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Abstract. We address the problem of diagnosing behavioral differences
between pairs of business process models. Specifically, given two process
models, we seek to determine if they are behaviorally equivalent, and if
not, we seek to describe their differences in terms of behavioral relations
captured in one model but not in the other. The proposed solution is
based on a translation from process models to Asymmetric Event Struc-
tures (AES). A näıve version of this translation suffers from two lim-
itations. First, it produces redundant difference diagnostic statements
because an AES may contain unnecessary event duplication. Second, it
is not applicable to process models with cycles. To tackle the first limita-
tion, we propose a technique to reduce event duplication in an AES while
preserving canonicity. For the second limitation, we propose a notion of
unfolding that captures all possible causes of each event in a cycle. From
there we derive an AES where repeated events are distinguished from
non-repeated ones and that allows us to diagnose differences in terms of
repetition and causal relations in one model but not in the other.

1 Introduction

Comparing models of business process variants is a basic operation when manag-
ing collections of process models [1]. In some cases, syntactic matching of nodes
or edges are sufficient to understand differences between two variants. However,
two variants may be syntactically different and still be behaviorally equivalent
or they may be very similar syntactically but quite different behaviorally, as
changes in a few gateways or edges may entail significant behavioral differences.

This paper presents a technique to compare business processes in terms of
behavioral relations between tasks. The technique diagnoses differences in the
form of binary behavioral relations (e.g., causality and conflict) that hold in one
model but not in the other. For example, given the models in Fig. 13 we seek to
describe their differences via statements of the form: “In model M1, after Prepare
transportation quote it is possible to execute either Arrange delivery appointment

3 Based on an order fulfillment process presented in [2].
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Fig. 1. Variants of business process models

and Produce shipment notice, or only Produce shipment notice; whereas in M2

after Prepare transportation quote, Arrange delivery appointment is followed by
Produce shipment notice”. The diagnosis also considers cyclic behavior, e.g. “In
model M1, activity Arrange delivery appointment can be executed many times in
a run; whereas in M2 it is executed only once”.

The key idea of the proposal is to compare abstract representations of the
process models based on binary behavioral relations. If two process models have
isomorphic abstract representations, then they are behaviorally equivalent and
otherwise we can use error-correcting graph matching to diagnose the differences.
To this end, we adopt a well-known model of concurrency known as event struc-
tures [3], where computations are represented via events (activity occurrences)
and behavioral relations between events. There are different types of event struc-
tures comprising different relations, such as Prime Event Structures [3] (PESs)
and Asymmetric Event Structures [4] (AESs). For the purpose of comparison,
more compact representations are desirable as they lead to more concise diag-
nosis of relations existing in one process and not in the other. In this respect,
AESs are more compact than PESs and in prior work [5], we proposed a behavior-
preserving folding of AESs. However, the work in [5] shows that in some cases
multiple non-isomorphic AESs exist that represent the same behavior.

The contributions of the paper are threefold: (i) we extend our work in [5], by
proposing a deterministic order on the folding of AESs that produces a canonical
represention of the behavior of a given process model, (ii) we extend our approach
to support the differencing of process models with cycles, and (iii) we propose
an approach to verbalize differences. For the sake of presentation, we assume
that the input process are represented as Petri nets. Transformations from other
process modeling notations (e.g. BPMN) to Petri nets are given elsewhere [6].

The paper is structured as follows, Section 2 discusses related work. Section 3
provides definitions of notions used in the rest of the paper. The proposed tech-
niques are presented in Section 4. Finally Section 5 summarizes the contributions
and discusses future work.

2 Related work

Approaches for process model comparison can be divided into those based on
node label similarity, process structure similarity and behavior similarity [1]. In
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this paper we focus on behavioral similarity. Nevertheless, we acknowledge that
node label similarity plays an important role in the alignment of nodes (e.g.,
tasks) across the process models being compared. In our work, we assume that
such an alignment is given, i.e. for each node label in one model we are given
the corresponding (“equivalent”) node label in the other model.

There are many equivalence notions for concurrent systems [7], ranging from
trace equivalence (processes are equivalent if they have the same set of traces) to
bisimulation equivalence, to finer equivalences which preserve some concurrency
features of computations (two models are equivalent if they have same sets of
runs taking into account concurrency between events). Few methods have been
proposed to diagnose differences between processes based on various notions of
equivalence. The paper [8] presents a technique to derive equations in a process
algebra characterizing the differences between two Labeled Transition Systems
(LTSs). The use of a process algebra makes the feedback difficult to grasp for
end users (process analysts in our context) and the technique relies on a notion
of equivalence that does not take into account the concurrent structure in the
process (a process model with concurrency and its sequential simulation are
equivalent). In [9], a method for assessing dissimilarity of LTSs in terms of “edit”
operations is presented. However, such feedback on LTSs does not tell the analyst
what relations exist in one model that do not exist in the other. Also, it is
based on a notion of equivalence that does take concurrency into account. The
same remarks apply to [10], which presents a method for diagnosing differences
between pairs of process models using standard automata theory. In addition,
in [10] the set of reported differences is not guaranteed to be complete.

Behavioral Profiles (BP) [11] and Causal Behavior Profiles [12] are two ap-
proaches to represent processes using binary relations. They abstract a process
using a n × n matrix, where n is the number of tasks in the process. Each cell
contains one out of three relations: strict order, exclusive order or interleaving ;
plus an additional co-occurrence relation in the case of causal behavioral profiles.
Both techniques are incomplete as they mishandle several types of constructs,
e.g., task skipping (silent transitions), duplicate tasks, and cycles. In this case,
two processes can have identical BPs despite not being behaviorally equivalent.

Alpha relations [13] are another representation of processes using binary be-
havioral relations (direct causality, conflict and concurrency), proposed in the
context of process mining. Alpha causality is not transitive (i.e. causality has a
localized scope) making alpha relations unsuitable for behavior comparison [14].
Moreover, alpha relations cannot capture so-called “short loops” and hidden
tasks (including task skipping). Relation sets [15] are a generalization of alpha
relations. Instead of one matrix, the authors use k matrices (with a variable k).
In each matrix, causality is computed with a different look-ahead. It is shown
that 1-lookahead matrices induce trace equivalence for a restricted family of
Petri nets. The authors claim that using k matrices improves accuracy. But it is
unclear how human-readable diagnostics of behavioral differences could be ex-
tracted from two sets of k matrices and it is unclear to what notion of equivalence
would the diagnostics correspond.
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3 Preliminaries

This section introduces some fundamental notions on Petri nets, branching pro-
cesses and event structures that will be used in subsequent parts of the paper.

3.1 Petri nets

Definition 1 (Petri net, Net system). A tuple N = (P,T,F ) is a Petri net,
where P is a set of places, T is a set of transitions, with P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs. A marking M ∶ P → N0 is a function
that associates each place p ∈ P with a natural number (viz., place tokens). A net
system S = (N,M0) is a Petri net N = (P,T,F ) with an initial marking M0.

Places and transitions are conjointly referred to as nodes. We write ●y = {x ∈
P ∪ T ∣ (x, y) ∈ F} and y● = {z ∈ P ∪ T ∣ (y, z) ∈ F} to denote the preset and
postset of node y, respectively. F + and F ∗ denote the irreflexive and reflexive
transitive closure of F , respectively.
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Fig. 2. N2 of Fig. 1(b)

The semantics of a net system is defined
in terms of markings. A marking M enables a
transition t if ∀p ∈ ●t ∶ M(p) > 0, denoted as
(N,M)[t⟩. Moreover, the occurrence of t leads
to a new marking M ′, with M ′(p) =M(p) − 1
if p ∈ ●t∖t●, M ′(p) =M(p)+1 if p ∈ t●∖●t, and
M ′(p) =M(p) otherwise. We use M

tÐ→M ′ to
denote the occurrence of t. The marking Mn is
said to be reachable from M if there exists a
sequence of transitions σ = t1t2 . . . tn such that
M

t1Ð→ M1
t2Ð→ . . .

tnÐ→ Mn. The set of all the
markings reachable from a marking M is denoted [M⟩. A marking M of a net
is n-safe if M(p) ≤ n for every place p. A net system N is said n-safe if all its
reachable markings are n-safe. In the following we restrict ourselves to 1-safe
net systems. Hence, we identify the marking M with the set {p ∈ P ∣ M(p) = 1}.

A labeled Petri net N = (P,T,F, λ) has a function λ ∶ P ∪ T → Λ ∪ {τ} that
associates a node with a label. A transition x is said to be observable if λ(x) ≠ τ ,
otherwise x is silent. A labeled net system S = (N,M0, λ) is similarly defined.
An example of a labeled net system is shown in Fig. 2, the transitions display
their corresponding label inside the rectangle if they are observable.

3.2 Deterministic and branching processes

The partial order semantics of a net system can be formulated in terms of runs or,
more precisely, prefixes of runs that are referred to as deterministic processes4

[16]. A process can be represented as an acyclic net with no branching nor

4 Here and in the rest of this section, the term process refers to a control-flow abstrac-
tion of a business process based on a partial order semantics.
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merging places, i.e., ∀p ∈ P ∶ ∣●p∣ ≤ 1 ∧ ∣p●∣ ≤ 1. Alternatively, all runs can be
accommodated in a single tree-like structure, called branching process [3], which
can contain branching places and explicitly represents three behavior relations:
causality, concurrency and conflict defined as follows.

Definition 2 (Behavior relations). Let N = (P,T,F ) be a Petri net and
x, y ∈ P ∪ T two nodes in N .
– x and y are in causal relation, denoted x <N y, iff (x, y) ∈ F +. The inverse

causal relation is denoted >N . By ≤N we denote the reflexive causal relation.
– x and y are in conflict, denoted x #N y, iff there exist two transitions t, t′ ∈ T

such that t and t′ are distinct, ●t∩●t′ ≠ ∅, and (t, x), (t′, y) ∈ F ∗. If x #N x
then x is said to be in self-conflict.

– x and y are concurrent, denoted as x ∥N y, iff neither x <N y, nor y <N x,
nor x #N y.

We can now provide a formal definition for branching process.

Definition 3 (Branching process). Let S = (P,T,F,M0) be a net system.
The branching process U(S) = (B,E,G, ρ) of S is the net (B,E,G) defined by
the inductive rules in Fig. 3. The rules also define the function ρ ∶ B∪E → P ∪T
that maps each node in the branching process U(S) to a node in S. We write
%(B) as a shorthand for ⋃b∈B∪E ρ(b).

p ∈M0

b = ⟨∅, p⟩ ∈ B ρ(b) = p
t ∈ T B′ ⊆ B B′2 ⊆ ∥β %(B′) = ●t

e = ⟨B′, t⟩ ∈ E ρ(e) = t
e = ⟨B′, t⟩ ∈ E t● = {p1, . . . , pn}
bi = ⟨t′, pi⟩ ∈ B ρ(bi) = pi

Fig. 3. Branching process, inductive rules

In a branching process U(S) =
(B,E,G, ρ), B represents the set of
conditions (places) and E the set of
events (transitions). Let β = U(S) be
a branching process, thus Min(β) de-
notes the set of minimal elements of
B ∪ E with respect to the transitive
closure of G. Henceforth, Min(β) cor-
responds to the set of places in the ini-
tial marking of S, i.e., %(Min(β)) =
M0. A co-set is a set of conditions
B′ ⊆ B such that for all b, b′ ∈ B′ it
holds b ∥ b′. A cut is a maximal co-
set w.r.t. set inclusion.
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Fig. 4. U(N2) (Fig. 1(b))

One characteristic of a branching
process is that it does not contain
merging conditions. As a result, some
nodes in the net system need to be
represented more than once in the
branching process. For example, the
branching process in Fig. 4 contains
multiple instances of b, c and d, which
come from a single transition in the
net system shown in Fig. 2.
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Definition 4 (Configuration and deterministic process). Let β =
(B,E,G, ρ) be a branching process.
– A configuration C of β is a set of events, C ⊆ E, which is

i) causally closed, i.e., ∀e′ ∈ E, e ∈ C ∶ e′ ≤β e⇒ e′ ∈ C, and
ii) conflict free, i.e., ∀e, e′ ∈ C, ¬(e #β e

′).
We denote by Conf(β) the set of configurations of the branching process β,
whereas MaxConf(β) refers to the maximal configurations w.r.t. set inclu-
sion.

– A local configuration of an event e ∈ E is denoted as ⌊e⌋ = {e′ ∣ e′ ≤ e}, such
that it is unique for any event e ∈ E. In the same vein, by ⌊e) we denote the
set of strict causes of an event e ∈ E, i.e., ⌊e) = ⌊e⌋/{e}

– A deterministic process π = (Bπ,Eπ,Gπ, ρ) is the net induced by a configu-
ration C, where Bπ = ⋃

c∈C
(●c∪c●), Eπ = C, and Gπ = G∩(Bπ×Eπ∪Eπ×Bπ).

A cut for a configuration C of a branching process β = U(S) is defined as
Cut(C) = (Min(β)∪ ⋃

c∈C
c●)/( ⋃

c∈C
●c); whereas %(Cut(C)) is a reachable marking

in S, denoted byMark(C), i.e,Mark(C) ∈ [M0⟩. Let C and C ′ be configurations
of β, such that C ⊂ C ′, and let π and π′ be their corresponding deterministic
branching processes. If X = C ′ ∖C, then we write π′ = π⊕X and we say that π′

is an extension of π.
Throughout this paper, we use visible-pomset equivalence [17] as the notion

of behavioral equivalence. A pomset is a tuple ⟨X,≤ ∣X⟩, where X is a set of
events and ≤ ∣X is the projection of the causal relation over X. We use XΛ = {e ∈
X ∣ λ(e) ≠ τ} to denote the restriction of X to observable events. With abuse
of notation, we write XΛ to denote the restriction of the pomset induced by X,
restricted to observable behavior, and it is called the visible pomset underlying
X. Moreover, we denote by Conf (P)Λ the set of visible pomsets underlying its
configurations, i.e., Conf (β)Λ = {CΛ ∶ C ∈ Conf (β)}.

A function f is an isomorphism between pomset p and pomset q, iff it is a
label-preserving order-isomorphism, i.e., f ∶ Ep → Eq is a bijection, λp = λq ○ f ,
and e <p e′ ⇔ f(e) <q f(e′) for all e, e′ ∈ Ep. Armed with the concepts above,
we can now formally define visible-pomset equivalence:

Definition 5 (Visible-pomset equivalence [17]). Let β and β′ be the branch-
ing processes of the net systems N and N ′. Then N visible-pomset approximates
N ′, written N ⊑pt N ′, iff every visible-pomset XΛ ∈ Conf(β)Λ is isomorphic with
at least one visible-pomset Y Λ ∈ Conf(β′)Λ. Moreover, N and N ′ are visible
pomset equivalent, denoted N1 ≡vp N2, iff each is ⊑vp to the other.

3.3 Event structures

This section introduces two variants of event structures, which are the corner-
stones of our comparison technique, prime and asymmetric event structures.

Definition 6 (Prime Event Structure [3]). Let S = (N,M0) be a net system,
where N = (P,T,F, λN), and β = (B,E,G, ρ) be its branching process. The
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labeled Prime Event Structure (PES) of β is defined as P = ⟨E, ≤P, #P, λP⟩,
where ≤P = ≤β ∩ E2 and #P = #β∩E2. Finally, λP = λN ○ρ is a labeling function
that associates each event e ∈ E with the label of its corresponding transition
t ∈ T , i.e., ρ(e) = t⇒ λξ(e) = λN(t).

The conflict relation #P is hereditary w.r.t. ≤P, i.e. e#Pe
′∧e′ ≤P e

′′ ⇒ e#Pe
′′

for all e, e′, e′′ ∈ E.

a

b c

c d b d

d d

#

# #

Fig. 5. PES P̄

As stated before, we focus only on observable behav-
ior. Therefore, we use P̄ to denote a PES with observable
events, that is, with all its invisible events being abstracted
away. Figure 5 shows the PES with all the observable be-
havior of the net system N2 from Fig. 2. In this graphical
representation, solid arrows represent causality, and anno-
tated dotted lines represent conflict. It is common practice
not to include transitive relations in the graphical repre-
sentation of a PES, for the sake of readability.

The set of configurations of a PES P coincides with the
set of configurations of its originative branching process.
We will denote this set as Conf(P).

We now turn our attention to Asymmetric Event
Structures (AESs).

Definition 7 (Asymmetric Event Structure [4]). An AES is a triplet A =
⟨E,≤,↗⟩, where E represents the set of events, ≤ is the causality relation and ↗
is the asymmetric conflict relation. Moreover, for all e, e′, e′′ ∈ E the following
holds: (1) ⌊e⌋ = {e′ ∣ e′ ≤ e} is finite, (2) e < e′ ⇒ e↗ e′, (3) if e↗ e′ and e′ < e′′
then e↗ e′′, (4) ↗ ∣⌊e⌋ is acyclic, (5) if ↗ ∣⌊e⌋∪⌊e′⌋ is cyclic then e↗ e′.
Finally, let ΨA = (<,↗) denote the behavior relations of A.

This type of event structure replaces the conflict relation in PESs with an
asymmetric relation. Graphically, causality is represented by a solid arrow and
asymmetric conflict with a dashed arrow. Intuitively, the statement a ↗ b has
two interpretations: (i) the occurrence of b prevents the occurrence of a, or (ii) a
precedes b in all computations where both events occur. By (ii), asymmetric
conflict can be seen as a form of weak causality. Interestingly, asymmetric conflict
is also hereditary w.r.t. causality. As for PESs, two events are said concurrent
when they are neither in causal nor in asymmetric conflict relation.

a b

c

Fig. 6. A0

In the case of PESs, the set inclusion relation defines a order
over configurations referred to as configuration extension. This
does not apply to the case of AESs. Consider the AES presented
in Fig. 6. Note that {a, b, c} is an extension of {a, b}, but it is not
an extension of {a, c}, because the occurrence of c prevents that
of b. Formally, a configuration of A = ⟨E,≤,↗, λ⟩ is a set of events
C ⊆ E such that 1) for any e ∈ C, ⌊e⌋ ⊆ C (causal closedness)
2) ↗ ∣C is acyclic (conflict free). Moreover, if C1,C2 ∈ Conf (A)
are cofigurations, we say that C2 extends C1, written C1 ⊑ C2, if
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C1 ⊆ C2 and for all e ∈ C1, e
′ ∈ C2 ∖C1, ¬(e′ ↗ e). The set of all

configurations of A is denoted by Conf (A).

b c′

c b′

(a) A1

b c′

c

(b) A2

b c′

b′

(c) A3

Fig. 7. Equivalent AESs

The AES formalism is more ex-
pressive than PESs and it can pro-
vide a more compact representation
for a given set of configurations. In
fact, any PES can be seen as a special
case of an AES [4] where the conflict
relation is replaced with asymmetric
conflict relations in both directions.
Consider the AES shown in Fig. 7. A1

can be seen as the direct translation
of a PES, hence requiring duplication.
A2 and A3 are smaller, but still visible-
pomset equivalent, versions of A1. Observe that there is no smaller AES repre-
sentation for the same behavior and, in that sense, both A2 and A3 are minimal.

In [5], we introduced a technique for behavior-preserving minimization of
AESs. Moreover, we found that the technique may lead to different represen-
tations for the same behavior, depending on the order on which the folding
operation is applied on the input AES. For instance, A2 (Fig. 7(b)) comes after
folding events b and b′, whereas A3 (Fig. 7(c)) comes after folding events c and
c′. In the next section, we will address the problem of canonical folding of AESs.

4 Comparison of process models

This section describes our approach to process model differencing with Asymmet-
ric Event Structures. The first part addresses the problem of the non-canonicity
of the folding of an AES by leveraging the notion of canonical labelling of graphs.
The second part extends the method to support the comparison of process mod-
els with cycles. Finally, the section presents a differencing operator and an ap-
proach to verbalizing the differences found while comparing pairs of processes.
The proofs are available at [18].

4.1 Canonicity

Any reliable comparison method requires that its input is provided in a canon-
ical representation. In our context, if we consider that the folding operation is
behavior preserving, we would like that the AESs obtained from two isomorphic
PESs are also isomorphic. As shown in Fig. 7, this not always the case. In order
to address this problem, we leverage some concepts from graph theory.

Our solution to the problem of non-canonicity relies on the concept of canon-
ical labelling of a graph [19], that is an approach to deciding graph isomorphism.
We say that Canon(G) is a function that maps a graph G to a canonical label.
In this way, if graphs G and H are given, we expect Canon(G) = Canon(H) to
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hold iff H and G are isomorphic. If we use the string representation of the adja-
cency matrix of a graph, then a canonical label for a graph G can be determined
by computing all permutations of its adjacency matrix and selecting the largest
lexicographical exemplar among them5. Clearly, this näıve approach is computa-
tionally expensive, but state-of-the-art software implement several heuristics to
compute canonical labels in a reasonable time. In our context, we are interested
in the order of the vertices associated to the adjacency matrix of the canonical ex-
emplar. Formally, let G = (V,A) be a graph, where V is the set of vertices and A
the set of arcs. Moreover, let M(G) be the adjacency matrix of G, γ = (0,1, ...∣V ∣)
be an order over the set of vertices, and STR(M(G)γ) be the string linear repre-
sentation of the adjacency matrix G given the order γ. Then the canonical label
of G is the string induced by order γ̂, s.t., STR(M(G)γ̂) ≥lex STR(M(G)γπ)
holds for every possible permutation γπ of γ.

In our implementation, we use nauty (http://pallini.di.uniroma1.it/)
for computing the graph canonical label and, more precisely, the order on the
vertices of the canonical exemplar. Nauty and other similar tools work on graphs
with unlabeled edges. To overcome this limitation, we adapted a transformation
introduced in [20]. Briefly, this transformation maps a fully labeled graph (both
nodes and edges carry a label) into a node-labeled graph and has been proved
to be isomorphism preserving. The reader is referred to [20] to get more details
about this transformation. By leveraging this result and the notion of canonical
label of a graph we can now establish an order on the folding that yields a
minimal and canonical AES for a PES.

Intuitively, the folding starts with an AES that is isomorphic to the PES of
a business process. Thus, we carry the order γ̂ computed over the nauty graph
of the PES. In every iteration we select a set of events that can be merged
without changing the behavior of the AES. We use A/X to denote the folding of
a combinable set of events X on an AES A. In [5] we show that the folding defines
a morphism f ∶ AES → AES that preserves visible-pomset equivalence. In this
context, since there might be multiple candidate sets of events for folding, we use
γ̂ for establishing a total order on the folding operations. For space restriction,
we do not include the details on how the whole set of combinable sets of events
is computed and refer the reader to [5] for a full description. Therefore, we will
assume that the combinable sets of events are given.

Definition 8 (Deterministic folding). Let A = ⟨E,≤,↗, λ⟩ be an AES, and
γ̂ ∶ E → N0 be the canonical order of events given by nauty. Let X,Y ⊆ E be
combinable sets of events. Then the precedence of X over Y in a determinis-
tic folding is defined by the following conditions, listed in decreasing relevance:
(i) λ(e) >lex λ(e′) where e′ ∈ Y and e ∈ X, or (ii) λ(e) =lex λ(e′) ∧ ∣X ∣ > ∣Y ∣, or
(iii) λ(e) =lex λ(e′) ∧ ∣X ∣ = ∣Y ∣ ∧ γ̂(X) >lex γ̂(Y ). Hence, A/X = ⟨E/X ,≤/X ,↗/X

, λ/X⟩ is a folding of A, s.t. eX ∈ E/X is the event representing X ⊆ E, and the
canonical labeling function is γ̂A/X = γ̂[eX ↦ Ran(γ̂) + 1]. Finally, f(A)+

/X de-
notes the folding induced by γ̂ that cannot be further minimized, i.e., the minimal
canonical folding.

5 Some authors prefer the smallest lexicographic string.
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Fig. 8. Canonical labeling and folding

Figure 8 illustrates the canonical folding of A4, which corresponds to the
PES P̄ in Fig. 5. A4 shows the order γ̂ assigned by nauty. The combinable sets
of events in A4 are {{b(1), b(2)},{c(3), c(4)},{d(5), d(6)},{d(7), d(8)}}, and
from Definition 8 we know that {b(1), b(2)} takes precedence over the others.
The folding of {b(1), b(2)} is depicted in Fig. 8(b). Note that a fresh event b
is added, replacing the set {b(1), b(2)}, and the value 9 is associated to this
event in γ̂. The values added to γ̂ are monotonically increased. Finally, Fig. 8(c)
depicts the minimal and canonical AES. In this particular case, it was necessary
to keep two events with label c and two with label d to preserve the behavior.
The following proposition shows that the folding of an AES is canonical.

Proposition 1. Let A1 = ⟨E1,≤1,↗1, λ1⟩ and A2 = ⟨E2,≤2,↗2, λ2⟩ be two iso-
morphic AESs and, γ̂1 ∶ E1 → N0 and γ̂2 ∶ E2 → N0 be the canonical order for E1

and E2, correspondingly. Then the deterministic folding of A1 and A2 produces
a canonical AES, such that f(A1)+X is isomorphic to f(A2)+X .

4.2 Finite representation of cyclic behavior

A fundamental problem with cyclic process models is that their branching pro-
cesses may easily get unboundedly large. Engelfriet [16] showed that every Petri
net has a unique maximal branching process up to isomorphism, the so-called
unfolding of the net. McMillan [21] and then Esparza et al. [22] introduced so-
phisticated strategies for truncating the unfolding to a finite level, thus getting
what is referred to as the complete unfolding prefix (CP). Later, the authors
in [23] introduced a framework to generalize previous work and to defined the
notion of canonical unfolding prefixes. Our own work relies on such a framework.
In the following we restrict ourselves to Petri nets without duplicate tasks.

Consider the net system N1 and the complete unfolding prefix β1 presented
in Fig. 9. Note that both b1 and b4 correspond to the place p1 in N1. To compute
the complete unfolding prefix, we start applying the inductive rules described in
Fig. 3. In this case, however, it is possible to stop unfolding once we reach b2
and b4 because any addition to the prefix would duplicate information already
represented there. For this reason, events b and c are called cutoff events. Al-
though it has been proved that the complete unfolding prefix represents all the
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Fig. 9. Petri net and two different unfoldings

behavior of the original net system [22], this prefix does not explicitly contain
the information that we require to diagnose the behavioral differences of business
processes. For instance, the fact that c causally precedes b and d is not explicitly
represented in the prefix. Therefore, we require a larger prefix of the branching
process that makes explicit all the causal relations. In the case of the net system
N1 in Fig. 9(a) the required unfolding prefix is β2, (Fig. 9(c)).

In order to compute a unfolding prefix as the one required for comparison
of process models, we define new criteria to identify cutoff events. To this end,
we use the notion cutting context introduced in [23]. The cutting context is
formally defined as the tuple Θ = (≈,⊲,C) where ≈ is an equivalence relation
over configurations, ⊲ is a total order over configurations, and C is the set of
configurations used at the time of the computation of the unfolding prefix. E.g.,
the cutting context used in McMillan [21] is ΘMcMillan = (≈mark,⊲size,Cloc),
where ≈mark equates two configurations when they produce the same marking,
⊲size is the total order induced by the size of configurations, and Cloc = {⌊e⌋ ∣ e ∈
E} is the set of local configurations. Note that, the complete unfolding prefix
β1 can also be computed by using McMillan’s cutting context. In fact, if we
consider the local configurations ⌊c⌋ = {a, τ, c} and ⌊a⌋ = {a}, then one can easily
check that Mark(⌊a⌋) =Mark(⌊c⌋) = {p1}. Moreover, since ∣⌊a⌋∣ < ∣⌊c⌋∣, then one
should conclude that event c is a cutoff event. The cutting context in Esparza et
al. [22], denoted ΘERV = (≈mark,⊲slf ,Cloc), differs from that in [21] only for the
definition of the partial order ⊲slf , which is refined by considering action labels
thus leading to more cut-offs and smaller prefixes (see [22] for details). For our
purposes, consider a cutting context which is a modification of ΘERV with a
refined equivalence relation over configurations.

Definition 9 (≈Pred). Let β = (B,E,G, ρ) be a branching process. A pair of
configurations C1,C2 ∈ Conf(β) are equivalent, represented as C1 ≈Pred C2, iff
eMark(C1) = eMark(C2), where
– eCut(C) = {⟨b, ⌊●b⌋⟩ ∣ b ∈ Cut(C)}, and
– eMark(C) = {⟨ρ(b), ρ(⌊●b⌋)⟩ ∣ ⟨b, ⌊●b⌋⟩ ∈ eCut(C)}.



12

We define our cutting context as ΘPred = (≈Pred,⊲slf ,Cloc). Khomenko et
al. [23] also offers a framework for showing that the unfolding prefix generated
by a cutting context ensures canonicity, finiteness and completeness. To this
end, we need to prove that the equivalence ≈Pred and the adequate order ⊲slf
are preserved by finite configuration extensions. Esparza et al [22] showed that
this property holds for ⊲slf . The following proposition shows that the property
also holds for ≈Pred.

Proposition 2. Let β = (B,E,G, ρ) be the branching process of a net system
S = (N,M0) and C,C ′ ∈ Conf(β) be a pair of configurations, s.t. that C ≈Pred
C ′. Therefore, for every suffix V of C, there exists a finite suffix V ′ of C ′ s.t.:

C ′ ⊕ V ′
≈Pred C ⊕ V

The following proposition shows that the canonical unfolding prefix con-
structed with ΘPred contains all the causal relations that would be exhibited in
the (possibly infinite) unfolding of a business process with cycles.

Proposition 3 (Completeness of transitive causal relation). Let β =
(B,E,G, ρ) be the full branching process of a net system S = (N,M0), ΘPred =
(≈Pred,⊲slf ,Cloc) be the cutting context and βΘ = (B′,E′,G′, ρΘ) be the CP
unfolding constructed by ΘPred. Finally, let E′′

Θ be the set of cut-offs computed by
the cutting context. Then, the unfolding prefix βΘ contains the distinct transitive
causal dependencies, such that for any pair of events e1, e2 ∈ E ∶ e1 < e2 then

∃e′1, e′2 ∈ E′ ∶ e′1 < e′2, where ρ(e1) = ρΘ(e′1) and ρ(e2) = ρΘ(e′2).
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Fig. 10. Sample net systems

Unfortunately, the cutting context ΘPred does
not always produce a prefix that is canonical for
business process comparison. For instance, the two
net systems presented in Figure 10 are visible-
pomset equivalent. However, the presence of silent
transitions leads to unfolding prefixes with larger
duplication in case of N4. In the current form, the
behavior-preserving folding technique that we rely
on will not merge causally related events, e.g. as in
the unfolding of N4, because it prevents cycles in
the AES. The problem of computing a canonical
folding of such cycles is left as future work.

Repetitions. We now show how to identify the
repetitive behavior, given the canonical unfolding
prefix induced by ΘPred. Intuitively, we can say
that a transition t in a net system is part of repeti-
tive behavior iff there exists at least one configura-
tion on which two events associated to transition
t occur in causal relation. This intuition is captured in the following definition:
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Definition 10 (Repetitive behavior). Let β = (B,E,G, ρ) be the unfolding
prefix induced by ΘPred for a net N = (P,T,F, λ). The repetitive behavior of N
is defined as R = {ρ(e1) ∣ ∃C ∈ Conf(β). e1, e2 ∈ C ∧ ρ(e1) = ρ(e2) ∧ e1 < e2}.

It can be easily checked that the sets {e0, e1, e4}, {e0, e2, e6} and {e0, e2, e5,
e11, e14} are configurations in the unfolding prefix β2 from Fig. 9(c). From the
discussion above, we can conclude that b is part of repetitive behavior, in spite
of the fact that there is a configuration that contains a single event carrying the
label b. Moreover, we can also see that there exist at least one configuration on
which no event labeled b occurs. This means that the task b will be observed
zero or more times. In general, tasks participating in repetitive behavior can
be observed either “0 or more times” (denoted as “∗”) or “1 or more times”
(denoted as “+”). We will use the marker “0” for tasks that do not participate
in repetitive behavior. The following definition captures the intuition above.

Definition 11 (Partitions of repetitive behavior). Let β = (B,E,G, ρ) be
the unfolding prefix induced by ΘPred for net system S = (N,M0). The constant
behavior K is defined as K = %(⋂MaxConf(β)). Therefore, the partitions of
repetitive behavior are defined as:
– 0 = {e ∣ e ∈ E ∧ ρ(e) ∉R}
– + = {e ∣ e ∈ E ∧ ρ(e) ∈R ∩K}
– ∗ = {e ∣ e ∈ E ∧ ρ(e) ∈R ∧ e ∉ +}

4.3 Comparison

a

c′

b

c d′

d

(a) A5

a

c′

b

c d′

d

(b) A6

Fig. 11. Foldings and optimal matching (hinted
by the position) of the AESs of to processes in
the running example

The comparison of process mod-
els happens on a subset of events,
with the remaining events be-
ing discarded. We keep all the
events which carry labels that
are present in both process mod-
els. Moreover, since a single task
may have multiple events as-
sociated, we compute an opti-
mal matching, with well-known
methods [1], on the set of events
from both process models and
discard the subset of events that
does not make part of the match-
ing. As discussed before, if two
AESs are isomorphic then they
must be diagnosed as behav-
iorally equivalent. In this work we adopt visible pomset equivalence [17]6. It

6 Due to the presence of silent transitions, we use a weaker notion of equivalence than
the one adopted in [5].
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is only when two AESs are not isomorphic that we have to diagnose the dif-
ferences. Once the optimal matching is computed, the comparison of business
processes happens in three stages: (1) diagnosis over the set of events in the
optimal matching, (2) diagnosis on repetitive behavior, and (3) diagnosis on the
set of unmatched events.

The diagnostic of the differences of behavior can be represented in a square
matrix of order n, where n is the number of events in the optimal matching. To
this end, we define the following differencing operator.

Definition 12 (Symmetric difference of AES behavior relations). Let
A1 = (E1, ≤1, ↗1, λ1) and A2 = (E2, ≤2, ↗2, λ2) be labeled event structures,
and let ΨA1 and ΨA2 be their corresponding behavior relations. Let I ∶ E′

1 → E′
2

is the mapping function from A1 to A2 given by the graph matching algorithm,
such that E′

1 ⊆ E1 and E′
2 ⊆ E2.

Let (e1, e2), (e′1, e′2) ∈ I be event matchings. The symmetric difference of ΨA1

and ΨA2 , denoted ΨA1 △ ΨA2 , is defined as follows:
ΨA1 △ ΨA2 [(e1, e2), (e′1, e′2)] =

{ ⋅ if ΨA1[e1, e′1] = ΨA2[e2, e′2]
(ΨA1[e1, e′1], ΨA2[e2, e′2]) if ΨA1[e1, e′1] ≠ ΨA2[e2, e′2]

a b c c′ d d′

a . . . . . .

b . (∗,0) . . . .

c . . (∗,0) . (#,↗) .

c′ . . . (∗,0) . (↗,<)

d . . . . . .

d′ . . . . . .

Fig. 12. ΨA5 △ ΨA6

Figure 11 shows the AESs
of the sample process models in
Fig. 1, projected to the subset
of events (and behavior relations)
in the optimal matching. Fig-
ure 12, in turn, shows the sym-
metric differencing of A5 and A6.
Since cycles of asymmetric con-
flict hint a sort of symmetric con-
flict, in the matrix we prefer to
use symmetric conflict to high-
light this subtle difference, e.g.,
ΨA5 △ ΨA5[(c, d), (c, d)] = (#,↗).

Given the intuitive interpretation of the behavior relations represented in
an AES, it is possible to use the following statements to describe the eventual
differences in behavior:
– Causality: “task a occurs before task b”.
– Asymmetric conflict: “task a can occur before task b, or a can be skipped”.
– Conflict: “task a and task b are mutually exclusive”.
– Concurrency: “task a and task b occur in parallel”.

Similarly, for repetitive activities, we say:
– 0: “it is not repeated any time”,
– +: “activitiy a can occur 1 or more times”, and
– ∗: “activity a can occur 0 or more times”.

It is often the case that the feedback requires further information to under-
stand the context on which a behavior difference arises. One possibility would
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be to present the set of runs on which a particular event occurs. However, the
amount of information might be overwhelming. Therefore, we include in the
feedback only the set of events that are in direct causal relation with the event
giving rise to the difference. Based on the above considerations, the following are
examples of verbalization for differences encountered from the matrix in Fig. 12:
– c,d = (#,↗): In model 1, there is a state after the execution of c where d

and c are mutually exclusive; whereas in model 2, there is a state after the
execution of b where c can occur before d, or c can be skipped

– c′,d′ = (↗,<): In model 1, there is a state after the execution of a where c
can occur before d, or c can be skipped; whereas in model 2, there is a state
after the execution of a where c precedes d

– b(∗,0): Task b may occur many times in model 1; whereas in model 2, it is
not repeated any time

– c(∗,0): Task c may occur many times in model 1; whereas in model 2, it is
not repeated any time
In the case of tasks with repetitive behavior, one event is randomly chosen

and the feedback is generated with respect to this event (note that the feedback
from other instances would be the same). In the last step, we need to produce
the feedback for the set of unmatched events. In this case, we also include the
set of direct causally preceding events to give a context in the feedback. For the
running example, the feedback would be:
– There is an occurrence of b after c in model 1 but not in model 2
– There is an occurrence of c after b in model 1 but not in model 2

5 Conclusions and future work

We present a method for comparing business process models based on behavioral
relations, specifically those supported by AES. The contributions of the paper
are threefold. First, we propose a method to calculate a canonically reduced AES
from an acyclic Petri net. Second, we propose a technique to compute a finite rep-
resentation for repetitive behavior that preserves casual dependencies, although
the latter representation is not canonical as in the acyclic case. Finally, we pro-
pose a verbalization technique to generate difference diagnostics between process
models. The presented techniques are implemented in a prototype tool available
at https://code.google.com/p/fdes/. This tool takes pairs of process models
captured in BPMN notation as input and produces a textual diagnostic of their
differences.

As avenues for future research, we want fine tune the techniques to improve
scalability of the tool. We also foresee an empirical study to assess the usability
of the diagnostics produced by our tool. Finally, we aim at investigating further
the problem of comparison of process models with cycles.
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22. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 30(2) (2002) 285–310

23. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Informatica 40(2) (2003) 95–118


