
Correlating Activation and Target Conditions in
Data-Aware Declarative Process Discovery?

Volodymyr Leno1,2, Marlon Dumas1, and Fabrizio Maria Maggi1

1 University of Tartu, Estonia
{leno,marlon.dumas,f.m.maggi}@ut.ee

2 University of Melbourne, Australia

Abstract. Automated process discovery is a branch of process mining
that allows users to extract process models from event logs. Traditional
automated process discovery techniques are designed to produce proce-
dural process models as output (e.g., in the BPMN notation). However,
when confronted to complex event logs, automatically discovered process
models can become too complex to be practically usable. An alternative
approach is to discover declarative process models, which represent the
behavior of the process in terms of a set of business constraints. These
approaches have been shown to produce simpler process models, espe-
cially in the context of processes with high levels of variability. However,
the bulk of approaches for automated discovery of declarative process
models are focused on the control-flow perspective of business processes
and do not cover other perspectives, e.g., the data, time, and resource
perspectives. In this paper, we present an approach for the automated
discovery of multi-perspective declarative process models able to discover
conditions involving arbitrary (categorical or numeric) data attributes,
which relate the occurrence of pairs of events in the log. To discover such
correlated conditions, we use clustering techniques in conjunction with
interpretable classifiers. The approach has been implemented as a proof-
of-concept prototype and tested on both synthetic and real-life logs.

1 Introduction

Process mining is a family of techniques for analyzing business processes start-
ing from their executions as recorded in event logs [20]. Process discovery is the
most prominent process mining technique. A process discovery technique takes
an event log as input and produces a model without using any a-priori infor-
mation. The dichotomy procedural versus declarative when choosing the most
suitable language to represent the output of a process discovery technique has
been largely discussed [15, 17]: procedural languages can be used for predictable
processes working in stable environments, whereas declarative languages can be
used for unpredictable, variable processes working in highly unstable environ-
ments. A still open challenge in the discovery of declarative process models is to
develop techniques taking into consideration not only the control flow perspec-
tive of a business process but also other perspectives like the data, time, and
resource perspectives.

? Work supported by the Estonian Research Council (IUT20-55)

In the current contribution, we present an approach that tries to address
this challenge. We base our approach on Declare a declarative language to
represent business processes [14]. In particular, we use the multi-perspective ex-
tension of Declare, MP-Declare, presented in [5]. The proposed approach
can be seen as a step forward with respect to the one presented in [12]. In this
preliminary work, the discovered models include data conditions to discriminate
between cases in which a constraint is satisfied and cases in which the constraint
is violated. For example, in a loan application process, we could discover a con-
straint telling that the submission of an application is eventually followed by a
medical history check when the submission has an amount higher than 100 000
euros. Otherwise, the medical check is not performed. In the example above, we
have that a response Declare constraint (the submission of an application is
eventually followed by a medical history check) is satisfied only when a certain
condition on the payload of the activation (on the amount associated to the
submission of the application) is satisfied.

In this paper, we present an approach to infer two correlated conditions on
the payloads of the activation (activation condition) and of the target (target
condition) of a constraint. For example, we can discover behaviors like: when
an applicant having a salary lower than 24 000 euros per year submits a loan
application, eventually an assessment of the application will be carried out, and
the type of the assessment is complex. The approach starts with the discovery of
a set of frequent constraints. A frequent constraint is a constraint having a high
number of constraint instances, i.e., pairs of events (one activation and one tar-
get) satisfying it. Starting from the constraint instances of a frequent constraint,
the algorithm clusters the target payloads to find groups of targets with simi-
lar payloads. Then, these groups are used as labels for a classification problem.
These labels together with the features extracted from the activation payloads
are used to train an interpretable classifier (a decision tree). This procedure
allows for finding correlations between the activation payloads and the target
payloads. The proposed technique is agnostic on how the input set of frequent
constraints is derived. In the context of this paper, we identify these constraints
using the semantics of MP-Declare. The approach has been validated with
several synthetic logs to show its ability to rediscover behaviors artificially in-
jected in the logs and its scalability. In addition, the approach has been applied
to 6 real-life logs in the healthcare and public administration domains.

The paper is structured as follows. Section 2 provides the necessary back-
ground to understand the rest of the paper. Section 3 presents an exemplifying
MP-Declare model. Section 4 illustrates the proposed discovery approach and
Section 6 its evaluation. Finally, Section 7 provides some related work, and Sec-
tion 8 concludes the paper and spells out directions for future work.

2 Preliminaries

In this section, we first introduce the XES standard (Section 2.1), then we give
some background knowledge about Declare (Section 2.2) and MP-Declare
(Section 2.3).

Table 1: Semantics for Declare templates
Template LTL semantics Activation

responded existence G(A→ (OB ∨ FB)) A

response G(A→ FB) A
alternate response G(A→ X(¬AUB)) A
chain response G(A→ XB) A

precedence G(B → OA) B
alternate precedence G(B → Y(¬BSA)) B
chain precedence G(B → YA) B

not responded existence G(A→ ¬(OB ∨ FB)) A
not response G(A→ ¬FB) A
not precedence G(B → ¬OA) B
not chain response G(A→ ¬XB) A
not chain precedence G(B → ¬YA) B

2.1 The XES Standard

The starting point for process mining is an event log. XES (eXtensible Event
Stream) [1, 22] has been developed as the standard for storing, exchanging and
analyzing event logs. Each event in a log refers to an activity (i.e., a well-defined
step in some process) and is related to a particular case (i.e., a process instance).
The events belonging to a case are ordered and can be seen as one “run” of the
process (often referred to as a trace of events). Event logs may store additional
information about events such as the resource (i.e., person or device) executing or
initiating the activity, the timestamp of the event, or data elements recorded with
the event. In XES, data elements can be event attributes, i.e., data produced
by the activities of a business process and case attributes, namely data that
are associated to a whole process instance. In this paper, we assume that all
attributes are globally visible and can be accessed/manipulated by all activity
instances executed inside the case.

Let Σ be the set of unique activities in the log. Let t ∈ Σ∗ be a trace over
Σ, i.e., a sequence of activities performed for one process case. An event log E
is a multi-set over Σ∗, i.e., a trace can appear multiple times.

2.2 Declare

Declare is a declarative process modeling language originally introduced by
Pesic and van der Aalst in [14]. Instead of explicitly specifying the flow of the
interactions among process activities, Declare describes a set of constraints
that must be satisfied throughout the process execution. The possible orderings
of activities are implicitly specified by constraints and anything that does not
violate them is possible during execution. In comparison with procedural ap-
proaches that produce “closed” models, i.e., all that is not explicitly specified is
forbidden, Declare models are “open” and tend to offer more possibilities for
the execution. In this way, Declare enjoys flexibility and is very suitable for
highly dynamic processes characterized by high complexity and variability due
to the changeability of their execution environments.

A Declare model consists of a set of constraints applied to activities. Con-
straints, in turn, are based on templates. Templates are patterns that define
parameterized classes of properties, and constraints are their concrete instan-
tiations (we indicate template parameters with capital letters and concrete ac-
tivities in their instantiations with lower case letters). They have a graphical
representation understandable to the user and their semantics can be formalized
using different logics [13], the main one being LTL over finite traces, making them
verifiable and executable. Each constraint inherits the graphical representation
and semantics from its template. Table 1 summarizes some Declare templates
(the reader can refer to [21] for a full description of the language). Here, the
F, X, G, and U LTL (future) operators have the following intuitive meaning:
formula Fφ1 means that φ1 holds sometime in the future, Xφ1 means that φ1
holds in the next position, Gφ1 says that φ1 holds forever in the future, and,
lastly, φ1Uφ2 means that sometime in the future φ2 will hold and until that
moment φ1 holds (with φ1 and φ2 LTL formulas). The O, and Y LTL (past)
operators have the following meaning: Oφ1 means that φ1 holds sometime in the
past, and Yφ1 means that φ1 holds in the previous position.

The major benefit of using templates is that analysts do not have to be aware
of the underlying logic-based formalization to understand the models. They work
with the graphical representation of templates, while the underlying formulas
remain hidden. Consider, for example, the response constraint G(a→ Fb). This
constraint indicates that if a occurs, b must eventually follow. Therefore, this
constraint is satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and
t3 = 〈a, b, c, b〉, but not for t4 = 〈a, b, a, c〉 because, in this case, the second
instance of a is not followed by a b. Note that, in t2, the considered response
constraint is satisfied in a trivial way because a never occurs. In this case, we
say that the constraint is vacuously satisfied [10]. In [6], the authors introduce
the notion of behavioral vacuity detection according to which a constraint is non-
vacuously satisfied in a trace when it is activated in that trace. An activation
of a constraint in a trace is an event whose occurrence imposes, because of that
constraint, some obligations on other events (targets) in the same trace. For
example, a is an activation for the response constraint G(a → Fb) and b is a
target, because the execution of a forces b to be executed, eventually. In Table 1,
for each template the corresponding activation is specified.

An activation of a constraint can be a fulfillment or a violation for that con-
straint. When a trace is perfectly compliant with respect to a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the response constraint G(a→ Fb). In trace t1, the constraint is activated and
fulfilled twice, whereas, in trace t3, the same constraint is activated and fulfilled
only once. On the other hand, when a trace is not compliant with respect to a
constraint, an activation of the constraint in the trace can lead to a fulfillment
but also to a violation (at least one activation leads to a violation). In trace t4,
for example, the response constraint G(a→ Fb) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs) and the second activation
leads to a violation (b does not occur subsequently). An algorithm to discrimi-
nate between fulfillments and violations for a constraint in a trace is presented
in [6].

Table 2: Semantics for Multi-Perspective Declare constraints
Template MFOTL Semantics

responded existence G(∀x.((A ∧ ϕa(x))→ (OI(B ∧ ∃y.ϕc(x, y)) ∨ FI(B ∧ ∃y.ϕc(x, y)))))

response G(∀x.((A ∧ ϕa(x))→ FI(B ∧ ∃y.ϕc(x, y))))
alternate response G(∀x.((A ∧ ϕa(x))→ X(¬(A ∧ ϕa(x))UI(B ∧ ∃y.ϕc(x, y)))))
chain response G(∀x.((A ∧ ϕa(x))→ XI(B ∧ ∃y.ϕc(x, y)))

precedence G(∀x.((B ∧ ϕa(x))→ OI(A ∧ ∃y.ϕc(x, y)))
alternate precedence G(∀x.((B ∧ ϕa(x))→ Y(¬(B ∧ ϕa(x))SI(A ∧ ∃y.ϕc(x, y))))
chain precedence G(∀x.((B ∧ ϕa(x))→ YI(A ∧ ∃y.ϕc(x, y)))

not responded existence G(∀x.((A ∧ ϕa(x))→ ¬(OI(B ∧ ∃y.ϕc(x, y)) ∨ FI(B ∧ ∃y.ϕc(x, y)))))
not response G(∀x.((A ∧ ϕa(x))→ ¬FI(B ∧ ∃y.ϕc(x, y))))
not precedence G(∀x.((B ∧ ϕa(x))→ ¬OI(A ∧ ∃y.ϕc(x, y)))
not chain response G(∀x.((A ∧ ϕa(x))→ ¬XI(B ∧ ∃y.ϕc(x, y)))
not chain precedence G(∀x.((B ∧ ϕa(x))→ ¬YI(A ∧ ∃y.ϕc(x, y)))

Tools implementing process mining approaches based on Declare are pre-
sented in [11]. The tools are implemented as plug-ins of the process mining
framework ProM.

2.3 Multi-Perspective Declare

In this section, we illustrate a multi-perspective version of Declare (MP-
Declare) introduced in [5]. This semantics is expressed in Metric First-Order
Linear Temporal Logic (MFOTL) and is shown in Table 2. We describe here the
semantics informally and we refer the interested reader to [5] for more details.
To explain the semantics, we have to introduce some preliminary notions.

The first concept we use here is the one of payload of an event. Consider,
for example, that the execution of an activity Submit Loan Application
(S) is recorded in an event log and, after the execution of S at timestamp
τS , the attributes Salary and Amount have values 12 500 and 55 000. In this
case, we say that, when S occurs, two special relations are valid event(S) and
pS(12 500, 55 000). In the following, we identify event(S) with the event itself S
and we call (12 500, 55 000), the payload of S.

Note that all the templates in MP-Declare in Table 2 have two parame-
ters, an activation and a target (see also Table 1). The standard semantics of
Declare is extended by requiring two additional conditions on data, i.e., the
activation condition ϕa and the correlation condition ϕc, and a time condition.
As an example, we consider the response constraint “activity Submit Loan
Application is always eventually followed by activity Assess Application”
having Submit Loan Application as activation and Assess Application as
target. The activation condition is a relation (over the variables corresponding
to the global attributes in the event log) that must be valid when the activation
occurs. If the activation condition does not hold the constraint is not activated.
The activation condition has the form pA(x) ∧ ra(x), meaning that when A oc-
curs with payload x, the relation ra over x must hold. For example, we can say
that whenever Submit Loan Application occurs, and the amount of the loan
is higher than 50 000 euros and the applicant has a salary lower than 24 000
euros per year, eventually an assessment of the application must follow. In case

Submit Loan Application occurs but the amount is lower than 50 000 euros
or the applicant has a salary higher than 24 000 euros per year, the constraint is
not activated.

The correlation condition is a relation that must be valid when the target
occurs. It has the form pB(y) ∧ rc(x, y), where rc is a relation involving, again,
variables corresponding to the (global) attributes in the event log but, in this
case, relating the payload of A and the payload of B. A special type of correlation
condition has the form pB(y)∧rc(y), which we call target condition, since it does
not involve attributes of the activation.

In this paper, we aim at discovering constraints that correlate an activation
and a target condition. For example, we can find that whenever Submit Loan
Application occurs, and the amount of the loan is higher than 50 000 euros
and the applicant has a salary lower than 24 000 euros per year, then eventually
Assess Application must follow, and the assessment type will be Complex
and the cost of the assessment higher than 100 euros.

Finally, in MP-Declare, also a time condition can be specified through
an interval (I = [τ0, τ1)) indicating the minimum and the maximum temporal
distance allowed between the occurrence of the activation and the occurrence of
the corresponding target.

3 Running Example

Fig. 1 shows a fictive MP-Declare model that we will use as a running example
throughout this paper. This example models a process for loan applications in
a bank. When an applicant submits a loan application with an amount higher
than 50 000 euros and she has a salary lower than 24 000 euros per year, even-
tually an assessment of the application will be carried out. The assessment will
be complex and the cost of the assessment higher than 100 euros. This behavior
is described by response constraint C1 in Fig. 1. In case the applicant submits
a loan application with an amount lower than 50 000 euros or she has a salary
higher than 24 000 euros per year, eventually a simple assessment will be carried
out and the cost of the assessment will be lower than or equal to 100 euros. This
behavior is described by response constraint C3. When an applicant submits a
loan application with an amount higher than 100 000 euros, eventually a com-
plex assessment with cost higher than 100 euros is performed. This behavior is
described by response constraint C2 in Fig. 1. If the outcome of an application
assessment is notified and the result of the outcome is accepted, then this event
is always preceded by an application submission whose applicant has a salary
higher than 12 000 euros per year. This behavior is described by precedence con-
straint C6. Outside the application assessment there are 2 additional checks that
can be performed before or after the assessment: the career check and the medi-
cal history check. A career check with a coverage lower than 15 years is required
if the application assessment is simple (responded existence constraint C5). The
career of the applicant should be checked with a coverage higher than 15 years
if the application assessment is complex (responded existence constraint C4).
If the career check covers less than 5 years, a medical history check should be
performed immediately after and its cost is lower than 100 euros (chain response

Fig. 1: Running Example.

constraint C7). If the career check covers more than 5 years, the medical history
check is more complex and more expensive (its cost is higher than 100 euros).
This behavior is described by chain response constraint C8 in Fig. 1.

4 Discovery Approach

The proposed approach is shown in Fig. 2. The approach starts with the discov-
ery of a set of frequent constraints. A frequent constraint is a constraint having a
high number of constraint instances, i.e., pairs of events (one activation and one
target) satisfying it. In addition, for each frequent constraint, also activations
that cannot be associated to any target (representing a violation for the con-
straint) are identified. Feature vectors are extracted from the payloads of these
activations and associated with a label indicating that they correspond to vio-
lations of the constraint (violation feature vectors). (Unlabeled) feature vectors
are also extracted by using the payloads of targets of the constraint instances
identified in the first phase. These feature vectors are then clustered using DB-
SCAN clustering [8] to find groups of targets with similar payloads. Then, these
clusters are used as labels for a classification problem. These labels together with
the features extracted from the activation payloads are used to generate a set
of fulfillment feature vectors. Violation and fulfillment feature vectors are used
to train a decision tree. This procedure allows for finding correlations between
the activation payloads and the target payloads. Note that the core part of our
approach (highlighted with a blue rectangle in Fig. 2) is independent of the pro-
cedure used to identify frequent constraints and can be used in combination with
other techniques for frequent constraint mining (also based on semantics that go
beyond MP-Declare).

4.1 Frequent Constraints Discovery

The first step of our discovery algorithm is to identify a set of frequent con-
straints. In particular, the user specifies a Declare template (e.g., response)

Fig. 2: Proposed Approach.

and, starting from the input template and the input log, a set of candidate con-
straints is instantiated. To generate the set of candidate constraints, we use the
idea behind the well-known Apriori algorithm presented in [4]. In particular, the
algorithm first searches for frequent individual activities in the input log. We
call the absolute frequency of an activity in the log activity support. Individual
activities with an activity support lower than an input threshold suppmin are
filtered out.

The input template is instantiated with all the possible combinations of fre-
quent activities thus identifying a set of candidate constraints. Note that, unlike
the classical Apriori algorithm that works with unordered itemsets, the order in-
side a candidate constraint plays an important role (i.e., Response(S,A) is not
the same as Response(A,S)). In particular, we work with pairs where the first
element is the activation of the constraint and the second element is the target.
At this point, the algorithm evaluates, for each candidate constraint, the number
of its constraint instances in the log. We call this measure constraint support. In
particular, this measure is calculated by creating two vectors idx1 and idx2 that
represent the activation and target occurrences. Then, the algorithm processes
each trace in the input log to find the events corresponding either to the acti-
vation or the target of the candidate constraint, and their indexes are collected
in the corresponding vector. For example, for trace t = SSSASASSA and Re-
sponse(S,A), we have idx1 = (1, 2, 3, 5, 7, 8) and idx2 = (4, 6, 9). Then, based
on the template, the number of constraint instances is computed as follows:

– (Not) Response. For each element idx1i from the activation vector idx1 we take
the first element idx2j from the target vector idx2 that is greater than idx1i.

– (Not) Chain Response. Here, we check the existence of pairs (i,j) from idx1 and
idx2 where j − i = 1.

– Alternate Response. In this case, for each element idx1i from idx1, we take the
first element idx2j from idx2 that is greater than idx1i. However, we identify a
constraint instance only if there are no elements from idx1 that lie between idx1i

and idx2j .
– Precedence. For precedence, chain precedence and alternate precedence, the logic

is almost the same as for their response counterparts. However, for precedence rules,
the idx1 is considered as target vector and idx2 as activation vector. In addition,
the idx1 vector has to be reversed.

– (Not) Responded Existence. We associate each element idx1i from the activa-
tion vector idx1, with first element from the target vector idx2.

If we enumerate the occurrences of S and A in t, we have t =
S1S2S3A1S4A2S5S6A3. The constraint instances of the standard Declare tem-
plates instantiated with activities (A,S) and (S,A) are listed in Table 3 and in

Table 3: Constraint instances of type (S,A) in trace t

Candidate Constraint Constraint Instances
Response(S,A) {S1A1}, {S2A1}, {S3A1}, {S4A2}, {S5A3}, {S6A3}
Chain Response(S,A) {S3A1}, {S4A2}, {S6A3}
Alternate Response(S,A) {S3A1}, {S4A2}, {S6A3}
Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Chain Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Alternate Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Responded Existence(S,A) {S1A1}, {S2A1}, {S3A1}, {S4A1}, {S5A1}, {S6A1}

Table 4: Constraint instances of type (A,S) in trace t

Candidate Constraint Constraint Instances
Response(A,S) {A1S4}, {A2S5}
Chain Response(A,S) {A1S4}, {A2S5}
Alternate Response(A,S) {A1S4}, {A2S5}
Precedence(A,S) {A1S4}, {A2S5} {A2S6}
Chain Precedence(A,S) {A1S4}, {A2S5}
Alternate Precedence(A,S) {A1S4}, {A2S5}
Responded Existence(A,S) {A1S1}, {A2S1}, {A3S1}

Table 4. Note that, these procedures can also be used to identify constraint vi-
olations (i.e., activations that cannot be associated to any target). We filter out
candidate constraint with a support that is lower than suppmin thus obtaining a
set of frequent constraints. The constraint instances of the frequent constraints
are used for creating fulfillment feature vectors. Activations that do not have a
target are used to generate violation feature vectors. We stress again that these
procedures only provide an example of how to identify temporal patterns in a
log. Any semantics (also beyond standard Declare) can be used to identify
frequent constraints.

4.2 Feature Vectors Extraction

Violation feature vectors consist of the payloads of activations of frequent con-
straints that do not have a corresponding target and are labeled as “violated”.
Assume to have a constraint instance where the activation Submit Loan Appli-
cation has a payload (12 500, 55 000) (see section 2.3). If this activation cannot
be associated to any target, we generate the violation feature vector:

Vviol = [12 500; 55 000; violated]. (1)

If the same activation is part of a constraint instance of a frequent constraint
with target Assess Application and payload (Complex, 140), we generate the
(unlabeled) fulfillment feature vector:

Vful = [Complex; 140]. (2)

The violation feature vectors are used for interpretable classification (see sec-
tion 4.4). Fulfillment feature vectors are used for clustering with DBSCAN.

4.3 Clustering with DBSCAN

Starting from the fulfillment feature vectors, we use the Density Based Spatial
Clustering of Application with Noise (DBSCAN) [8] to find groups of payloads
that are similar.

Given a set of points in some space DBSCAN groups together vectors that
are closely packed, marking as outliers vectors that lie in low-density regions. To
do this, we use the Gower distance

d(i, j) =
1

n

n∑
f=1

d
(f)
i,j , (3)

where n denotes the number of features, while d
(f)
i,j is a distance between data

points i and j when considering only feature f. d
(f)
i,j is a normalized distance. For

nominal attribute values, we calculate the normalized Edit Levenshtein distance
[9]. Edit distance is a way of quantifying how dissimilar two strings are by count-
ing the minimum number of operations (i.e., removal, insertion, substitution of
a character) required to transform one string into other. The normalized edit
distance is calculated as:

d
(f)
i,j =

EditDistance(x
(f)
i , x

(f)
j)

maxEditDistance(x
(f)
i , x

(f)
j)

. (4)

For interval scaled attribute values, we use the distance:

d
(f)
i,j =

|x(f)i − x(f)j |
max−min

, (5)

where min and max are the maximum and minimum observed values of attribute
f. For boolean attribute values, we use the distance:

d
(f)
i,j =

{
0, if x

(f)
i = x

(f)
j

1, if x
(f)
i 6= x

(f)
j .

(6)

When obtained the clusters, we project the target payload attributes in or-
der to describe the characteristics of the elements of the clusters. For numerical
attributes, the projection results in the range [min-max], where min and max
are the minimum and maximum values of the attribute. When projecting onto
categorical attributes, we take the most frequent value. For example, Fig. 3a
shows two clusters associated to a frequent constraint with target Assess Ap-
plication. One of them is characterized by the condition Assessment Cost =
[10 − 100] & Assessment Type = Simple, while the second one by the condi-
tion Assessment Cost = [101 − 198] & Assessment Type = Complex. These
clusters/conditions are used as labels to build labeled fulfillment feature vectors.
Assume again to have a constraint instance where the activation Submit Loan
Application has a payload (12 500, 55 000). If this activation is part of a con-
straint instance with target Assess Application and payload (Complex, 140),
we generate the labeled fulfillment feature vector:

V ′ful = [12 500; 55 000;Cluster2]. (7)

Labeled fulfillment feature vectors and violation feature vectors are used for
interpretable classification using decision trees.

(a) Clusters projections (b) Interpretable classification

Fig. 3: Core steps of the proposed approach.

4.4 Interpretable Classification

After having created labeled fulfillment feature vectors and violation feature
vectors, we use them to train a decision tree. The C4.5 algorithm is used to
perform the classification [16]. The data is split in a way that the resulting
parts are more homogenous. The algorithm uses entropy and information gain
to choose the split. We can express the overall entropy as:

H(Y) = −
∑

a∈Dom(Y)

Pr[Y = a] ∗ log2(Pr[Y = a]). (8)

The information gain can be calculated as:

Gain = HS(Y)−
k∑

i=1

|Si|
|S|
∗HSi(Y), (9)

where |S| the size of the dataset and |Si| is the size of the split i. HS(Y) denotes
the entropy computed over S and HSi(Y) denotes the entropy computed over
Si. The information gain measures how much the split makes the target value
distribution more homogenous. We select the split with maximal information
gain. The splitting is stopped either when information gain is 0 (we will not
improve the results when splitting) or when the size of the split is smaller than
an input support threshold.

Fig. 3b shows a decision tree generated from our running example. Correla-
tions in the activation and target payloads are found by correlating the activation
conditions derived from paths from the root to the leaves of the decision tree
with the target conditions labeling each leaf of the decision tree. For example,

from the path highlighted with thicker arcs in Fig. 3b, we can extract the acti-
vation condition Salary ≤ 24000 & Amount > 50000 & Amount ≤ 100000. If
the frequent constraint was a response constraint, the discovery algorithm pro-
duces the MP-Declare constraint Response(Submit Loan Application,
Assess Application) with activation condition Salary ≤ 24000 & Amount >
50000 & Amount ≤ 100000 and target condition Assessment Cost = [101 −
198] & Assessment Type = Complex.

Each leaf of the decision tree (and therefore each pair of discovered correlated
conditions) is associated with a support and a confidence. Support represents the
number of feature vectors that follow the path from the root to the leaf and that
are correctly classified; confidence is the percentage of vectors correctly classified
with respect to all the vectors following that specific path.

5 Algorithm complexity

The complexity for generating the set of candidate constraints is O(a2), where
a is the number of distinct activities in the log. To calculate the constraint
support of a candidate, we need O(e) time, where e is the size of the log. Thus,
the complexity of the frequent constraints discovery can be computed as T =
O(ae) + O(a2e) = O(a2e). The complexity of the feature vectors extraction is
the same and equal to O(a2e). The average complexity of DBSCAN algorithm
is O(nlog(n)), and O(n2) in the worst case, when the vectors have one feature
[8]. Thus, the total complexity of the DBSCAN clustering is equal to O(mn2) in
the worst case, where m is the number of features (size of the feature vectors)
and n is the number of feature vectors. Since DBSCAN is applied to all frequent
constraints, its complexity is equal to O(a2mn2). In order to avoid the distances
recomputations, a distance matrix of size (n2− n)/2 can be used. However, this
needs O(n2) memory. In general, the runtime cost to construct a balanced binary
tree is O(mnlog(n)), where m is the number of features and n is the number
of feature vectors. Assuming that the subtrees remain approximately balanced,
the cost at each node consists of searching through O(m) to find the feature
that offers the largest reduction in entropy. This has a cost of O(mnlog(n))
at each node, leading to a total cost over the entire tree of O(mn2log(n)).3

Considering the fact that we have a2 candidate constraints, the complexity is
O(a2mn2log(n)). Thus, the total complexity of the algorithm is T = O(a2e) +
O(a2e) +O(a2mn2) +O(a2mn2log(n)) = O(a2mn2log(n)).

6 Experiments

The evaluation reported in this paper aims at understanding the potential of the
proposed discovery approach. In particular, we want to examine the capability
of the discovery approach to rediscover behavior artificially injected into a set of
synthetic logs. In addition, we want to assess the scalability of the approach and
its applicability to real-life datasets. In particular, we investigate the following
three research questions:

3 http://scikit-learn.org/stable/modules/tree.html

Table 5: Experimental results: Rediscovery
Template Activation/Target Activation/Target Condition Support Confidence

(C2) Response Submit Loan Application Amount > 100000 0.17 0.99
Assess Application AssessmentCost = [101− 198] & Assessment Type = Complex

(C3) Response Submit Loan Application Amount ≤ 100000 0.76 0.91
Assess Application Assessment Cost = [10− 100] & Assessment Type = Simple

(C3) Response Submit Loan Application Salary > 24000 & Amount > 50000 &Amount ≤ 100000 0.15 0.95
Assess Application Assessment Cost = [10− 100] & Assessment Type = Simple

(C1) Response Submit Loan Application Salary ≤ 24000 & Amount > 50000 &Amount ≤ 100000 0.05 1.0
Assess Application Assessment Cost = [101− 198] & Assessment Type = Complex

Response Submit Loan Application Amount > 100000 0.09 0.52
Check Career Coverage = [16− 25]

Response Submit Loan Application Amount ≤ 100000 0.75 0.9
Check Career Coverage = [0− 20]

Response Submit Loan Application Salary ≤ 12000 0.23 1.0
Notify Outcome Result = Rejected

Response Submit Loan Application Salary > 12000 0.39 0.5
Notify Outcome Result = Accepted

Response Assess Application Assessment Cost > 100 0.23 1.0
Check Medical History Cost = [101− 199]

Response Assess Application Assessment Cost ≤ 100 0.77 0.99
Check Medical History Cost = [10− 200]

Response Submit Loan Application Amount > 156868 0.048 0.47
Check Medical History Cost = [128− 199]

Response Submit Loan Application Amount ≤ 156868 0.76 0.85
Check Medical History Cost = [10− 200]

(C4) Responded Existence Assess Application Type = Complex 0.22 1.0
Check Career Coverage = [16− 30]

(C5) Responded Existence Assess Application Type = Simple 0.77 0.99
Check Career Coverage ≤ [0− 15]

Precedence Submit Loan Application Result = Rejected 0.61 1.0
Notify Outcome Salary = [1022− 99829] & Amount = [10028− 249847]

(C6) Precedence Submit Loan Application Result 6= Rejected 0.39 1.0
Notify Outcome Salary = [12001− 99229] & Amount = [10267− 248013]

Precedence Submit Loan Application Coverage ≤ 15 0.73 0.95
Check Career Salary = [1022− 99822] & Amount = [10028− 100000]

Precedence Submit Loan Application Coverage > 15 0.04 0.2
Check Career Salary = [2551− 24000] & Amount = [160103− 246486]

Precedence Assess Application Coverage > 15 0.22 1.0
Check Career AssessmentCost = [101− 198] & AssessmentType = Complex

Precedence Assess Application Coverage ≤ 15 0.77 0.99
Check Career AssessmentCost = [10− 100] & AssessmentType = Simple

Precedence Check Career Cost > 100 0.46 0.99
Check Medical History Coverage = [6− 30]

Precedence Check Career Cost ≤ 100 0.33 1.0
Check Medical History Coverage = [0− 5]

Precedence Submit Loan Application AssessmentCost > 100 0.22 0.99
Assess Application Salary = [1145− 24000] & Amount = [50246− 249847]

Precedence Submit Loan Application AssessmentCost ≤ 100 0.76 0.98
Assess Application Salary = [1022− 99829] & Amount = [10028− 100000]

(C8) Chain Response Check Career Coverage > 5 0.46 0.99
Check Medical History Cost = [101− 200]

(C7) Chain Response Check Career Coverage ≤ 5 0.52 1.0
Check Medical History Cost = [10− 100]

– RQ1. Does the proposed approach allow for rediscovering behavior artifi-
cially injected into a set of synthetic logs?

– RQ2. What is the time performance of the proposed approach when applied
to logs with different characteristics?

– RQ3. Is the proposed approach applicable in real-life settings?

RQ1 focuses on the evaluation of the quality of the constraints returned
by the proposed approach. RQ2 investigates, instead, the scalability of the ap-
proach. Finally, RQ3 deals with the validation of the discovery approach in real
scenarios.

(a) Execution Time vs. Num-
ber of Feature Vectors

(b) Execution Time vs. Pay-
load Size

Fig. 4: Experimental results: Scalability.

6.1 Rediscovering Injected Behavior (RQ1)

The most standard approach to test a process discovery algorithm is to artifi-
cially generate a log by simulating a process model and use the generated log to
rediscover the process model. The log used for this experiment was generated by
simulating the model in Fig. 1. The log contains 1 000 cases with 5 distinct activ-
ities (Submit Loan Application, Assess Application, Notify Outcome,
Check Career, Check Medical History).4

The results of the rediscovery are shown in Table 5. The table shows that
the approach manages to rediscover mostly all the constraints that generated the
log. These constraints are among the ones with the highest confidence (0.99 or 1,
highlighted in bold) and are explicitly indicated in the table. The only exception
is constraint C3 (including a disjunctive activation condition) that is included
in the behavior described by 2 discovered constraints with a lower confidence.

6.2 Scalability (RQ2)

The scalability of the approach was tested by generating 5 synthetic logs with
growing number of constraint instances for one specific MP-Declare constraint
C (100, 500, 1 000, 2 000 and 5 000 constraint instances), with a default payload
size of 10 attributes. In addition, we generated 6 synthetic logs with growing
payload sizes (5, 10, 15, 20, 25 and 30 attributes), with a default number of
constraint instances of 1 000 for C. Fig. 4 shows the execution times is in seconds
needed for the rediscovery of C (averaged over 5 runs). The time required for the
discovery from 5 000 feature vectors (with a payload of size 10) is of around 4
minutes and the time required for the discovery from 1 000 feature vectors (with
a payload of size 30) is of around 32 seconds. Therefore, we can say that the
execution times are reasonable when the discovered models are not extremely
large.

4 For generating the log we used the log generator based on MP-Declare available
at https://github.com/darksoullock/MPDeclareLogGenerator.

6.3 Validation in Real Scenarios (RQ3)

For the validation of the proposed approach in real scenarios, we used six datasets
provided for the BPI Challenges 2011 [2] and 2015 [3]. The first dataset is an
event log pertaining to the treatment of patients diagnosed with cancer in a
Dutch academic hospital. The remaining five datasets were provided for the
BPI Challenge 2015 by five different Dutch Municipalities. The logs contain
all building permit applications received over a period of four years. The full
results obtained from these logs are not reported here for space limitations and
can be downloaded from 5. In the hospital log, the most important correlations
link together medical exams and treatments. In the Municipality logs, there are
several correlations between certain actors and the successful completion of a
request handling.

7 Related Work

Two contributions are available in the literature that are close to the work pre-
sented in this paper. They have been presented in [12, 19]. The work in [12] is
similar to the one presented in the current contribution but only consider acti-
vation conditions that discriminate between positive and negative cases without
correlating activation and target conditions.

In [19], the authors present a mining approach that works with Relation-
alXES, a relational database architecture for storing event log data. The rela-
tional event data is queried with conventional SQL. Queries can be customized
and cover the semantics of MP-Declare. Differently from [19], in the current
contribution, we do not check the input log with user-specified queries, but we
automatically identify correlations.

8 Conclusion and Future Work

We presented a technique for the automated discovery of multi-perspective busi-
ness constraints. The technique allows us to discover conditions that relate the
occurrence of pairs of events in the event log. The technique has been imple-
mented as an open-source tool6 and evaluated using both synthetic and real-life
logs. The evaluation shows that the technique is able to rediscover behavior
injected into a log and that it is sufficiently scalable to handle real-life datasets.

As future work, we aim to improve the efficiency of the approach. This can
be done, for example, by using clustering techniques such as Canopy [18] that
can be used when the clustering task is challenging either in terms of dataset
size, or in terms of number of features, or in terms of number of clusters. Finally,
the current approach works also with pure correlation conditions (involving at-
tributes of activation and target together). However, these correlations should be
specified manually as features that can possibly be discovered. Techniques based
on Daikon [7] could help to automatically discover this type of conditions.

5 https://bitbucket.org/volodymyrLeno/correlationminer/downloads/results.pdf
6 Available at https://github.com/volodymyrLeno/CorrelationMinerForDeclare

References

1. IEEE Task Force on Process Mining: XES Standard Definition. 2013.
2. 4TU Data Center. BPI Challenge 2011 Event Log, 2011.
3. 4TU Data Center. BPI Challenge 2015 Event Log, 2015.
4. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In VLDB’94, pages 487–499, 1994.
5. Andrea Burattin, Fabrizio Maria Maggi, and Alessandro Sperduti. Conformance

checking based on multi-perspective declarative process models. Expert Syst. Appl.,
65:194–211, 2016.

6. Andrea Burattin, Fabrizio Maria Maggi, Wil M.P. van der Aalst, and Alessandro
Sperduti. Techniques for a Posteriori Analysis of Declarative Processes. In EDOC,
pages 41–50, Beijing, 2012.

7. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Trans. Software Eng., 27(2):99–123, 2001.

8. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD,
pages 226–231, 1996.

9. Wael H. Gomaa and Aly A. Fahmy. A survey of text similarity approaches. Inter-
national Journal of Computer Applications, 68(13):13–18, 2013.

10. Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model check-
ing. STTT, 4(2):224–233, 2003.

11. Fabrizio Maria Maggi. Declarative process mining with the Declare component of
ProM. In BPM (Demos), 2013.

12. Fabrizio Maria Maggi, Marlon Dumas, Luciano Garćıa-Bañuelos, and Marco Mon-
tali. Discovering data-aware declarative process models from event logs. In BPM,
pages 81–96, 2013.

13. Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani, Paola
Mello, and Sergio Storari. Declarative Specification and Verification of Service
Choreographies. ACM Transactions on the Web, 4(1), 2010.

14. Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. DECLARE: Full
support for loosely-structured processes. In EDOC, pages 287–300, 2007.

15. Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and
Hajo A. Reijers. Imperative versus declarative process modeling languages: An
empirical investigation. In BPM Workshops, pages 383–394, 2011.

16. J. Ross Quinlan. C4.5: Programs for Machine Learning. M. Kaufmann Publishers
Inc., 1993.

17. Hajo A. Reijers, Tijs Slaats, and Christian Stahl. Declarative modeling-An aca-
demic dream or the future for BPM? In BPM, pages 307–322, 2013.

18. Lior Rokach and Oded Maimon. Clustering Methods, pages 321–352. Springer US,
2005.

19. Stefan Schönig, Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan Mendling. Dis-
covery of multi-perspective declarative process models. In ICSOC, pages 87–103,
2016.

20. Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second Edition.
Springer, 2016.

21. Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative work-
flows: Balancing between flexibility and support. Computer Science - R&D,
23(2):99–113, 2009.

22. H. M. W. Verbeek, Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P.
van der Aalst. XES, XESame, and ProM 6. In Information Systems Evolution -
CAiSE Forum 2010, volume 72, pages 60–75.

