Business Process Variability Modeling: A Survey

MARCELLO LA ROSA, Queensland University of Technology, Australia

WIL M.P. VAN DER AALST, Eindhoven University of Technology, The Netherlands

MARLON DUMAS, University of Tartu, Estonia and Queensland University of Technology, Australia
FREDRIK P. MILANI, University of Tartu, Estonia

It is common for organizations to maintain multiple variants of a given business process, such as multiple
sales processes for different products or multiple bookkeeping processes for different countries. Conven-
tional business process modeling languages do not explicitly support the representation of such families of
process variants. This gap triggered significant research efforts over the past decade leading to an array of
approaches to business process variability modeling. In general, each of these approaches extends a conven-
tional process modeling language with constructs to capture customizable process models. A customizable
process model represents a family of process variants in a way that a model of each variant can be derived
by adding or deleting fragments according to customization options or according to a domain model. This
survey draws up a systematic inventory of approaches to customizable process modeling and provides a
comparative evaluation thereof with the aim of identifying common and differentiating modeling features,
providing criteria for selecting among multiple approaches, and identifying gaps in the state of the art. The
survey puts into evidence an abundance of customizable process modeling languages, which contrasts with
a relative scarcity of available tool support and empirical comparative evaluations.

Categories and Subject Descriptors: H.4.1 [Office Automation]: Workflow management; A.1 [Introduc-
tory and survey]

General Terms: Design, Management, Standardization
Additional Key Words and Phrases: Variability modeling, process model, customizable process model

ACM Reference Format:

La Rosa, M., van der Aalst, W.M.P., Dumas, M. and Milani, F.P. 2015. Business Process Variability Modeling:
A Survey. ACM Comput. Surv. V, N, Article A (January YYYY), 45 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The co-existence of multiple variants of the same business process is a widespread phe-
nomenon in contemporary organizations. As a concrete example, The Netherlands has
around 430 municipalities, which in principle execute the same or a very similar set
of processes. All municipalities have processes related to building permits, such as the
process of handling applications for permits and the process for handling objections
against such permits. Due to demographics and political choices though, each munici-
pality executes its processes differently. Variations are justified by different priorities
and customs, often referred to as the “Couleur Locale”. At present, these differences
have come to be accepted and there is no willingness to flatten them out. Still, captur-
ing multiple municipality processes in a consolidated manner is necessary in order to
develop information systems that can support multiple or all municipalities at once.

Authors’ addresses: M. La Rosa, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001,
Australia; W.M.P. van der Aalst, Eindhoven University of Technology, PO Box 513 NL-5600 MB Eindhoven,
The Netherlands; M. Dumas and F.P. Milani, University of Tartu, J. Liivi 2, Tartu 50409, Estonia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 0360-0300/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 M. La Rosa et al.

Similarly, Suncorp Group — the largest insurance group in Australia — offers a range
of insurance products, including home, motor, commercial and liability insurance. Each
product exists for different brands of the group (e.g. Suncorp, AAMI, APIA, GIO and
Vero). As a result, there are more than 30 variants of the process for handling an in-
surance claim at Suncorp Group. There is a case for modeling and maintaining these
variants in a consolidated manner, not only to avoid redundancy, but also so that im-
provements and automation efforts made on one variant can benefit other variants.

The application of conventional business process modeling approaches [Mili et al.
2010] to families of process variants requires one of two paths to be chosen. Either
each variant is modeled separately, resulting in duplication as the variants have much
in common, or multiple variants are modeled together, leading to highly complex con-
solidated models, which hampers the analysis and maintenance of individual variants.

Motivated by this observation, a number of approaches to model families of busi-
ness process variants have emerged. A common trait of these approaches is that they
support the representation of a family of business process variants via a single model,
from which each variant can be derived via certain model transformations. We use the
term customizable process model to refer to such a consolidated model of process vari-
ants, and the term variation point to indicate an element of the customizable process
model that can be customized via transformations.

A wide array of approaches to customizable process modeling have been proposed in
recent years, without it being generally clear what tradeoffs they strike relative to each
other and how should potential users select an approach for a given purpose. In this
setting, this survey draws up a systematic inventory of approaches to customizable
process modeling, identifies and classifies major approaches in the field and provides
a comparative evaluation aimed at answering the following questions:

—RQ1. What are the commonalities and distinctive features of approaches to customiz-
able process modeling?

— RQ2. What criteria can be used to select between different approaches?

— RQ3. What general limitations or research gaps exist in the literature on customiz-
able process modeling that may require further work?

The rest of the article is organized as follows. Section 2 delimits the scope of the
survey. Section 3 defines and justifies the criteria used to analyze approaches in the
field. Section 4 presents a working example. Sections 5-9 illustrate and analyze ma-
jor approaches in the field identified from a systematic literature review. Section 10
provides a synthesis of the commonalities and differences between the surveyed ap-
proaches and answers the research questions framed above. Section 11 positions this
survey with respect to related work. Finally, Section 12 exposes common limitations,
leading to an outline of future research directions.

Six appendixes complement the survey. Appendix A describes the literature search
procedure and summarizes the results thereof. Appendix B surveys secondary ap-
proaches identified during the search process. Appendices C and D discuss techniques
employed by the surveyed approaches to provide decision support during process cus-
tomization and to ensure correctness of the customized process models. Finally, Ap-
pendix E provides a list of all relevant terms and their definitions used in this paper,
while Appendix F shows a mapping between the different process modeling languages
used to exemplify the approaches surveyed.

2. SCOPE

Customizable process models capture a family of process model variants in a way that
the individual variants can be derived via transformations, e.g. adding or deleting
fragments. Accordingly, a customizable process model encapsulates customization de-
cisions between process variants that need to be made either at design-time or run-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:3

time. Design-time customization decisions lead to a customized process model that is
intended to be executed in a particular organizational setting. Hence, these decisions
affect all instances of the customized process executed in this setting. The timeframe
associated with these decisions may be long (e.g. months or years). In contrast, run-
time customization decisions are punctual and affect only one or a few process in-
stances. Such decisions may be visualized on top of a process model, but they are not
intended to modify the executed process model itself, beyond its effects on the process
instance(s) where the decision is applied.

Processes where customization decisions are made at run-time are called flexible
processes [Reichert and Weber 2012]. The challenges associated with managing such
processes have been widely studied in the literature [Rinderle et al. 2004; Weber et al.
2008]. The present survey focuses on design-time process variability management as
opposed to run-time flexible process management. In other words, the focus is on cap-
turing a family of processes via a single process model that is customized at design-
time. Approaches to run-time flexible process management are generally not concerned
with maintaining multiple process models that together form a family of processes. In-
stead, these approaches rely on a unitary process model. In some approaches, this uni-
tary process model is seen as an indicative roadmap with respect to which individual
process instances may deviate [Reichert and Dadam 1998], while in other approaches
—e.g. Declare [Pesic et al. 2007] or Pockets of Flexibility [Sadiq et al. 2001; Sadiq et al.
2005]) — the process model is left underspecified and individual process instances re-
fine this underspecified model rather than deviating from it. In both cases, there is
still a single process model that serves as a reference during process execution.

Customization decisions may result in the removal or addition of behavior to a cus-
tomizable process model. In this respect we distinguish two approaches to variability
management: by restriction and by extension.

Variability by restriction starts with a customizable process model that contains all
behavior of all process variants. Customization is achieved by restricting the behavior
of the customizable process model. For example, activities may be skipped or blocked
during customization. In this setting, one can think of the customizable process model
as the union or Least Common Multiple (LCM) of all process variants. Customizable
process models of this type are sometimes called configurable process models.

Variability by extension takes the opposite starting point. The customizable process
model does not contain all possible behavior, instead it represents the most common
behavior or the behavior that is shared by most process variants. At customization
time, the model’s behavior needs to be extended to serve a particular situation. For
example, one may need to insert new activities in order to create a dedicated variant.
In this setting, one can think of a customizable process model as the intersection or
Greatest Common Denominator (GCD) of all process variants under consideration.

This survey covers both variability by restriction and by extension. In fact, as dis-
cussed later, it is possible for one same approach to combine both types of variability.

Customizable process models ought to be distinguished from so-called reference pro-
cess models [Fettke and Loos 2003; Rosemann 2003]. Some vendors and consultancy
firms provide reference process models that are intended to capture common knowl-
edge or best practices in a given field (e.g. in supply chain management or IT service
delivery). While a reference process model can be very useful in its own way, it should
be understood that it is in essence a concrete process model intended to be used as
an example. Reference process models do not support customization in a structured
manner. In this survey, we focus on approaches that provide support for customization
rather than serving only as reference.

Having discussed the scope of the survey, we next define as set of criteria to charac-
terize the approaches in the field.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 M. La Rosa et al.

3. EVALUATION CRITERIA

To derive criteria for assessing approaches to business process variability modeling,
we analyzed the solution space using the six “W questions” (Who, What, Where, When,
Why and How). We determined that the “who” and “why” questions do not allow us to
distinguish between approaches in the field, since all the approaches identified in the
search (cf. Appendix A) have the same aim, i.e. to support process modelers (“who”) in
the definition of customizable process models and in the customization thereof (“why”).
Similarly, the “where” question is not relevant as there is no spatial dimension that
distinguishes approaches in the field. The “when” question (“when does customization
occur?”) has been discussed in the previous section (design-time vs. run-time) and a
choice was made to focus on design-time, given that run-time customization has been
studied as a separate topic in the literature (cf. process flexibility). This leaves us with
the “what” and “how” questions, which we refine into: “What is captured in the cus-
tomizable model?” and “How are customized models derived from customizable ones?”.

To answer the “what” question, we reuse a classification of elements of a process
model spelled out in previous surveys, whereby the elements of a process model are di-
vided into those concerned with the control-flow perspective (the flow of control between
activities), the resource perspective (organizational aspects), and the object perspective
(physical and data objects manipulated in the process) [Georgakopoulos et al. 1995;
Mili et al. 2010]. Accordingly, we characterize process variability modeling approaches
depending on their support for each of these three perspectives.

Another classification of process models identified in previous work is based on their
purpose [Georgakopoulos et al. 1995]. Along this direction, we distinguish between
conceptual process models, which are intended for communication and analysis, and
executable ones, which are intended for deployment in an execution engine.

Moving to the “how” question, we note that customized process models are derived
from customizable models by applying transformations based on decisions made by a
user. Thus, customization involves decisions and transformations.

The transformations applied during customization can be classified into those that
restrict the process behavior captured by the customizable process model, e.g. by re-
moving an element (customization by restriction), and those that extend the process
behavior, e.g. by adding an element (customization by extension), as discussed in the
previous section. Meanwhile, customization decisions can be expressed in terms of con-
cepts that refer to the domain of discourse (abstract level), or concepts related to the
process model itself (concrete level). Thus, approaches can be assessed depending on
whether their customization decisions support abstraction to the domain level or not.
Putting aside the concepts used to express decisions, some approaches guide the user
step by step when making these decisions (i.e. by presenting the decisions in a cer-
tain order) and prevent inconsistent of irrelevant decisions to be made, while other
approaches leave it up to the user to decide what decisions to perform and in what
order. Accordingly, we can assess approaches depending on the guidance they provide
during customization.

Transformations applied to derive a customized process model may in some cases
lead to syntactically incorrect models, whether structurally or behaviorally incorrect.
Some approaches guarantee that the customized process models are correct, but others
do not. Accordingly, we can characterize an approach depending on whether or not it
guarantees structural and/or behavioral correctness of the customized process model.

With respect to the “how” question, we considered alternative criteria. Since cus-
tomizable process models generally extend a host modeling language, the latter could
be used as a classification criterion. We did not retain this criterion because we ob-
served that it is not a fundamental characteristic of an approach. An approach that
has been designed for EPCs can be adapted to BPMN and vice-versa. We also consid-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A5

ered the specific abstraction mechanism as a classification criterion. In this respect,
approaches may differ in terms of the mechanism employed to link the elements of the
process model to elements of the domain of discourse. Some approaches rely on sim-
ple “annotations” attached to model elements referring to implicitly defined elements
of the domain of discourse, while others may opt for a more explicit linkage, where
elements of the process model are linked to concepts in an explicit domain model (or
vice-versa). The latter could be further subdivided depending on the approach em-
ployed to represent the domain model (e.g. feature model vs. questionnaire model).
We opted however to simply classify approaches depending on whether they support
abstraction or not, because we found that the choice of the domain modeling approach
and the choice of the mechanism for linking the domain model to the process model are
very approach-specific. In Section 5 we discuss these design choices for each approach
separately.

Having identified assessment criteria based on “what” and “how” questions, we
moved to the “meta” level, by considering the design of the approach itself. Research
papers that propose customizable process modeling approaches rely, implicitly or ex-
plicitly, on a design science method [Hevner et al. 2004]. According to design science
principles, the conceived artifacts should be specified, implemented where applicable,
and validated to determine if they fulfill the intended requirements. Artifacts in the
field under study can be specified informally or formally. They may or may not be im-
plemented as a prototype. And they may or may not be validated in order to assess
their applicability and qualities. Accordingly, we identify three extra-functional re-
quirements: formalization, implementation and validation. The criteria resulting from
the above analysis are explained below.

1 Scope. This category refers to the “what” question discussed above. It is decom-
posed into two sub-categories: Process Perspective and Process Type.
1.1 Process Perspective. This category refers to the supported process modeling
perspectives.

1.1.1 Control flow. Ability of a customizable model to capture variability
along the control-flow perspective, i.e. activities and routing elements
such as gateways can become variation points (e.g. capturing that a
credit history check is not required in some of the variants of a loan orig-
ination process). A language is considered to only partially fulfill this
criterion if routing elements or activities are not customizable, or if such
elements are customizable but the corresponding customization options
are not graphically represented.

1.1.2 Resources. Ability of a customizable model to capture variability in the
involved human and non-human resources, i.e. resources can become
variation points (e.g. capturing that a risk assessor is not involved in
some of the variants of a claims handling process). A language partially
fulfills this criterion if resources are customizable but the options are not
graphically represented.

1.1.3 Objects. Ability of a customizable model to capture variability in the
physical and data objects produced and consumed by a process, i.e. ob-
jects can be become variation points (e.g. capturing that an invoice is
not required in some of the variants of an order-to-cash process). A lan-
guage partially fulfills this criterion if objects are customizable, but their
customization options are not graphically represented.

1.2 Process Type. This category refers to the purpose of the process models.

1.2.1 Conceptual. An approach meets this criterion if it is designed to sup-
port conceptual process models only, i.e process models that are not

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

2

4

M. La Rosa et al.

meant to be executed on top of a Business Process Management System
(BPMS).

1.2.2 Executable. An approach is considered to fulfill this criterion if the cus-
tomization prevents or resolves inconsistencies in the associations be-
tween activities and data objects, thus making the customized models
executable on top of a concrete BPMS. If the customized models can be
executed on a BPMS, but these inconsistencies are not addressed, the ap-
proach is considered to only partially fulfill the criterion. Similarly, the
criterion is partially fulfilled if there is no BPMS that can support the ex-
ecution of the customized models, even if inconsistencies are prevented
or resolved by the approach.

Customization Type. Do the supported transformations restrict/extend the pro-

cess behavior?

2.1 Restriction. An approach matches this criterion if a process model is cus-
tomized by restricting its behavior.

2.2 Extension. An approach matches this criterion if a process model is cus-
tomized by extending its behavior.

An approach could in principle support both criteria, i.e., there could be transfor-

mations to restrict some parts and extend others.

Supporting Techniques. This category refers to techniques to support the cus-

tomization of process models. The two sub-categories are based on common func-

tionality frequently reported in the literature: decision support for the selection

of suitable customization options and ensuring the correctness of the customized

model.

3.1 Decision Support. How are users supported in their customization decisions?

3.1.1 Abstraction. An approach supports process model abstraction if users
can customize a model without directly referring to its model elements,
but instead to properties of the application domain (e.g. customizing an
order-to-cash process model based on the available sales channels, rather
than based on the activities and gateways that are customizable in the
model).

3.1.2 Guidance. This criterion is met if there is support to: (i) guide users
when making customization decisions, e.g. in the form of recommenda-
tions for selecting one option or another; and (ii) prevent users from
making inconsistent or irrelevant customization decisions from a domain
viewpoint. Approaches that only provide support for one of these two as-
pects, partially fulfill this criterion.

3.2 Correctness Support. Is the syntactical correctness of the customized mod-
els guaranteed? Syntactical correctness is divided into correctness of the model
structure, and correctness of the model behavior.

3.2.1 Structural correctness. Ability to guarantee the correct structure of
the customized models, e.g., by avoiding disconnected nodes.

3.2.2 Behavioral correctness. Ability to guarantee the correct behavior of
the customized models, e.g., by avoiding behavioral anomalies such as
deadlocks and livelocks when the model is instantiated. In other words,
the model must be sound [van der Aalst et al. 2011], i.e., it should always
be possible to complete any process instance properly.

Extra-Functional. Criteria related to the design of the approach itself.

4.1 Formalization. Some approaches only present ideas and do not provide con-
crete algorithms or definitions. Therefore, we include a criterion indicating
whether the approach has been described rigorously in terms of mathemati-
cal notations. In order to fulfill this criterion, the approach has to be formally

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A7

defined, including algorithms used during customization. If such algorithms
are missing, the approach partially fulfills the criterion.

4.2 Implementation. Approaches may only exist on paper. However, the usabil-
ity and maturity of an approach heavily depends on tool support to design and
customize customizable process models. If the approach is fully implemented
(including algorithms used during customization), then this criterion is ful-
filled. Approaches with partial implementations, e.g. only offering design or
customization support, partially fulfill this criterion.

4.3 Validation. The applicability of some approaches has been validated using
real-life process variants and through discussions with domain experts, but
this does not necessarily apply to all approaches. An approach fulfills this cri-
terion if it has been tested on models not created by the authors, and the re-
sults verified by domain experts. If one of these two aspects is lacking (e.g. an
approach that has been validated without the involvement of domain experts)
then this criterion is only partially fulfilled.

The next section introduces an example of a family of process variants that is used
later to illustrate the approaches retrieved by the search described in Appendix A.

4. ILLUSTRATIVE SCENARIO

The example process family described in this section is the result of a case study in
picture post-production that we conducted with domain experts from the Australian
Film, Television and Radio School (AFTRS) in Sydney.!

In the film industry, picture post-production (post-production for short), is the pro-
cess that starts after the shooting has been completed, and deals with the creative
editing of the motion picture. Figure 1 shows several variants of the picture post-
production process. A process model is a directed graph consisting of nodes of type
event, activity and gateway and arcs (called sequence flows) linking these elements.
Events are triggers to and signal the results of activities, or of the entire process (e.g.
a start event triggers the entire process, while an end event signals its completion).
Activities capture work done in the process. Gateways are used to model alternative
and parallel branching and merging and are divided into splits (with multiple outgoing
flows and one incoming flow) and joins (with multiple incoming flows and one outgoing
flow). Splits and joins have a logical type. They can be of type OR or XOR (for inclusive,
resp., exclusive decision and merging) and AND (for parallelism and synchronization).

The example in Figure 1 is represented in the Event-driven Process Chains (EPCs)
language [Davis and Brabander 2007]. There is a variety of languages, besides EPCs,
to represent process models, e.g. BPMN, UML Activity Diagrams, YAWL, BPEL. While
in this paper we will illustrate process model examples using different languages, de-
pending on the approach being reviewed, for uniformity we will always use the ter-
minology described above, which is borrowed from the BPMN standard, and abstract
from language-specific terms. Appendix F provides a mapping between the languages
used to exemplify the approaches surveyed.

As depicted in Figure 1, post-production starts with the receipt, from the shooting
that needs to be prepared for editing. The footage can either be prepared on film (see
e.g. variant a of Figure 1, where activity “Prepare film for editing” in performed), on
tape (e.g. variant b, where activity “Prepare film for editing” is performed) or on both
media (variant d) depending on whether the motion picture was shot on a film roll
and/or on a tape. Next, the medium is edited offline to achieve the first rough cut (thus
activity “Edit offline” exists in all variants). However, after this, an online editing is
carried out if the footage was shot on tape (variants b and c¢), while a negmatching is

1See www.aftrs.edu.au.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

a b c
(Shooﬂng§ (Shooling» (Shoollngs
Receive Receive Receive
footage footage footage
Film Tape Film
shooting shooting shooting
L L L
Prepare Prepare Prepare

film for
editing

Footage
prepared
for edit

tape for
editing

Footage
prepared
for edit

film for

Footage
prepared
for edit

Edit Edit Edit

offline offline offline

Film Tape Tape
editing editing editing

Perform
neg-
matching

Edit
online

Edit
online

Film
finishing

Tape
finishing

Film
finishing

Record

Shooting
completed,
Receive
footage
Film
shooting

Prepare
film
for editing

Tape
shooting

Prepare
tape for
editing

Footage
prepared
for edit

Film
editing

Perform
neg-
matching

Finish on Finish on digital film
film tape master Tape
finishing
(Finish 3 (Finish 3 Recording
< finished)

Release
on new
medium

Release
completed,

Finish on

Finish on
film

e

Shooting
completed,

Receive
footage

Film
shooting

Prepare
film
for editing

Footage
prepared
for edit

Edit
offline

Film
editing

Perform
neg-
matching

Tape

finishing

Transfer in
telecine

Transfer

Finish
completed,

Finish
completed,

finishing

Finish on

M. La Rosa et al.

Shooting
completed,
Receive
footage
Tape Film
shooting shooting

Prepare Prepare
tape for film
editing for editing

Footage
prepared
for edit

Edit
offline
Film
editing

Perform
neg-
matching

Film

finishing

Finish on
film

Finish
completed,

D Event @ OR gateway
C] Activity @ AND gateway

Sequence
- XOR gateway
flow ® e

Fig. 1: Different variants of the picture post-production process in the EPC language.

performed if the footage was shot on film (e.g. variant a). Online editing is a cheap edit-
ing procedure suited for low-budget movies typically shot on tape. Negmatching offers
better quality results but entails higher costs; thus it is more suitable for high-budget
productions typically shot on film. The choice between online editing and negmatching
is an important post-production decision: depending on drivers such as budget, cre-
ativity and type of project, one option, the other or both need to be taken. Thus, each
variant in Figure 1 reflects a common practice in post-production. For example, variant
a is a typical low-budget practice (shooting and releasing on tape), whereas variant d
illustrates a more expensive procedure (shooting and releasing on both tape and film).
The final step of post-production is the finishing of the edited picture. This can be
be done on film (see variant a), on tape (variant b) or on both media (variant d). The
finishing may involve further activities based on the combination of editing type and
final medium. For example, if the editing was done online and the final version is
on film, a digital film master is to be recorded from the edited tape (see variant c).
Alternatively, if a negmatching was performed and the final version is on tape, the
edited film is to be transferred onto a tape via a telecine machine (variants d and ¢).
The process may conclude with an optional release on a new medium (e.g. DVD or
digital stream), which follows the finishing on tape or film (for example, in variant b
the release on new medium follows a tape finish).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A9

5. OVERVIEW OF PROCESS MODEL CUSTOMIZATION APPROACHES

We conducted a literature search using the protocol described in Appendix A. This
search resulted in 66 relevant publications. In many cases, multiple publications per-
tain to the same approach. Also, some approaches are subsumed by other approaches,
i.e., the concepts in one approach are contained in another. By grouping the publica-
tions accordingly, we found that the 66 publications cover 23 approaches, out of which
11 main approaches subsume the other 12 approaches.

The 66 publications covered by this survey are listed in a supplemental spreadsheet
available at https://goo.gl/mmxZ£3. For each approach, the table identifies a primary
(earliest) publication describing the approach and where available, additional publica-
tions describing further aspects of the same approach.

A histogram of papers per year of publication is shown in Figure 2. This histogram is
based on the list of publications satisfying the inclusion and exclusion criteria defined
in the search protocol (cf. Appendix A).? The histogram shows an increasing trend of
publications on the topic starting in 2005 and reaching a peak in 2010.

14
12

o NBs o
I

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig. 2: Number of publications on process model variability management via
customizable process models.

We classified the 23 identified approaches by asking the following question for each
approach: “How does the approach capture the relation between an element or set
of elements of a customizable process model, and a corresponding element or set of
elements of each of the possible customized process models thereof?”

Answering the above question for each approach led us to observe that in some ap-
proaches a node of the customizable model can be retained, removed or its behavior can
be restricted, by selecting one of multiple possible customization options. This class of
approaches is hereby called node configuration. In other approaches, an element (i.e. a
node or a sequence flow) of the customizable process model is linked to a predicate over
a domain model via an annotation. Customization then takes place by evaluating these
predicates with respect to an instantiation of the domain model. We call this class of
approaches element annotation. In a third class of approaches, a given activity in the
customizable process model can be replaced by one of multiple specialized versions
thereof. These approaches only allow specialization of activities and their attributes,
and not of other types of elements. Hence, we call this class activity specialization.
Finally, in a fourth type of approaches, the relation between the customizable process
model and its customized models is specified by means of change operations that can
add, delete or modify fragments of the customized model. Since the latter approaches
can manipulate entire fragments, we call this class fragment customization.

2The histogram includes papers with less than 10 citations, even if this was an exclusion criterion, since its
intent is to show the volume of research publications in the field over time. Hence, the number of references
covered by the histogram is larger than the 66 publications mentioned above.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. La Rosa et al.

The taxonomy induced by the above observations is given in Figure 3, where the
main approaches are shown in bold, and the subsumed ones are listed under their
respective main approach. In line with previous work on variability modeling [Svahn-
berg et al. 2005; Bachmann and Clements 2005; Becker et al. 2007a], we use the term
variability mechanism to refer to a set of modeling constructs and their correspond-
ing semantics, used to specify the relations between a customizable process model and
its possible customized models (a list of all terms and their definitions is provided in
Appendix E). The taxonomy presented in Figure 3 effectively classifies the variability
mechanisms underpinning the identified approaches.

— 1. Node Configuration | |
C-iEPCs Configurable ADOM
Workflows
KobrA L CoSeNet
Korherr & List
—— 2. Element Annotation |
Configurative Superimposed aEPCs
process variants L
Variability modeling Groner et al
mechanism .
— 3. Activity Specialization |
PESOA BPFM Feature
Composition
Razavian & Khosravi Ripon et al. Model
Ciuskys & Caplinskas Nguyen et al.
Kulkarni & Barat
—— 4. Fragment Customization
Provop Template and
Rules
VvBPMN
Santos et al.

Machado et al.

Fig. 3: Taxonomy of approaches for process model customization.

In the next four sections, we briefly introduce and evaluate the main approaches
under each of the groups identified above, using the 14 criteria described in Section 3.
We discuss the subsumed approaches in Appendix B. The results of the assessment
are then summarized in Table XII (Section 10). The evaluation is complemented by
an overview of techniques for customization decision support (Appendix C) and for
correctness support (Appendix D).

The assessment of each approach was performed independently by two authors of
this paper. The results were compared in order to resolve inconsistencies with the
mediation of a third author. Finally, we sought confirmation of our assessment from
the authors of each primary publication.

6. GROUP 1: NODE CONFIGURATION

In the approaches in this group, a variation point is a node (called configurable node)
of the customizable process model which is assigned different customization options.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:11

Activities, events, gateways, as well as resources and objects associated with activities,
may be marked as configurable nodes. Customization is achieved by selecting one cus-
tomization option per configurable node. Each configurable node has an option to keep
the node as is in the customized model, and one or more options to restrict its behavior.

Configurable activities, events, resources and objects can be customized by being
kept on (they remain in the customized model), or switched off (they do not appear in
the customized model). The semantics of switching an activity or event off is approach-
specific, i.e. the activity or event may be hidden without breaking the path to which
it belonged, or be removed altogether. Configurable gateways can be customized to an
equal or more restrictive gateway, in such a way that the customized process model
produces the same or fewer execution traces than the customizable process model.

Three main approaches fall into this group: C-iEPCs, Configurable Workflows and
ADOM. They support different subsets of the above configurable node types and cus-
tomization options, e.g. C-iEPCs do not support configurable events. In addition to
customization by restriction, ADOM offers a weak form of extension, in that extension
points are not identified in the model.

6.1. Configurable integrated Event-driven Process Chains (C-iEPCs)

Configurable integrated EPCs (C-iEPCs) [Rosemann and van der Aalst 2003; Dreil-
ing et al. 2005; Dreiling et al. 2006; La Rosa et al. 2011] are an extension of the EPC
language. Essentially, an iEPC is an EPC with resources and objects assigned to activ-
ities. A C-iEPC model is intended to capture the least common multiple of a family of
iEPC variants. Differences among the various process variants are indicated by config-
urable nodes. Each configurable node can be assigned a set of customization options,
each referring to one or more process variant. Customization is achieved by restricting
the behavior of the C-iEPC by assigning one customization option to each configurable
node. Then the C-iEPC is transformed into an iEPC by removing all those options that
are no longer relevant. By doing so, one can derive one of the original variants of the
given process family.

Activities and gateways can be marked as configurable with a thicker border. Events
cannot be customized. Figure 4 shows the C-iEPC model for the post-production exam-
ple, which captures all variants of Figure 1.

Configurable gateways can be customized to an equal or more restrictive gateway. A
configurable OR can be left as a regular OR (no restriction), or restricted to an XOR
or to an AND gateway. Moreover, the number of its outgoing flows (if the gateway
is a split), or the number of its incoming flows (if a join), can be restricted to any
combination (e.g. two flows out of three), including being restricted to a single flow, in
which case the gateway disappears.

For example, we can capture the choice of the shooting medium by customizing the
first OR-split in Figure 4. We can restrict this gateway to the outgoing flow leading to
event “Tape shooting” if the choice is tape. As a result the branch starting with event
“Film shooting” is removed, and vice versa. Restricting the gateway to an AND-split
ensures that both media are prepared for editing. In the three cases above, we antic-
ipate the decision of the medium at configuration-time. Alternatively, by configuring
this gateway to an (X)OR-split, we postpone the decision till run-time, when the post-
production process is actually enacted (see e.g. variant f in Figure 1).

Configurable activities can be kept on or switched off. In the latter case, the activity
is simply hidden in the customized model. In addition, they can be customized to op-
tional. This allows the deferral of the choice of whether to keep the activity or not until
run-time. For example, function “Release on new medium” is configurable in Figure 4,
so we can switch it off for those post-production projects where this is not required.

Resources (called roles in C-iEPCs) and objects can also be made configurable. In
the C-iEPC semantics, when an object is used as input to an activity, it can be marked

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. La Rosa et al.

Shooting
completed
Receive
footage

shooting

Tape
shooting

Prepare tape Prepare film
for editing for editing

Footage
prepared
for edit

[Srecor]
[oo]
| T
| N
[~owcor]

Tape
editing

Temp picture

Edit
offline

Edited picture I Editing notes I

Film
editing

Perform
negmatching

Film

finishing

Tape
finishing
Transfer in
Telecite
Transfer
finished

Record digital
film master

Recording

finished

Finish on film

Finish

completed D Configurable activity

--—3 Arcfor optional O Configurable gateway
new medium Configurable
@ REE LY range gateway
[Resource [configurable resource
Release X X
completed [ovject [configurable object

Fig. 4: The C-iIEPC model representing all post-production variants.

as consumed, to indicate that it will be destroyed upon use by the activity. Moreover,
resources and objects can be mandatory or optional, and can be connected to activities
via logical gateways, called range gateways. Range gateways subsume the three logical
types of OR, XOR and AND, but also allow any combination of the associated resources
(objects), e.g. at least 2 and at most 5 resources. Range gateways can also be optional,
in which case they indicate that all connected resources (objects) are optional.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:13

For simplicity, Figure 4 only depicts the resources and objects associated with activ-
ity “Edit offline”. This activity is performed by at least two resources, requires a Temp
picture as input and produces an Edited picture as output. Editing notes are optional,
since they might not be produced during the offline editing. In our example, three re-
sources, one object and one range gateway have been marked as configurable with a
thicker border. This fine-grained mechanism to allocate resources and objects to activ-
ities leads to different customization options. If a resource, object or range gateway is
optional, it can be customized to mandatory so that is kept in the customized model, or
switched off. If it is mandatory, it can only be switched off. Further, resources and ob-
jects can be specialized to a sub-type (e.g. a resource Producer can be specialized to an
Executive Produced) according to a hierarchy model which complements the C-iEPC
model (not shown in Figure 4). Configurable input objects that are consumed can be
restricted to used, so that they are not destroyed by the activity after use.

C-iEPCs are a conceptual process modeling language — they do not provide any ex-
ecution support. C-iIEPCs are formally defined in [La Rosa et al. 2011]. The latter
reference also defines an algorithm to derive an iEPC from a C-iEPC. If the C-iEPC is
structurally correct, this algorithm preserves correctness when creating a customized
model, by removing all nodes that are no longer connected to the initial and final
events via a path, and by reconnecting the remaining nodes. Behavioral correctness is
ensured via constraints inference (see Appendix D.1).

Abstraction and guidance during customization are achieved by means of a ques-
tionnaire, which captures domain properties and their values (see Appendix C.2), and
is linked to the configurable nodes of a C-iEPC. C-iEPCs and associated questionnaire
models are supported by the Synergia® and Apromore? toolsets. Using these toolsets,
one can design C-iEPCs and questionnaire models, link these models, customize C-
iEPCs via questionnaires and obtain the resulting customized models. The use of C-
iEPCs has been validated via a case study in the film industry [La Rosa et al. 2011].

Table I summarizes the evaluation results for C-iEPCs. Each column indicates to
what extent the approach in question covers each evaluation criterion defined in Sec-
tion 3. We used a “+” on a green background to indicate a criterion that is fulfilled,
a “~” on a red background to indicate a criterion that is not fulfilled and a “+” on an
orange background to indicate partial fulfilment.

Scope - Supporting techniques Extra-Functional
P Customization .p.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support 5
= =1
g © o c S = = 2
2 b 3 =) c]] © o S 5] g
T o " - S = o ° o = o e =
S 5 g g e 9 e g S 2 s E § &
s ° o o s S =] e S © £ = =
S g = 5 £ g £ 3 3 5 K 5 £ s
o o [¢) o & o & < [G] & o e = >

Table I: Evaluation of C-iEPCs.

6.2. Configurable Workflows

The Configurable Workflows approach [van der Aalst et al. 2006; Gottschalk et al.
2007; Gottschalk et al. 2008] was first designed for conceptual models, and later ap-
plied to executable languages, with the aim to guarantee that the customized models

3See www.processconfiguration.com
4See www.apromore . org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. La Rosa et al.

can be executed. This led to the extension of several executable languages, such as SAP
WebFlow, YAWL and BPEL. In this survey we focus on the extension to the YAWL lan-
guage [Gottschalk et al. 2008], namely Configurable YAWL (C-YAWL), since this is the
most significant one. The other extensions work in a similar way.

In YAWL, split and join gateways are graphically attached to activities: a join pre-
cedes an activity and models the activity’s joining behavior; a split follows an activity
and models its splitting behavior. C-YAWL extends YAWL with ports to identify con-
figurable gateways. Configurable gateways are represented graphically with a thicker
border, similar to C-iEPCs [van der Aalst et al. 2012]. A configurable split has an
outflow port for each combination of subsequent flows that can be triggered after the
activity completion, whilst a configurable join has an inflow port for each combination
of sequence flows through which the activity can be triggered.

Figure 5.a depicts the post-production example in C-YAWL where for illustration
purposes, we modeled the preparation and editing of tape and film as mutually ex-
clusive activities. To illustrate the concept of port, let us consider the case of the first
XOR-split, that of activity 7;. This XOR-split is used to route the process flow accord-
ing to the shooting media. This split can either give control to the top or to the bottom
of its outgoing flows. Hence, given that the combination of outgoing flows is equal to
the number of such flows for an XOR-split, this split has only two outflow ports, one to
trigger the flow to event Oa (leading to the preparation of the film), the other to trigger
the flow to event 0b (leading to the preparation of the tape).

Similarly, an XOR-join can be activated by each of its incoming flows, and so it has
one inflow port for each incoming flow. This is the case of the XOR-join of activity “Edit
offline” in our example. On the contrary, if the join (or split) is of type AND, it only
has one inflow (or outflow) port. This is because an AND-join can only be activated by
all its incoming flows (due to its synchronizing behavior), and similarly an AND-split
gives control to all its outgoing flows simultaneously (due to its parallel behavior).

Let us now consider the OR-split of activity 7 in Figure 5.a. An OR-split has one
outflow port for each combination of its outgoing flows, as it can give control to any
combination of these flows. In our example, the OR-split is used to route control to
activity “Record digital film master”, or “Transfer in telecine” or both. Hence this OR-
split has three outflow ports: one to trigger the flow to event 4b, the other to trigger the
flow to event 4a and the last to trigger both flows (4a, 4b).

The OR-join, on the other hand, only has one inflow port: this type of join is consid-
ered as an AND-join from a customization perspective, due to its synchronizing merge
behavior. This is the case of the OR-join of activity “Release on new medium”, which
has a single inflow port to receive control from both its incoming flows.

Inflow ports have three customization options: allowed, hidden and blocked. An in-
flow port can be blocked to prevent the triggering of its activity, or hidden to skip
the activity execution without blocking subsequent activities. So in C-YAWL both the
semantics of hiding and removing an activity are supported. An inflow port that is
neither blocked nor hidden, is allowed, i.e. it is kept as is in the customized model. An
outflow port can only be blocked to prevent the triggering of the outgoing flows, or left
allowed. For convenience, all the ports can be allowed or blocked by default. Activities
can be customized via their inflow ports. Resources and objects cannot be customized.

Figure 5.a also shows a sample port customization for a project shot on tape, edited
online and finished on film, overlaid on the C-YAWL model. Let us consider the first
XOR-split. The only outflow port allowed by the example customization is the one that
leads to activity “Prepare tape for editing”. The inflow port from event 1a to the XOR-
join of activity “Edit offline” is customized as blocked while the other inflow port for
this join is allowed, to match the customization of the preceding XOR-split. Since the
project is edited online, the outflow port of activity “Edit offline” triggering condition 2b
is the only one to be allowed. In YAWL, an activity with a single incoming or outgoing

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:15

Record

. Finish
digital film @ Unmm%-
master

Perform
neg-
matching

(a) Prepare|
film for
editing

\Release
on new
VI medium

Prepare " Transfer .
Boa tape for Eﬁ't in . Fnr:lsh L. &
E0b editing online telecine on tape

(b)
Prepare . Record -
. Edit Edit) Finish

C (00)— Tt |10+ 5, [o(am) | 0, |) (30 it i ~(55)—~ % (o) ®
editing master

Start End XOR XOR OR OR Silent Configurable Port
event event EveM join split join split activity gateways customization

O A=K A K [] (00 |20 e 2

Fig. 5: (a) the post-production example in C-YAWL with a sample customization; (b)
the customized model.

flow has an implicit XOR behavior. This behavior is shown graphically if the gateway
must be made configurable, as in the case of the join of activity “Transfer in telecine”,
since we needed to hide this activity’s inflow port.

The hiding and blocking operations can also be applied to other YAWL elements such
as cancelation regions, composite activities and multi-instance activities.

Figure 5.b shows the YAWL model resulting from the example customization, after
applying the transformation algorithm defined in [Gottschalk et al. 2008]. This algo-
rithm removes all nodes that after customization are no longer on a path from the
input to the output condition. In this way the structural correctness of the model is
guaranteed. Moreover, potential conflicts in the data conditions of the outgoing arcs of
(X)OR-splits are taken care of, in order for the resulting models to be fully executable.
Two alternative techniques are available for ensuring the behavioral correctness of
the customized models, one based on constraints inference and the other on partner
synthesis, both described in Appendix D. Decision support is offered via the use of
questionnaire models (see Appendix C.2).

This approach has been formalized [Gottschalk et al. 2008] and implemented in the
YAWL Editor.® This tool allows one to create, customize and transform C-YAWL models
into YAWL models, while support for customization via questionnaire models is offered
by the Synergia toolset. The use of C-YAWL models with questionnaire models has
been validated in the municipality domain [Gottschalk et al. 2009; Lonn et al. 2012],
involving domain experts, as well as in software development processes for very small
entities [Boucher et al. 2012].

Table II summarizes the evaluation results for Configurable Workflows.

Scope o Supporting techniques Extra-Functional
p Customization Ap.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support s
c Rel
g © (] c S = 'g E
= 9 S = S c 2) © o S 5 s
Oy o * = S =1 o ° o = o i =
<] = 2 Qo 2 (] 5 S c = 2 = IS =
o > 5] (D =1 = c o © = > [©
=])) o o s S = he] S © € > =y
5 4 = S g 4 < 3 El = K S £ [
o < [e) Q fin] -3] < [G] & o e £ >

Table II: Evaluation of Configurable Workflows.

5See www.yawlfoundation.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. La Rosa et al.

6.3. ADOM: Application-based Domain Modeling

In ADOM (Application-based Domain Modeling) [Reinhartz-Berger and Sturm 2007,
Reinhartz-Berger et al. 2009; 2010] configurable nodes (activities, events and gate-
ways), have a cardinality attribute of the form <min,max>. The cardinality specifies
how many times a given node can be instantiated in the customized model. For ex-
ample, an activity tagged with <0, 1> is optional, and as such it can be dropped in the
customized model; an activity tagged with <1,n> is mandatory and can be instantiated
up to n times in the customized model; an activity tagged with <1, 1> must be instanti-
ated exactly once, i.e. it is kept as is in the customized model. The default cardinality
<0,n> implies no constraints.

The cardinality assigned to gateways of type (X)OR indicates when the decision cap-
tured by the gateway should be made. A cardinality of <0, 0> indicates that the gateway
must not appear in the customized model. So at customization time one has to decide
which outgoing branch(es) in the case of a split, or incoming branch(es) in the case of a
join, to keep. If the cardinality is <0, 1>, this decision can be deferred till run-time, i.e.
the gateway is optional. An OR gateway can be restricted to become an AND or XOR,
in the same way as in C-iEPCs and Configurable Workflows.

In ADOM, sequence flows can also be assigned a cardinality, unlike C-iEPCs and
Configurable Workflows where sequence flows are not configurable. However, the cus-
tomization of these flows is constrained by design by the customization of the config-
urable nodes, in order to avoid disconnections in the customized model. For example,
a flow with cardinality <0,1> between two nodes with cardinality <0,1> cannot be
dropped if the two nodes are kept, otherwise it would lead to a disconnection.

Figure 6.a shows the post-production example in EPCs with ADOM cardinality con-
straints. For example, event “Shooting completed”, activity “Receive footage” and the
flow in-between are mandatory, so they can neither be removed nor instantiated more
than once during customization. The OR-split and its matching OR-join are optional,
and so are the nodes in-between. This is done to allow a choice between either of the
two branches or both. All elements after activity “Edit offline” are mandatory but have
a maximum cardinality greater than 1. By doing so, each of these elements can be
instantiated multiple times to model the various options that exist for editing and
finishing in post-production, though these options are not represented in the model.

In ADOM, commonalities between variants are thus captured by mandatory ele-
ments while variability is captured by optional elements and by those that can be
instantiated multiple times. Since an ADOM model is meant to be used as a template,
some parts can be left underspecified. During customization, each configurable ele-
ment can be instantiated according to its cardinality constraint. Moreover, application-
specific elements can be added anywhere. These elements only appear in the cus-
tomized model, without any counterpart in the customizable model. Thus, ADOM sup-
ports customization by restriction (removing optional elements) and by extension (in-
stantiating an element multiple times and adding application-specific elements).

In a customized model, each node that has been derived from a configurable node
bears a model classifier (indicated between “<” and “>”), i.e. a reference to the originat-
ing node in the customizable model. If the label of the node needs to be changed, e.g. a
more specific one is required, this can be added below the model classifier. Figure 6.b
shows a possible customization of the post-production model, where application-
specific elements are highlighted in gray. For example, the first two gateways have
been obtained by restricting the type of the first two OR gateways to an AND. Event
“Film editing” and activity “Perform negmatching” derive from event “Editing”, resp.,
activity “Edit”, and have been given each a new name. The second pair of AND gate-
ways and the flow between activity “Transfer in telecine” and event “Transfer com-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:17

(a) (b)

<1,1>
Shooting

completed

<1,1>

<1,1>
Receive
footage

<Shooting
Completed>

<Receive
footage>

<0,1>
Tape
shooting

<0,1>
Film

shooting

<0,1>

shooting>

<Prepare tape| <Prepare film

<0,1> <0,1> : "
Prepare tape Prepare film for editing> for editing>
for editing for editing

<Footage

prepared
Footage |:> for edit>
prepared

for edit N
<Edit
offline>

<Editing>
Film
editing

<Edit>
Perform
negmatching

<Finishing> <Finishing>
Tape Film
finishing finishing

<1,n>

<1,n>
Finish

<1,n>
<1,1>
Finish

completed

<Finish>
Transfer in
telecine

<Finish>
Finish on film

<Finishing>
Transfer
completed

<Finish>
Finish on tape

<Finish
completed>

Release on
new medium
Release
completed

Fig. 6: (a) Post-production example in ADOM-EPC. (b) A customized model.

pleted”, are application-specific elements added to allow multiple instantiations of
event “Finishing” and function “Finish”.

ADOM has been applied to the control flow of EPCs, UML Activity Diagrams (ADs)
and BPMN at the conceptual level. For EPCs, specific rules have been defined to bind
the customization of an event to that of an activity, in order to maintain the alternation
between events and activities required by EPCs, though disconnected nodes cannot be
avoided. Behavioral correctness of the customized models is not guaranteed.

Customization is performed directly on the model level. There is no means to specify
which combinations of instantiations are unfeasible from a domain viewpoint, and the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. La Rosa et al.

addition of application-specific elements cannot be constrained. In [Reinhartz-Berger
et al. 2009], the authors describe a validation technique for ADOM-BPMN. This tech-
nique checks a-posteriori that a customized model is compliant with its customizable
model, but does not prevent the user from generating inconsistent or irrelevant cus-
tomizations in the first place. As such, decision support is not offered.

A formalization of ADOM is provided in [Reinhartz-Berger et al. 2009] for BPMN
and in [Reinhartz-Berger et al. 2010] for EPCs. The approach has not been im-
plemented in a tool. A subset of ADOM-BPMN has been validated in the develop-
ment of a process-driven service-oriented system, but without involving domain ex-
perts [Reinhartz-Berger et al. 2009].

Table III summarizes the evaluation results for ADOM.

Scope Customization Supporting techniques Extra-Functional

Process Process Tvoe Decision Correctness
Perspective Type vp Support Support

Control-flow
Resources
Objects
Abstraction
Implementation

+ | Conceptual
+ | Formalization

I Executable

+ | Restriction
+ | Extension

Guidance
i+ | Structural

I Behavioral

i+ | Validation

i

Table III: Evaluation of ADOM.

6.4. Recap

At the core, the approaches in this group allow different types of nodes in a customiz-
able process model to be tagged as “configurable”. A configurable node can be restricted
at customization-time. Activities can be removed, gateways can be restricted (an OR
gateway can be turned into an AND or XOR gateway), and their incident arcs can be
blocked (dropped altogether) or made mandatory. The approaches differ in terms of the
types of nodes that can be made configurable, the configuration options offered, as well
as supporting techniques and extra-functional criteria.

C-iEPC is the only approach in this group that supports customization of data objects
and resources; C-YAWL is the only one that provides execution support; and ADOM is
the only one that supports customization by extension in addition to customization by
restriction. C-iEPC and C-YAWL offer decision and correctness support, and fulfill the
extra-functional criteria, whereas ADOM only partially does so.

7. GROUP 2: ELEMENT ANNOTATION

The three main approaches that fall in this group, Configurative Process Modeling, Su-
perimposed Variants and aEPCs, rely on the graphical annotation of model elements
with properties of the application domain. Model elements that can be annotated in-
clude control-flow nodes (activities, events and gateways), sequence flows, resources
and objects. Those model elements that are annotated become variation points. Dif-
ferent approaches support different subsets of model elements. Domain properties are
assigned to model elements via domain conditions, which are boolean expressions over
domain properties (e.g. “low budget = true”).

Customization is achieved by selecting domain properties. The selection may be done
directly or be aided by a domain model such as a feature model or a product hierarchy.
Based on this selection, the domain conditions are evaluated and those that are false
lead to the corresponding model elements to be removed from the model. The required
model transformation after the removal of the model elements is approach-specific.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:19

7.1. Configurative Process Modeling

In configurative process modeling [Becker et al. 2004; Becker et al. 2007a; Delfmann
et al. 2006; Delfmann et al. 2007; Becker et al. 2006; Becker et al. 2007¢c; Becker et al.
2007b] , customization is achieved by fading out model elements that are not relevant
to a given business scenario. A set of domain properties, called business characteristics,
are used to determine the available scenarios and later drive the customization.

In the case of post-production example, we can define a business characteristic
“Shooting type” (ST) with values: “Tape” (T) or “Film” (F), and a characteristics “Budget
Level” (BL) with values: “Low” (L), “Medium” (M) or “High” (H). The latter is a high-
level characteristic since a choice on the budget typically affects multiple decisions in
post-production. These characteristics are linked to the elements of a process model
by means of domain conditions, which are logical expressions over the characteristics.
The link is rendered graphically by encapsulating the model elements into a shaded
box, to which the domain condition is attached (see Figure 7 for an example).

Process models are captured in eEPCs (extended EPCs), an extension of EPCs that
incorporates resources and objects, similar to iEPCs. Business characteristics can be
assigned to the following model elements: activities, events, resources and objects.
Gateways cannot be directly configured. Rather, the approach expects the modeler to
include all possible gateway variants in the customizable model.

Figure 7 shows a process model for post-production in eEPCs (the control flow is
the same as that of the C-iEPC model of Figure 4). Here some elements have been
associated with a logical expression referring to the project’s budget. For instance,
event “Film editing” and activity “Perform negmatching” are linked to the expression
BL(H), which means that these elements are only suitable for a high budget project,
due to the high costs involved in editing on film. On the other hand, activity “Edit
online” is not associated with any condition, since it is suitable for any type of budget.

The customization of a process model to a specific scenario is done by marking those
elements whose domain conditions evaluate to false as hidden. Then a transformation
is performed to remove the hidden elements, including those gateways that become
irrelevant, and reconnect the remaining nodes. For example, by customizing the exam-
ple in Figure 7 for a low budget project, we obtain variant b in Figure 1. The transfor-
mation can fix simple structural issues, e.g. the removal of gateways which have one
input and one output flow, as in the example, but cannot ensure the structural and
behavioral correctness of the resulting models. For example, since both events and ac-
tivities can be removed, the algorithm does not work in the presence of cycles, or when
an activity between two events is removed. Structural issues that cannot be fixed are
prompted to the modeler who has to manually correct them.

Business characteristics can also be applied to the meta-model layer (i.e. to the eEPC
meta-model), to remove process modeling perspectives that are not relevant to a spe-
cific scenario. For example, one can hide all resources at once.

Customization is not carried out at the process model level, but via the evaluation
of a set of business characteristics. However the approach does not offer guidance to
users when assigning values to the characteristics.

The approach also supports a set of generic adaptation mechanisms that can be used
to refine and extend a process model after customization, e.g. by adding new model
fragments. The possible combinations of components can be restricted by interface def-
initions. However, the application of these mechanisms is left to the user without spe-
cific support, i.e., extension points are not specified in the customized process model.
Hence, this approach only provides a weak form of customization by extension.

The approach builds upon eEPCs, which are a conceptual language. The approach
has not been formalized. The model projection mechanism has been implemented as a
prototype tool [Delfmann et al. 2006] that interacts with the ARIS platform. Business

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Shooting
completed
Receive
footage
\
Tape Film
shooting NOT BL (L) shooting

Prepare tape

for editing for editing
\2
Footage
Director prepared
for edit
Editor Temp picture
Supervisor |+ Edit
NOT BL (L) |\ 2 offine
I Edited picture
Vv
Tape Film
editing editing
BL (H)
Edit Perform
online negmatching
\%
\%
Tape Film
finishing finishing
Transfer in Record digital
telecine film master
Transfer Recording
finished finished
Finish on tape Finish on film
\%
Finishing » Business characteristic:
completed BL = Budget Level
o Values:
L =Low
Release on M = Medium
new medium o
H = High
Release e NOT i Iog!cal negation
completed e | =logical OR

Prepare film

M. La Rosa et al.

Fig. 7: A process model for post-production in eEPCs with logical terms for the budget.

characteristics can be defined and linked to elements of an eEPC designed in ARIS.
Users select the desired characteristics and the initial eEPC is customized to remove
irrelevant elements. Similar features are also available in the fem/ tool.® This approach

Shttp://em.uni-muenster.de

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:21

has been applied in the fields of method engineering [Becker et al. 2007c] and change
management [Becker et al. 2007b], and validated in the German public administration
sector [Becker et al. 2006], though without domain expert involvement.

Table IV summarizes the evaluation results for Configurative Process Modeling.

Scope Customization Supporting techniques Extra-Functional

Process Process Tvoe Decision Correctness
Perspective Type vp Support Support

Behavioral
Formalization
Implementation

i+ | Control-flow

+ | Resources
+ | Conceptual

I Executable
+ | Restriction
+ | Extension
+ | Abstraction
Guidance
i+ | Structural
i+ | Validation

+ | Objects

4

Table IV: Evaluation of Configurative Process Modeling.

7.2. Superimposed Variants

The idea of annotating model elements to capture variability is also investigated
in [Czarnecki and Antkiewicz 2005; Czarnecki et al. 2005; Czarnecki and Pietroszek
2006]. In this approach, any control-flow element of UML ADs can be annotated us-
ing presence conditions and meta-expressions. A precedence condition determines if
a model element is retained or removed. A meta-expression allows one to select the
value of an attribute of a model element (e.g. an activity’s label) from among a range
of options. Customization is thus achieved by restriction only.

Both presence conditions and meta-expressions are captured by boolean formulae
over the features and feature attributes of a feature model (see Appendix C.1), and
are evaluated against a feature configuration. These formulae are represented in dis-
junctive normal form where the basic terms are features designated by means of UML
stereotypes. For example, the stereotype <<Tape V Film>> indicates the disjunction be-
tween features “Tape” and “Film”. The assignment of stereotypes to modeling elements
is done through rendering mechanisms such as labels, color schemes or icons.

Figure 8.a shows the finishing phase of the post-production process as an annotated
UML AD. For simplicity, in this example we have only specified presence conditions.
These annotations, rendered with a color and a number in the example, have been
defined over the features of the feature model of Figure 15 (cf. Appendix C.1). This
feature model captures the features (i.e. properties) of the post-production domain,
such as type of finish and type of transfer. For example, activity “Transfer in telecine” is
associated with the sub-feature “Telecine” of feature “Transfer” (annotated in blue with
label “1”), while the two outgoing flows of the decision point are associated with the two
sub-features of “Finish”: “Tape”, resp., “Film”. All non-labeled elements (in black) are
associated with the always-true formula. These represent the commonalities of the
model and cannot be removed, e.g. the gateways and the end event in our example.

Customization is achieved by evaluating presence conditions and meta-expressions
against a feature configuration. Model elements whose conditions evaluate to false are
removed, while model attributes that are affected by meta-expressions are modified
accordingly. No guidance is provided for the selection of the features to be kept.

Figure 8.b shows a possible customized model for the post-production example where
only the activities “Record digital film master” and “Finish on film” have been kept.
This model can be obtained via a transformation algorithm that applies patches to re-
connect model elements that have been disconnected during customization, and sim-
plifications to remove splits and joins that have been left with one incoming and one

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. La Rosa et al.

Presence Conditions: (a) (b)
_ <<true>>

1 <<Transfer.Telecine>> %
3 4

2 <<Transfer.Digital
Record digital
film master

film master>>

Record digital
2 "
film master

3 <<Finish.Tape>>
< s s 1 2
4 <<Finish.Film>>
5 <<Finish.New medium>> 3 4 Finish on
film
3 < > 4
5
Q Activity <> XOR gateway 5
@ End event —> Sequence flow @

Fig. 8: (a) The post-production example in annotated UML ADs. (b) A customized
model.

outgoing flow. Patches can only be applied to those nodes that have exactly one in-
coming and one outgoing flow, and an annotation error is raised otherwise. However,
an automated verification procedure [Czarnecki and Pietroszek 2006] can be used to
provide an a-priori guarantee that no structurally-incorrect customized model can be
generated from a customization. Behavioral correctness is not dealt with, and no exe-
cution support is provided. The approach only supports customization of control-flow
elements. Resources and objects cannot be customized.

The approach has been formalized and implemented in an Eclipse plugin’ allowing
users to configure UML ADs via so-called cardinality-based feature models [Czarnecki
et al. 2005] and to check that the feature model and UML AD do not lead to structurally
incorrect customized models. The approach has not been validated in practice.

Table V summarizes the evaluation results for Superimposed Variants.

Scope o Supporting techniques Extra-Functional
p Customization .p.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support s
c Kel
g © (] c S = 'g E
=] S = 5] c 2 @ © o 9 5 5
Oy o @ = © =1 o ° o = o O =
° = 2 =3 = 3] @ 4 c =] 2 = £ t=1
o =] 5]] 5 = e o© © s > (] ©
= <}] = o = 5 =] o S © S - =
5 & = S g 4 < 3 El 5 K S £ s
o < o (&) fin] < fin] < G} & o e £ >

Table V: Evaluation of Superimposed Variants.

7.3. aEPCs: Aggregated EPCs

Aggregated EPCs (aEPCs) [Reijers et al. 2009] are an extension of EPCs to capture
a family of process variants. Similar to Configurative Process Modeling and Super-

"See http://gp.uwaterloo.ca/fmp2rsm.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:23

imposed Variants, the idea is to annotate certain model elements (in this case EPC
activities and events) with domain properties, which are called products in aEPCs.

Figure 9.a shows an example aEPC where products associated with activities and
events refer to the budget levels in post-production. For example, activity “Transfer in
telecine” only occurs in high budget projects, while activity “Record digital film master”
can also occur in medium budget projects. Accordingly, “High budget” and “Medium
budget” are sub-products of a composite product “Budget” in post-production, i.e. they
capture the values of a given domain property. Other possible products include the
shooting formats, the picture cut methods and the finishing formats.

_
@
4

Receive "
High Budget|

Tape Film
Med. Budget|
Budget
Prepare
fi|?n High Budget

for editing

Prepare
tape for
editing

Footage
prepared

for edit
—q

Tape
editing

Edit
online

Budget High Budget|

Budget finishing Med. Budget|
i Record

digital film High Budget

master -

High Budget
Transfer Recording
finished finished Med. Budget|
Finish on — Finish on "
tape film High Budget
Finishing
completed,

medium

Release
Low Budget| |Med. Budget| [High Budget

Fig. 9: (a) Post-production example in aEPC. (b) Associated product hierarchy for
budget.

Release
o (®)

An activity or event may be associated with more than one product. In our example,
activity “Record digital film master” is associated with two products (“High budget”

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. La Rosa et al.

and “Medium budget”). In order to avoid cluttering the model with many product as-
sociations, an aEPC can be accompanied by one or more product hierarchies where
the various products are organized hierarchically. A product hierarchy is a rooted tree
where the leaves are products and all other nodes are composite products representing
product generalizations. In this way a process model element can be associated with a
composite product in place of a set of products. For example, Figure 9.b shows the prod-
uct hierarchy for the budget. The composite product “Budget” in this hierarchy can be
used when an element is present in all budget levels, e.g. activity “Receive footage”.

Instead of capturing implications among model elements or domain properties (e.g.,
“Edit online” can only be present if “Prepare tape for editing” is present) as in other
approaches, in aEPCs all possible variants have to be resolved beforehand and mapped
to a set of products (i.e. a composite product). Thus, while the use of composite prod-
ucts can in principle reduce the number of products associated with a given element,
there may be a large number of composite products and this in turn may lead to clut-
tered aEPCs [Baier et al. 2010]. The choice of not modeling implications explicitly is
motivated by the observation that in practice these logical expressions are difficult to
conceive and interpret by domain experts. This was the result of testing C-EPCs (an
ancestor of C-iIEPCs) with domain experts of ING Investment Europe, with whom the
aEPC approach was later validated [Reijers et al. 2009].

An aEPC is customized by choosing one or more products, and removing all ele-
ments that are not associated with the products chosen. Customization is restricted to
activities and events, while gateways, objects and resources are not customizable.

This approach works at the conceptual level only since aEPCs are conceptual models.
The approach is fully formalized including a transformation algorithm which removes
the unneeded elements and cleans up the customized model, in order to keep it struc-
turally correct. In fact, besides the requirements of an EPC, there are requirements
on how products can be associated with elements appearing before or after a sequence
of gateways. Behavioral correctness is not dealt with. The transformation algorithm
has been implemented in a tool that can import EPCs from ARIS and extend them
into aEPCs. An advantage of organizing products into hierarchies is that an aEPC can
be customized by removing products from the associated product hierarchy. Thus, this
approach achieves process abstraction, though guidance is not offered.

Table VI summarizes the evaluation results for aEPCs.

Scope o Supporting techniques Extra-Functional
p Customization .p.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support s
c .0
g © (] c S = 'g E
=] S = 5] c 2 @ © o g 5 5
—_ o w0 2 © = o ° o = o = =
o = + o = o @ © = = ES © £ ®
o =] o [=1 = c o © = > 1] ©
= <]]] o =] 9] 2 el S © 1S = =
5 & = S g 4 < 3 El 5 K S £)
o < o (&) fin] < fin] < G} & o e £ >

Table VI: Evaluation of aEPCs.

7.4. Recap

Approaches in this group capture variability via annotations attached to elements of
the customizable process model. These elements link an element in the customizable
process model to an element in a domain model. Customization is performed by instan-
tiating the domain model to capture a given set of requirements. Given an instance of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:25

the domain model and the annotations in the customizable process model, a trans-
formation algorithm is applied to derive a customized model. In Configurative Pro-
cess Modeling, the domain model consists of business characteristics, in Superimposed
Variants it takes the form of a feature model, and in aEPCs it consists of products.
The approaches differ in terms of the model elements that can be customized. All
approaches support the customization of control-flow model elements, although Con-
figurative Process Modeling is limited in its support for customization of gateways.
On the other hand, Configurative Process Modeling is the only one that supports re-
sources and objects. In all three approaches, customization is achieved by restriction,
though Configurative Process Modeling also supports a weak form of extension. All
three approaches provide abstraction support, since the customization is driven by
domain concepts. However, none of them provides customization guidance. All three
approaches ensure structural correctness (at least to some extent), but not behavioral
correctness. They all target conceptual process models rather than executable ones.

8. GROUP 3: ACTIVITY SPECIALIZATION

The main approaches in this group, PESOA, BPFM and Feature Model Composition,
rely on activity specialization to achieve process model customization. An abstract ac-
tivity can be defined as a variation point by assigning one or more variants to it. A
variant is a specialization of an abstract activity, i.e. one of its possible concrete refine-
ments, e.g. activities “Prepare tape for editing” and “Prepare film for editing” are two
specializations of “Prepare medium for editing”. A special type of variation point is the
optional activity: an abstract activity that can be specialized to an empty activity.

Variants can also be assigned to activity attributes such as objects and resources,
which become variation points. Events and gateways cannot be customized. Accord-
ingly, variability is graphically rendered by marking activities and their attributes as
variation points and connecting variants to variation points via a specialization arc.

Customization is achieved by selecting one or more variants per variation point,
while optional activities can be switched off. Customization can be done directly on the
process model or via the use of a domain model, such as a feature model. The routing
behavior to be used when selecting more than one variant for a variation point, as well
as the transformation needed to clean up the model from all unused variants and to
remove optional activities that have been switched off, are approach-specific.

8.1. PESOA: Process Family Engineering in Service-Oriented Applications

The idea of capturing variability in process models has been explored in the PESOA
(Process Family Engineering in Service-Oriented Applications) project [Puhlmann
et al. 2005; Schnieders and Puhlmann 2006; Schnieders 2006]. The aim of this project
was not to provide a language for representing and customizing process models, but
rather to improve the customization of process-oriented software systems, i.e. systems
that are developed from the specification of process models. If the variability of a soft-
ware system can be directly represented in a process model that describes the system’s
behavior, it is then possible to generate code stubs for the system from the customiza-
tion of the process model itself. Since code generation is outside the scope of this paper,
we only focus on the way the authors represent process variability.

According to PESOA, a customizable process model is a conceptual process model
where certain activities have been marked with stereotypes to accommodate variabil-
ity. Although stereotypes are an extensibility mechanism of UML, in this approach
they are applied to both UML ADs and BPMN models. The activities of a process
model where variability can occur are marked as variation points with the stereo-
type <<VarPoint>>. A variation point represents an abstract activity, such as “Prepare
medium for editing”, that needs to be specialized with a concrete variant (<<Variant>>)
among a set of possible ones. For example, “Prepare medium for editing” can be spe-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. La Rosa et al.

cialized into “Prepare tape for editing” or “Prepare film for editing”, or both. One can
also mark the default variant for a variation point with the stereotype <<Default>>.
Figure 10.a shows the process model for post-production in BPMN, where some activi-
ties have been marked as variation points with their variants shown below the activity.
For example, “Prepare tape for editing” is marked as the default variant of “Prepare
medium for editing”, as this is the most common choice in post-production.

If the variants are exclusive, i.e. if only one variant can be assigned to a given varia-
tion point, the stereotype <<Abstract>> is used instead of <<VarPoint>>. In Figure 10.a
we assume that the variants “Edit online” and “Perform negmatching” are exclusive, so
the associated variation point “Cut picture” is marked with the tag <<Abstract>>. As
a shortcut, when the variants are exclusive, the default specialization can be depicted
directly on the variation point with the stereotype <<Alternative>>.

<<Optional>>
Transfer in
telecine

<<VarPoint>>
Prepare medium
for editing

<<Optional>>
Release on
new medium

Receive
footage

Edit
offline

<<Abstract>>
Cut picture

<<VarPoint>>
Finish

<<Null>>
Transfer tape
to film

, N . \
\ 2 |

<<Default>> <<Variant>> <<Default>> <<Variant>> <<Defaull>>] [<<Variant>>]

Prepare tape Prepare film Edit Perform Finish on Finish on
for editing for editing online negmatching <<Variant>> tape film
Record digital
film master
Variation o
(b) O Start event points Variants
i End event -«va""’”“» <<Variant>>
Receive <<VarPoint>> Edit <<Abstract>> O
Prepare medium

footage

" . Ab:
for editi offline Cut picture OR gateway
R

<<Default>> <<Default>> Sequence "
Prepare Tape Edit —> (f‘low ---> Specialization
for editing online

Fig. 10: (a) Post-production example in PESOA-BPMN. (b) A customized model.

A variation point marked with the stereotype <<Null>> indicates an optional activ-
ity. It can only be associated with one variant and its resolution into such variant is
not compulsory, in which case the activity is switched off. This is the case of the vari-
ation point “Transfer tape to film” that may be specialized into the variant “Record
digital film master”, or be completely dropped from the process model. A shortcut for
a <<Null>> variation point and its variant is to depict the variant directly on the vari-
ation point, using the stereotype <<Optional>>, like task “Transfer in telecine”, which
subsumes the variation point “Transfer film to tape”.

Stereotypes can be assigned to activities and to activity attributes related to objects
(e.g. input and output data). Gateways, events and resources cannot be customized.
During customization, each variation point is specialized into one or more variants
depending to its type. Figure 10.b shows a fragment of the BPMN process model for
post-production configured for a project shot on tape and edited online. The variants
that are not required have been removed from the model. Extension mechanisms are
not provided. Abstraction from the process modeling language is achieved by linking
process variants with domain properties, captured as features in a feature model (see
Appendix C.1). Each process variant is tagged with a feature, such that when a feature
is disabled in a feature model configuration, the corresponding variant is removed
from the process model. Domain constraints can be defined over feature values, thus
restricting the possible combinations of variants in the process model. However, there
is no guidance for the selection of a suitable set of features.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:27

PESOA does not provide a transformation algorithm to derive customized models.
The removal of certain variation points such as <<Null>> or <<Optional>>, as well as
the customization of a variation point when multiple variants are selected, may lead
to correctness issues which have to be fixed manually. A formalization is provided for
selected concepts only [Puhlmann et al. 2005].

PESOA has been implemented as an Eclipse plugin. In this implementation, the
customization of a process model is limited to removal of undesired variants. The ap-
proach has been validated in the hotel booking domain, in collaboration with ehotel
and Delta Software Technology [Schnieders and Puhlmann 2006]. In this study, a set
of BPMN process models were configured to drive the generation of Web applications
in collaboration with domain experts.

Table VII summarizes the evaluation results for PESOA.

Scope o Supporting techniques Extra-Functional
P Customization Ap.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support s
c Rel
g © (] c S = 'g E
=] S = 5] c =l) © o S 5] 5
-+ o %) B © = o i o = o =]
o = P =3 + o @ © c > N o £ "
o > 5] (D =1 = c o] = > [©
=])) o o s S = he] S © € > T
5 8) S g 4 < 3 El = e S £ [
o < [e) Q fin] -3] < [G] & o e £ >

Table VII: Evaluation of PESOA.

8.2. BPFM: Business Process Family Model

Business Process Family Model (BPFM) [Moon et al. 2008] is a two-level approach to
capture customizable process models using an extended version of UML ADs. The first
level deals with basic customization. At this level, an activity can be defined as common
if it cannot be customized, or optional if it can be omitted during customization. The
second level enable finer-grained customization by setting an activity as a variation
point and assigning to it one or more specialized variants. Events, gateways, resources
and objects cannot be customized.

A variant is a concrete activity; a variation point is an abstract activity of one of
the following types: 1) boolean, ii) selection or iii) flow. A boolean variation point can
be specialized into exactly one variant. A selection requires at least one variant to be
selected. In this case, the exact number of variants to be selected can be set with a
cardinality (e.g. 1..2). When selecting more than one variant, in BPFM one needs to
specify the control-flow relation between the selected variants (called flow pattern).
This can be a sequence (the selected variants are ordered sequentially), parallel (the
selected variants are executed in parallel using an AND-split and an AND-join) or de-
cision (they are made mutually exclusive using an XOR-split and an XOR-join). A flow
variation point is assigned a variants region, i.e. a set of activities whose flow relations
may be underspecified. At customization time, one needs to restrict the behavior by
adding the required flows. A flow pattern can be specified for the flow variation point,
in which case the activities in the variants region are organized according to the pat-
tern, though the precise order needs to be decided by the user at customization time.

Further, the boundary of a variation point can be classified as either closed or open.
A closed boundary restricts the choice of variants to those already identified whereas
an open boundary allows the introduction of new variants during customization. Thus,
in principle this approach supports both customization by restriction and extension.
However, there is no support for plugging in new variants into a variation point.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 M. La Rosa et al.

Figure 11.a depicts the post-production example in BPFM. Here there are three ac-
tivities marked with a variation point and one optional activity. Activities “Prepare
medium for editing” and “Cut picture” are of type selection. They have been assigned
two variants each. The first activity prescribes a parallel flow pattern while the second
one a sequence flow pattern, each with the option of selecting at least one and at most
two variants. Accordingly, Figure 11.b shows a customized model where the first varia-
tion point has been customized to the parallel execution of both its variants, whilst the
second one to the sequence of its variants. Activity “Transfer & finish” is an open vari-
ation point of type flow with a decision pattern between the activities in the associated
variants region. Accordingly, in Figure 11.b this variation point has been customized to
a decision between two branches, each hosting two of the four activities present in the
variants region. In case of an open flow variation point, the arrangement of activities
inside the variants region within a given control-flow structure is entirely left to the
user. Finally, in our example the optional activity “Release on new medium” has been
dropped in the customized model.

@)

Perform
negmatching

Prepare tape
for editing

Prepare film
for editing

Transfer in Finish on
telecine tape

[Variation point property [Variation point property

XOR
gateway

<&

First-level

- oo N @ sartevent | ‘,' variation point
Cut Cut Transfer & | i Release on 5@ Q “““ (optional)
i i i i End event
for editing offline picture picture finish l\qeyTF?[um) Second-level
@ @ Activity variation point

Variants
region

Specialization

AND
gateway
Sequence
flow

vp Boundary __[Close
v Type [Sefection
[vp Cardinality _[1.2

Flow pattern _[Parallel

[vp Boundary __|Close
[vp Type [Selection
vp Cardinality _[1..2

Flow pattern Sequence

-

Record Digital Finish on
film master film

[Variation point property
[vp Boundary _ [Open
vp Type. |Flow
Flow pattern__|Decision

Edit
online

Transfer in
telecine

Finish on

(b)

Prepare tape
for editing
Prepare film
for editing

Fig. 11: (a) Post-production example in BPFM. (b) A customized model.

Receive Edit Perform Cut
footage offline negmatching picture

Record digital
film master

Finish on
film

In BPFM it is also possible to define dependencies (called dependency constraints)
between variation points, between variants or between variation points and variants.
If for example, a variant is chosen for a given variation point, this can restrict the
choice of the variants for another variation point.

A tool implementing this approach is available as an Eclipse plugin. The tool can
prune a customized process model by removing the unused variants, but does not of-
fer a complete transformation algorithm for embedding the selected variants into the
process model. The approach has not been formalized nor validated in practice. It does
not provide any correctness, abstraction or decision support.

Table VIII summarizes the evaluation results for BPFM.

8.3. Feature Model Composition

In Feature Model Composition [Acher et al. 2010b], a process model (called workflow)
is defined as a collection of activities (called services). Activities are implicitly related
via data dependencies. Specifically, each activity has a collection of attributes called
dataports. A dataport captures an input or an output data object of the activity. If an
input dataport of an activity refers to the same object as an output dataport of another
activity, there exists an implicit data dependency between these two activities.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:29

Scope o Supporting techniques Extra-Functional
P Customization .p.p g q
Process Process Decision Correctness
. Type
Perspective Type Support Support s
c b=
g © (] c < — g 3
=] S e S c 2 w = o 3 b S
L o » ‘. © 5 RS 5} e 5 o = IS =
e 5 kst) =t 2 2 © © = S © b5 ©
=] <]] Q o =] 9] 2 el S © £ = =
5 F 2 5 g 3 £ 8 5 = © 5 g s
o 3 [e) Q fin] 3] < [G] & o e £ >

Table VIII: Evaluation of BPFM.

In order to capture variability, an activity is allowed to have any number of varia-
tion points (called concerns). A concern refers to any activity attribute. Examples of
attributes are dataports, functional interfaces, activity behavior and other low-level
implementation aspects. Each concern is modeled as a separate feature model, which
captures the variants that exist for a concern, and their relations. Customization of
concerns is achieved by deselecting features from the respective feature models.

Figure 12 shows a customizable process model in the Feature Model Composition
approach using our running example. A feature model has been defined for the con-
cern “Shooting medium” and mapped to the output dataport of “Prepare medium for
editing”, in order to capture the fact that this activity can have a film, a tape or both
media as output. Similarly, the same feature model has been associated with the input
dataport of the subsequent activity “Edit offline”. Further, the concern “Cut” with vari-
ants “Online” and “Negmatching” has been associated with the functional interface of
activity “Perform cut”, to indicate that the type of this activity can also be configured.

Prepare medium) i 1 _Interface g
for editing (1) Edit offline (2) Perform cut (3)\ e
T input) I Output” | T Tinput) 7~ Output | T Tinput | I Outputy

| Dataport |yt Dataport | | Dataport o 1 Dataport | | Dataport | | _Dataport\ |
[\ |
FMoy FM.- FMepg
Tape \) Film Tape Film
I: v I:‘«’ I: 2 I: 2
P

D Start event
A

1} Concern

— Sequence flow

Fig. 12: Post-production example using Feature Model Composition and a possible
customization.

A concern of one activity may be incompatible with that of a subsequent activity and
thus a consistency check is needed when customizing a model. This check is performed
by analyzing input and output dataports based on dependency rules. Specifically, the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 M. La Rosa et al.

feature models of the relevant concerns are checked for mutual consistency and then
a merged diagram is created by intersecting the various feature models. In this way,
the consistency of two connected activities is ensured. The merge operator is used to
compose feature models that refer to the same activity dimension. Its syntax and se-
mantics are defined in [Acher et al. 2010a], while the syntax of a customizable process
model is defined in [Acher et al. 2010b]. While inconsistencies in data dependencies
that may arise during customization are addressed by this approach, the process mod-
eling language adopted is abstract, and not actually executable.

When producing a customized model, it is necessary to add the control-flow depen-
dencies based on the implicit dependencies of the various activity attributes, such as
data dependencies. Three types of control-flow dependencies are possible: sequential,
concurrent (AND behavior) and conditional (XOR behavior). The dependency rules for
consistency checks between two activities (cf. Figure 12) are not sufficient when there
is a sequential, concurrent or conditional ordering of more than two activities. This is
addressed via an extended set of dependency rules that ensures the consistency of the
activities in a process model.

As shown in the example, this approach can be used to customize business objects
and other activity attributes, such as the associated resources. However, concerns are
internal to each activity. As such, the control flow cannot be configured. This is the
only evaluated approach that suffers from this limitation.

In this approach, feature models do not provide abstraction for the customization of
concerns, since they refer to low-level aspects such as different dataports related to a
software service. Moreover, one has to configure one feature model per concern. There
is no overarching feature model to customize the process model using properties of the
application domain, like e.g. in PESOA. Similarly, no guidance support is offered.

Since the control flow cannot be configured, and data dependencies are preserved
during customization, the approach guarantees that the customized models are both
structurally and behaviorally correct.

An implementation is described on-line,® though the tool cannot be downloaded and
the authors have not replied to our request for assistance with their tool. the Feature
Model Composition approach is motivated by the need of customizing medical imaging
grid services, though it has not been validated in practice.

Table IX summarizes the evaluation results for Feature Model Composition.

Scope Customization Su-p.portmg techniques Extra-Functional
Process Process Decision Correctness
. Type

Perspective Type Support Support 5

3 _ c S 5
= 8 S 215 sl ¢z ®TlE|S|s
oy o " ot © s 2 o e 5 2 = < B
< S it @ 5 2 8 © S 2 S © o ©
= o Q e o = o 2 © S o € = 3
S o = S 3 4 £ 3 S = @ S £ ©
o o o o i < i < G} & I~ e = >

Table IX: Evaluation of Feature Model Composition.
8.4. Recap

A distinctive characteristic of approaches in this group is they only allow customization
of individual activities and not of other control-flow elements (events and gateways).

8See http://modalis.polytech.unice.fr/softwares/manvarwor.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:31

Feature Model Composition does not even support the customization of an activity it-
self, but rather focuses on the customization of an activity’s inputs and outputs. In
other words, every activity in the customizable process model will appear in every cus-
tomized model thereof. The customized models only differ in terms of the involved re-
sources and data objects. Control-flow relations between activities have to be specified
over the customized process model based on the data dependencies between activities.

Approaches in this group focus on conceptual process models. Since specialization
is a form of behavior restriction, the approaches support customization by restriction.
BPFM also supports a weak form of extension. PESOA provides abstraction support,
but none of the approaches provides guidance. The approaches in this group do not
ensure structural nor behavioral correctness, except for Feature Model Composition,
which trivially achieves correctness support since it does not capture control-flow de-
pendencies between activities.

9. GROUP 4: FRAGMENT CUSTOMIZATION

Approaches in this group are based on the application of change operations to restrict
or extend the customizable process model. Two atomic change operations can be used
to customize the control flow: delete, to remove a fragment from the model, and insert,
to add a fragment into the model. More complex operations such as move or replace
can be provided by combining delete and insert. The fragment to be deleted or inserted
must be single-entry single-exit. Accordingly, each operation requires two sequence
flows of the process model to delimit the portion of the base model to be deleted or in-
serted (the two flows may coincide). These variation points (called adjustment points)
may be explicitly represented by marking selected flows of the model, otherwise each
flow is assumed to be an adjustment point. The required model transformation after
the application of the change operations is approach-specific. A third change opera-
tion, modify, is used to modify the resources or objects associated with an activity, e.g.
replacing a resource with another or assigning a new resource to an activity.
Operations can be organized in an operation sequence, so that multiple operations
can be performed in a given order on the customizable process model. Moreover, these
sequences can be associated with domain conditions, i.e. predicates over domain prop-
erties, to determine when the sequence of operations in question should be applied.
This group counts two main approaches: Provop and Template and Rules.

9.1. Provop: Process variants by options

In Provop [Hallerbach et al. 2008; 2009a; 2009b; 20101, customization is achieved by
applying change operations to a base model marked with adjustment points. The base
model can be a standard process (e.g. a reference model for a particular domain), the
most frequently used process variant, a generic model, the superset of all variants
or their intersection. For example, in Figure 13 we identified variant a from the set of
post-production variants in Figure 1 as the base model, since this is one of the simplest
variants for post-production, and defined eight adjustment points on this model.

Besides the two atomic change operations for the control flow (DELETE and IN-
SERT), and the MODIFY operation to customize objects and resources, Provop sup-
ports a fourth operation, namely MOVE, to relocate a fragment delimited by two ad-
justment points in the base model to another part of the model delimited by two differ-
ent adjustment points. Operation sequences are called options in Provop.

For example, the DELETE operation in Option 1 of our example will delete the con-
tent between adjustment points “w” and “z”. As a shorthand notation, it is possible to
delete a single node simply by providing its identifier. A fragment is inserted in paral-
lel to the portion of the base model delimited by two given adjustment points, if this
portion contains some node. For example, in the case of the first INSERT of Option 4,
an AND-split and an AND-join are used to link the fragment to the adjustment points.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 M. La Rosa et al.

Base model Options

RS epep X mpep 3]
| [

INSERT |

Tape
shooting

INSERT |

Start =>w
End =>x

Tape
editing

Tape
editing
Start =>w,

End=>2z

Option 1
Option 3
Option 4

Edit
online

Edit
online
Q

Prepare

film for
editi

Tape

finishing

|

|

|

Fool |
prepared |
|

|

|

for edit

Finish on INSERT
tape

|
|
|
5 4
i
|
|

Record
digital film
master

Start =>y

End =>n

Transfer in
telecine

‘ \ Recording
finished
CONTEXT RULE:

IF Shooting = “Tape”
AND Edit = “Online”

AND Finish = “Tape”

Transfer

completed
Perform b

negmatchin
g

Finish on

:

DELETE | [CONTEXT RULE:

]X[E] @ IF Shooting = “Film”
| | AND Edit = “Online”

AND Finish = “Film”

CONTEXT RULE:

IF Shooting = (“Tape”
AND “Film”) AND Edit =
“Offline” AND Finish =

| Finish
completed

INSERT

~
5 oirjingd CONTEXT RULE: (T ” AND “Film”)
2 |End=>p | : i
S Release)|[™|IF Finish =

“New medium”

Release
complete

Adjustment [label] Fragment Fragment _ < Option
i i traint
point entry < exit [End | constrain

Fig. 13: Post-production example in Provop.

If the portion contains a sequence flow only, or is empty (e.g. as a result of a previous
DELETE), the fragment is inserted in place of the flow or between the two adjustment
points, respectively. An example of this is the second INSERT of Option 2, where the
sequence “Record digital film master”-“Recording completed” is inserted in place of
the flow between “y” and “n”.

Since adjustment points can only be defined on the control flow, in Provop it is not
possible to represet variability in the resource and object perspectives.

We organized the change operations in our example in four options. The application
of Options 1 and 2 on the base model yields variant b of post-production, Option 3 yields
variant ¢ while Option 4 yields variant d (cf. Figure 1). The use of certain combinations
of options can be restricted by defining option constraints, such as mutual exclusion,
implication and n-out-of-m choices. For example, Options 1 and 3 of our example are
set as mutually exclusive, since Option 1 removes the adjustment point “x” required
by Option 3. The rationale behind the use of these constraints is to avoid creating
situations that may prevent the application of an option or that may introduce errors
in the resulting variants.

A five-step method can be used to drive the customization of process models via prop-
erties of the application domain [Hallerbach et al. 2009a; 2010]. In Step 1, the user

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:33

determines all the possible contexts in the application domain. A context is a domain
property, represented as a variable, such as “budget”, with all its possible values, e.g.
“high”, “medium” and “low”. One can also specify domain constraints (called context
constraints) in the form of boolean expressions to limit the interplay among contexts,
e.g. “budget = low = finish = tape”. Each option is then assigned a domain condition
(context rule), in the form of a boolean expression over the values of context variables,
to limit the applicability of that option to a particular business scenario. For instance,
Option 1 can only be applied if shooting and finish are done on tape, and editing is
done online. In Step 2, for each context the set of relevant options is automatically de-
termined. In Step 3, the consistency of the retrieved options for each context is checked
against the option constraints. If inconsistencies are found, these are prompted to the
user, e.g. an option constraint may contradict a context constraint. In Step 4 all valid
sets of options are applied to the base model for each context, and the resulting vari-
ant is checked for correctness in Step 5. Those models that are incorrect are discarded.
Contexts and context rules offer abstraction for the customization of the base model,
though guidance in the selection of the various options is not provided.

Provop can be applied to any modeling language with the only structural restriction
that the fragments to be customized must be single-entry single-exit. The base model
is not required to be correct. This however cannot guarantee the correctness of the cus-
tomized model a priori. For example, the model may have disconnections or splits and
joins of different type in a given single-entry single exit fragment, leading to behav-
ioral anomalies. Instead, correctness is checked a posteriori (in Step 5) using existing
correctness-checking techniques. In fact, the number of valid combinations of context
variables into contexts may be very large, making an a-apriori check of all derivable
customized models unfeasible in such cases.

The approach only addresses customization of conceptual process models. The basic
concepts are formalized, though the semantics of the change operations is not specified.
Provop has been implemented on top of ARIS [Hallerbach et al. 2010]. This tool allows
users to define change operations and organize them in options, and to apply them to
BPMN models enhanced with adjustment points, in order to derive customized models.
The tool is not publicly available. Provop’s design requirements have been derived
from various case studies in the automotive and healthcare industries [Hallerbach
et al. 2010], and Provop models have been created by the authors in these domains.
However these models have not been validated with domain experts.

Table X summarizes the evaluation results for Provop.

Scope o Supporting techniques Extra-Functional
p Customization .p.p g 9
Process Process Decision Correctness
. Type
Perspective Type Support Support 5
c Rel
g © o) c 5 = = B
= 9 S = 5] c =l) © o S 5] s
Oy o " = S =1 o ° o = o i =
o 5 2 e £ 5 a 8 5 2 s [g 5
5 3 S 8 2 = < 5 3 S © £ 2 =
5 8§ = | § g s 2| 3 3 E 038 o E | S
o -4 (@) o i -4 fin} <) &H o iy £ >

Table X: Evaluation of Provop.

9.2. Template and Rules

Template and Rules [Kumar and Yao 2009; 2012] captures the variability of a process
family by processing a set of business rules associated with a process template. The
process template is the customizable process model: a simple, block-structured process

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 M. La Rosa et al.

model which should be chosen in order to have the shortest structural distance from
all process variants of the family. The rules are sequences of change operations used
to customize the template by restricting or extending its behavior. Change operations
affect the control flow (by deleting, inserting, moving or replacing a fragment), the
resources (by assigning a resource to an activity or changing the value of a resource
property), and the data objects (by assigning a value to a data attribute, or changing
the value of an activity’s input/output data). The operations on resources and objects
are “modify” operations, while those on the control flow are (a combination of) delete
and insert. Unlike Provop, gateways cannot be directly customized, and adjustment
points are not explicitly represented, meaning that change operations can virtually be
applied to any process model fragment. As a result, though, in Template and Rules
variability is not graphically represented in any process model perspective, and can
only be inferred from the rules accompanying the template.

Rules are assigned domain conditions (e.g. “process.budget = high”), which if satis-
fied, allow the corresponding change operations to be applied to the process template.
The use of such conditions provides abstraction from the customizable process model,
though there is no guidance support.

Figure 14 shows the application of this approach to our running example, using the
BPMN language. Here the template describes a simple variant for editing and finish-
ing on tape and releasing on new medium. This template is accompanied by three rules
(R1, R2 and R3) embracing control-flow and resource aspects. For example, R1 is used
to customize the template for a high budget production process. Accordingly, we need
to insert the activities required for editing and finishing also on film, such as “Prepare
film for editing”, to be inserted in parallel to “Prepare tape for editing”, “Transfer in
telecine”, which goes before “Finish on tape” and so on (where insert(t,, P,t5) in a rule
indicates to insert activity ¢, in parallel to ¢y while insert(t;, Sy, t2) indicates to insert
t1 before). R3 is an example of a rule to configure resource aspects: if the budget is
high, multiple resources (e.g., “Director”, “Editor”, “Supervisor”) will perform activity
“Edit offline”. Predicate role(t, r) indicates that resource r is assigned to activity ¢.

a,
@ Receive Prepare tape Edit Edit Finish Release on
pare tap " N on . AND gateway
footage for editing offline online & new medium
Shooting ape Finish

completed completed
Control flow related

R1: process.budget = high — insert(“Prepare film for editing”, P, “Prepare tape for editing”) AND
insert(“Perform negmatching”, Sp, “Finish on tape”) AND
insert(“Finish on film”, P, “Finish on tape”) AND
insert(“Transfer in telecine”, Sy, “Finish on tape”)

ﬂ R2: process.finish = film — replace(“Prepare tape for editing”, “Prepare film for editing”) AND
R1 replace(“Edit online”, “Perform negmatching”) AND
replace(“Finish on tape”, “Finish on film”) AND

delete(“Release on new medium”)
Resource related

R3: process.budget = high— role(“Edit offline”, “Director”) AND role(“Edit offline”, “Editor”) AND
role(“Edit offline”, “Supervisor”) AND role(“Edit offline”, “Producer”) AND
role(“Edit offline”, “A. Director”)

(b)

Finish

Prepare tape
for editing
Prepare film
for editing

Fig. 14: (a) Post-production example in Template & Rules. (b) Customized model.

Release on
new medium

Receive
footage

Finish
completed

Shooting
completed

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:35

Change operations are applied to a tree representation of the template and, similar
to Provop, only affect single-entry single-exit fragments of the template. Moreover, the
application of each change operation triggers some cleaning operations to avoid discon-
nected model elements and remove trivial gateways and sequence flows. For example,
after deleting activity “Release on new medium” from the template in Figure 14 via the
application of rule R2, activity “Finish on tape” and event “Finish completed” will be
reconnected. Similarly, if there remains one branch only between two AND gateways,
the two gateways will be removed altogether. Thus, change operations cannot cause
any structural nor behavioral issues in the process template.

Change operations are described in detail in terms of changes to the tree represen-
tation of the template and an algorithm is provided to customize the tree. However, a
formalization of all notions is missing. Also, an algorithm to transform a process model
into a tree representation and vice-versa is missing, while rule conflict resolution is
only exemplified by a matrix that disallows certain combinations of rules.

The approach has been implemented using BPEL as the base language, though the
tool is not publicly available. Given a template and a set of rules, the tool uses the
Drools-expert rule engine to check for conflicts between the available rules. If conflicts
exist (e.g. one rule deletes an activity another rule is trying to insert), the user is
notified to either resolve them or assign a priority to each rule. The applicability of
each rule is checked (e.g. it is not possible to delete an inexistent node) and errors are
triggered for those rules that are not applicable. Finally, a customized process model
is obtained from the template by only using those rules that are non-conflicting and
applicable. This model is checked for data-flow inconsistencies, e.g. a task whose data
input is no longer available, in order to guarantee the executability of the customized
model. This check is done a-posteriori, as a result of which a customized model may be
unfeasible altogether. The approach has not been validated in practice.

Table XI summarizes the evaluation results for Template and Rules.

Scope Customization Su.p.portmg techniques Extra-Functional
Process Process Decision Correctness
. Type
Perspective Type Support Support 5
3 _ c S ®
= 8 S =2 | § s | g o | B O 5 5
- o n a © B h=l 9] e 5 o = IS =
° 5 £ g s | 2 2 g s | & 3 g 9 S
= o 9] o o =] b= o S © £ =]
§ 3 351§ g£18 &2 3|8 §|&8 |8 |¢s
o o o o i 3 fin] < G} & o i £ >
+ + + + + + + + - + + + +
Table XI: Evaluation of Template and Rules.
9.3. Recap

The approaches in this group capture variability by means of (sequences of) change
operations applied to the customizable process model. These change operations can
add, delete or modify. Hence, the approaches in this group naturally support both
customization by restriction and by extension. Unlike Provop, Templates and Rules
supports both conceptual and executable models and supports abstraction as well as
structural and behavioral correctness (at the expense on structural restrictions on the
types of fragments that can be deleted or added). The combination of these character-
istics makes Templates and Rules stand out in terms of its comprehensive coverage of
the evaluation criteria.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 M. La Rosa et al.

10. DISCUSSION

This section compares the surveyed approaches (including the subsumed ones) in
terms of the criteria introduced in Section 3. This comparison is followed by a dis-
cussion on the research questions introduced in Section 1.

10.1. Comparative analysis

The comparative analysis of approaches is summarized in Table XII. The first column
lists the eleven main approaches and the twelve subsumed approaches. The next three
columns indicate the year of the primary publication, the total number of citations (in-
cluding all papers related to a given approach), and the modeling language(s) employed
by the approach. The remaining columns indicate the coverage of each criterion.

Scope Customi- | Supporting techniques | Extra-Functional
§ w0 Process Process | zation Decision |Correctness
E " % Perspective Type Type Support | Support - 5
é § 3 g ©) c s —= 2 E
£ 2| % E o 2 3 2 5|8 s|€ g|&® S©|E|8|s
& s 2| 5 2 ¥ s £ gl £|8 G|% |32 2|5|€E|=8
o ° s =] s 3 Slag 5| 2 g] B > o |8
g 5E| 2 ¢ e IR IR I
< > a| ~ o © O x O|0 d|lx d|l<x O | & @ o | £ >
C-iEPCs 2003 | 1,313 |C-iEPCs + + + + + + + + + + +
Configurative Proc. Modeling | 2004 | 278 |eEPCs EE + + + + + + +
PESOA 2005| 226 |BPMN, UML ADs + + + + + +
Superimposed Variants 2005 1,287 [UML ADs + + + +
< |Configurable Workflows 2006 | 772 |C-YAWL, C-SAP, C-BPEL + + + +
g ADOM 2007 | 125 |UMLADs, EPCs, BPMN + +
BPFM 2008| 22 |[UMLADs + +
Provop 2008 | 577 |Any + +
aEPCs 2009| 90 [aEPCs i +
Template and Rules 2009| 52 |Block-structured BPEL E +
Feature Model Composition 2010| 29 |Any +
KobrA 2000| 297 |UMLADs +
Ciuksys & Caplinskas 2006| 15 |[UMLADs +
Korherr & List 2007| 33 |[UMLADs +
Razavian & Khosravi 2008| 55 [UMLADs E4
g |Kulkarni & Barat 2010| 15 |[BPMN +
E [Ripon et al. 2010 10 |UMLADs +
é Santos et al. 2010| 22 [BPMN +
¥ |CoSeNet 2011| 34 |[CoSeNets +
Machado et al. 2011| 16 |[BPMN +
Nguyen et al. 2011| 27 |BPMN E
vBPMN 2011| 36 |Block-structured BPMN +
Groner et al. 2013| 22 |Block-structured BPMN +

Table XII: Evaluation results at a glance, ordered by year of primary publication.

Regarding the modeling scope, all approaches (except Feature Model Composition)
provide customization mechanisms along the control-flow perspective, but only a hand-
ful support the customization of resources and objects. Approaches based on BPMN
and UML ADs do not support the customization of resources, except for Santos et al.
This is probably because these two languages provide limited support for capturing
resources, beyond the ability to associate a lane or a pool with each activity in the
process. Accordingly, it is mainly in the context of EPCs or other languages that the
question of customization of resources is posed. Customization of objects, on the other
hand, is available in different languages, but only one (Templates and Rules) addresses
customization of data objects in the context of executable process models.

In a similar vein, most approaches are based on conceptual modeling languages
(UML ADs, EPCs, BPMN), and are hence focused on the customization of conceptual
rather than executable process models. BPMN version 2.0 supports the specification
of executable processes, but no customization approach so far covers the executable

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:37

features of BPMN (e.g. customization of data variables). Configurable Workflows and
Template and Rules are the only approaches that fully support customization of ex-
ecutable models (in YAWL, BPEL and SAP WebFlow), down to the level of produc-
ing models that can be deployed in a BPMS. One can hypothesize that the observed
emphasis on conceptual process modeling stems from the fact that variability in ex-
ecutable process models is usually tackled via run-time customization [Reichert and
Weber 2012] rather than design-time customization (cf. Section 2).

All but one approach (vBPMN) support customization by restriction, while only a
minority of approaches support customization by extension (eight out of 23). There
appears to be a tradeoff between supporting customization by extension and preserv-
ing correctness. Indeed, approaches that support customization by extension do not
support correctness, except for Template and Rules and vBPMN, which support cor-
rectness at the expense of imposing constraints on the structure of the customizable
model and allowed extensions, namely that they both must be block-structured.® This
observation highlights the fact that in order to reconcile customization by extension
and correctness support, it is necessary to constrain the allowed extensions and the
places in the customizable process model where these extensions can be inserted.

CoSeNet also achieves correctness support at the expense of structural constraints
on the customizable process models (block-structured). On the other hand, C-iEPCs
and Configurable Workflows achieve both structural and behavioral correctness with-
out imposing structural constraints. This is achieved via incremental checks that de-
tect combinations of customization options leading to incorrect models. However these
approaches only allow customization by restriction, in line with the observation above.

The majority of approaches support customization based on domain models (i.e. ab-
straction), which may take the form of predicates over domain properties (as in Con-
figurative Process Modeling and Provop), feature models, questionnaire models or de-
cision tables as discussed in Appendix C. On the other hand, only two approaches
(C-iEPCs and Configurable Workflows) provide step-by-step guidance to make cus-
tomization decisions while avoiding inconsistent or irrelevant decisions to be taken.
The approach by Groner et al. does not provide step-by-step guidance, but prevents
inconsistencies between decisions made during customization.

It is positive that the majority of approaches have tool implementations, at least
partially, and about half of the approaches are fully or partly formalized. Also, about
half of the approaches have been validated at least partially using real-life scenarios,
although in many cases the validation has not involved domain experts. Overall, these
observations highlight the relative maturity of the field.

C-iEPCs and Templates and Rules come close to supporting all the criteria. C-iEPCs
focus on customization by restriction in conceptual process models. Templates and
Rules covers both conceptual and executable models, but leaves aside the issue of pro-
viding customization guidance. These approaches demonstrate that the identified cri-
teria are rather orthogonal, meaning that it is possible to support all of them. The only
partial tradeoff is the one between supporting customization by extension and support-
ing correctness preservation. This tradeoff however is not necessarily unsurmountable.
One can conceive approaches that achieve correctness preservation while supporting
customization by extension, by setting boundaries on the way the customizable process
model can be extended, e.g. only certain pre-defined templates can be employed and
these templates are defined in a way that behavioral correctness is preserved.

10.2. Discussion on research questions

The above comparative analysis provides a basis to answer the research questions for-
mulated in Section 1. With respect to RQ1, the previous discussion puts into evidence

9Configurative Process Modeling partially supports structural correctness only when customizing the model
by restriction. Customization by extension in this approach does not guarantee correctness.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 M. La Rosa et al.

a number of core elements shared across all approaches. All approaches take as start-
ing point a host process modeling language — usually a conceptual one rather than an
executable one — on top of which a notion of variation point is added. Variation points
are associated with specific model elements, which usually are control-flow elements
(activities or gateways) but in some approaches can also be resources and objects.

On top of this common core, shared by all customizable process modeling approaches,
we observe three key differentiating features. Firstly, some approaches allow variation
points in a customizable model to be linked to elements in a domain model in order
to assist the user during the customization of the model. Secondly, some approaches
ensure that the customized models are structurally and behaviorally correct, disallow-
ing combinations of customization options that would lead to an incorrect model. In
three of the surveyed approaches, correctness is ensured at the expense of constraints
on the structure of the models (block-structuredness), but in other cases, it is ensured
for models with arbitrary topology. A third differentiating feature is given by the di-
chotomy between customization by restriction vs. by extension. While support for the
former is widespread, the latter is only supported by a handful of approaches.

These distinguishing features constitute possible criteria for selecting an approach
for a given purpose (cf. RQ2). If the set of variants of a given process is expected to
grow incrementally after initial creation of a customizable process model, customiza-
tion by extension is more convenient from a maintenance perspective. In this case, one
starts with a customizable process model capturing the known variants. When a new
variant is identified, its additional behavior with respect to the existing customizable
model can be added as an extension point if it is well-confined. In approaches that
only support customization by restriction, each new variant requires one to update
the customizable process model, because the customizable model captures the union
of all variants. In contrast, when configuration by extension is used, the customizable
process model may capture only a core subset of the behavior of the variants. Variant-
specific behavior can be captured in the extension points.

Meanwhile, if the decisions required for customization are complex and inter-
dependent, approaches that link the customizable process model to a domain model
and that provide customization guidance are preferable. If in addition the customiz-
able process model is large and complex, approaches that support correctness checking
during configuration may prove most useful. In this respect, it is not surprising that
approaches based on customization by restriction tend to put emphasis on correctness-
checking and guidance. Indeed, as the customizable model becomes larger, updates to
it become more error-prone, and approaches based on customization by restriction lead
to larger models since these models need to capture the union of all variants.

With reference to RQ3, we note that only a handful of approaches offer guidance
and iterative feedback to the user in the selection of customization options. The few
approaches that offer such guidance focus on ensuring that each selected customiza-
tion option satisfies the domain constraints, or that the customized process model is
correct. However, they do not address the question of which option (among those that
are feasible) can lead to a customized process model with better performance with re-
spect to relevant process performance measures. In other words, the relation between
customization and business process performance has been so far neglected.

Second, whilst it is positive to observe that about half of the approaches have been
implemented and at least partially validated in one way or another, there is a relative
scarcity of comparative empirical evaluations. Barring two comparative studies [Tor-
res et al. 2013; Dohring et al. 2014] focusing on a couple of approaches, there is a lack
of evidence to back any statement that one customizable process modeling approach is
more usable than others in a particular setting. This lack of comparative evaluations
is arguably a major gap in the state of the art.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:39

Third, we observe a lack of discussion on the question of how to construct a cus-
tomizable process model in the first place, and how to maintain this artefact over
time. It is generally assumed that a modeler will manually design the customizable
process model using techniques similar to those employed to design classical (non-
customizable) process models. Yet, given that a customizable process model represents
an entire family of processes, the amount of information required to design such a
model is usually an order of magnitude larger than that required to design a model of
one singular process. This observation calls for the development of methods to assist
process modelers during the design and update of customizable models.

Initial research on the design of customizable process models has led to algorithms
for constructing a customizable process model from a collection of separate models of
process variants [La Rosa et al. 2013; Assy et al. 2014], as well as algorithms for con-
structing a customizable process model from event logs extracted from enterprise sys-
tems [Buijs et al. 2013; Ekanayake et al. 2013]. Another approach is to extract a “com-
mon” (reference) process model out of a collection of models of process variants [Li et al.
2009]. This reference model may be particularly suited as a starting point for “cus-
tomization by extension” approaches, since the reference model captures the “greatest
common denominator” between existing variants, and the variant-specific behavior
can then be added via extension points.

11. RELATED WORK

Ayora et. al. [Ayora et al. 2014] conducted a systematic literature review to evalu-
ate existing variability support across all stages of the business process lifecycle. The
authors considered 63 primary studies based on eight research questions (such as un-
derlying business process modeling language used, tools available for enabling process
variability, validation of methods proposed). Based on their findings, they developed
the VIVACE framework to enable process engineers to evaluate existing process vari-
ability approaches. They then evaluate three approaches in depth using their frame-
work: C-EPCs, Provop and PESOA. Our survey differs as we focus on the customization
(configuration) of process models rather than approaches dealing with one or several
phases of the lifecycle. Also, our comparison covers a superset of the above approaches.

Valenca et al. [Valenca et al. 2013] presented a literature mapping study in the field
of business process variability covering 80 publications. Their objectives were to iden-
tify characteristics of business process variability (including design-time and run-time
variability); to identify available approaches for business process variability manage-
ment; and to identify challenges in this field. In line the nature of literature mapping
studies, their study lists and categorizes a wide range of approaches, but without an-
alyzing and comparing them in detail. In contrast, the present survey describes each
main approach in detail, applies it to an example, and includes a comparative analy-
sis. Further, our search returned a superset of the publications in [Valenca et al. 2013].
The latter remark also applies to a shorter and less systematic survey by Mechrez and
Reinhartz-Berger [Mechrez and Reinhartz-Berger 2014].

A number of systematic reviews within the related domain of Software Product Line
Engineering (SPLE) have been conducted. For instance, Chen et al. [Chen et al. 2009]
conducted a systematic review of variability management in SPLE that included 33 pa-
pers. Their purpose was to provide an overview of different aspects of variability man-
agement approaches such as scalability and product derivation. Another one is by dos
Santos Rocha and Fantinato [dos Santos Rocha and Fantinato 2013]. They conducted
a systematic literature review to assess Software Product Line (SPL) approaches for
BPM. Having reviewed 63 papers, they conclude that SPL approaches for BPM, while
it is gaining maturity, are still at an inadequate level. Benavides et al. [Benavides
et al. 2010] conducted a comprehensive literature review covering 53 papers to inves-
tigate existing proposals of automated analysis of feature models (within the context of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 M. La Rosa et al.

SPLE). Finally, Chen and Babar [Chen and Babar 2011] performed a systematic liter-
ature review that resulted in 97 papers being closely examined for assessing the status
of evaluation of variability management approaches within SPLE. These reviews had a
different objective and as such, cover other aspects of variability management as com-
pared to our survey, namely understandability and maturity of evaluation. While they
all contribute valuable insights, they share the commonality of being focused on the
domain of SPLE. Furthermore, Chen et al. [Chen et al. 2009; Chen and Babar 2011]
considered variability management within SPLE but dos Santos Rocha and Fantinato
[dos Santos Rocha and Fantinato 2013] and Benavides et al. [Benavides et al. 2010]
did not focus on variability management in particular. Our survey distinguishes itself
from the above ones in that it focuses on variability management and second, it focuses
on business processes as the artifact for which variability is captured and exploited.
The distinctness of our survey with respect to the above ones is confirmed by the fact
that the overlap of primary study papers is limited to a maximum of five papers — the
overlap between dos Santos Rocha and Fantinato and ours is 5, Chen et al. and ours is
2 and for Benavides et al. it is 1.

Finally, [Torres et al. 2013] and [D6hring et al. 2014] compared a subset of the ap-
proaches reviewed in the present survey using different evaluation lenses. Torres et
al. [Torres et al. 2013] compared C-EPCs and Provop in terms of understandability,
based on a cognitive psychology framework. Déhring et al. [Dohring et al. 2014] con-
ducted an empirical evaluation to assess the maintainability of process model variants
in C-YAWL vs. vBPMN in terms of modularization support and customization type (i.e.
restriction vs. restriction + extension). These papers examine non-functional aspects
not considered in our survey, and as such they are complementary.

Mili et al. [Mili et al. 2010] survey, categorize and summarize different modeling
languages used to describe business processes, covering in particular the languages
figuring in the “Process modeling language” column of Table XII (e.g. BPMN, UML
ADs). Their survey however does not touch upon the question of how to capture process
variability in general and design-time variability in particular. As such, the scope of
the present survey is disjoint and complementary to the one by Mili et al.

12. CONCLUSION

This survey has put into evidence a wide heterogeneity of features and levels of sophis-
tication across existing approaches to customizable process models. Still, the survey
has highlighted a common core shared by all of them and key differentiating features.

All approaches take as starting point a host process modeling language and add to it
a notion of variation point. A variation point may be a modeling element that appears,
does not appear or appears in one of multiple possible forms (customization by restric-
tion) or a point in the process where additional behavior is allowed (configuration by
extension). While virtually all approaches support customization by restriction, only
a handful support customization by extension. Support for the latter constitutes one
of the key differentiating features across the surveyed approaches and gives rise to a
fundamental tradeoff that potential users need to consider when selecting an approach
for a given scenario.

On the one hand, customization by extension is more suitable from a maintenance
perspective. It allows one to start with a model capturing a core set of variants of the
process. The behavior of additional variants can then be added via extension points,
especially if the additional behavior of these variants can be confined to specific points
in the customizable process model. The price to pay however is that the customizable
process model itself only captures a subset of the behavior of the variants — additional
behavior remains somehow hidden behind the extension points.

On the other hand, customization by restriction is more suitable when the set of
variants is stable, since every new variant or every change to an existing variant re-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:41

quires an update to the customizable process model. Additionally, this approach leads
to larger models, since the customizable model has to capture the union of all variants.
The latter hinders maintainability. Still, the models used in customization by restric-
tion give a full picture of all variants and their dependencies. Also, because the behav-
ior of all variants is captured in the customizable model, customization by restriction
lends itself better to correctness checking, something that can only be achieved in cus-
tomization by extension at the price of constraining the set of allowed extensions and
the places in the customizable process model where these extensions can be inserted.

Despite the breadth of literature in the field of customizable process modeling, we
have noted two areas that remain underdeveloped. First, there is a lack of effective
methods and tool support to assist users in the creation, use (in particular customiza-
tion) and maintenance of these models. Surprisingly, there has been little research
on these questions. A handful of automated approaches to automatically construct a
customizable process model from a collection of variants have been proposed [Li et al.
2009; La Rosa et al. 2013; Assy et al. 2014]. However, the user is then left with the
task of fine-tuning these models, linking them with domain models and subsequently
maintaining them. In a similar vein, little attention has been given to the question of
how to guide users during the customization of customizable process models. The lack
of methods and tools to support the full lifecycle of customizable process models (cre-
ation, use and maintenance) might explain the very limited adoption of customizable
process modeling languages in practice.'®

Secondly, while about half of reviewed approaches have been validated (typically via
case studies), there is a lack of comparative empirical evaluations with end users that
would provide evidence to back any statement that one customizable process modeling
approach is more usable than others in a particular setting. There is a case for shifting
the focus in this field from the design of modeling approaches to the evaluation of
existing ones [Torres et al. 2013; Dohring et al. 2014].

Looking forward, the widespread adoption of multi-tenant enterprise systems has
opened the possibility to use customizable process models to drive the configuration
of such systems. At present, the configuration of multi-tenant systems is manual and
resource-intensive due to the large number of configuration points offered by such sys-
tems. Initial visions for multi-tenant system configuration based on customizable pro-
cess models have been put forward [Fehling et al. 2011; van der Aalst 2011]. However,
the realization and validation of these visions remain avenues for future research.

ACKNOWLEDGMENTS

We thank Arthur ter Hofstede for his valuable comments on early versions of this manuscript. This research
is partly funded by the Australian Research Council (grant DP150103356) and the Estonian Research Coun-
cil (grant IUT20-55).

REFERENCES

ACHER, M., COLLET, P., LAHIRE, P., AND FRANCE, R. B. 2010a. Composing Feature Models. In Proceedings
of SLE 2009, M. van den Brand, D. Gasevi¢, and J. Gray, Eds. Vol. 5969. Springer, 62—-81.

ACHER, M., COLLET, P., LAHIRE, P., AND FRANCE, R. B. 2010b. Managing variability in workflow manag-
ing variability in workflow with feature model composition operators. In 9th International Conference
on Software Composition (SC), Malaga, Spain. Springer, 17-33.

AssY, N., GAALOUL, W., AND DEFUDE, B. 2014. Mining configurable process fragments for business process
design. In Proc. of DESRIST. Lecture Notes in Computer Science Series, vol. 8463. Springer, 209-224.

AYORA, C., TORRES, V., WEBER, B., REICHERT, M., AND PALECHANO, V. 2014. VIVACE: A framework for
the systematic evaluation of variability support in process-aware information systems. Information and
Software Technology.

10To the best of our knowledge, only the aEPCs approach is currently used in practice by NN Investment
Partners to manage their process model collection, which counts some 500 models.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 M. La Rosa et al.

BACHMANN, F. AND CLEMENTS, P. C. 2005. Variability in software product lines. Technical report
CMU/SEI-2005-TR-012.

BAIER, T., PASCALAU, E., AND MENDLING, dJ. 2010. On the suitability of aggregated and configurable busi-
ness process models. In Enterprise, Business-Process and Information Systems Modeling - 11th Inter-
national Workshop, BPMDS 2010, and 15th International Conference, EMMSAD 2010, held at CAiSE
2010, Hammamet, Tunisia, Proceedings, T. A. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt,
and R. Ukor, Eds. Lecture Notes in Business Information Processing Series, vol. 50. 108-119.

BECKER, J., ALGERMISSEN, L., DELFMANN, P., AND NIEHAVES, B. 2006. Configurable reference process
models for public administrations. In Encyclopedia of Digital Government. 220—223.

BECKER, J., DELFMANN, P., DREILING, A., KNACKSTEDT, R., AND KUROPKA, D. 2004. Configurative Pro-
cess Modeling — Outlining an Approach to increased Business Process Model Usability. In Proceedings
of the 14th Information Resources Management Association International Conference, M. Khosrow-Pour,
Ed. IRM Press.

BECKER, J., DELFMANN, P., AND KNACKSTEDT, R. 2007a. Adaptive Reference Modeling: Integrating Con-
figurative and Generic Adaptation Techniques for Information Models. In Proceedings of the Reference
Modeling Conference (RM’06), J. Becker and P. Delfmann, Eds. Springer, 27-58.

BECKER, J., JANIESCH, C., KNACKSTEDT, R., AND RIEKE, T. 2007b. Facilitating change management with
configurative reference modelling. International Journal for Information Systems and Change Manage-
ment 2, 1, 81-99.

BECKER, J., KNACKSTEDT, R., PFEIFFER, D., AND JANIESCH, C. 2007c. Configurative method engineering
- on the applicability of reference modeling mechanisms in method engineering. In Proc. of the 13th
Americas Conference on Information Systems (AMCIS 2007). 1-12.

BENAVIDES, D., SEGURA, S., AND RUIZ-CORTS, A. 2010. Automated analysis of feature models 20 years
later: A literature review. Information Systems 35, 6, 616—-636.

BOUCHER, Q., PERROUIN, G., DEPREZ, J.-C., AND HEYMANS, P. 2012. Towards configurable iso/iec 29110-
compliant software development processes for very small entities. In Proceedings of the 19th European
Conference “Systems, Software and Services Process Improvement” (EuroSPI 2012), D. Winkler, R. V.
O’Connor, and R. Messnarz, Eds. Communications in Computer and Information Science Series, vol.
301. Springer, 169-180.

BuiJs, J. C. A. M., VAN DONGEN, B. F., AND VAN DER AALST, W. M. P. 2013. Mining configurable process
models from collections of event logs. In BPM. Lecture Notes in Computer Science Series, vol. 8094.
Springer-Verlag, Berlin, 33—48.

CHEN, L. AND BABAR, M. 2011. A systematic review of evaluation of variability management approaches
in software product lines. Information and Software Technology 53, 4, 344-362.

CHEN, L., BABAR, M., AND ALIO, N. 2009. Variability management in software product lines: a systematic
review. 7328, 190-205.

CZARNECKI, K. AND ANTKIEWICZ, M. 2005. Mapping Features to Models: A Template Approach Based on
Superimposed Variants. In Proceedings of the 4th International Conference on Generative Programming
and Component Engineering, R. Gliick and M. R. Lowry, Eds. Springer, 422-437.

CZARNECKI, K., HELSEN, S., AND EISENECKER, U. 2005. Formalizing Cardinality-Based Feature Models
and Their Specialization. Software Process: Improvement and Practice 10, 1, 7-29.

CZARNECKI, K. AND PIETROSZEK, K. 2006. Verifying feature-based model templates against well-
formedness OCL constraints. In Proc. of Generative Programming and Component Engineering. ACM,
211-220.

DAVIS, R. AND BRABANDER, E. 2007. ARIS Design Platform: Getting Started with BPM. Springer.

DELFMANN, P., JANIESCH, C., KNACKSTEDT, R., RIEKE, T., AND SEIDEL, S. 2006. Towards Tool Support for
Configurative Reference Modeling — Experiences from a Meta Modeling Teaching Case. In Proceedings
of the 2nd International Workshop on Meta-Modelling (WoMM’06), S. Brockmans, J. Jung, and Y. Sure,
Eds. LNI Series, vol. 96. GI, 61-83.

DELFMANN, P, RIEKE, T., AND SEEL, C. 2007. Supporting enterprise systems introduction by controlling
enabled configurative reference modelling. In Proceedings of the Reference Modeling Conference (RM’06),
dJ. Becker and P. Delfmann, Eds. Springer, 79-102.

DOHRING, M., REIJERS, H., AND SMIRNOV, S. 2014. Configuration vs. adaptation for business process
variant maintenance: an empirical study. Inf Syst. 39, 108-133.

DOS SANTOS ROCHA, R. AND FANTINATO, M. 2013. The use of software product lines for business process
management: A systematic literature review. Information and Software Technology 55, 8, 1355-1373.

DREILING, A., ROSEMANN, M., VAN DER AALST, W., HEUSER, L., AND SCHULZ, K. 2006. Model-Based
Software Configuration: Patterns and Languages. European Journal of Information Systems 15, 6, 583—
600.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:43

DREILING, A., ROSEMANN, M., VAN DER AALST, W., SADIQ, W., AND KHAN, S. 2005. Model-Driven Process
Configuration of Enterprise Systems. In Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety,
0. K. Ferstl, E. Sinz, S. Eckert, and T. Isselhorst, Eds. Physica—Verlag, 687—706.

EKANAYAKE, C., DUMAS, M., GARCIA-BANUELOS, L., AND LA RosA, M. 2013. Slice, Mine and Dice:
Complexity-Aware Automated Discovery of Business Process Models. In Business Process Management.
Lecture Notes in Computer Science Series, vol. 8094. Springer, 49-64.

FEHLING, C., LEYMANN, F., ScHUMM, D., KONRAD, R., MIETZNER, R., AND PAULY, M. 2011. Flexible
process-based applications in hybrid clouds. In Proceedings of the IEEE International Conference on
Cloud Computing (CLOUD). IEEE, 81-88.

FETTKE, P. AND Lo0s, P. 2003. Classification of Reference Models - A Methodology and its Application.
Information Systems and e-Business Management 1, 1, 35-53.

GEORGAKOPOULOS, D., HORNICK, M., AND SHETH, A. 1995. An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases 3, 119—
153.

GOTTSCHALK, F., VAN DER AALST, W., AND JANSEN-VULLERS, M. 2007. SAP WebFlow Made Configurable:
Unifying Workflow Templates into a Configurable Model. In International Conference on Business Pro-
cess Management (BPM 2007), G. Alonso, P. Dadam, and M. Rosemann, Eds. Lecture Notes in Computer
Science Series, vol. 4714. Springer-Verlag, Berlin, 262-270.

GOTTSCHALK, F., VAN DER AALST, W., JANSEN-VULLERS, M., AND LA RosA, M. 2008. Configurable Work-
flow Models. International Journal of Cooperative Information Systems 17, 2, 177-221.

GOTTSCHALK, F., WAGEMAKERS, T., JANSEN-VULLERS, M., VAN DER AALST, W., AND LA RosA, M. 2009.
Configurable Process Models: Experiences From a Municipality Case Study. In Proc. of CAiSE, P. van
Eck, J. Gordijn, and R. Wieringa, Eds. Lecture Notes in Computer Science Series, vol. 5565. Springer-
Verlag, Berlin, 486-500.

HALLERBACH, A., BAUER, T., AND REICHERT, M. 2008. Managing Process Variants in the Process Life
Cycle. In 10th International Conf. on Enterprise Information Systems (ICEIS’08). Vol. 22. 154-161.
HALLERBACH, A., BAUER, T., AND REICHERT, M. 2009a. Guaranteeing Soundness of Configurable Process

Variants in Provop. In CEC. IEEE, 98-105.

HALLERBACH, A., BAUER, T., AND REICHERT, M. 2009b. Issues in Modeling Process Variants with Provop.
In Business Process Management 2008 Workshops, D. Ardagna, M. Mecella, and J. Yang, Eds. Lecture
Notes in Business Information Processing Series, vol. 17. Springer.

HALLERBACH, A., BAUER, T., AND REICHERT, M. 2010. Capturing variability in business process models:
The provop approach. Journal of Software Maintenance and Evolution: Research and Practice 22, 6-7,
519-546.

HEVNER, A., MARCH, S., PARK, J., AND RAM, S. 2004. Design Science in Information Systems Research.
MIS Quarterly 28, 1, 75-105.

KUMAR, A. AND YAO, W. 2009. Process materialization using templates and rules to design flexible process
models. In RuleML, G. Governatori, J. Hall, and A. Paschke, Eds. Lecture Notes in Computer Science
Series, vol. 5858. Springer, 122-136.

KUMAR, A. AND YAO, W. 2012. Design and management of flexible process variants using templates and
rules. Computers in Industry 63, 2, 112-130.

LA RosA, M., DUMAS, M., TER HOFSTEDE, A., AND MENDLING, J. 2011. Configurable Multi-Perspective
Business Process Models. Information Systems 36, 2, 313-340.

LA RoSsA, M., DuMAS, M., UBA, R., AND DIJKMAN, R. M. 2013. Business process model merging: An ap-
proach to business process consolidation. ACM Transactions on Software Engineering Methodology 22, 2,
11.

L1, C., REICHERT, M., AND WOMBACHER, A. 2009. Discovering Reference Models by Mining Process Vari-
ants Using a Heuristic Approach. In Business Process Management (BPM 2009), U. Dayal, J. Eder,
dJ. Koehler, and H. Reijers, Eds. Lecture Notes in Computer Science Series, vol. 5701. Springer-Verlag,
Berlin, 344-362.

LONN, C.-M., UPPSTROM, E., WOHED, P., AND JUELL-SKIELSE, G. 2012. Configurable process models for
the swedish public sector. In Proceedings of the 24h International Conference on Advanced Information
Systems Engineering (CAIiSE 2012), J. Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza, Eds. Lecture
Notes in Computer Science Series, vol. 7328. Springer, 190-205.

MECHREZ, I. AND REINHARTZ-BERGER, I. 2014. Modeling design-time variability in business processes:
Existing support and deficiencies. In Proc. of BPMDS 2014 and EMMSAD 2014. Springer, 378-392.
MiL1, H., TREMBLAY, G., JAOUDE, G. B., LEFEBVRE, E., ELABED, L., AND EL-BOUSSAIDI, G. 2010. Busi-
ness process modeling languages: Sorting through the alphabet soup. ACM Computing Surveys 43, 1,

Article 4.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 M. La Rosa et al.

MooN, M., HONG, M., AND YEOM, K. 2008. Two-level variability analysis for business process with
reusability and extensibility. In Proceedings of the 32nd Annual IEEE International Computer Software
and Applications Conference (COMPSAC), Turku, Finland. IEEE Computer Society, 263—-270.

PESIC, M., SCHONENBERG, H., AND VAN DER AALST, W. 2007. DECLARE: Full Support for Loosely-
Structured Processes. In Proceedings of the Eleventh IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), M. Spies and M. Blake, Eds. IEEE Computer Society, 287-298.

PUHLMANN, F., SCHNIEDERS, A., WEILAND, J., AND WESKE, M. 2005. Variability Mechanisms for Pro-
cess Models. PESOA-Report TR 17/2005, Process Family Engineering in Service-Oriented Applications
(PESOA). BMBF-Project. 30 June.

REICHERT, M. AND DADAM, P. 1998. ADEPT ;. : Supporting Dynamic Changes of Workflow without Loos-
ing Control. Journal of Intelligent Information Systems 10, 2, 93-129.

REICHERT, M. AND WEBER, B. 2012. Enabling Flexibility in Process-Aware Information Systems: Chal-
lenges, Methods, Technologies. Springer-Verlag, Berlin.

REIJERS, H., MANS, R., AND VAN DER TOORN, R. 2009. Improved Model Management with Aggregated
Business Process Models. Data Knowl. Eng. 68, 2, 221-243.

REINHARTZ-BERGER, 1., SOFFER, P., AND STURM, A. 2009. Organizational Reference Models: Supporting
an Adequate Design of Local Business Processes. International Journal of Business Process Integration
and Management 4, 2, 134-149.

REINHARTZ-BERGER, 1., SOFFER, P., AND STURM, A. 2010. Extending the Adaptability of Reference Mod-
els. IEEE Transactions on Systems, Man and Cybernetics part A 40, 5, 1045-1056.

REINHARTZ-BERGER, I. AND STURM, A. 2007. Enhancing UML Models: A Domain Analysis Approach.
Journal on Database Management (special issue on UML Topics) 19, 1, 74-94.

RINDERLE, S., REICHERT, M., AND DADAM, P. 2004. Correctness Criteria For Dynamic Changes in Work-
flow Systems: A Survey. Data and Knowledge Engineering 50, 1, 9-34.

ROSEMANN, M. 2003. Application Reference Models and Building Blocks for Management and Control (ERP
Systems). In Handbook on Enterprise Architecture, P. Bernus, L. Nemes, and G. Schmidt, Eds. Springer,
596-616.

ROSEMANN, M. AND VAN DER AALST, W. 2003. A Configurable Reference Modelling Language. BPM Center
Report BPM-03-08, BPMcenter.org. (Later published as ROSEMANN, M. AND AALST, W. 2007).

SADIQ, S., ORLOWSKA, M., AND SADIQ, W. 2005. Specification and validation of process constraints for
flexible workflows. Inf Syst. 30, 5, 349-378.

SADIQ, S., SADIQ, W., AND ORLOWSKA, M. 2001. Pockets of Flexibility in Workflow Specification. In Pro-
ceedings of the 20th International Conference on Conceptual Modeling (ER 2001). Lecture Notes in Com-
puter Science Series, vol. 2224. Springer-Verlag, Berlin, 513-526.

SCHNIEDERS, A. 2006. Variability Mechanism Centric Process Family Architectures. In Proceedings of the
13th IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS),
M. Riebisch, P. Tabeling, and W. Zorn, Eds. IEEE Computer Society, 289-298.

SCHNIEDERS, A. AND PUHLMANN, F. 2006. Variability Mechanisms in E-Business Process Families. In Pro-
ceedings of the 9th International Conference on Business Information Systems (BIS’06), W. Abramowicz
and H. Mayr, Eds. LNI Series, vol. 85. GI, 583-601.

SVAHNBERG, M., VAN GURP, J., AND BOSCH, J. 2005. A taxonomy of variability realization techniques.
Softw., Pract. Exper. 35, 8, 7T05—-754.

TORRES, V., ZUGAL, S., WEBER, B., REICHERT, M., AYORA, C., AND PELECHANO, V. 2013. A qualitative
comparison of approaches supporting business process variability. In Business Process Management
Workshops. Lecture Notes in Business Information Processing Series, vol. 132. Springer, 560-572.

VALENCA, G., ALVES, C., ALVES, V., AND NIU, N. 2013. A systematic mapping study on business process
variability. Int. Journal of Computer Science & Information Technology 5, 1, 1-21.

VAN DER AALST, W., DREILING, A., GOTTSCHALK, F., ROSEMANN, M., AND JANSEN-VULLERS, M. 2006.
Configurable Process Models as a Basis for Reference Modeling. In Proceedings of the Business Process
Management 2005 Workshops, E. Kindler and M. Niittgens, Eds. Springer, 76-82.

VAN DER AALST, W., HEE, K., TER HOFSTEDE, A., SIDOROVA, N., VERBEEK, H., VOORHOEVE, M., AND
WYNN, M. 2011. Soundness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects
of Computing 23, 3, 333-363.

VAN DER AALST, W., LOHMANN, N., AND LA ROsA, M. 2012. Correctness Ensuring Process Configuration:
An Approach Based on Partner Synthesis. Information Systems 37, 6, 574-592.

VAN DER AALST, W. M. P. 2011. Business process configuration in the cloud: How to support and analyze
multi-tenant processes? In Proceedings of the 9th IEEE European Conference on Web Services (ECOWS).
IEEE, 3-10.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey A:45

WEBER, B., REICHERT, M., AND RINDERLE-MA, S. 2008. Change Patterns and Change Support Features:
Enhancing Flexibility in Process-Aware Information Systems. Data and Knowledge Engineering 66, 3,
438-466.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Business Process Variability Modeling: A Survey

MARCELLO LA ROSA, Queensland University of Technology, Australia

WIL M.P. VAN DER AALST, Eindhoven University of Technology, The Netherlands

MARLON DUMAS, University of Tartu, Estonia and Queensland University of Technology, Australia
FREDRIK P. MILANI, University of Tartu, Estonia

A. SEARCH PROTOCOL

The literature search followed the principles of systematic literature review
in [Kitchenham 2004]. As proposed in [Webster and Watson 2002], the first step is
to define the aim of the search, which is to identify a relatively complete list of studies
that propose customizable process models to manage business process variability. To
ensure that every important study was found, we applied several search strategies, as
recommended in [Fink 2010; Okoli and Schabram 2010; Randolph 2009; Levy and Ellis
2006; Kitchenham 2004]. The primary search was done with a well-known electronic
literature database as proposed by several studies [Fink 2010; Okoli and Schabram
2010; Randolph 2009; Rowley and Slack 2004]. We used Google Scholar, which encom-
passes all relevant databases such as ACM Digital Library and IEEE Xplore. We also
extended the search by using complementary key terms, which we found in the papers
returned by the primary search. Finally existing mappings related to business process
variability were also examined to ensure that all relevant studies had been identified
in our search.

A.1. Search string development

In the primary search, we used key terms related to business process variability and
customizable process models. We first determined that the term “customization” is
associated with “variation” and “configuration”. Accordingly, we constructed queries

» «

by combining the keyword “business process” with “customization”, “customizability”,
“customizable”, “variation”, “variability”, “configuration”, “configurability”, and “con-
figurable”. Each search was done separately using the conjunction of “business pro-
cess” with each of the above terms, resulting in eight search strings. We also noted
that the keyword “flexibility” is often associated with customization, and thus also
constructed queries combining “business process” with “flexible” and with “flexibility”,
leading to two further search strings. Since the term “workflow” is sometimes used as
a quasi-synonym of “business process”, we also included queries combining “workflow”
with the above keywords in the same manner (resulting in ten further strings). As we
conducted the search, we noted additional terms appearing in the titles of relevant
papers, namely “business process variant”, “configurable reference model”, “reference
model adaptability”, “reference model adaptation”, “reference model flexibility” and
“configurable EPC”. We therefore conducted searches using these key terms, leading
to six further search strings.

We are aware that extensive research pertaining to variability modeling in software
systems - most notably using feature models [Schobbens et al. 2006] - has been con-
ducted in the field of Software Product Line Engineering (SPLE) [Czarnecki and Eise-
necker 2000]. Some of this research addresses the question of variability in business
process models captured by means of UML activity diagrams. Accordingly, we also

© YYYY ACM 0360-0300/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App-2 M. La Rosa et al.

included queries composed of “UML activity diagram” in conjunction with “software
product line” or “feature model” (two further search strings).

For each of the 28 queries (one per search string), we gathered the first 100 hits
in Google Scholar. Based on the title of the study, we filtered out papers that were
clearly out of scope. We observe that running these 28 queries in isolation, rather
than running a single query with the disjunction of all the identified search strings,
led to a much larger pool of papers to analyze. The queries were run in August 2015.
However, in order to have a consistent snapshot, we restricted the search to return
studies published until 2014. This resulted in over 2,400 hits.

A.2. Validation

In order to validate the choice of Google Scholar as the search database, we searched
the following popular academic databases using the same search strings: ACM Digital
Library, IEEE Xplore, ScienceDirect, Citeseer, Inspec, EI Compendex, SCOPUS and
SpringerLink, as identified in [Kitchenham 2004]. We noted that these searches did
not return any paper that was not already discovered by our primary search. Thus, we
concentrated on the results returned by Google Scholar.

Kitchenham [Kitchenham 2004] recommends to validate trial search strings against
lists of already known primary studies. Accordingly, we examined two existing litera-
ture mapping studies in the field of business process variability, namely [Ayora et al.
2014] and [Valenca et al. 2013]. [Ayora et al. 2014] develops an evaluation framework
for variability management approaches, along the whole BPM lifecycle. We extracted
from this mapping study publications related to design-time variability management
via customizable process models. Out of the 63 primary studies identified in [Ayora
et al. 2014], we found that all 23 studies which fall under the scope of our survey, were
also retrieved by our search. Similarly, the mapping study of [Valenca et al. 2013]
provides an inventory of 80 publications covering both design-time and run-time vari-
ability. We verified that all relevant publications were also found by our search. We
also noted that our search returned several publications not covered in [Ayora et al.
2014] and [Valenca et al. 2013].

A.3. Study selection

After filtering out papers that were clearly out of scope (based on title), we proceeded to
removing duplicates. As suggested by [Fink 2010; Okoli and Schabram 2010; Randolph
2009; Torraco 2005], we defined inclusion and exclusion criteria in order to ensure an
unbiased selection of relevant studies. The development of criteria for inclusion and
exclusion, as recommended in [Kitchenham 2004], was based on the objective and the
scope of this survey. The assessment of each study against the inclusion and exclusion
criteria was performed independently by two authors of this paper. The results were
compared in order to resolve inconsistencies with the mediation of a third author.
The inclusion criteria for the first screening of results were:

(1) Does the study propose a method to either model or maintain a family of process
model variants via a customizable process model?

(2) Does the study propose an approach to customize a customizable process model?

(3) Does the study have at least 10 citations?

(4) Is the paper at least 5 pages, single column or 3 pages, double column?

Each study for which the answer to all the above questions (inclusion criteria) was
positive, was included. As such papers with less than the citation and length thresh-
olds were excluded. The page limit was set because a short paper would not contain
enough information for an evaluation. This initial filtering reduced the number of can-
didate papers to 370.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App-3

For example, the approaches presented in [Heuer et al. 2013; Asadi et al. 2014] were
not included in this survey as they did not reach a sufficient number of citations. Other
approaches, such as [Rastrepkina 2010; Meerkamm 2010], were excluded because they
do not use customizable process models to manage a family of process model variants
(e.g. [Meerkamm 2010] proposes to organize process model variants in a tree).

We then continued the screening process with an inspection of the abstract of each
paper in order to exclude papers that fell within related but clearly distinct areas of
study. In this part we used exclusion criteria. If the answer to any of the questions
defining the exclusion criteria was positive, the paper was excluded from the survey.
The exclusion criteria were:

(1) Does the study concern managing process model variants only at run-time (or pro-
cess flexibility)?

(2) Does the study concern managing process model variants for exception handling?

(3) Does the study concern managing process model variants as automated workflow
composition?

For example, the approach in [Lu et al. 2009] was excluded as it proposes to use
domain constraints to adapt a process model instance (defined through a template)
in order to derive a variant of such instance at run-time, which is then executed in a
supporting system.

At the end of the search process, we obtained 66 relevant publications. In general,
a given approach is covered by multiple publications. We also found that some ap-
proaches are subsumed by other approaches, i.e., the features and concepts in one ap-
proach are contained by another. In total, we found that the 66 publications cover 23
different approaches, out of which eleven main approaches subsume the other twelve
approaches. Accordingly, this survey distinguishes eleven main approaches and twelve
subsumed approaches.

The publications covered by the survey are listed in a supplemental spreadsheet
available at https://goo.gl/0AGzdj. For each approach, the table identifies a primary
(earliest) publication describing the approach and where available, additional publica-
tions describing further aspects of the same approach.

B. SUBSUMED APPROACHES

Twelve proposals for customizable process modeling are subsumed by the eleven main
approaches described in this survey paper. We say that an approach A is subsumed by
B if A supports a subset of the variability concepts of B. The focus is on the supported
variability concepts and not on the process modeling language, supporting techniques
or extra-functional aspects. Thus, for example, an approach A can be subsumed by
B even if A and B are applied to different process modeling languages (e.g. EPC vs.
UML ADs). Subsumed approaches are minor approaches compared to the approaches
presented in this paper. They are briefly reviewed below.

B.0.1. Subsumed by C-iEPCs. The initial incarnation of the KobrA (Component-based
Application Development) method [Atkinson et al. 2000] provides a mechanism to cap-
ture a family of process variants via a customizable process model. The purpose is
that of customizing component-based software systems. As such, process models are
employed for the description of components’ behavior. Customization is done using
UML ADs and is driven by a decision table (see Appendix C.3). Similar to C-iEPCs,
XOR gateways in UML ADs can be marked as configurable (using a black background
and a letter “M”) to indicate that subsequent activities are optional. However, a trans-
formation algorithm is not discussed. Further, there is no method to guarantee the
correctness of the customized model, nor is there a mechanism to exclude unfeasible
customized models as a result of wrong combinations of customization options. The

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App—4 M. La Rosa et al.

Kobra method has been implemented in a tool and validated in numerous industrial
settings [Atkinson et al. 2008], though there is no information on the involvement of
domain experts.

Korherr & List [Korherr and List 2007] present an approach which extends UML
ADs with stereotypes to capture variability. In their approach, variability can be de-
fined at the level of an atomic activity, a group of activities or an XOR gateway.
An activity or group thereof can be defined as being <<mandatory>> (the activity or
group must be retained during customization) or <<optional>> (the activity or group
can be excluded during customization). An XOR gateway can be defined as being an
<<alternative choice>> with a 0. .1 range (at most one outgoing sequence flow must
be selected during customization) or with a 1. . * range (at least one outgoing flow must
be selected). It is also possible to state that the selection of an element (activity, group
or flow) during customization requires the selection of another element elsewhere (de-
noted by a dependency arrow marked with the <<requires>> stereotype), or that the
selection of an element excludes the selection of another one elsewhere in the model
(denoted by an arrow with the <<excludes>> stereotype). Further constraints between
configurable nodes can be defined using the Object Constraint Language (OCL). Ab-
straction from the customization of the process model can be achieved via the use of
a UML Profile for variability, provided by this approach. This is similar to a feature
model in terms of functionality (cf. Section C.1).

B.0.2. Subsumed by Configurable Workflows. A CoSeNet (Configurable Service Net)
[Schunselaar et al. 2011; 2012] is an alternative representation of a configurable work-
flow model via a directed acyclic graph. CoSeNets have been designed to fulfill two re-
quirements: i) always yield correct customized models and ii) being reversible, i.e. the
initial process variants used to create the CoSeNet should be obtained through cus-
tomization. Each leaf of a CoSeNet represents a process activity and each parent node
represents a control-flow operator. The available operators are sequence, the gateways
OR, AND, data-driven and event-driven XOR, and the structured REPEAT-UNTIL
loop. Connections between nodes are achieved via special nodes, called VOID nodes,
which are linked to parent and child nodes via arcs and do not bear any semantics.
For example, an OR between “Prepare film for editing” and “Prepare tape for editing”
means that either or both of these activities can be executed. A CoSeNet thus cap-
tures a block-structured process model where each single-entry single-exist fragment
is identified by an operator and its children nodes. This structure guarantees the be-
havioral correctness of the process model by construction, since split and join within a
fragment are of the same type. Customization is achieved by applying the hiding and
blocking operations of Configurable Workflows to the VOID nodes. CoSeNets have been
defined formally using the YAWL semantics, though a definition of the transformation
algorithm is not available. A mapping from CoSeNets to plain YAWL models can be
used for executing the configured models. However, the approach abstracts from data
and resource aspects, thus effectively offering limited support for execution. Moreover,
a mapping in the opposite direction is not described. This approach has been imple-
mented via various plugins for the ProM environment!! and used to capture process
models from various municipalities.

B.0.3. Subsumed by aEPCs. Groner et al. [Groner et al. 2013] propose an approach
similar to aEPCs. They rely on two artifacts: a plain block-structured BPMN model,
which captures all variants of a business process family, and a feature model (cf. Sec-
tion C.1) which captures the variability of the process domain. The two artifacts are
linked by mapping features into BPMN activities, similar to the mapping of product
hierarchies into EPC elements in the aEPCs approach. Customization is driven by fea-

11See http://processmining. org.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App-5

ture selection, such that those process model activities whose features are not selected,
are removed from the process model. Hence, process models are customized by restric-
tion of process behavior, and abstraction from the process model level is achieved via
the use of feature models. No other BPMN element is customizable besides activities.
The focus of this approach, however, is not on customization per se, but rather on en-
suring consistency between the domain constraints defined on features (e.g. an XOR
between two features), and the structural constraints of the process model imposed by
its control-flow relations (e.g. an XOR-split between two activities). This is achieved by
mapping both feature constraints and control-flow constraints into Description Logic
and reasoning at the level of a single set of Description Logic constraints—an idea
also explored in [LLa Rosa 2009] in the context of C-iEPC models. Guidance is only par-
tially fulfilled, as the approach by Grner et al. prevents users from taking inconsistent
customization decisions, but does not guide them in making the right decisions (e.g.
via recommendations). All aspects of the approach by Grner et.al. are formalized, but
given the focus on consistency checking, a transformation algorithm is not defined. For
the same reason, correctness preservation is not discussed, leaving room for interpre-
tation. In fact, even if the starting BPMN model is block-structured and syntactically
correct, removal of activities may cause syntactical errors such as disconnections in
the resulting BPMN model. The approach has been implemented in a tool (not pub-
licly available) and validated using an e-store and a post-production scenario, though
without involving domain experts.

B.0.4. Subsumed by PESOA. Razavian & Khosravi [Razavian and Khosravi 2008] pro-
pose an approach to define customizable process models in the form of UML ADs ex-
tended with a fixed set of stereotypes. The set of stereotypes is a subset of that in
PESOA. There are two types of variation points: optional and alternative. An optional
variation point allows the selection of at most one variant among the available ones;
an alternative one allows the selection of exactly one variant. Variation points can
be defined on both control-flow elements and on data objects. Specifically, an XOR-
split can be marked with <<opt_vp>> to indicate an optional variation point, in which
case the gateway is customized by choosing at most one of its outgoing flows, and
with <<alt_vp>> to indicate an alternative variation point, in which case the gateway
is customized by choosing exactly one of its outgoing flows. However, other types of
gateways such as AND gateways cannot be customized. Activities can be marked as
<<optional>> or as <<vp_al>>. In the former case, the activity can be excluded dur-
ing customization, while in the latter case it can be customized to one of its variants.
Interdependencies between model elements cannot be defined beyond stating that a
variation point is either optional or alternative. As a result, only simple configuration
scenarios can be captured. The customization of input and output data objects and data
stores (used to persist data beyond a process instance) is achieved in the same way as
for activities. It is also possible to mark a sub-process activity with the stereotype
<<variable>> to indicate that the underlying model includes some variation points.
The authors recognize that if no variant is chosen for an optional variation point in
the control flow, the model may become disconnected. However the correctness of the
customized model is not guaranteed.

A similar approach is provided by Ciuskys & Caplinskas [Ciuksys and Caplinskas
2007]. In this approach, only the activities of a UML AD can be defined as variation
points (called generic activities). During customization, a generic activity can be re-
placed by one of several possible concrete (non-generic) activities. Alternatively, an
activity may be removed during customization if it is marked as optional. The space
of customization options is specified using a feature model (cf. Section C.1), where
each feature corresponds to a (generic or non-generic) activity and where feature inter-
dependencies can be defined. The features that are inner nodes in the feature model

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App—6 M. La Rosa et al.

represent generic activities, while the leaf features correspond to non-generic activi-
ties. One may customize a process model by selecting features in the feature model.
These features then determine how the generic activities in the process model are cus-
tomized. A Description Logic reasoner is used for checking the consistency of a given
customization, expressed as a subset of features selected from the feature model.

Kulkarni & Barat [Kulkarni and Barat 2011] put forward a similar approach in
the context of BPMN models. Here a generic activity (called abstract activity) can be
replaced by a single (atomic) concrete activity or by an entire sub-process (called com-
posite activity). Also abstract events can be replaced by concrete events. Gateways
cannot be customized. Kulkarni & Barat suggest that feature models (cf. Section C.1)
could be used to guide the customization process, but they do not specify any concrete
mechanism for linking a process model with a feature model. Thus, effectively they do
not provide any decision support for process model customization. A formalization of
the basic notions is provided, though a transformation algorithm is not defined. The
approach has not been implemented nor validated.

B.0.5. Subsumed by BPFM. Ripon et al. [Ripon et al. 2010] present an approach similar
to BPFM using UML ADs. An activity marked with a stereotype <<variant>> repre-
sents a variation point and is linked to an entry in a variant model listing all possible
options (i.e. variants) for customizing the activity. Such variants are also summarized
in a decision table (see Appendix C.3) that is presented to the user. Multiple variants
can be selected for the same variation point, depending on the constraints specified
among the variants of the same variation point, though it is not clear how multiple
variants, when selected, will be represented in the customized model. By selecting/de-
selecting variants from the decision table, one can determine which variant(s) of an
activity will be picked during customization. While multiple variants can be selected
for a variation point, different than BPFM, a cardinality cannot be specified. Further,
the approach only works by restriction of variants.

Nguyen et al. [Nguyen et al. 2011] operate in the context of BPMN models. In this
approach, variation points can be defined in BPMN activities, objects, as well as mes-
sage flows connecting activities in different pools. Each variation point is assigned one
or more variants and a minimum and maximum cardinality is attached to define the
number of variants that can be selected. Dependencies between variants, within and
across variation points can also be defined. The approach works on BPMN models at
the conceptual level. Abstraction is achieved via the use of feature models (see Sec-
tion C.1). An implementation of the approach as an Eclipse plugin is available.

B.0.6. Subsumed by Provop. vBPMN (variant BPMN) [Dohring et al. 2011; Déhring
et al. 2014] is a Provop-based approach for design- and run-time customizations of ex-
ecutable process models using BPMN. In our survey we focus on the aspects of this ap-
proach related to design-time customization. Accordingly, the approach applies struc-
tural adaptations to a base model defined in BPMN and annotated with adjustment
points. These adjustment points are indicated with black diamonds on top of activities
(called adaptive activities) to identify customizable activities, as well as intermediate
events marked with a square bracket to delimit a fragment of the model (called adap-
tive segment) that can be customized. Patterns from an extensive catalogue, defined
in the form of syntactically correct block structures, can be assigned to adaptive ac-
tivities or inserted into an adaptive segment, to customize the model. Thus, the only
possible operation is INSERT, as opposed to Provop which also allows DELETE, MOVE
and MODIFY. As such, vBPMN is the only approach surveyed that does not provide
customization by restriction. An advantage of using INSERT only is that if the base
model and the fragments to insert are correct, it is not possible to generate an incor-
rect customized model by design. Adaptation rules for applying patterns to adaptive
parts of the model are only specified for run-time settings (i.e. they are triggered af-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App-7

ter the execution of a particular event). As such, the approach does not provide any
decision support for customizing the process model at design-time. vBPMN has been
implemented in a tool based on the jBoss Drools execution engine (not publicly avail-
able), which allows the customized models to be executed. However, inconsistencies
in the data dependencies caused by customization of the control flow are not detected
and avoided. Thus this approach only offers partial support for execution. vBPMN has
been validated on complex business processes from the municipality domain, though
without involving experts from this domain [Dohring et al. 2014]. Moreover, an empir-
ical evaluation of this approach in comparison with C-YAWL has been carried out by
the authors [Dohring et al. 2014] (cf. Section 11).

Santos et al. [Santos et al. 2010] propose to customize BPMN models using non-
functional requirements. Their approach is also similar to Provop, though they do not
directly annotate the base model. Rather, they equip the base model with a list of vari-
ation points each indicating a fragment (delimited by a reference to two adjustment
points in the model) or an individual model element (activity or resource) from the base
model that is customizable. Each variation point is then assigned a list of variants, i.e.
model fragments that can be inserted into the variation points. Other operations are
the deletion of the fragment or element identified by the variation point, and the sub-
stitution of a fragment with another. For example, one can replace a sequence flow with
an entire fragment, remove an activity or add a lane (the BPMN element for represent-
ing resources). Simple exclusion dependencies can be specified between variants. The
authors propose to achieve abstraction by driving the customization of the base model
through a list of non-functional requirements, i.e. domain aspects, that can be linked
to the variants.

Machado et al. [Machado et al. 2011] propose to extend BPMN with two aspect-
oriented constructs: i) the pointcut (similar to Provop’s adjustment point), to be ap-
plied to a base model, and ii) the advice, a pre-defined process model fragment rep-
resenting a variant that can be inserted, removed or replaced before, after or around
a pointcut in the base model. These constructs are then linked to a feature model (cf.
Section C.1) capturing product line variability. The customization of the base model is
then carried out by configuring the feature model, abstracting from the process model
itself. The customized BPMN models can then be instantiated using Haskell as the
host language. However, potential inconsistencies in data dependencies caused by cus-
tomization are not fixed. The approach is partly implemented in a tool, not publicly
available.

C. TECHNIQUES FOR DECISION SUPPORT

In this section we report on three techniques that can be used to provide decision
support during process model customization. Two such techniques, namely Feature
Models and Decision Tables, offer abstraction from the customizable process model and
its variation points when performing a customization. This is achieved by capturing
variability at the level of the domain in which the process model has been constructed,
in order to allow users to reason in terms of domain properties rather process modeling
elements. This is especially useful when the customizable process model features many
interdependent variation points, as one would expect in a realistic scenario. A third
technique, namely Questionnaire Models, also offers guidance for the customization
of process models. Guidance entails the provision of mechanisms to guide users in
making the right customization decisions, for example in the form of recommendations,
avoiding inconsistent or irrelevant decisions.

C.1. Feature Models

Feature models are a family of techniques originally conceived to describe variability in
software product lines in terms of their features, and later applied to different domains.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App-8 M. La Rosa et al.

Various feature modeling languages have been proposed [Schobbens et al. 2006] since
feature models were first introduced as part of the FODA (Feature Oriented Domain
Analysis) method [Kang et al. 1990].

A feature model is represented graphically by one or more feature diagrams. A fea-
ture diagram is a rooted tree with high-level features decomposed into sub-features. A
feature captures a property of the domain under analysis, that is relevant to a stake-
holder. Figure 15 shows a possible feature diagram for the picture post-production
domain, using the notation proposed in [Batory 2005]. There are features related to
the options available for shooting, type of editing, transfer and finish.

Picture
post-production

|

| | New medium

Transfer

Q Q
Offline Cut | Telecine | | DFM | l:l 1 l

Feature Mandatory ~ Optional

OSEAN

| Online | |Negmalching| AND OR XOR

Fig. 15: A feature diagram for post-production.

A feature can be mandatory, or optional (in which case it can be deselected), and
can be bound to other features via constraints. Feature constraints can be expressed as
arbitrary propositional logic expressions over the values of features [Batory 2005]. For
example, the sub-feature “Negmatching” of “Cut” must be deselected if the sub-feature
“Film” of “Shooting” is not selected.

Feature constraints between the sub-features of a same feature can also be repre-
sented graphically. This way restrictions with respect to the number of sub-features
a feature can have can be modeled. These relations can be: AND (all the sub-features
must be selected), XOR (only one sub-feature can be selected) and OR (one or more can
be selected). OR relationships can be further specified with an n : m cardinality [Czar-
necki et al. 2005], where n indicates the minimum and m indicates the maximum
number of allowed sub-features. For example, in Figure 15 the sub-features of “Cut”
are bound by an OR relation as it is possible to have more than one type of cut in
post-production.

We observe that while an optional feature always represents an element of variabil-
ity, a mandatory feature does not necessarily represent a commonality in the domain
under analysis. In fact, a mandatory feature can still be excluded if it has an XOR/OR
relation with its sibling features. This is the case of the sub-features of “Finish”, which
are all mandatory (a choice on the finish is required), though it is possible to choose
any subset of them due to the OR relation.

A feature configuration specifies a valid scenario in terms of features se-
lected/deselected, i.e. a scenario that complies with the feature constraints. Figure 16
depicts the feature diagram for post-production configured for a project shot on tape,
edited online and delivered on film.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App-9

Picture
post-production

‘ Offline ‘ ‘ Cut ‘

Fig. 16: A possible configuration for the post-production feature diagram.

‘ Tape

Various tools supporting the definition and configuration of feature models are avail-
able. Some examples are the AHEAD Tool Suite,'? the Eclipse plugin FeatureIDE,'3
and the online toolset SPLOT.!4

Although the initial aim of feature models was to facilitate the configuration of soft-
ware product families, this technique has also been used to provide abstraction for
the customization of process models in various approaches. Feature models are used
by PESOA (see Section 8.1), Superimposed Variants (cf. Section 7.2), Feature Model
Composition (cf. Section 8.3), and the approaches by Ciuskys & Caplinskas (cf. Sec-
tion B.0.4), by Nguyen et al. (cf. Section B.0.5), by Machado et al. (cf. Section B.0.6),
and by Groner et al. (cf. Section B.0.3). Korherr & List (cf. Section B.0.1) use UML
Profiles for variability which are similar to feature diagrams.

In these approaches, one can customize a process model by selecting/deselecting fea-
tures from a feature model. In order to do so, one has to first establish a mapping be-
tween features on the one hand, and variants of variation points in the process model
on the other hand. Once a feature configuration has been completed, this mapping is
used to automatically select the right variant(s) for each variation point of the cus-
tomizable process model. Then a transformation algorithm, if available, is triggered to
obtain the customized process model.

C.2. Questionnaire Models

Questionnaire models [La Rosa et al. 2009] are another technique for representing the
variability of a domain. The idea is to organize a set of features, called domain facts,
into questions that can be posed to users in order to configure the domain in question.

Figure 17 shows a possible questionnaire model for post-production, where all ques-
tions and facts have been assigned a unique identifier. Questions group domain facts
according to their content, so that all the domain facts of a same question can be set at
once by answering the question. For example, the question “What type of shooting has
been used?” groups the domain facts “Tape shooting” and “Film shooting”. Each do-
main fact is a boolean variable and has a default value, which can be used to identify
the most common choice for that fact. For example, since the majority of production
projects are shot on tape because it is less expensive than film, we can assign a default
value of true to “Tape shooting”, and of false to “Film shooting”. Moreover, a domain
fact can be marked as mandatory if it needs to be explicitly set when answering the
questionnaire. If a non-mandatory fact is left unset, i.e. if the corresponding ques-
tion is left unanswered, its default value can be used to answer that question. In this
way, each domain fact will always be set, either explicitly by an answer or by using

128ee http://www.cs.utexas.edu/users/schwartz/ATS . html.
13See http://fosd.de/fide.
14See http://www.splot-research.org.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App—10 M. La Rosa et al.

its default value. Accordingly, the mandatory attribute of a domain fact has different
semantics than the mandatory attribute of a feature in a feature model.

f1: LOW (< 250k US) @‘

d1: What is the allocated
budget for the project?

d2: What are the primary
distribution channels?

f;: Mobile

fo: Medium (> 250k US, < 1.5M US) @@‘

. fa: High ¢ 15mus) @L_,/—"/’// |

fg: Internet

fo: Tape shooting (@™ \\\“*‘V fi1: Online ©)

d4: How is the picture cut to

ds: What shooting type

has been used? be performed? N
f10: Film shooting ™ B f12: Negmatching
\j fi5: Tape Gl0)

[question X <--—y x partially depends on y e \é\g}f:r:{)?etsh: expected fia: Film O®

[fact x «—— y xfully depends ony

—— mapping question-fact @) fact true by default
(@) mandatory fact

Fig. 17: A questionnaire model for post-production.

In Figure 17, there are questions that gather information on the type of shooting
media (g3), picture cut (¢4) and deliverables (¢5). These questions capture domain facts
similar to the features in the feature diagram of Figure 15. Next to these questions,
however, we have defined two high-level questions: question ¢;, which enquires about
the estimated budget for a post-production project (low, medium or high), and question
g2, which inquires about the distribution channel (e.g. cinema, TV, home). Different
than feature diagrams, where each feature is mapped to a single alternative of a vari-
ation point in the customizable process model, “high-level” questions are defined with
the intention of configuring multiple variation points at once, as shown later.

In general, one cannot freely answer questions because of interdependencies. For
example, the answers to the questions of Figure 17 are interrelated as there is in-
terplay among their facts due to the constraints imposed by post-production. In fact,
negmatching (f12 in ¢4) is a costly operation that can only be chosen if the project is
shot on film (i.e. if fi(is true in ¢3). However, the choice of which shooting medium to
use is influenced by the project budget and by the distribution channel. For low budget
productions (f; set to true in ¢;), shooting and finishing on film are not allowed (hence
the corresponding domain facts fy and f14 must be set to false). In turn, if shooting on
film is not allowed (f1o = false), negmatching must also be denied (f;5 = false), and so
on. This interplay among domain facts can be encoded by a set of domain constraints
expressed as boolean formulae over the values of the domain facts, similar to the con-
straints defined among the features of a feature model. A domain configuration is thus
a valuation of domain facts, resulting from answering a questionnaire, which does not
violate the domain constraints.

A further difference between feature models and questionnaire models is the abil-
ity in a questionnaire model to establish an order for posing questions to users. This
is achieved via order dependencies. A partial dependency captures an optional prece-
dence between two questions: e.g. ¢3 in Figure 17 can be posed after ¢; OR ¢» have
been answered. A full dependency captures a mandatory precedence: e.g. g5 is posed

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App—11

after g3 AND g¢4. Dependenc1es can be set in a way to give prlorlty to the most dis-
criminating questions, i.e. the high-level questions ¢; and ¢ in our example, so that
subsequent questions can be (partly) answered, automatically, by enforcing the do-
main constraints. If, for example, we pick “Low” budget in ¢;, the questions about the
shooting and cut type (¢3 and ¢4) become irrelevant, because one can only choose facts
“Tape shooting”, respectively, “Online” editing, and will thus be skipped. These order
dependencies can be arbitrary so long as cycles are avoided.

Questionnaire models offer both abstraction and guidance for the configuration of
process models. Users can answer a questionnaire using an interactive questionnaire
tool called Quaestio,'® that poses questions in an order consistent with the order depen-
dencies, and prevents users from entering conflicting answers to subsequent questions
by dynamically enforcing the domain constraints. The tool also takes care of skipping
questions that have become irrelevant while answering the questionnaire. Further
guidance is provided in the form of recommendations attached to single questions and
domain facts, providing contextual information on how to answer the questionnaire.

Questionnaire models have been applied to the configuration of C-iEPCs (cf. Sec-
tion 6.1) and Configurable Workflows (cf. Section 6.2). The questionnaire model is
linked to the customizable process model by assigning a process fact to each customiza-
tion option of a configurable node in the customizable process model [La Rosa et al.
2008; La Rosa 2009]. A process fact is a boolean variable that captures the selection
of a specific customization option of a configurable node in the customizable process
model: a process fact set to true means that the corresponding option in the process
model has been selected; vice versa, setting the fact to false means that the option
is not selected. Different than feature models, there is not necessarily a one-on-one
mapping between process facts and domain facts. Rather, a boolean expression over
the domain facts of the questionnaire model is assigned to each process fact so that
the latter is set to true when the corresponding expression evaluates to true. Thus,
depending on how this mapping is defined, the customization of a single configurable
node can be affected by multiple domain facts, as well as a single domain fact can
affect the configuration of multiple configurable nodes. For example, we can map the
questionnaire model of Figure 17 to the C-iEPC example of Figure 4 in such a way that
when ¢ is answered with a “Low” budget level, all the configurable OR gateways in the
process model get customized, at once, to their left-hand side flows. This is because a
low budget production imposes that shooting, editing and release are all done on tape.

C.3. Decision Tables

Decision tables are an alternative, tabular representation of questionnaire models. A
decision table is composed of decisions (also called conditions). A decision, which can
be expressed in the form of a question, is associated with an enumerated set of possible
resolutions. Each resolution can be linked to one or many variation points in a process
model via an effect (also called action). The effect explains how the variation point
needs to be customized when a particular resolution is taken.

Decision tables have been suggested as an abstraction mechanism in the KoBrA
method (cf. Section B.0.1) and in the approach by Ripon et al. (cf. Section B.0.5). How-
ever, while decisions can be ordered in a decision table, the approaches that resort to
this technique do not provide any mechanism to skip irrelevant decisions nor recom-
mendations for taking the decisions.

15Quaestio is part of Synergia and of Apromore, see http://processconfiguration.com and http://
apromore.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App-12 M. La Rosa et al.

D. TECHNIQUES FOR CORRECTNESS SUPPORT

Process model customization may lead to correctness issues in the customized model.
If on the one hand, structural errors such as disconnected model elements are easy to
detect and fix, on the other hand, behavioral anomalies such as deadlocks and livelocks
pose challenges, as many such errors can only be identified via a state-space analysis
of the model, which is exponential in complexity. A customizable process model cap-
turing a realistic scenario can easily induce a large number of possible customizations.
For example, if we assume 50 variation points each with three alternatives, we get
350 ~ 7.18¢ + 23 possible customizations. Checking the behavioral correctness of each
individual customization a-posteriori is thus unfeasible.

In this section we discuss two techniques that can be used to guarantee both struc-
tural and behavioral correctness of customized process models a-priori, i.e. while cus-
tomizing the process model. The techniques rely on the notion of hiding and blocking
and have been applied to C-iEPCs (cf. Section 6.1) and Configurable Workflows (cf.
Section 6.2). Since it has been shown that any behavioral restriction of process model
behavior can be explained by applying the hiding and blocking operations to the activ-
ities of a process model [van der Aalst and Basten 2002], the correctness techniques
presented in this section can in principle be adapted to offer correctness support to all
approaches that customize process models by restriction.

D.1. Constraints Inference

The work in [van der Aalst et al. 2010] proposes a formal framework for transform-
ing customizable process models incrementally, while preserving both structural and
behavioral correctness. The framework is based on a technique to automatically infer
propositional logic constraints from the control-flow dependencies of a process model
(i.e. from its syntax), that, if satisfied by a customization step, guarantee the syntactic
correctness of the customized model.

The theory was first developed in the context of Workflow nets and then extended
to a subset of C-iEPCs. Workflow nets are a class of Petri nets specifically designed to
model business processes. They come with a definition of soundness which ensures a
process model to be free of behavioral anomalies such as deadlocks and lack of synchro-
nization. Each Workflow nets activity (called transition) represents a process activity
and can serve as a variation point: it is allowed by default and can be hidden or blocked
during customization.

Whenever an activity is hidden or blocked, the current set of constraints is eval-
uated. If the constraints are satisfied, the customization step is applied. If the con-
straints are violated, a reduced propositional logic formula is computed, from which
additional activities are identified that need to be customized simultaneously in order
to preserve the syntactic correctness. For example, if an activity in the customizable
process model is blocked, all nodes in a path starting with that activity need also to
be removed to avoid disconnected elements. The set of constraints is incrementally
updated after each step of the customization procedure.

A core result of this technique is that, for Workflow nets satisfying the free-choice
property [Desel and Esparza 1995], if the model resulting from a customization step
starting from a sound Workflow nets is a Workflow nets (i.e. it is structurally correct),
then this latter Workflow nets is also sound. This means that for this class of nets,
customization steps that preserve structural correctness also preserve behavioral cor-
rectness. Thus, via this technique, both structural and behavioral correctness of the
customized process model are guaranteed at each configuration step.

This technique provides an efficient way of ensuring syntactical correctness during
customization. However, it assumes that the customizable process model is already
sound and free-choice. The latter does not represent a significant limitation since the
large majority of constructs of languages such as BPMN, EPCs or BPEL can be mapped

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App—-13

to Workflow nets in this class [Lohmann et al. 2009]. On the other hand, imposing the
customizable process model to be sound may hinder the applicability of this approach
in practice. In fact, abstracting from data and resources may generate false positives
(e.g., models that have behavioral problems due to data dependencies) and false nega-
tives (e.g., the reported error is circumvented using data conditions).

D.2. Partner Synthesis

With the aim to address the shortcomings of [van der Aalst et al. 2010], the work in
[van der Aalst et al. 2012] proposes a new technique for ensuring behavioral correct-
ness during process configuration. This technique relies on the application of hiding
and blocking to a wider Petri net class than free-choice Workflow nets, namely Open
nets. Open nets can have multiple end states (whereas Workflow nets only have one)
and can have complex non-free choice dependencies. Moreover, this technique relies on
weak termination as a notion of behavioral correctness. Weak termination is a weaker
correctness notion than soundness, as it only ensures that a process instance can al-
ways reach an end state from any state that can be reached from the start state. This
means that even if some activities are unreachable (i.e. “dead”), the model will still
be considered behaviorally correct. The authors argue that this correctness notion is
more suitable for process model customization as parts of a customized model may be
left intentionally dead.

The technique is based upon the notion of configuration guideline, which is inspired
by the notion of operating guidelines used for partner synthesis [Wolf 2009]. A con-
figuration guideline is a complete characterization of all feasible customizations, i.e.
those customizations yielding a weakly terminating customized model (i.e. a correct
model). These customizations are represented as possible combinations of blocked ac-
tivities assuming that in the initial Open net all activities are allowed by default.
Alternatively, it is possible to start from an Open net where all activities are blocked
by default, and customize the net by allowing activities. In this case, the configuration
guideline will store all possible combinations of allowed activities. Thus, one can check
the configuration guideline at each customization step, and enforce further activities
to be blocked or allowed, in order to keep the current customization feasible, in a way
similar to the staged configuration approach in [van der Aalst et al. 2010]. However,
the initial customizable Open net does not need to be sound. If the model has no feasi-
ble customizations, this is reported and the user will not be able to hide or block any
activity.

The technique automatically generates the configuration guideline from an Open
net. This is done by first building a configuration interface which can communicate
with services that customize the original model. The configuration guideline thus rep-
resents the most permissible service that is able to interact with the Open net by
customizing it.

This technique has been applied to the C-YAWL language, and implemented as a
component of the YAWL Editor.'® Once the tool has computed the configuration inter-
face and its guideline for a C-YAWL model, the user can interactively customize the
model. At each customization step, the system analyzes the configuration guideline
and automatically blocks further YAWL ports to keep the current customization feasi-
ble. The user can also roll back a previously taken decision, e.g. by allowing a port that
was blocked. In this case, the tool may impose that further ports have to be allowed
in order to keep the configuration feasible. The tool’s response time is instantaneous,
because the traversal of the configuration guideline has linear complexity. The ratio-
nale of this approach is thus to move the computation time from customization-time to
design-time, i.e. when the configuration guideline is built.

16See http://yawlfoundation.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App-14 M. La Rosa et al.

E. TERMINOLOGY

This appendix provides a list of all the relevant terms used in this paper and their
definitions.

Activity variant: A customization option denoting a concrete refinement of an ab-
stract activity, e.g. “Prepare tape for editing” is an activity variant of “Prepare medium
for editing”.

Adjustment point: A type of variation point; a sequence flow of the customizable
process model which identifies the beginning or end of a fragment upon which a change
operation can be applied. Adjustment points may be explicitly indicated in the model
with a special notation, otherwise each flow is assumed to be an adjustment point.

Annotation: The graphical assignment of a domain condition to one or more variation
points.

Change operation: The addition, deletion or modification of a fragment of the cus-
tomizable process model.

Configurable model: See configurable process model.

Configurable node: A type of variation point; a node of the customizable process
model whose behavior can be restricted. A configurable node may be an activity, an
event, a gateway, or a resource or object associated with an activity.

Configurable process model: A customizable process model when customization is
achieved by restriction of process behavior.

Customizable model: See customizable process model.

Customizable process model: Process model representing a family of process model
variants, from which each variant can be derived via transformations after customiza-
tion decisions are taken.

Customization: The process of deriving a customized process model from a customiz-
able process model by applying transformations to variation points, based on cus-
tomization decisions made by a user.

Customization decision: A choice made by a user in order to customize a customiz-
able model. Customization decisions can be expressed at an abstract level in terms of
domain properties (e.g. in post-production, one needs to choose the level of budget be-
tween high, medium and low), or at a concrete level in terms of variation points of the
customizable process model itself (e.g. an OR-split can be restricted to an AND-split or
to an XOR-split).

Customization option: A possible restriction or extension of the behavior of a varia-
tion point, e.g. a configurable activity has three customization options: on (the activity
is intended to be kept), off (the activity is intended to be removed) and optional (the
decision to remove the activity is deferred to run-time).

Customized model: See customized process model.

Customized process model: The process model obtained from the application of a
transformation algorithm on a customizable process model; the result of customization.
A customized process model represents a specific variant of the business process cap-
tured by the customizable process model, e.g. the variant of a claims handling process
for home insurance.

Decision: See customization decision.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App-15

Decision table: A tabular representation of a questionnaire model.
Domain condition: A predicate over domain properties, e.g. “low budget = true”.

Domain constraint: A restriction over the possible combinations of domain proper-
ties, e.g. “if low budget = true, then film shooting = false.”

Domain model: A model of the variability of the domain in which the customizable
process model is captured, defined as a set of domain properties and domain constraints
over these properties.

Domain property: An entity of the domain of discourse, e.g. “low budget” or “film
shooting”.

Extension point: A variation point which can be customized by extension of process
behavior.

Feature model: A type of domain model where domain properties, called features, are
organized in a tree. Properties to be retained can be selected according to some domain
constraints.

Process model variant: Process model capturing a variant of a specific business pro-
cess, e.g. motor insurance and home insurance are two variants of a claims handling
process. Process model variants can be consolidated in a single model called customiz-
able process model.

Product hierarchy: A simplified feature model where domain properties, called prod-
ucts, are organized in a tree called product hierarchy, where domain constraints cannot
be expressed.

Questionnaire model: A type of domain model where domain properties, called do-
main facts, are organized as a set of questions that need to be answered in order to
choose which properties to retain, according to some domain constraints.

Transformation: A model change to customize a variation point of the customizable
process model either by restricting or extending its behavior, e.g. a transformation may
involve removing an activity altogether or adding a new one.

Transformation algorithm: The algorithm used to perform one or more ¢transforma-
tions. A property of such an algorithm may be that of ensuring that the customized
process model is syntactically correct.

Variability mechanism: A set of modeling constructs and their corresponding se-
mantics to specify the relations between a customizable process model and its possible
customized process models.

Variant: May refer to activity variant or process model variant.

Variation point: An element (i.e. a node or a sequence flow) of the customizable pro-
cess model that can be customized via model transformations.

F. INTERCHANGEABILITY OF PROCESS MODELING LANGUAGES

We adopt the standard BPMN terminology when referring to process model elements,
though we exemplify each approach using the approach’s original process modeling
language. This was done to preserve the original graphical notation provided by each
approach. However, a process model that only features elements from the BPMN core
set (sequence flow, activity, start and end events, XOR, AND and OR gateways), as in
the examples used in this paper, can be converted into a model in any other language

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App—16 M. La Rosa et al.

(e.g. EPCs or UML ADs) and vice versa, using simple correspondences, as illustrated in
Table XIII, barring some limitations (e.g. the OR-join is not supported by UML ADs).

EPCs deserve special consideration. This language imposes a strict alternation of
functions and events, which can be intermitted by chains of connectors. Therefore,
intermediate events (i.e. events that are neither start nor end events) must always
be represented in EPCs, while they can be omitted in BPMN, as can intermediate
conditions (representing states) in YAWL. In EPCs, an intermediate event captures a
function’s trigger or outcome, or the branching condition of an (X)OR-split. However,
functions’ triggers and outcomes may be omitted to maintain the alternation of func-
tions and events, e.g. when an intermediate event is used to capture a branching condi-
tion, the preceding function does not require its outcome and the subsequent function
does not require its trigger. As an example, Figure 18 shows a BPMN model and its
corresponding EPC model, where intermediate events have been added to ensure the
syntactical correctness of the model.

Fig. 18: An example BPMN model (a) and its corresponding model in EPCs (b).

More complex mappings are required when non-core BPMN elements such as bound-
ary events are used. For example, [Dijkman et al. 2008] reports a rich mapping be-
tween a large subset of the BPMN language and Petri nets.

REFERENCES

ASADI, M., MOHABBATI, B., GRONER, G., AND GASEVIC, D. 2014. Development and validation of cus-
tomized process models. Journal of Systems and Software 96, 73-92.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey

BPMN EPCs YAWL UML ADs Feature Model Composition
— — —> — —
Sequence Control .

flow Arc Flow flow Relation

Start Start Input Initial S

event event condition node ource

End End Output Final Sink l

event event condition node in

()

Activity

(trigger) (state)
(outcome) (state)

Function Task C]

Action

Service

N

O %

)g(gz"ﬂ; c)égsggtlgr XOR-join Merge Condition merge
cond B [cond]
~cond [~cond]
} @
AND-join AND-join - i
gateway connector AND-join Join
Ag’;‘g vsvgl;/t é}’\rﬁ:ggtr AND-split Fork Concurrency
_+ §V>
OR-join OR-join L
gateway connector OR-join
condl
[Kk [cond1]
cond2 [cond2]
OR-split OR-split . Conditional
gateway connector OR-split fork

App-17

Table XIII: Mapping between BPMN core elements and corresponding constructs in
EPCs, YAWL, UML ADs and Feature Model Composition.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App—18 M. La Rosa et al.

ATKINSON, C., BAYER, J., AND MUTHIG, D. 2000. Component-Based Product Line Development: The Ko-
brA Approach. In Proceedings of the 1st Software Product Lines Conference (SPLC’00), P. Donohoe, Ed.
Kluwer, 289-309.

ATKINSON, C., BOSTAN, P., BRENNER, D., FALCONE, G., GUTHEIL, M., HUMMEL, O., JUHASZ, M., AND
STOLL, D. 2008. Modeling components and component-based systems in kobra. In The Common Compo-
nent Modeling Example: Comparing Software Component Models. Lecture Notes in Computer Science
Series, vol. 5153. Springer, 54—84.

AYORA, C., TORRES, V., WEBER, B., REICHERT, M., AND PALECHANO, V. 2014. VIVACE: A framework for
the systematic evaluation of variability support in process-aware information systems. Information and
Software Technology.

BATORY, D. 2005. Feature Models, Grammars, and Propositional Formulas. In Proceedings of the 9th Inter-
national Conference on Software Product Lines (SPLC’05), J. Obbink and K. Pohl, Eds. Lecture Notes in
Computer Science Series, vol. 3714. Springer, 7-20.

CIUKSYS, D. AND CAPLINSKAS, A. 2007. Reusing ontological knowledge about business processes in is
engineering: Process configuration problem. Informatica, Lith. Acad. Sci. 18, 4, 585-602.

CZARNECKI, K. AND EISENECKER, U. 2000. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley.

CZARNECKI, K., HELSEN, S., AND EISENECKER, U. 2005. Formalizing Cardinality-Based Feature Models
and Their Specialization. Software Process: Improvement and Practice 10, 1, 7-29.

DESEL, J. AND ESPARZA, J. 1995. Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science
Series, vol. 40. Cambridge University Press.

DIJKMAN, R.M., DUMAS, M., AND OUYANG, C. 2008. Semantics and analysis of business process models in
BPMN. Information & Software Technology 50, 12, 1281-1294.

DOHRING, M., REIJERS, H., AND SMIRNOV, S. 2014. Configuration vs. adaptation for business process
variant maintenance: an empirical study. Inf Syst. 39, 108-133.

DOHRING, M., ZIMMERMANN, B., AND KARG, L. 2011. Flexible Workflows at Design- and Runtime Using
BPMN2 Adaptation Patterns. In Proceedings of Business Information Systems. Lecture Notes in Busi-
ness Information Processing Series, vol. 87. Springer, 25-36.

FINK, A. 2010. Conducting research literature reviews: from the internet to paper 3rd edition Ed. Sage Pub-
lications.

GRONER, G., BOSKOVIC, M., PARREIRAS, F. S., AND GASEVIC, D. 2013. Modeling and validation of business
process families. Inf. Syst. 38, 5, 709-726.

HEUER, A., STRICKER, V., BUDNIK, C., KONRAD, S., AND LAUENROTH, K. 2013. Defining variability in
activity diagrams and Petri nets. Science of Computer Programming 78, 241472432.

KANG, K., COHEN, S., HESS, J., NOVAK, W., AND PETERSON, A. 1990. Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University.

KITCHENHAM, B. 2004. Procedures for undertaking systematic reviews. Tech. rep., Computer Science De-
partment, Keele University (TR/SE- 0401) and National ICT Australia Ltd. (0400011T.1).

KORHERR, B. AND LIST, B. 2007. A UML 2 profile for variability models and their dependency to busi-
ness processes. In Proceedings of the 18th International Workshops on Database and Expert Systems
Applications, Regensburg, Germany. IEEE Computer Society, 829-834.

KULKARNI, V. AND BARAT, S. 2011. Business process families using model-driven techniques. In Proceed-
ings of the Business Process Management Workshops and Education Track, Hoboken, NJ, USA. Springer,
314-325.

LA RosA, M. 2009. Managing variability in process-aware information systems. Phd thesis, Queensland
University of Technology.

LA ROSA, M., GOTTSCHALK, F., DUMAS, M., AND VAN DER AALST, W. 2008. Linking Domain Models and
Process Models for Reference Model Configuration. In Business Process Management 2007 Workshops,
A. ter Hofstede, B. Benatallah, and H. Paik, Eds. Lecture Notes in Computer Science Series, vol. 4928.
Springer, 417-430.

LA ROSA, M., VAN DER AALST, W., DUMAS, M., AND TER HOFSTEDE, A. 2009. Questionnaire-based Vari-
ability Modeling for System Configuration. Software and Systems Modeling 8, 2, 251-274.

LEVY, Y. AND ELLIS, T. 2006. A systems approach to conduct an effective literature review in support of
information systems research. Informing Science Journal 9, 181-212.

LOHMANN, N., VERBEEK, E., AND DIJKMAN, R. 2009. Petri net transformations for business processes - a
survey. T. Petri Nets and Other Models of Concurrency 2, 46—63.

LU, R., SADIQ, S., AND GOVERNATORI, G. 2009. “on managing business processes variants”. Data Knowl.
Eng. 68, 7, 642-664.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Business Process Variability Modeling: A Survey App—19

MACHADO, I., BONIFACIO, R., ALVES, V., TURNES, L., AND MACHADO, G. 2011. Managing Variability in
Business processes: An Aspect-Oriented Approach. In Proceedings of the Int. Workshop on Early Aspects.
ACM, 25-30.

MEERKAMM, S. 2010. Configuration of multi-perspectives variants. In Business Process Management Work-
shops - BPM 2010 International Workshops and Education Track, Hoboken, NJ, USA, September 13-15,
2010, Revised Selected Papers. 277-288.

NGUYEN, T., COLMAN, A. W., AND HAN, J. 2011. Modeling and managing variability in process-based
service compositions. In Proceedings of the 9th International Conference on Service-Oriented Computing
(ICSOC), Paphos, Cyprus. Springer, 404—420.

OKOLI, C. AND SCHABRAM, K. 2010. A guide to conducting a systematic literature review of information
systems research. Sprouts: Working Papers on Information Systems 10, 26, 1-49.

RANDOLPH, J. 2009. A guide to writing the dissertation literature review. Practical Assessment, Research &
Evaluation 14, 13, 1-13.

RASTREPKINA, M. 2010. Managing variability in process models by structural decomposition. In Business
Process Modeling Notation - Second International Workshop, BPMN 2010, Potsdam, Germany, October
13-14, 2010. Proceedings. 106-113.

RAZAVIAN, M. AND KHOSRAVI, R. 2008. Modeling Variability in Business Process Models Using UML. In
Proceedings of the 5th International Conference on Information Technology: New Generations (ITGN08),
S. Latifi, Ed. 82-87.

RIPON, S., TALUKDER, K., AND MoLLA, K. 2010. Modelling variability for system families. Malaysian
Journal of Computer Science 16, 1, 37-46.

ROWLEY, J. AND SLACK, F. 2004. Conducting a literature review. Management Research News 27, 6, 31-39.

SANTOS, E., PIMENTEL, J., CASTRO, J., SANCHEZ, J., AND PASTOR, O. 2010. Configuring the Variability
of Business Process Models Using Non-Functional Requirements. In Proceedings of EMMSAD. Lecture
Notes in Business Information Processing Series, vol. 50. Springer, 274-286.

SCHOBBENS, P.-Y., HEYMANS, P., AND TRIGAUX, J.-C. 2006. Feature Diagrams: A Survey and a Formal
Semantics. In Proceedings of the 14th IEEE International Conference on Requirements Engineering
(RE’06), M. Glinz and R. Lutz, Eds. IEEE Computer Society, 136-145.

SCHUNSELAAR, D., VERBEEK, E., VAN DER AALST, W., AND REIJERS, H. 2011. Creating sound and re-
versible configurable process models using CoSeNets. Tech. Rep. BPM-11-21, BPM Center Report.
SCHUNSELAAR, D., VERBEEK, E., VAN DER AALST, W., AND RELJERS, H. 2012. Creating sound and re-
versible configurable process models using CoSeNets. In Proc. of Business Information Systems. Lecture

Notes in Business Information Processing Series, vol. 117. Springer, 24—-35.

TORRACO, R. 2005. Writing integrative literature reviews: guidelines and examples. Human Resource De-
velopment Review 4, 3, 356-367.

VALENCA, G., ALVES, C., ALVES, V., AND NIU, N. 2013. A systematic mapping study on business process
variability. Int. Journal of Computer Science & Information Technology 5, 1, 1-21.

VAN DER AALST, W. AND BASTEN, T. 2002. Inheritance of Workflows: An Approach to Tackling Problems
Related to Change. Theoretical Computer Science 270, 1-2, 125-203.

VAN DER AALST, W., DUMAS, M., GOTTSCHALK, F., TER HOFSTEDE, A., LA ROSA, M., AND MENDLING,
d. 2010. Preserving Correctness During Business Process Model Configuration. Formal Aspects of Com-
puting 22, 3, 459-482.

VAN DER AALST, W., LOHMANN, N., AND LA ROSA, M. 2012. Correctness Ensuring Process Configuration:
An Approach Based on Partner Synthesis. Information Systems 37, 6, 574-592.

WEBSTER, J. AND WATSON, R. 2002. Analyzing the Past to Prepare for the Future: Writing a Literature
Review. MIS Quarterly 26, 2, xiii—xxiii.

WOoLF, K. 2009. Does my Service Have Partners? In Transactions on Petri Nets and Other Models of Con-
currency II, K. Jensen and W. van der Aalst, Eds. Lecture Notes in Computer Science Series, vol. 5460.
Springer-Verlag, Berlin, 152-171.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

