as,as} o sconf = {ag, az} o

conf = {ao, az, as,azr,as, as, a9}

sconf = {ag, a1, as,as,ag} D

osg, rhide (as:7)

o1, rhide (ay:7)

~lr

: o3, match (B) : 09, match (C)

o4, rthide (ag:7) : 010, rhide (a7:7)

match (C) E Uu, match (B)

rhlde (as T)

015, match (D)

Fig. 27: Using PSP and expanded prefix for identifying additional model behavior in the example shown in Fig. 25

Algorithm 6 Identification of elementary pomsets

1: procedure FINDEPOMSETS(conf, sconf, visited, var cycles, var runs)
2: APPEND(visited, (conf, sconf))

3 for (sconf < n_sconf) do
4 n_conf < conf U {e}
5: if e is cutoff event then
6: n_sconf < S(n_sconf)
7: end if
8: if J(entryConf, n_sconf) € visited A n_sconf N ||[e] = @ then
9: cycles < cycles U {(n_conf \ entryConf, entryConf)}
10: ADDBRANCHTOEXPPREFIX(visited)
11: else
12: FINDEPOMSETS(n_conf, n_sconf, visited, cycles, runs)
13: end if
14: end for
15: if sconf is a maximal configuration then
16: runs < runs U {conf}
17: ADDBRANCHTOEXPPREFIX(visited)
18: end if

19: REMOVELAST(visited)
20: end procedure

A key observation is that the value of conf can be used
as a unique identifier for each event in the expanded prefix.
The uniqueness of conf stems from the following facts: 1)
for elementary acyclic pomsets, conf is finitely extended by
a different event until a complete configuration is found,
2) for elementary cyclic pomsets, conf would be finitely
extended up to the point where a duplicate event occurs.
It is by means of the shifted version of conf, i.e. the variable

sconf, that cycles can be identified.

The proofs of completeness and correctness of Algo-
rithm 6 follow directly from the proofs for the algorithms
to identify elementary cycles [30], [31]. With the aim of
explaining how Algorithm 6 works and to sketch the proofs,
we describe three cases.

Case 1: Identification of elementary acyclic pomsets that include
no cutoff event. This case is illustrated with the sequence
of “events” that are shown in blue font in the expanded
prefix shown in Fig. 26. The function INDEPOMSETS is first
called with conf and sconf set to empty set. We note that
in this case, conf and sconf are updated in such a way that
they both hold the same value. The function INDEPOMSETS
extends the configuration conf by one event in line 4 and
recursively calls itself in line 12. The recursive call will even-
tually stop, when sconf contains a maximal configuration,
because a maximal configuration has no further possible
extension. Moreover, a maximal configuration is warrantied
to be found because we consider only PESs coming from
sound systems and consisting of a finite number of events.
The elementary acyclic pomset that has been found is added
to the set runs in line 16, just before the recursive call returns.
Case 2: Identification of elementary acyclic pomsets that contain
at least one cutoff event. This case is illustrated with the
sequence of events in the blue dashed box in the expanded
prefix in Fig. 26. As for the previous case, conf and sconf
contain the same value at every recursive call of INDEPOM-
SETS, as long as no cutoff event is found. When a (forward)
cutoff event is found, such an event is added to conf and,

afterwards, n_sconf is assigned with the shifted configura-
tion S(sconf @ e), in line 6. In line 12, INDEPOMSETS is
recursively called with the extended configuration n_conf
and also with the shifted configuration n_sconf. Note that
sconf is used for testing if the function has found a maximal
configuration in line 15 and also to compute the set of
possible extensions in line 3. Conceptually, conf keeps track
of the events that are “executed” by the underlying run, dy-
namically unrolling towards a larger prefix, whereas sconf
maps the execution back to a configuration in the original
PES prefix. Note that the recursive call to the function can
only find a finite number of forward cutoff events. Thus,
if no cycle is found as the recursive call to INDEPOMSETS
proceeds, the function will extend the configuration until a
maximal configuration is found.

Case 3: Identification of elementary cyclic pomsets. We observe
that, when the input PES has repetitive behavior, the func-
tion FINDEPOMSETS can only be recursively called a finite
number of times before it finds an elementary cyclic pomset,
because the PES has only a finite number of events. One
case corresponds with finding a cutoff event that induces
a backward shift. For simplicity, let us assume that the
input PES has only one cutoff. Let e be a cutoff event.
By definition, we know that e induces a backward shift
if and only if [corr(e)] C [e]. Therefore, there exists a
sequence of calls that finds first [corr(e)], storing the pair
([corr(e)], [corr(e)]) in visited. Since the input PES has
a finite number of events, INDEPOMSETS will eventually
process [e], which will induce a backward shift operation
in line 6. Since visited contains a pair associated with such a
configuration, INDEPOMSETS will record a new elementary
cyclic pomset in line 9. Note that the cycle is stored with
a pair of configurations, ([e] \ [corr(e)], [corr(e)]) in our
example, where the first set corresponds with the set of
events in the body of the cycle, herein called the cyclic
interval, and the configuration characterizing the entry point
to the cyclic behavior.

However, an elementary cyclic pomset does not always
involve a backward shift as it is the case for the PES prefix
shown in Fig. 25. In fact, the PES prefix has two elementary
cycles but no backward cutoff. The elementary cycles can
still be detected, because we store the shifted configuration
(along with the unshifted configuration) at every recursive
call of the function FINDEPOMSETS. This information can
then be used to check if the current shifted configuration has
been previously visited, in which case an elementary cyclic
pomset is reported. One example of this case is illustrated
by the sequence of events shown in the filled blue boxes in
the expanded prefix in Fig. 26.

When an elementary cyclic pomset is embedded in a
block of concurrency, FINDEPOMSETS will find the cycle
multiple times. For instance, for the PES prefix shown
in Fig. 28, INDEPOMSETS will find

an elementary cycle comprising --> aoA a2:C
the set of events {a1, a4 }, when the ol l
function processes the configura- po® osD
tion {ag, a1} and the cutoff event ai:r‘{---->‘%£

as4. The same cycle will be found
when the function processes the
configuration {ag, a1, as} and later
when it processes the configura-

Fig. 28: Cycle within a
block of concurrency

19

tion {ag, a1,az2,a3}. In order to prevent the recording of
multiple copies of the same elementary cyclic pomset, line 8
checks if n_sconf contains the cycle and no other concurrent
event. Only when that condition holds, the elementary
cyclic pomset is retained.

The set of elementary pomsets along with the expanded
prefix are then used for identifying all the additional model
behavior as follows. Traverse the PSP in depth-first search
order. At every step, when operation associated with an arc
involves an event coming from the model, mark the “event”
in the expanded prefix associated with the configuration
C", with a reference to the operation and the state in the
PSP that is reached as an outcome to the operation at
hand. Fig. 27 illustrates the result of the previous stage on
the example PES presented in Fig. 25. The “events” in the
expanded prefix that have been marked are shown with a
blue background. Additionally, the information about the
state in the PSP and the corresponding operation is shown to
the right-hand side of each “event” in the expanded prefix.

In a second stage, we iterate over the set of elementary
pomsets to identify those that were not marked. When an el-
ementary pomset is not marked, we find it in the expanded
prefix and traverse bottom-up the prefix to find the closest
“event” marked with a match operation in the PSP. The state
in the PSP associated with this “event” serves to give context
to an occurrence of one of the two additional behavior
patterns (UNOBSACYCLICINTER and UNOBSCYCLICINTER).
Let us consider again the example shown in Fig. 27. If we
proceed from left to right, the first elementary pomset is
associated with the “event” labeled as {ag,a1,as,as,a9}
and its closest match operation occurs at state o3 in the PSP.
This case corresponds to an elementary acyclic pomset. Part
of the pomset has been observed, i.e. the sequence of tasks
A and B, and only task D was not observed. The interval
of tasks that are not observed can be computed with a set
difference. Thus, in this example we will assert a mismatch
with the constructor UNOBSACYCLICINTER(o3, {as, ag}).
Given that as corresponds to an invisible task, one can
remove that event from the difference diagnosis. In this
case, we can report that in the event log the interval of tasks
between a5 and ag is not observed.

The second elementary pomset in the example is associ-
ated with the “event” labeled as {ag, a1, as, ag, a4, ar} and
its closest match operation occurs at state o5 in the PSP.
This case corresponds to an unobserved elementary cyclic
pomset. The diagnostic will be asserted with the constructor
UNOBSCYCLICINTER(05, {as, ag, a4, a7 }), meaning that the
loop formed by tasks B and C is not observed in the log.
Note that in this example, there is a loop with two entries
and two exits comprising tasks B and C. When expanded,
this loop leads to two elementary cyclic pomsets not covered
by the PES of the event log and thus two occurrences of the
UNOBSCYCLICINTER mismatch pattern

In summary, for the example in Fig. 25 we will assert
four mismatches:

Two unobserved elementary acyclic pomsets
o UNOBSACYCLICINTER(03, {as, ag})
o UNOBSACYCLICINTER(0g, {as, ag})
Two unobserved elementary cyclic pomsets
o UNOBSCYCLICINTER (05, {as, ag, a4, azr})
o UNOBSCYCLICINTER(011, {a4, a7, as, ags})

Complexity analysis. The complexity of Algorithm 6 is
exponential on the size of the PES prefix, due to the fact
that so is the number of elementary cycles in a directed
graph [31]. In practice, however, given the typical topology
of process models (e.g. small number of loops and low
edge density) elementary pomsets can be identified quite
efficiently. Detecting additional model behavior requires a
single traversal of the expanded prefix. Thus, the complexity
of this latter step is linear on the size of the expanded prefix.

7.4 Verbalization

The last step in the method is to turn occurrences of mis-
match patterns identified using the PSP, into plain natural
language statements that can be interpreted by users. Table 2
shows the statements corresponding to each of the nine
mismatch patterns defined in Section 7. For some of the
mismatch patterns, we identify multiple sub-cases based on
conditions on the events of the log and/or model, leading
to more than one statement type per mismatch pattern.
This depends on whether the events in question are causal
or concurrent, or if the event in the log is defined. As a
result, the nine constructors give rise to 16 different types of
difference statements.

In each statement, the states of the PSP (o, and when
required, also o) are used to precisely localize where the
difference occurs in the log and/or in the model. The text
“after ¢” means that a difference is observed immediately
after the occurrence of that state.

8 EVALUATION

We implemented the proposed behavioral alignment
method in a standalone Java tool called ProConformance,!!
as well as an OSGi plugin called Compare for the Apromore
[32] online process model repository.'? The tool takes as
input a process model in BPMN format and a log in MXML
or XES format. Its output is a set of difference statements.
The tool allows users to customize the output by switching
on/off PSP states, and selecting which elements of a state to
show, e.g. only the last matched event.

Using this tool, we conducted a two-pronged (qualita-
tive and quantitative) evaluation of the proposed method,
complemented by a user evaluation. First, we performed
a qualitative evaluation of the output produced by the
method on a real-life event log and a corresponding process
model. Next, we performed a quantitative evaluation of
time performance and number of produced difference state-
ments, based on large collections of real-life process models.
Finally, we measured the perceived ease of use, usefulness
and likelihood of using our method, by administering an
online survey to process modeling experts. In all three
evaluations, we compared our method with trace alignment,
which, as discussed in Section 2, is a state-of-the-art method
in business process conformance checking.

8.1 Qualitative evaluation

For the qualitative evaluation, we used a publicly available
log extracted from an information system for managing road
traffic fines in Italy [33], and a normative process model,

11. Available at http:/ /apromore.org/platform/tools
12. Available at http:/ /apromore.qut.edu.au

20

which we derived from the description of this business
process in [12]. The normative model in Petri nets is shown
in Fig. 29. This traffic fines management process starts when
a fine is created. The fine can be paid by the offender
right away, after a notification is sent to the offender by
the police, or when the offender receives the notification.
The payment itself can be done in one or more instalments,
depending on the amount of the fine. The case is closed as
soon as the payment for the full amount has been done. If
the fine is not paid within 180 days, a penalty is charged
on top of the fine and if after further 180 days the fine
is still due, a credit collection organization will take over
the handling of the case. At any time after receiving the
notification, the offender can appeal against the fine through
a judge or a prefecture. In case of a successful appeal, the
case is dismissed and the process ends. If the appeal is
unsuccessful, the fine is still to be paid. An appeal can be
made more than once, depending on the circumstances (e.g.
when escalating the appeal to a higher court).

Start Create
Fine

Send for
Credit
Collection

Insert Date
Appeal to
Prefecture

Notify
Result
Appeal to
End Offender

Receive
Result

Appeal from
Prefecture

Fig. 29: Traffic fines management process model.

The log covers fines recorded in the period 2000-2013. It
contains 150,370 traces comprising 231 distinct traces and a
total of 561,470 events.

We assessed the conformance of this log with the Petri
net of Fig. 29. Our method produced 15 distinct statements
capturing all the differences between the log and the model.
As an example, the following statements were retrieved
(states are indicated through the last matched event):

1) In the log, “Send for credit collection” occurs after “Pay-
ment” and before the end state

2) In the model, after “Insert fine notification”, “Add penalty”
occurs before “Appeal to judge”, while in the log they are
concurrent

3) In the log, after “Add penalty”, “Receive results appeal from
prefecture” is substituted by “Appeal to judge”

4) In the log, the cycle involving “Insert date appeal to prefec-
ture, Send appeal to prefecture, Receive result appeal from
prefecture, Notify result appeal to offender” does not occur
after “Insert fine notification”.

Statement 1 (an example of task insertion) denotes a
potential compliance issue: credit collection should never
occur if the payment has been done, though there are cases
in the log where this happens. Similarly, Statement 2 (an
example of causality/concurrency mismatch) indicates that
there are cases in the log where the penalty is charged

elseif e/ < e

Constructor Condition Statement type
;g ife! <e In the log, after o, A(e") occurs before A(e), while in the model they are concurrent
CAUSCONC(s e, f, €', f' coff) else In the model, after o, A(f') occurs before X(f), while in the log they are concurrent
if e | In the log, after o, X(e’) and X(e) are concurrent, while in the model they are mutually
welle exclusive
, —
CONFLICT(0, e, f, ¢/, ' coff) else if ' || f In the model, after o, X(f') and X(f) are concurrent, while in the log they are mutually

exclusive
In the log, after o, A(e’) occurs before task \(e), while in the model they are mutually
exclusive after o

21

else In the model, after o, \(f') occurs before X(f), while in the log they are mutually exclusive
¢ e ife# L In the log, after o, X(e) is optional
TASKSKIP(9, €, f, €', f' coff) else In the model, after o, X(f) is optional
TASKSUB(o, €, f, €', f’ coff) In the log, after o, X(f) is substituted by \(e)
UNMREPETITION(a, ¢, f,€’, f’,coff) In the log, \(e) is repeated after o
e ife# L In the log, X(e) occurs after o instead of o’
TASKRELOC(0, ¢, f, 07, €, 1) else In the model, \(f) occurs after o instead of o’
' ife# L In the log, X(e) occurs after o and before o’
TASKABS(0, 0", €, f) else In the model, () occurs after o and before o’

UNOBSACYCLICINTER(o, inter)

In the log, inter do(es) not occur after o

UNOBSCYCLICINTER(o, inter)

In the log, the cycle involving inter does not occur after o

TABLE 2: Verbalization of mismatch patterns

even after the appeal, while this should be done only if the
appeal is unsuccessful. Given that these two events have
been observed in any order in the log, they are identified
as concurrent. These compliance issues may be related to
recording errors in the system (e.g. a payment not being
recorded or being recorded for a lower amount).

Statement 3 (an example of task substitution) pinpoints
that in the log there are traces where after “Add penalty”,
event “Receive results appeal from prefecture” is observed.
In the PSP, this event in the log is substituted by “Appeal
to judge” in the model, after which we know the process
can complete. This means that tasks “Insert date appeal
to prefecture”, “Send appeal to prefecture” and “Notify
result appeal to offender”, which are in the same path as
“Receive results appeal from prefecture” in the model, are
not observed in the log. The method substitutes “Receive
results appeal from prefecture” with “Appeal to judge”
because this minimizes the number of mismatches, as op-
posed to skipping the three tasks above.!* This statement
suggests that in some cases, the results of an appeal to the
prefecture are received by the police, without the appeal
having actually been lodged by the offender. This might be
due to a mistake at the prefecture (e.g. fines being swapped),
which explains why the police does not notify the offender
(event “Notify result appeal to offender” is not observed
after “Receive results appeal from prefecture”).

Finally, Statement 4 (an example of unobserved elemen-
tary cycle) indicates that while in principle an offender can
appeal to the prefecture multiple times, this has not being
observed in the log. Given that the log covers over 10 years
of behavior, this may suggest that our model perhaps gen-
eralizes the behavior in the log, or that subsequent appeals
are never recorded in the system.

For trace alignment, we used the plugins “Replay a Log
on Petri Net for All Optimal Alignments”** and “Replay

13. The same holds for task “Send for credit collection” though the
substitution considers the lexicographical order of task labels.

14. Parameters used: graph-based state space replay to obtain all
optimal alignments with maximum explored states equal to 10,001,000.

a Log on Petri Net for Conformance Analysis”®® for the
ProM 6.5.1 environment. Both plugins report on confor-
mance issues related to fitness, by computing several visual
diagnostics as well as a fitness metric (a value from 0 to
1). The former plugin finds all optimal alignments for each
distinct trace of the log,16 while the latter provides a good
approximation of this result by computing only one optimal
alignment per distinct trace.

The main diagnostic consists in projecting the results of
alignment onto the log, which results in a list of individual
trace alignments (a small except of this view for our example
is shown in Figure 30). Besides statistics on fitness, this
diagnostic shows a great deal of information for each dis-
tinct trace, including the exact order in which synchronous
moves, (silent) moves on model and moves on log occur,
and for each move, the label of the involved event.

The “Replay a Log on Petri Net for Conformance Anal-
ysis” plugin, while providing a sub-optimal solution, offers
a range of additional diagnostics. For example, one can
visualize all trace alignments in a single tabular view and
apply various filters on top of it. More interestingly, one can
also project the results of alignment onto the normative Petri
net (see Fig. 31). This diagnostic can be used to show which
model tasks are often skipped (those with a red border),
and when tasks that should not be performed according to
the model are actually performed according to the log (the
darker the color of a path, the more frequent the path is
executed in the log). Further, a colored bar at the bottom of
a task box shows the ratio between the number of times the
task is executed synchronously in the log and in the model
(called synchronous move) and the number of times the task
is only executed in the model (called move on model).

Although the model view pinpoints, to a certain extent,
differences in executions, the exact differences have to be ob-
tained by inspecting the individual misalignments, i.e. those

15. Parameters used: A* cost-based fitness express with ILP with
maximum explored states equal to 10,001,000.

16. This plugin, with the graph-based state space replay, does not
effectively retrieve the complete list of all optimal alignments, but only
the representative ones as only one possible serialization of each run is
returned, and assumes that the model does not have loops made of
silent transitions only.

Log-model Algrments

Fig. 30: Excerpt of trace alignments projected on log for
the traffic fine management process (green = synchronous
move, purple = move on model, grey = silent move on
model, yellow = move on log).

Fig. 31: Trace alignments projected on model for the traffic
fine management process.

trace alignments that have at least one move on model or on
log.'” This requires additional analysis. In our example, we
need to examine 205 misalignments out of 231 alignments
when using one-optimal alignment, and 406 misalignments
out of 412 alignments when using all-optimal alignments.
Still, differences related to additional model behavior, such
as that captured by Statement 4 with our method, cannot
be distilled from the misalignments as these only focus on
fitness. For this, the underlying technique of the plugin
“Check Precision based on Align-ETConformance” could be
used, which relies on the prefix automaton built from trace
alignments to identify the escaping edges from which the
additional model behavior starts, as discussed in Section 2.18
In our example, however, the escaping edge being reported
would be the invisible task Tau;y, because this is the last
event before the tasks in the interval referred to by State-
ment 4 can be repeated. From this, by looking at the model,

17. Silent moves on model are excluded as they do not capture
observable differences.

18. This plugin only provides statistics such as a precision metric.
However, one could extract the escaping edges from the code.

22

one may infer that there are tasks in the model that can
be repeated after Tau;og, which are not observed in the log.
Similarly, Statement 2 refers to two events being concurrent
in the log and causal in the model. This difference cannot be
detected by examining the misalignments, because in trace
alignment diagnostics are provided at the level of individual
traces, while concurrency is a behavioral relation that can
only be observed across traces.

8.2 Quantitative evaluation

In order to test the scalability of our approach to increasing
model and log complexity, we used two collections of pro-
cess models: the IBM Business Integration Technology (BIT)
library, a publicly-available collection of process models in
financial services, telecommunication and other domains,
gathered from IBM’s consultancy practice [34],° and the
SAP R/3 collection, the reference model used by SAP to
customize their R/3 ERP product, documented in [35].

The BIT collection contains 735 models, while the R/3
collection contains 604 models. We extracted 348 and 494
models, respectively, from these collections, by removing
models that were not single-entry single-exit (i.e. models
that were not Workflow nets) and that were behaviorally
incorrect (i.e. unsound). Next, for each model, we generated
an event log using the ProM plugin “Generate Event Log
from Petri Net” documented in [36]. This plugin generates a
distinct log trace for each possible execution sequence in the
model.?’ The tool was only able to parse 274 models from
the BIT collection, and 438 models from the R/3 collection,
running into out-of-memory exceptions for the remaining
models. As such, our quantitative evaluation is based on the
logs generated from 712 sound Workflow nets. The statistics
on these models are provided in Table 3. The models range
from simple ones, with a minimum of 7 nodes and a small
number of XOR and AND splits, to very large and complex
models with up to 177 nodes and a large number of XOR
and AND splits with many outgoing arcs.

Collection Min | Max | Mean o
Size 7 177 38.1 30.08

XOR splits 0 5 0.61 1
BIT | Outdegree XOR 2 10 242 1.18
AND splits 0 33 6.49 5.72
Outdegree AND 2 7 2.08 0.42
Size 7 85 27.62 17.78
XOR splits 0 4 0.59 0.82
R/3 | Outdegree XOR 2 8 2.48 0.94
AND splits 0 4 0.83 0.86
Outdegree AND 2 5 2.29 0.61

TABLE 3: Statistics on model complexity.

Next, in order to create random differences between
each log and its corresponding model, we injected noise in
each original log. We achieved this by repeatedly adding
or removing a random event that already existed in the
original log in a random position of a randomly selected
trace, until the number of added and removed events equals
a percentage of the total number of events in the original log.

19. The BIT collection is available at http://apromore.qut.edu.au

20. Parameters used: simulation method: complete generation;
min./max. traces to add for each generated sequence: 1; max. times
marking seen: 2; only include traces that reach end state; only include
traces without remaining tokens.

We applied four noise levels, corresponding to 5%, 10%, 15%
and 20% of the total number of events, thus obtaining four
“noisy” variants for each original log. The noise injection
procedure is inspired by the technique documented in [37].
Before performing this operation, we duplicated each dis-
tinct trace in every original log, so that each distinct exe-
cution sequence in the corresponding model is represented
twice in the log. We did so in order not to increase the total
number of traces in the log when injecting noise.

Table 4 provides statistics on the complexity of the logs
for both collections, divided by noise level. The logs range
from 6 to 1,433 total events, with a maximum of 38 traces
(having 29 distinct traces on average) in the case of the BIT
collection, and from 6 to 9,462 total events, with a maximum
of 840 traces (38 distinct traces on average) for the R/3
collection. In the remainder, with tofal log size we refer to
the total number of events, which corresponds to the sum of
the lengths of the traces.

Collection | Noise | Min | Max | Mean | o

None 6 |1,432 58 120
5% 6 [1,427] 58 120

BIT 10% 7 11,433 58 120
15% 7 | 1428 57 120
20% 7 [1,428] 57 120
None | 6 [9,408| 515 |1,377

R/3 5% 6 |9410| 514 |1,377
10% 7 194321 515 [1,379
15% 7 19,449 515 [1,382
20% 7 19462 515 [1,384

TABLE 4: Total log size in terms of number of events.

Using these two logsets, we measured the execution
time and counted the number of statements provided by
our method for each model-log pair for all noise levels. We
performed the tests on a machine with a dual core Intel Core
i7-4710HQ 2.5GHz (4 cores), 16GB RAM, running Windows
8.1 x64 and Java 1.8.0_31 with 14GB of allocated memory.
To eliminate load time from the measures, we executed
each test five times and recorded average times of three
executions, removing the fastest and the slowest executions.

The execution times against the total log size for each
noise level are plotted in Figures 32 (BIT) and 33 (R/3),
where the measuring points are color-coded depending on
the level of noise. For the BIT case (Figure 32), we have
omitted the five outlier logs with more than 1,400 events,
in order to improve clarity. Summary statistics of the time
performance of each operation (log to PES, model to PES,
PSP computation and verbalization), as well as of the total
time taken by our method are shown in Table 5.

Without noise, the execution time is linear on the log size
(R? = 0.83 for BIT and 0.95 for R/3), reaching a peak of 67ms
for a log of 1,432 events (BIT) and 183ms for a log of 8,352
events (R/3). The plots show that the discrepancies between
the model and the log result in higher execution times than
the case without noise. This is due to the complexity of
building the PSP. Still, execution times are always under
10sec for BIT (6.6sec max at 20% noise on a log of 1,428
events and a model of 177 nodes, with a peak memory heap
space of 894MB) and under 2min for R/3 (92sec max at 20%
noise on a log of 8,352 events and a model of 68 nodes, with
a peak memory heap space of 1GB).?!

21. The memory tests were performed using YourKit Java Profiler
version 2016.02-b40.

23

From Table 5 we can observe that the increase of noise
(and, hence, the increase in the number of differences)
results in an increased execution time for generating the PSP
and for verbalizing the differences. In particular, higher PSP
computation times correspond to logs with a larger number
of distinct traces. However, the execution time required to
convert the log to PES and the model to PES only depends
on the size of the log and the model, respectively, and are
thus not affected by the increase of noise.

800

700

@
=3
=)

o
S
S

w
=3
S

Log size (# events)
£
S
o
H
.
L
.

N
S
o
|
A

o
o o
P
L]
:

0 50 100 150 200 250 300
Time (ms)

®No noise ®5% noise 10% noise 15% noise ~ ® 20% noise

Fig. 32: Effect of log size and noise on the time performance
of our method (BIT).

10000 ‘

9000 i
8000

7000

z

& 6000

E ®» C]
o o

% 5000 § s e .

N

@ 4000 woww | ow

2 X

- .

3000

-

.

P
2000 [

s

1000

0 10 20 30 40 50 60 70 80 90 100
Time (s)

®No noise ®5% noise 10% noise 15% noise ® 20% noise

Fig. 33: Effect of log size and noise on the time performance
of our method (R/3).

Table 6 reports the number of statements produced by
our method for each logset. As expected, the noiseless logs
all produce zero statements. In the extreme case of a log with
20% noise, 104 statements were required to describe all the
differences for the BIT collection (with a log of 1,428 events
and model of 177 nodes — this is the pair that took 6.6sec
to be compared), and 593 statements for the R/3 collection
(with a log of 8,352 events and model of 68 nodes).

Comparing execution times with number of statements,
we can observe a relatively sharp increase in average exe-
cution time between 0% and 5% noise in the R/3 dataset
(11ms vs 467ms). This, however, coincides with a similarly
sharp increase in the amount of produced statements (0 vs
18 on average and 7,469 in total). For example, the number
of additional statements required for the 10% noise level
compared to the 5% noise level is smaller, resulting in a
similarly smaller increase in required execution time.

Collection | Noise | Operation Min | Max | Mean | 95% o
Log to PES 0 24 1 4 2
Model to PES| 0 34 2 8 3
None [PSP 0 9 0 0 1
Verbalization | 0 4 0 0 0
Total 0 67 4 14 6
Log to PES 0 28 1 4 2
Model to PES| 0 34 2 8 3
5% | PSP 0 78 1 2 5
Verbalization | 0 62 0 1 4
Total 0 141 5 15 10
Log to PES 0 29 1 4 2
Model to PES| 0 34 2 8 3
BIT 10% | PSP 0 856 4 3 52
Verbalization 0 88 1 2 5
Total 0 919 8 17 56
Log to PES 0 31 1 4 2
Model to PES| 0 34 2 8 3
15% | PSP 0 2,547 11 4 154
Verbalization | 0 99 1 2 6
Total 0 2,615 15 17 158
Log to PES 0 31 1 4 2
Model to PES| 0 34 2 8 3
20% | PSP 0 6,592 28 7 399
Verbalization | 0 108 1 2 7
Total 0 6,659 32 20 403
Log to PES 0 160 9 50 25
Model to PES | 0 36 2 8 4
None [PSP 0 8 0 0 1
Verbalization | 0 2 0 0 0
Total 0 183 11 60 28
Log to PES 0 192 9 55 27
Model to PES| 0 23 2 7 3
5% | PSP 0 [51562] 455 | 596 |3,431
Verbalization 0 1,194 20 66 111
Total 0 |[51,768 | 467 656 | 3,452
Log to PES 0 197 10 58 28
Model to PES| 0 26 2 7 3
SAP 10% | PSP 0 [54985| 811 [2,031 4,779
Verbalization 0 2,217 53 199 | 260
Total 0 |55196| 824 |2,072]4,806
Log to PES 0 204 10 62 29
Model to PES| 0 23 2 7 3
15% [PSP 0 [88,889| 1,224 | 3,687 7,383
Verbalization 0 2,990 75 282 | 349
Total 0 | 89,124 | 1,238 | 3,759 | 7,410
Log to PES 0 225 10 63 30
Model to PES| 0 23 2 7 3
20% | PSP 0 [91,874| 1,213 [3,716 | 6,886
Verbalization | 0 3,490 89 341 | 410
Total 0 [92,102| 1,226 | 3,798 | 6,915

TABLE 5: Execution time (ms) of each operation for the two
logsets, using our method.

Collection | Noise | Min | Max | Mean | o | Total

None 0 0 0 0 0
5% 0 42 2 4] 480

BIT 10% 0 65 4 7 | 943
15% 0 89 5 9 | 1,409
20% 0 104 7 11| 17,76
None 0 0 0 0 0
5% 0 370 18 431 7469

R/3 10% 0 408 28 | 62]11,720
15% 0 544 37 [79]15,532
20% 0 593 43 | 88118,048

TABLE 6: Statements produced for each logset.

Next, we carried out the same tests using trace alignment
with all optimal alignments (using the plugins “Replay a
Log on Petri Net for All Optimal Alignments” to obtain the
individual trace alignments, and “Check Precision based on
Align-ETConformance”??) to obtain the escaping edges. The
execution times against log size and noise level are reported
in Figures 34 (BIT) and 35 (R/3). Again, we have omitted
the five outlier logs with more than 1,400 events for the
BIT case (Figure 34), in order to improve clarity. Table 7

22. Parameters used: ordered representation; all optimal alignments.

24

provides the summary statistics. Similar to our method,
performances grow linearly on the log size in the case of
no noise (R?=0.87 for BIT and 0.93 for R/3). Comparatively,
trace alignment is faster than our method, reaching a peak
of just 0.5sec for BIT and 1.9sec for R/3 in the case of 20%
noise, compared to 6.6sec and 92sec, respectively, with our
method. In particular, the difference in performance is more
evident for larger logs with many model-log discrepancies,
where the complexity of the PSP is exposed. Conversely, on
simpler logs our method tends to be slightly faster than trace
alignment. This is the case for the model-log pairs with up
to 5% noise levels for the BIT collection, and the model-log
pairs with no noise for the R/3 collection.

800

° ° .

700

600
N
- L ° L
g 500
>
o L] L] L]
£ 400 SO T — .
.g o %o ® * |®
300 s elooe
o ° e
3 [. °

® ot @
200 {2880% occn
1y
100 - .“0".
0 ¥
50 100 150 200 250 300
Time (ms)
@ No noise ®5% noise 10% noise 15% noise ®20% noise

Fig. 34: Effect of log size and noise on the time performance
of all optimal alignments (BIT).

12000

0
L] L]
10000 1" e .

O e L4
® 0

—_ ¢ L]

@ 8000 e

5 L]

: ok : .

* - .

£ 6000 - - .

N ,‘. (]

2 e - .

f": 4000 oo y0 o .
e Qe ® .
e % &
P

2000 § ¥ o %o
g‘,.}/ °®] °
0 i ee 89 wa & * PP o6 e © o * o |

0

0.5 1 1.5 2
Time (s)

®No noise ®5% noise 10% noise 15% noise ®20% noise

Fig. 35: Effect of log size and noise on the time performance
of all optimal alignments (R/3).

Tables 8 and 9 report the number of misalignments and
escaping edges. From these we can observe that the number
of diagnostics provided by trace alignment is significantly
higher than that reported by our method, with a total of
6,968 misalignments + escaping edges for the BIT collection
and 153,698 misalignments + escaping edges for the R/3 col-
lection (summing up across all noise levels), compared to a
total of 4,608 statements and 52,769 statements, respectively,
with our method.

Trace alignment reports escaping edges also in the case
of logs with no noise (316 for BIT and 2,495 for R/3). This is
due to the fact that these edges are detected whenever there

is repetitive behavior (i.e. infinite behavior) in the model,
since the log records finite behavior. For example, if a loop
in the model is only observed twice in the log, an escaping
edge will be reported on the state enabling the third iteration
of this loop in the model.

Collection | Noise | Min | Max | Mean | 95% | o
None 2 102 7 25 | 10
5% 2 221 10 31 | 18
BIT 10% 3 317 11 36 | 24
15% 3 414 12 38 | 30
20% 3 522 13 42 137
None 2 475 29 148 | 70
5% 2 919 55 290 | 143
R/3 10% 2 (1218 72 406 | 193
15% 2 11539 86 486 | 239
20% 2 [1910[98 553 | 282

TABLE 7: Execution time (ms) for each logset using all
optimal alignments.

Collection | Noise | Min | Max | Mean | o | Total

None 0 0 0 0 0
5% 0 36 3 4 759

BIT 10% 1 61 4 6 | 1,194
15% 1 69 6 8 | 1,567
20% 1 94 7 10 | 1,864
None 0 0 0 0 0
5% 0 826 35 96 | 14,287

R/3 10% 1 [1689] 65 |[180]26,285
15% 1 [2554] 93 [267 37271
20% 1 [3711| 121 | 358 48,725

TABLE 8: Misalignments for each logset using all optimal
alignments.

Collection | Noise | Min | Max | Mean | o | Total
None 0 8 1 1 316
5% 0 8 1 1 | 315
BIT 10% 0 7 1 1 317
15% 0 7 1 1 316
20% 0 7 1 1 | 320
None | 0 494 6 32 [2495
5% 0 1,246 14 78 | 5,748
R/3 10% 0 [1533] 16 92 16,266
15% 0 [1,795] 16 [102] 6,405
20% 0 1,821 16 102 | 6,216

TABLE 9: Escaping edges for each logset using all optimal
alignments.

8.3 User evaluation

As a final step, we performed a user evaluation of the
proposed method to improve the ecological validity of our
findings. We have shown that our method is more accurate
and concise than trace alignment, but its potential can only
materialize if people want to use it. Thus, we designed an
online survey instrument that presented a simple process
model and assumed that this model was accompanied by a
log recording 53 executions of the corresponding business
process. The model, a Petri net with 31 nodes (10 visible
transitions), was created from a real-life claims handling
process model, whose labels were anonymized to avoid do-
main bias in the respondents. We showed a Petri net rather
than a BPMN model to be consistent with the visualization
produced by trace alignment.

Next, we showed the output of the trace alignment
method in the form of a set of 32 misalignments and a
Petri net with alignment information overlaid, as well as the

25

output of our method in the form of a list of nine statements.
For trace alignment, we used one-optimal instead of all-
optimal alignment to reduce the number of misalignments
showed as output (from over 120 alignments to 32), so as
to facilitate the analysis of this output by the respondents
in the context of a short survey. The complete instrument is
reported in the Appendix.

Using this survey, we asked the respondents to compare
both methods across the main constructs of the Technology
Acceptance Model [39]. The Technology Acceptance Model
is a widely used model in information systems research
to evaluate the likelihood that people will use a certain
information technology. It asserts that people who find a
given technology easy to use will find it more useful, and
in turn if they find it both easy to use and useful they
will be more likely to use the technology. Accordingly, we
measured each of those constructs by asking respondents to
indicate which of the methods they perceived as easier to
use, more useful, and more likely to be used for i) checking
the conformance of event logs to process models, and ii)
identifying differences between process models and event
logs. This led to the following six questions:

o “What is the easiest approach for checking the confor-
mance of an event log to a process model?”

o “What is the easiest approach for identifying the differ-
ences between a process model and an event log?”

e “What is the most useful approach for checking the
conformance of an event log to a process model?”

e “What is the most useful approach for identifying the
differences between a process model and an event log?”

o “Which approach would you likely use for checking the
conformance of an event log to a process model?”

o “Which approach would you likely use for identifying
the differences between a process model and an event
log?”.

For each question, we used a seven point Likert-type
response scale ranging from “Strongly prefer Trace Align-
ment” to “Strongly prefer Behavioral Alignment”.

The type of comparison we chose in our experiment may
have favored trace alignment since visual representation
is more appealing and informative than plain text. In the
absence of comparable feedback, we decided to favor trace
alignment, rather than our method, for which we were
trying to find support. This minimizes the risk for a Type
I error in statistics, i.e. that of erroneously rejecting the null
hypothesis, which in our case was that both methods are
equally good for conformance checking.

Respondents were also asked to share their general
occupation (academic vs. professional); their experience in
business process modelling, including questions about the
frequency of creating and analyzing process models in the
past twelve months, as well as the complexity of those mod-
els; their familiarity with and confidence and competence
in working with Petri nets (evaluated on 7-point Likert-
type response scales ranging from “strongly disagree” to
“strongly agree”); and the amount of training and self-
education in process modeling they had engaged in over
the past twelve months (in number of days).

We hypothesized that on average:

1) respondents would have a preference for behavioral
alignment,

26

p-value
difference
Full sample (n = 71) Academics (n = 38) Professionals (n = 33) academics
vs.
professionals
Mean StDev II\\A/II;); Mean StDev I\I\//Illanx_ Mean StDev I\I\//Illanx_
Experience (yrs) 8.11 6.65 0-30 7.97 5.35 0-25 8.27 7.80 0-30 .57
Familiarity Petri nets® 497 1.98 1-7 5.89 1.35 1-7 391 2.07 1-7 .00***
Confidence Petri nets® 5.15 1.75 1-7 6.03 1.13 3-7 415 1.82 1-7 .00***
Competence Petri nets® 4.61 2.13 1-7 5.68 1.60 1-7 3.36 2.00 1-7 .00***
Models analyzed (nr.) 86.11 10728 0-500 | 119.00 125.05 4-500 | 48.24 65.84 0-300 .00***
Models created (nr.) 25.17 3491 0-250 33.47 44.31 4-250 15.61 14.83 0-70 .01*
Activities in models (nr.) 19.58 12.37 0-70 20.50 12.52 6-70 18.52 12.30 0-50 77
Training (days) 1.90 4.16 0-30 0.92 1.84 0-7 3.03 5.61 0-30 .02*
Self-education (days) 31.25 69.14 0-365 43.63 91.38 0-365 17.00 20.26 0-100 .26

“ Questions that were rated on a 7-point Likert-type response scale with high scores representing high familiarity, confidence

and competence, respectively.

* p < .05, ** p < .001 For these variables, the null hypothesis that distributions for academics and professionals were equal
was rejected using a Mann-Whitney U test; academics scored significantly higher on each of these, except training, where

professionals scored significantly higher than academics.

TABLE 10: Summary statistics for the full sample and for academics and professionals separately.

. Mann-Whitney U comparin,
Median Academics ang Professl.:;onalgs
Full sample Academics Professionals U
(n="71) (n=38) (n =33) p r
Ease of use for checking differences 0.00 -0.50 2.00 414.00 .01 -0.30
Ease of use for checking conformity 0.00 -1.00 2.00 376.50 .00 -0.35
Useful for checking differences 0.00 -1.00 1.00 427.00 .02 -0.28
Useful for checking conformity 0.00 -1.00 1.00 41550 .01 -0.29
Likely to use for checking differences 0.00 -1.00 1.00 396.50 .01 -0.32
Likely to use for checking conformity 0.00 -1.00 1.00 416.00 .01 -0.29

Note. Variables were measured on a 7-point Likert-type

response scale ranging from (-3) “Strongly prefer Trace

Alignment” to (0) “Neutral” to (3) “Strongly prefer Behavioral Alignment”. U denotes the Mann-Whitney U test
result; r refers to an effect size estimation that is considered medium at .3 and high above .5 [38].

TABLE 11: Medians and Mann-Whitney U test results for perceived ease of use, usefulness and likelihood of use.

Ease of use for checking Useful for checking Likely to use for checking
differences conformance | differences conformance | differences conformance

Experience (years) -0.13 -0.08 -0.01 -0.06 -0.1 -0.02
Familiarity Petri nets -0.24* -0.22 -0.2 -0.27* -0.13 -0.30*
Confidence Petri nets -0.29* -0.27* -0.26* -0.35%* -0.22 -0.34**
Competence Petri nets -0.25*% -0.23 -0.22 -0.28* -0.19 -0.27*
Models analyzed (nr.) -0.07 -0.07 0 -0.01 0.08 -0.11
Models created (nr.) 0.13 0.11 0.16 0.1 0.16 0.11
Activities in models (nr.) 0.15 0.26* 0.18 0.18 0.32** 0.2
Training (days) 0.26* 0.234* 0.26* 0.27* 0.32%* 0.24*
Self-education (days) 0.19 0.23* 0.21 0.17 0.23 0.27*

*p < .05 % p < .01

Note. Low values in the dependent variables represent a preference for alignments, while high values represent a

preference for behavioral alignment.

TABLE 12: Spearman Correlations between dependent variables and indicators of experience and expertise.

2) respondents with less experience, familiarity, confi-
dence and competence in the use of Petri nets would
have a stronger preference for behavioral alignment.

Invitations to complete the survey were distributed via
the authors’ professional network, targeting academics and
practitioners. The survey was open for one month. During
this period, responses were received from 38 academics and
33 professionals. Table 10 presents descriptive statistics for
the entire sample and for the two cohorts separately.

Because the dependent variables were not normally dis-
tributed (established based on visual inspection and the
Shapiro-Wilks test at p < .01) we used non-parametric tests:
we used Spearman correlations to establish relations, and
medians and Mann-Whitney U tests to compare groups. As
expected, these group comparisons revealed that academics
tended to rate themselves as more familiar with and confi-
dent and competent in working with Petri nets, and that
they had analysed and created more models in the past
twelve months than professionals. Yet, they received less

training. The latter result is also expected, as training is
typically addressing a professional audience, e.g. in the form
of continuing professional development courses, while aca-
demics rely on self-education (as confirmed by the results
in Table 10), especially because the questions referred to
the last twelve months. Based on this, we tested Hypoth-
esis 1 both for the whole sample and for the two cohorts
separately. The results do not support this hypothesis for
the whole sample, as there is no general preference for our
method: the median was zero (“neutral”) in the full sample
(see Table 11). However, professionals did show a preference
for behavioral alignment (especially along ease of use) while
academics preferred trace alignment, so Hypothesis 1 is
supported for the professionals cohort only.

Further exploration of the data (in Table 12) revealed that
respondents with more experience, familiarity, confidence
and competence in working with Petri nets tended to have
a stronger preference towards trace alignment. These results
were in support of Hypothesis 2.

In summary, our user evaluation revealed that aca-
demics prefer trace alignment while professionals prefer our
method. Moreover, people that possess less expertise in Petri
nets have a stronger preference for our method.

9 CONCLUSION

We proposed a method called behavioral alignment, to
check the conformance between an event log capturing
the actual execution of a business process, and a model
capturing its expected or normative execution. The method
relies on a unified representation of event logs and process
models. Specifically, the log is folded into an event structure
and the model is unfolded into another event structure. The
two structures are then aligned, and their commonalities
and divergences are represented via a partially synchro-
nized product from which a complete set of behavioral
differences between the model and the log is extracted.

We compared the proposed method to existing confor-
mance checking methods based on trace alignment using a
three-pronged evaluation method. First, a qualitative eval-
uation based on a real-life event log and a corresponding
process model showed that the presented method produces
a more compact, yet much more understandable diagno-
sis than conformance checking methods based on trace
alignment. This qualitative evaluation also showed that the
proposed method exposes behavioral differences that are
difficult or impossible to identify using trace alignment.

Second, a quantitative evaluation using two real-life col-
lections with over 700 process models in total, showed that
the proposed method — while being generally slower than
trace alignment — has reasonable execution times (within 10
seconds). In extreme cases involving logs with over 8,000
event occurrences (considering distinct traces only) and a
high number of differences between the process model and
the event log, the execution time is still below 2 minutes.
The quantitative evaluation also showed that the proposed
method consistently produces more compact difference di-
agnosis than trace alignment methods.

Third, we conducted a user evaluation of our method
relative to trace alignment by means of a survey filled in by
a population of researchers and professionals in BPM. The
survey results showed that while researchers have a pref-
erence for trace alignment, professionals find the proposed
method more useful, easier to use, and will use it more likely
than alignment. Moreover, a correlation was found between
lack of expertise in Petri nets and preference for our method.
However, a more in-depth user evaluation, e.g. with active
user participation, would be required to fully understand
the advantages and disadvantages of each method. This is a
direction for future work.

A limitation of the proposed method is that it treats
the input log as consisting of sequences of event labels,
thereby ignoring timestamps and event payloads. Possible
directions for future work include designing temporal and
data-aware extensions of the method, along the lines of data-
aware extensions of trace alignment methods [12].

In addition to these possible extensions, there are also
multiple directions to improve the proposed method. First,
the method relies on a concurrency oracle when transform-
ing sets of traces into sets of partially-ordered runs. In

27

the empirical evaluation, we relied on a relatively simple
concurrency oracle, namely the o+ oracle. This oracle has
the limitation that it sometimes cannot isolate concurrency
in the presence of short loops, skipped and/or duplicated
tasks. Accordingly, another direction for future work is to
evaluate the performance of the proposed method with a
range of more sophisticated concurrency oracles. A more
accurate concurrency oracle can lead to a more accurate
transformation from traces to runs, which in turn would
lead to an event structure that better reflects the log.

Another direction for future work is to design a tech-
nique to summarize the diagnosis of the differences, for
example by grouping related difference statements and
abstracting them via higher-level statements that strike a
tradeoff between accuracy and interpretability. In a similar
vein, there is room for improving the interpretability of the
results by complementing the generated natural language
statements with visual feedback. The latter can be achieved
for example by visually displaying the state in the input
process model where the difference occurs as well as the
involved tasks. Also, since the PSP tells us the exact config-
urations in the PES of the model and in the PES of the log
where each difference occurs, we can extract two incomplete
runs (one in the process model and one in the log), leading
to the state where the difference in question is observed.
These runs can be trivially serialized into traces and used to
show to the user the possible sequences of events leading to
a state where the difference occurs.

Acknowledgements. We thank Jorge Mufioz-Gama for his
support with the conformance checking ProM plugin,
Boudewijn van Dongen for his insights on trace alignment,
and Abel Armas-Cervantes for his comments on early ver-
sions of this paper. This research is funded by the Australian
Research Council Discovery Project DP150103356 and the
Estonian Research Council Project IUT20-55.

REFERENCES

[1] W.M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2]]. C. A. M. Buijs, M. L. Rosa, H. A. Reijjers, B. F. van Dongen, and
W. M. P. van der Aalst, “Improving business process models using
observed behavior,” in Data-Driven Process Discovery and Analysis -
Second IFIP WG 2.6, 2.12 International Symposium, SIMPDA 2012,
Campione d’lItalia, Italy, June 18-20, 2012, Revised Selected Papers,
ser. Lecture Notes in Business Information Processing, vol. 162.
Springer, 2013.

[3] D. Fahland and W. M. P. van der Aalst, “Model repair - aligning
process models to reality,” Inf. Syst., vol. 47, 2015.

[4] N. Kleiner, “Delta analysis with workflow logs: aligning business
process prescriptions and their reality,” Requir. Eng., vol. 10, no. 3,
2005.

[5] M. Nielsen, G. D. Plotkin, and G. Winskel, “Petri nets, event
structures and domains, part I,” Theor. Comput. Sci., vol. 13, 1981.

[6] W.van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14,
no. 1, 2003.

[7] A. Rozinat and W. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Inf. Syst., vol. 33,
no. 1, 2008.

[8] A. A.de Medeiros, “Genetic process mining,” Ph.D. dissertation,
Eindhoven University of Technology, 2006.

[9] S. K. L.M. vanden Broucke,]J. Munoz-Gama, J. Carmona, B. Bae-
sens, and J. Vanthienen, “Event-based real-time decomposed con-
formance analysis,” in Proc. of OTM Conferences. Springer, 2014.

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

(33]

[34]

(35]

[36]

J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst, “Single-
entry single-exit decomposed conformance checking,” Inf. Syst.,
vol. 46, 2014.

A. Adriansyah, B. van Dongen, and W. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in Proc. of
EDOC. IEEE, 2011.

F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. van der Aalst,
“Balanced multi-perspective checking of process conformance,”
Computing, 2015.

J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A
robust f-measure for evaluating discovered process models,” in
Proceedings of the CIDM 2011, 2011.

S. K. L. M. vanden Broucke, J. D. Weerdyt, J. Vanthienen, and B. Bae-
sens, “Determining process model precision and generalization
with weighted artificial negative events,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 8, 2014.

J. Munoz-Gama and]. Carmona, “A fresh look at precision in
process conformance,” in Proc. of BPM. Springer, 2010.

A. Adriansyah, J. Munoz-Gama,]J. Carmona, B. F. van Dongen,
and W. M. P. van der Aalst, “Measuring precision of modeled
behavior,” Inf. Syst. E-Business Management, vol. 13, no. 1, 2015.

A. Armas-Cervantes, P. Baldan, M. Dumas, and L. Garcia-
Bariuelos, “Diagnosing behavioral differences between business
process models: An approach based on event structures,” Informa-
tion Systems, vol. 56, 2016.

N. van Beest, M. Dumas, L. Garcia-Bariuelos, and M. L. Rosa, “Log
delta analysis: Interpretable differencing of business process event
logs,” in Proc. of BPM 2015. Springer, 2015.

L. Garcia-Baniuelos, N. van Beest, M. Dumas, and M. L. Rosa,
“Business process conformance checking based on event struc-
tures,” in Proc. of NWPT'2015. Reykjavik University, 2015, 3 pages.
R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and anal-
ysis of business process models in BPMN,” Information & Software
Technology, vol. 50, no. 12, 2008.

K. L. McMillan, “A technique of state space search based on
unfolding,” Formal Methods in System Design, vol. 6, no. 1, 1995.

J. Esparza, S. Romer, and W. Vogler, “An improvement of mcmil-
lan’s unfolding algorithm,” Formal Methods in System Design,
vol. 20, no. 3, 2002.

J. Esparza, “Model checking using net unfoldings,” Sci. Comput.
Program., vol. 23, no. 2-3, 1994.

J. E. Cook and A. L. Wolf, “Event-based detection of concurrency,”
in FSE. ACM, 1998.

W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: discovering process models from event logs,” IEEE TKDE,
vol. 16, no. 9, 2004.

A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. M.
Weijters, “Workflow mining: Current status and future directions,”
in Proc. of On The Move to Meaningful Internet Systems (OTM) 2003,
2003.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE Trans.
Systems Science and Cybernetics, vol. 4, no. 2, 1968.

V. Pratt, “Modeling concurrency with partial orders,” International
Journal of Parallel Programming, vol. 15, no. 1, 1986.

A. Valmari, “A stubborn attack on state explosion,” Formal Methods
in System Design, vol. 1, no. 4, 1992.

J. C. Tiernan, “An Efficient Search Algorithm to Find the Elemen-
tary Circuits of a Graph,” Commun. ACM, vol. 13, no. 12, 1970.

J. L. Szwarcfiter and P. E. Lauer, “A search strategy for the
elementary cycles of a directed graph,” BIT Numerical Mathematics,
vol. 16, no. 2, 1976.

M. L. Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman,
J. Mendling, M. Dumas, and L. Garcia-Bafiuelos, “APROMORE:
an advanced process model repository,” Expert Syst. Appl., vol. 38,
no. 6, 2011.

M. de Leoni and F. Mannhardt, “Road traffic fine management
process,” 2015. [Online]. Available: http://dx.doi.org/10.4121/
uuid:270fd440-1057-4fb9-89a9-b699b47990f5

D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Volzer, and
K. Wolf, “Analysis on demand: Instantaneous soundness checking
of industrial business process models,” Data Knowl. Eng., vol. 70,
no. 5, 2011.

T. Curran and G. Keller, SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Upper Saddle River, 1997.

S. Vanden Broucke, J. De Weerdyt, J. Vanthienen, and B. Baesens,
“An improved process event log artificial negative event genera-

[37]

[38]
[39]

28

tor,” Faculty of Economics and Business, KU Leuven (Belgium),
Tech. Rep. KBI_1216, 2012.

R. Conforti, M. Dumas, L. Garcia-Bafiuelos, and M. La Rosa,
“BPMN Miner: Automated discovery of BPMN process models
with hierarchical structure,” Information Systems, vol. 56, 2016.

A. Field, Discovering statistics using SPSS. Sage publications, 2009.
F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS quarterly, 1989.

Luciano Garcia-Banuelos is Associate Profes-
sor of Software Engineering at the University of
Tartu, Estonia. He obtained his PhD in 2003 from
Grenoble Institute of Technology for his work on
long-running transactions. His current research
interests are in the fields of service-oriented
computing and business process management,
with a focus on formal methods for business
process modeling and analysis.

Nick van Beest is a Research Scientist at
Data61, CSIRO in Brisbane, Australia. He ob-
tained his PhD in Information Systems in 2013
at the University of Groningen, The Netherlands.
His research experience covers artificial intelli-
gence, process mining, business process com-
pliance and knowledge-intensive business pro-
cesses. He currently works on deviance mining
and conformance checking for the purpose of
performance improvement and automated run-
time anticipation of disruptions.

Marlon Dumas is Professor of Software En-
gineering at University of Tartu, Estonia and
Adjunct Professor of Information Systems at
Queensland University of Technology, Australia.
His interests span across software engineer-
ing, information systems and Business Process
Management. His research focuses on combin-
ing data mining and formal methods to ana-
lyze and monitor business processes. He is co-
author of the textbook Fundamentals of Busi-
ness Process Management (Springer, 2013).

Marcello La Rosa is Professor of Information
Systems at the Queensland University of Tech-
nology, Brisbane, Australia. His research in-
terests include business process consolidation,
mining and automation. He leads the Apromore
initiative (www.apromore.org), a strategic col-
laboration between various universities for the
development of an advanced process analytics
platform. He is co-author of the textbook Fun-
damentals of Business Process Management
(Springer, 2013).

Willem Mertens is a Postdoctoral Research Fel-
low at the Queensland University of Technol-
ogy, Australia, and a Research Fellow of Vlerick
Business School, Belgium. His primary topic of
interest is positive deviance: behavior that de-
viates from organisational norms or processes,
and is more successful because of it. His other
research interests span the domains of business
process management, organizational behavior
and innovation.

APPENDIX
The Appendix for this paper is available online.

