
Metaheuristic Optimization
for Automated Business Process Discovery

Adriano Augusto1,2, Marlon Dumas2, and Marcello La Rosa1

1 University of Melbourne, Australia
{a.augusto, marcello.larosa}@unimelb.edu.au

2 University of Tartu, Estonia
marlon.dumas@ut.ee

Abstract. The problem of automated discovery of process models from event
logs has been intensely investigated in the past two decades, leading to a range
of approaches that strike various trade-offs between accuracy, model complexity,
and execution time. A few studies have suggested that the accuracy of automated
process discovery approaches can be enhanced by using metaheuristic optimiza-
tion. However, these studies have remained at the level of proposals without val-
idation on real-life logs or they have only considered one metaheuristics in iso-
lation. In this setting, this paper studies the following question: To what extent
can the accuracy of automated process discovery approaches be improved by ap-
plying different optimization metaheuristics? To address this question, the paper
proposes an approach to enhance automated process discovery approaches with
metaheuristic optimization. The approach is instantiated to define an extension of
a state-of-the-art automated process discovery approach, namely Split Miner. The
paper compares the accuracy gains yielded by four optimization metaheuristics
relative to each other and relative to state-of-the-art baselines, on a benchmark
comprising 20 real-life logs. The results show that metaheuristic optimization
improves the accuracy of Split Miner in a majority of cases, at the cost of execu-
tion times in the order of minutes, versus seconds for the base algorithm.

1 Introduction

The problem of automatically discovering business process models from event logs has
been intensely studied in the past two decades. Research in this field has led to a wide
range of Automated Process Discovery Approaches (APDAs) that strike various trade-
offs between accuracy, model complexity, and execution time [7].

A few studies have suggested that the accuracy of APDAs can be enhanced
by applying optimization metaheuristics. Early studies in this direction considered
population-based metaheuristics, chiefly genetic algorithms [14, 10]. These heuristics
are computationally heavy, requiring execution times in the order of hours to converge
when applied to real-life logs [7]. Another work has considered single-solution-based
metaheuristics such as simulated annealing [21, 15], which are less computationally de-
manding. However, these latter studies have remained at the level of proposals without
validation on real-life logs and comparison of trade-offs between alternative heuristics.

In this setting, this paper studies the following question: to what extent can the ac-
curacy of APDAs be improved by applying single-solution-based metaheuristics? To
address this question, we propose a flexible approach to enhance APDAs by apply-
ing different optimization metaheuristics. The core idea is to perturb the intermediate

2

representation of event logs used by the majority of the available APDAs, namely the
Directly-follows Graph (DFG). The paper specifically considers perturbations that add
or remove edges with the aim of improving fitness or precision, and in a way that allows
the underlying APDA to discover a process model from the perturbed DFG. An instan-
tiation of our approach is defined for a state-of-the-art APDA, namely Split Miner.

Using a benchmark of 20 real-life logs, the paper compares the accuracy gains
yielded by four optimization metaheuristics relative to each other and relative to state-
of-the-art APDAs. The experimental evaluation also considers the impact of meta-
heuristic optimization on model complexity measures as well as on execution times.

The next section gives an overview of APDAs and optimization metaheuristics. Sec-
tion 3 presents the proposed metaheristic optimization approach. Section 4 reports on
the empirical evaluation and Section 5 draws conclusions and future work directions.

2 Background and Related Work

In this section, we give an overview of existing approaches to automated process dis-
covery, followed by an introduction to optimization metaheuristics in general, and their
application to automated process discovery in particular.

2.1 Automated Process Discovery

The execution of business processes is often recorded in the form of event logs. An
event log is a collection of event records produced by individual instances (i.e. cases) of
the process. The goal of automated process discovery is to generate a process model that
captures the behavior observed in or implied by an event log. To assess the goodness of
a discovered process model, four quality dimensions are used [23]: fitness, precision,
generalization, and complexity. Fitness (a.k.a. recall) measures the amount of behavior
observed in the log that is captured by the model. A perfectly fitting process model is
one that recognizes every trace in the log. Precision measures the amount of behavior
captured in the process model that is observed in the log. A perfectly precise model is
one that recognizes only traces that are observed in the log. Generalization measures
to what extent the process model captures behavior that, despite not being observed in
the log, is implied by it. Finally, complexity measures the understandability of a process
model, and it is typically measured via size and structural measures. In this paper, we
focus on fitness, precision, and F-score (the harmonic mean of fitness and precision).

A recent comparison of state-of-the-art APDAs [7] showed that an approach capa-
ble of consistently discovering models with the best fitness-precision trade-off is cur-
rently missing. The same study showed, however, that we can obtain consistently good
trade-offs by hyperparameter-optimizing some of the existing APDAs based on DFGs –
Inductive Miner [19], Structured Heuristics Miner [6], Fodina [24], and Split Miner [8].
These algorithms have a hyperparameter to tune the amount of filtering applied when
constructing the DFG. Optimizing this and other hyperparameters via greedy search [7],
local search strategies [11], or sensitivity analysis techniques [20], can greatly improve
the accuracy of the discovered process models. Accordingly, in the evaluation reported
later we use a hyperparameter-optimized version of Split Miner as one of the baselines.

3

2.2 Optimization Metaheuristics

The term optimization metaheuristics refers to a parameterized algorithm, which can be
instantiated to address a wide range of optimization problems. Metaheuristics are usu-
ally classified into two broad categories [9]: i) single-solution-based metaheuristics, or
S-metaheuristics, which explore the solution space one solution at a time starting from
a single initial solution of the problem; and ii) population-based metaheuristics, or P-
metaheuristics, which explored a population of solutions generated by mutating, com-
bining, and/or improving previously computed solutions. Single-solution based meta-
heuristics tend to converge faster towards an optimal solution (either local or global)
than P-metaheuristics, since the latter by dealing with a set of solutions require more
time to assess and improve the quality of each single solution. P-metaheuristics are
more computationally heavy but they are more likely to escape local optima. An ex-
haustive discussion on all available metaheuristics is beyond the scope of this paper, in
the following we focus only on the S-metaheuristics that we explore in our approach:
iterated local search, tabu search, and simulated annealing.

Iterated Local Search [22] starts from a (random) solution and explores the neigh-
bouring solutions (i.e. solutions obtained by applying a perturbation) in search of a
better one. When a better solution cannot be found, it perturbs the current solution and
starts again. The perturbation is meant to avoid local optimal solutions. Tabu Search [16]
is a memory-driven local search. Its initialization includes a (random) solution and three
memories. The short-term memory keeps track of recent solutions and prohibits to re-
visit them. The intermediate-term memory contains criteria driving the search towards
the best solutions. The long-term memory contains characteristics that have often been
found in many visited solutions, to avoid revisiting similar solutions. Using these mem-
ories, the neighbourhood of the initial solution is explored and a new solution is selected
accordingly. Simulated Annealing [17] is based on the concepts of Temperature (T , a pa-
rameter choose arbitrarily) and Energy (E, the objective function to minimize). At each
iteration the algorithm explores (some of) the neighbouring solutions and compares
their energies with the one of the current solution. This latter is updated if the energy of
a neighbour is lower, or with a probability that is function of T and the energies of the

current and candidate solutions (usually e−
|E1−E2|

T). The temperature drops over time,
thus reducing the chance of updating the current solution with a higher-energy one. The
algorithm ends when a criterion is met (e.g. energy below a threshold or T = 0).

2.3 Optimization Metaheuristics in Automated Process Discovery

Metaheuristic optimization has been considered in a few previous studies on automated
process discovery. An early attempt to apply P-metaheuristics for automated process
discovery was the Genetic Miner proposed by De Medeiros [14], subsequently over-
taken by the Evolutionary Tree Miner [10]. In this latter approach, an evolutionary
algorithm is used on top of process trees (i.e. a block-structured representation of a
process model). Other applications of P-metaheuristics to automated process discovery
are based on the imperialist competitive algorithms [3] and particle swam optimiza-
tion [12]. The main limitation P-metaheuristics in this context is that they are com-
putationally heavy due to the cost of constructing a solution (i.e. process model) and
evaluating its accuracy. This leads to execution times in the order of hours to converge

4

to a solution, which on the end is comparable to that obtained by state-of-the-art algo-
rithms that do not rely on optimization metaheuristics [7].

Only a handful of studies have considered the use of S-metaheuristics in this setting,
specifically simulated annealing [21, 15]. However, these latter proposals are prelimi-
nary and have not been compared against state-of-the-art approaches on real-life logs.

3 Approach

This section outlines our approach for extending APDAs by means of S-metaheuristics
(cf. Section 2). First, we give an overview of the approach and its components. Next,
we discuss the adaptation of the metaheuristics to the problem of process discovery.
Finally, we describe an instantiation of the approach for Split Miner.

3.1 Preliminaries

An APDA takes as input an event log. This log is transformed into an intermediate
representation from which a model is derived. In many APDAs, the intermediate repre-
sentation is the DFG, which is represented as a numerical matrix as formalized below.

Definition 1. [Event Log] Given a set of activities A , an event log L is a multiset of traces
where a trace t ∈L is a sequence of activities t = 〈a1,a2, . . . ,an〉, with ai ∈A ,1≤ i≤ n.

Definition 2. [Directly-Follows Graph (DFG)] Given an event log L , its Directly-Follows
Graph (DFG) is a directed graph G = (N,E), where: N is the set of nodes, N = {a ∈ A | ∃t ∈
L ∧ a ∈ t}; and E is the set of edges E = {(x,y) ∈ N×N | ∃t = 〈a1,a2, . . . ,an〉, t ∈L ∧ ai =
x∧ai+1 = y [1≤ i≤ n−1]}.

Definition 3. [DFG-Matrix] Given a DFG G = (N,E) and a function θ : N → [1, |N|],1 the
DFG-Matrix is a squared matrix XG ∈ [0,1]∩N|N|×|N|, where each cell xi, j = 1⇐⇒∃(a1,a2) ∈
E | θ(a1) = i∧θ(a2) = j, otherwise xi, j = 0.

An APDA is said to be DFG-based if it first generates the DFG of the event log,
then applies an algorithm to filter (e.g. removing activities) from the DFG, and finally
converts the processed DFG into a process model.2 Examples of DFG-based APDAs
are Inductive Miner [18], Heuristics Miner[25, 6], Fodina[24], and Split Miner[8].

Different DFG-based APDAs may extract different DFGs from the same log. Also,
a DFG-based APDA may discover different DFGs from the same log depending on
its hyperparameter settings (e.g. the filtering threshold). The algorithm(s) used by a
DFG-based APDA to discover the DFG from the event log and convert it into a process
model may greatly affect the accuracy of an APDA. Accordingly, our approach focuses
on optimizing the discovery of the DFG rather than its conversion into a process model.

3.2 Approach Overview

As shown in Figure 1, our approach takes three inputs (in addition to the log): i) the
optimization metaheuristics; ii) the objective function to be optimized (e.g. F-score);
iii) and the DFG-based APDA to be used for discovering a process model.

1 θ maps each node of the DFG to a natural number.
2 Herein, when using the term DFG, we refer to the processed DFG (after filtering).

5

Fig. 1: Overview of our approach.

Algorithm 1 describes how our approach operates. First, the input event log is given
to the APDA, which returns the discovered DFG and its corresponding process model
(lines 1 and 2). This DFG becomes the current DFG and process model becomes the
best process model (so far). The model’s objective function score (e.g. F-score) is stored
as the current score and the best score (lines 3 and 4). The current DFG is then given
as input to function GenerateNeighbours, which applies changes to the current DFG
to generate a set of neighbouring DFGs (line 6). These latter are given as input to the
APDA, which returns the corresponding into process models. The process models are
assessed by the objective function evaluators (line 9 to 13). When the metaheuristic re-
ceives the results from the evaluators (along with the current DFG and score), it chooses
the new current DFG and updates the current score (lines 14 and 15). If the new current
score is higher than the best score(line 16), it updates the best process model and the
best score (lines 17 and 18). After the update, a new iteration starts, unless a termina-
tion criterion is met (e.g. a timeout, a maximum number of iterations, or a minimum
threshold for the objective function). In this latter case, it outputs the best model found,
i.e. the process model scoring the highest value for the objective function.

3.3 Adaptation of the Optimization Metaheuristics

To adapt Iterative Local Search (ILS), Tabu Search (TABU), and Simulated Annealing
(SIMA) to the problem of automated process discovery, we need to define the follow-
ing three concepts: i) the problem solution space; ii) a solution neighbourhood; iii) the
objective function. These design choices determine how each of the metaheuristics nav-
igates the solution space and escapes local minima, i.e. how to design the Algorithm 1
functions: GenerateNeighbours and UpdateDFG, resp. lines 6 and 14.

Solution Space. Being our goal the optimization of APDAs, we are forced to choose
a solution space that fits well our context regardless the selected APDA. If we assume
that the APDA is DFG-based (that is the case for the majority of the available APDAs),
we can define the solution space as the set of all the DFG discoverable from the event
log. Indeed, any DFG-based APDA can generate deterministically a process model from
a DFG.

Solution Neighbourhood. Having defined the solution space as the set of all the
DFG discoverable from the event log, we can refer to any element of this solution space

6

Algorithm 1: Optimization Approach
input : Event Log L , Metaheuristic ω , Objective Function F , DFG-based APDA α

CurrentDFG Gc← DiscoverDFG(α , L);1
BestModel m̂← ConvertDFGtoProcessModel(α , Gc);2
CurrentScore sc← AssessQuality(F , m̂);3
BestScore ŝ← sc;4
while CheckTerminationCriteria() = FALSE do5

Set V ← GenerateNeighbours(Gc);6
Map S←∅;7
Map M←∅;8
for G ∈V do9

ProcessModel m← ConvertDFGtoProcessModel(α , G);10
Score s← AssessQuality(F , m);11
add (G , s) to S;12
add (G , m) to M;13

Gc← UpdateDFG(ω , S, Gc, sc);14
sc← GetMapElement(S, Gc);15
if ŝ < sc then16

ŝ← sc;17
m̂← GetMapElement(M, Gc);18

return m̂;19

as a DFG-Matrix. Given a DFG-Matrix, we define its neighbourhood as the set of all the
matrices having one different cell value (i.e. DFGs having one more/less edge). In the
following, every time we refer to DFG we assume it is represented as a DFG-Matrix.

Objective Function. It is possible to define the objective function as any function
assessing one of the four quality dimensions for discovered process models (introduced
in Section 2). However, being interested in optimizing the APDAs to discover the most
accurate process model, in the remaining of this paper, we refer to the objective func-
tion as the F-score of fitness and precision: 2·fit·prec

fit+prec . Nonetheless, we remark that our
approach can operate also with objective functions that take into account multiple qual-
ity dimensions striving for a trade-off, e.g. F-score and model complexity.

Having defined the solution space, a solution neighbourhood, and the objective
function, we can turn our attention on how ILS, TABU, and SIMA navigate the solution
space. ILS, TABU, and SIMA share similar traits in solving an optimization problem,
especially when it comes to the navigation of the solution space. Given a problem and
its solution space, any of these three S-metaheuristics starts from a (random) solution,
discovers one or more neighbouring solutions, and assesses them with the objective
function to find a solution better than the current. If a better solution is found, it is cho-
sen as the new current solution and the metaheuristic performs a new neighbourhood
exploration. If a better solution is not found, e.g. the current solution is locally opti-
mal, the three metaheuristics follow different approaches to escape the local optimum
and continue the solution space exploration. Algorithm 1 orchestrates and facilitates the
parts of this procedure shared by the three metaheuristics. However, we must define the
functions GenerateNeighbours (GNF) and UpdateDFG (UDF).

The GNF receives in input a solution of the solution space, i.e. a DFG, and it gen-
erates a set of neighbouring DFGs. By definition, GNF is independent from the meta-
heuristic and it can be as simple or as elaborate as we demand. An example of a simple
GNF is a function that randomly selects neighbouring DFGs turning one cell of the
input DFG-Matrix to 0 or to 1. Whilst, an example of an elaborate GNF is a function

7

that accurately selects neighbouring DFGs relying on the feedback received from the
objective function assessing the input DFG, as we show in Section 3.4.

The UDF is at the core of our optimization, and it represents the metaheuristic itself.
It receives in input the neighbouring DFGs, the current DFG, and the current score, and
it selects among the neighbouring DFGs the one that should become the new current
DFG. At this point, we can differentiate two cases: i) among the input neighbouring
DFGs there is at least one having a higher objective function score than the current;
ii) none of the input neighbouring DFGs has a higher objective function score than
the current. In the first case, UDF always outputs the DFG having the highest score
(regardless the selected metaheuristic). In the second case, the current DFG may be a
local optimum, and each metaheuristic escapes it with a different strategy.

Iterative Local Search applies the simplest strategy, it perturbs the current DFG. The
perturbation is meant to alter the DFG in such a way to escape the local optimum, e.g.
randomly adding and removing multiple edges from the current DFG. The perturbed
DFG is the output of the UDF.

Tabu Search relies on its three memories to escape a local optimum. The short-
term memory (a.k.a. Tabu-list), containing DFG that must not be explored further. The
intermediate-term memory, containing DFGs that should lead to better results and,
therefore, should be explored in the near future. The long-term memory, containing
DFGs (with characteristics) that have been seen multiple times and, therefore, not to
explore in the near future. TABU updates the three memories each time the UDF is
executed. Given the set of neighbouring DFGs and their respective objective function
scores (see Algorithm 1, map S), TABU adds each DFG to a different memory. DFGs
worsening the objective function score are added to the Tabu-list. DFGs improving
the objective function score, yet less than another neighbouring DFG, are added to the
intermediate-term memory. DFGs that do not improve the objective function score are
added to the long-term memory. Also, the current DFG is added to the Tabu-list, be-
ing it already explored. When TABU does not find a better DFG in the neighbourhood
of the current DFG, it returns the latest DFG added to the intermediate-term memory.
If the intermediate-term memory is empty, TABU returns the latest DFG added to the
long-term memory. If both these memories are empty, TABU requires a new (random)
DFG from the APDA, and outputs its DFG.

Simulated Annealing avoids getting stuck in a local optimum by allowing the se-
lection of DFGs worsening the objective function score. In doing so, SIMA explores
areas of the solution space that other S-metaheuristics do not. When a better DFG is not
found in the neighbourhood of the current DFG, SIMA analyses one neighbouring DFG
at a time. If this latter does not worsen the objective function score, SIMA outputs it.
Instead, if the neighbouring DFG worsens the objective function score, SIMA outputs
it with a probability of e−

|sn−sc|
T , where sn and sc are the objective function scores of

(respectively) the neighbouring DFG and the current DFG, and the temperature T is an
integer that converges to zero as a linear function of the maximum number of iterations.
The temperature is fundamental to avoid updating the current DFG with a worse one
if there would be no time to recover from the worsening (i.e. too few iterations left for
continuing the exploration of the solution space from the worse DFG).

8

3.4 Instantiation for Split Miner

To assess our approach, we define an instantiation of it for Split Miner – a DFG-based
APDA that performs favourably relative to other state-of-the-art APDAs [7]. To in-
stantiate our approach for a concrete APDA, we need to implement an interface that
allows the metaheuristics to interact with the APDA (as discussed above). The interface
should provide four functions: DiscoverDFG and ConvertDFGtoProcessModel (see Al-
gorithm 1), the Restart Function (RF) for TABU, and the Perturbation Function (PF)
for ILS. The first two functions come with the DFG-based APDA, in our case Split
Miner. Note that, the output of DiscoverDFG of Split Miner varies according to the hy-
perparameters settings.3 To discover the initial DFG (Algorithm 1, line 1), Split Miner
uses its default parameters. We removed the randomness for discovering the initial DFG
because most of the times, the DFG discovered by Split Miner with default parameters
is already a good solution [8], and starting the solution space exploration from this latter
can reduce the total exploration time.

Function RF is very similar to DiscoverDFG, since it requires the APDA to output
a DFG, the only difference is that RF must output a different DFG every time it is
executed. We adapted the DiscoverDFG of Split Miner to output the DFG discovered
with default parameters the first time it is executed, and for the following executions a
DFG discovered with random parameters.

Finally, function PF can be provided either by the APDA (via the interface) or by the
metaheuristic. However, PF can be more effective when not generalised by the meta-
heuristic, allowing the APDA to apply different perturbations to the DFGs, taking into
account how the APDA converts the DFG to a process model.

We invoke Split Miner’s concurrency oracle to extract the possible parallelism re-
lations in the log using a randomly chosen parallelism threshold. For each new parallel
relation discovered (not present in the current solution), two edges are removed from the
DFG, whilst, for each deprecated parallel relation, two edges are added to the DFG. Al-
ternatively, it is possible to set PF = RF, so that instead of perturbing the current DFG, a
new random DFG is generated. This variant of the ILS is called Repetitive Local Search
(RLS). In the evaluation reported below, we use both ILS and its variant RLS.

We use the F-score as the objective function, which is computed from the fitness
and precision. Among the existing measures of fitness and precision we selected the
Markovian fitness and precision defined in [5] (boolean function variant, order k = 5).
The rationale for this choice is that these measures of fitness and precision are the fastest
to compute among state-of-the-art measures [4, 5]. Furthermore, the Markvovian fitness
(precision) provides a feedback that tells us what edges could be added to (removed
from) the DFG to improve the fitness (precision). This feedback allows us to design
an effective GNF. In the instantiation of our approach for Split Miner, the objective
function’s output is a data structure composed of: the Markovian fitness and precision
of the model, the F-score, and the mismatches between the model and the event log
identified during the computation of the Markovian fitness and precision, i.e. the sets of
the edges that could be added (removed) to improve the fitness (precision).

Given this objective function’s output, our GNF is described in Algorithm 2. The
function receives as input the current DFG (Gc), its objective function score (the data

3 Split Miner has two hyperparameters: the noise filtering threshold, used to drop infrequent
edges in the DFG, and the parallelism threshold, used to determine which potential parallel
relations between activities are used when discovering the process model from the DFG.

9

Algorithm 2: Generate Neighbours Function (GNF)
input : CurrentDFG Gc, CurrentMarkovianScore sc, Integer sizen

if getFitnessScore(sc) > getPrecisionScore(sc) then1
Set Em← getEdgesForImprovingPrecision(sc);2

else3
Set Em← getEdgesForImprovingFitness(sc);4

Set N←∅;5
while Em 6=∅∧|N| 6= sizen do6

Edge e← getRandomElement(Em);7
NeighbouringDFG Gn← copyDFG(Gc);8
if getFitnessScore(sc) > getPrecisionScore(sc) then9

if canRemoveEdge(Gn, e) then add Gn to N;10
else11

addEdge(Gn, e);12
add Gn to N;13

return N;14

structure sc), and the number of neighbours to generate (sizen). If fitness is greater than
precision, we retrieve (from sc) the set of edges (Em) that could be removed from Gc to
improve its precision (line 2). Conversely, if precision is greater than fitness, we retrieve
(from sc) the set of edges (Em) that could be added to Gc to improve its fitness (line 4).
The reasoning behind this design choice is that, given that our objective function is the
F-score, it is preferable to increase the lower of the two measures (precision or fitness).
i.e. if the fitness is lower, we increase fitness, and conversely if the precision is lower.
Once we have Em, we select randomly one edge from it, we generate a copy of the
current DFG (Gn), and we either remove or add the randomly selected edge according
to the accuracy measure we want to improve (precision or fitness), see lines 7 to 13.
If the removal of an edge generates a disconnected Gn, we do not add this latter to the
neighbours set (N), line 10. We keep iterating over Em until the set is empty (i.e. no
mismatching edges are left) or N reaches its max size (i.e. sizen). We then return N.

The algorithm ends when the maximum execution time is reached or and the maxi-
mum number of iterations it reached (in the experiments below, we set them by default
to 5 minutes and 50 iterations).

4 Evaluation

We implemented our approach as a Java command-line application4 using Split Miner
as the underlying automated process discovery approach and Markovian accuracy F-
score as the objective function (cf. Section 3.4). We compared the quality of the models
discovered by applying each of the optimization metaheuristics mentioned against those
discovered by four baselines: i) Split Miner; ii) Split Miner with hyper-parameter opti-
mization; iii) Evolutionary Tree Miner; and iv) Inductive Miner.

The experiments were performed on an Intel Core i5-6200U@2.30GHz with 16GB
RAM running Windows 10 Pro (64-bit) and JVM 8 with 14GB RAM (10GB Stack
and 4GB Heap). The approach’s implementation, the batch tests, the results, and all the

4 Available under the label “Metaheuristically Optimized Split Miner” at http://
apromore.org/platform/tools.

10

models discovered during the experiments are available for reproducibility purposes at
https://doi.org/10.6084/m9.figshare.7824671.v1.

4.1 Dataset

For our evaluation we used the dataset of the benchmark of automated process discov-
ery approaches in [7], which to the best of our knowledge is the most recent benchmark
on this topic. This dataset includes twelve public logs and eight private logs. The public
logs originate from the 4TU Centre for Research Data, and include the BPI Challenge
(BPIC) logs (2012-17),5 the Road Traffic Fines Management Process (RTFMP) log6

and the SEPSIS log7. These logs record executions of business processes from a variety
of domains, e.g. healthcare, finance, government and IT service management. In seven
logs (BPIC14, the BPIC15 collection and BPIC17), the filtering technique in [13] was
applied to remove infrequent behavior; this step was necessary to maintain consistency
with the benchmark dataset. The eight proprietary logs are sourced from several compa-
nies in the education, insurance, IT service management and IP management domains.

Table 1 reports the characteristics of the logs. As seen in the table, the dataset com-
prises simple logs (e.g. BPIC13cp) and very complex ones (e.g. SEPSIS, PRT2) in terms
of percentage of distinct traces, and both small logs (e.g. BPIC13cp and SEPSIS) and
large ones (e.g. BPIC17 and PRT9) in terms of total number of events.

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f BPIC152f BPIC153f BPIC154f BPIC155f
Total Traces 13,087 1,487 7,554 41,353 902 681 1,369 860 975

Dist. Traces(%) 33.4 12.3 20 36.1 32.7 61.7 60.3 52.4 45.7
Total Events 262,200 6,660 65,533 369,485 21,656 24,678 43,786 29,403 30,030
Dist. Events 36 7 13 9 70 82 62 65 74

(min) 3 1 1 3 5 4 4 5 4
Tr. length (avg) 20 4 9 9 24 36 32 34 31

(max) 175 35 123 167 50 63 54 54 61

Log BPIC17f RTFMP SEPSIS PRT1 PRT2 PRT3 PRT4 PRT6 PRT7 PRT9 PRT10
Total Traces 21,861 150,370 1,050 12,720 1,182 1,600 20,000 744 2,000 787,657 43,514

Dist. Traces(%) 40.1 0.2 80.6 8.1 97.5 19.9 29.7 22.4 6.4 0.01 0.01
Total Events 714,198 561,470 15,214 75,353 46,282 13,720 166,282 6,011 16,353 1,808,706 78,864
Dist. Events 41 11 16 9 9 15 11 9 13 8 19

(min) 11 2 3 2 12 6 6 7 8 1 1
Tr. length (avg) 33 4 14 5 39 8 8 8 8 2 1

(max) 113 2 185 64 276 9 36 21 11 58 15

Table 1: Descriptive statistics of the real-life logs (public and proprietary).

4.2 Experimental setup

For each log in our dataset, we discovered eight process models: four using the meta-
heuristics presented in Section 3 (RLS, ILS, TABU and SIMA) and four baselines. The

5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

6 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
7 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

11

baselines include the Evolutionary Tree Miner (ETM) [10], Inductive Miner infrequent
variant (IM) [18], and Split Miner (SM) [8], all with default parameters settings. ETM
was allowed to run with a 4-hours timeout. All comparisons with ETM are meant as
comparisons of accuracy (fitness, precision, F-score) and not as execution time com-
parisons, as the computational heaviness of ETM has already been shown in previous
work [10, 7]. The fourth baseline (HPOsm) is a hyperparameter-optimized version of
the SM algorithm, where we varied the two hyperparameters of SM (noise filtering and
parallelism filtering threshold) across their full range with steps of 0.01 (from 0.01 to
1.00), and retaining the model with the highest Markovian F-score.

ETM, IM and SM were selected as baselines because they had the highest accuracy
in a recent benchmark comparison of APDAs [7]. We also selected HPOsm to compare
the effects of optimization metaheuristics versus hyperparameter optimization.

For each of the discovered models we measured accuracy, complexity and discov-
ery time. For the accuracy, we adopted two different sets of measures: one based on
alignments, computing fitness and precision with the approaches proposed in [2, 1]
(alignment-based accuracy); and one based on Markovian abstractions, computing fit-
ness and precision with the approaches proposed in [4, 5] (Markovian accuracy). For as-
sessing the complexity of the models we relied on size (number of nodes of the model),
Control-Flow Complexity (CFC) (the amount of branching caused by split gateways
in the model), and Structuredness (the percentage of nodes located directly inside a
well-structured single-entry single-exit fragment).

4.3 Results

Tables 2 and 3 show the results of our comparative evaluation. Each row reports the
quality of each discovered process model in terms of accuracy (both alignment-based
and Markovian) and complexity, as well as the discovery time.

Due to space, we held out from the tables four logs: BPIC13cp, BPIC13inc, BPIC17,
and PRT9. For these logs, none of the metaheuristics could improve the accuracy of the
model already discovered by SM. This is due to the high fitness score achieved by SM
in these logs. By design, our metaheuristics try to improve the precision by removing
edges, but in these four cases, no edge could be removed without compromising the
structure of the model (i.e. the model would become disconnected).

For the remaining 16 logs, all the metaheuristics improved consistently the Marko-
vian F-score w.r.t. SM. Also, all the metaheuristics performed better than HPOsm, ex-
cept in two cases (BPIC12 and PRT1). Overall, the most effective optimization meta-
heuristic was ILS, which delivered the highest Markovian F-score nine times out of 16,
followed by SIMA (eight times), RLS and TABU (six times each). Compared to ETM,
the four metaheuristics achieved better Markovian F-scores in 15 out of 16 cases, and
better alignment F-scores 14 times out of 16, while compared to IM, all the optimiza-
tion metaheuristics achieved better Markovian F-scores in 15 cases out of 16, and better
alignment F-scores across the whole dataset.

Despite the fact that the objective function of the metaheuristics was the Marko-
vian F-score, all four metaheuristics optimized in half of the cases the alignment-
based F-score. This is due to the fact that any improvement on the Markovian fitness
translates into an improvement on the alignment-based fitness, though the same does
not hold for the precision. This result highlights the (partial) correlation between the
alignment-based and the Markovian accuracies, already reported in previous studies [4,

12

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

ETM 0.440 0.820 0.573 0.536 0.462 0.496 67 16 1.00 14,400
IM 0.990 0.502 0.666 0.280 0.002 0.005 59 37 1.00 6.6
SM 0.963 0.520 0.675 0.818 0.139 0.238 51 41 0.69 3.2

HPOsm 0.781 0.796 0.788 0.575 0.277 0.374 40 17 0.58 4295.8
BPIC12 RLSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.3

ILSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.4
TABUsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 140.7
SIMAsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 151.1

ETM 0.610 1.000 0.758 0.009 0.313 0.017 23 9 1.00 14,400
IM 0.890 0.646 0.749 0.501 0.346 0.409 31 18 1.00 3.4
SM 0.772 0.881 0.823 0.150 1.000 0.262 20 14 1.00 0.8

HPOsm 0.852 0.857 0.855 0.449 1.000 0.619 22 16 0.59 575.8
BPIC14f RLSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 139.0

ILSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 151.3
TABUsm 0.955 0.775 0.855 0.856 0.999 0.922 26 31 0.69 154.7
SIMAsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 140.3

ETM 0.560 0.940 0.702 0.235 0.284 0.257 67 19 1.00 14,400
IM 0.970 0.566 0.715 0.665 0.001 0.002 164 108 1.00 1.1
SM 0.899 0.871 0.885 0.701 0.726 0.713 111 45 0.51 0.7

HPOsm 0.962 0.833 0.893 0.804 0.670 0.731 117 55 0.45 1242.3
BPIC151f RLSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 163.6

ILSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 166.8
TABUsm 0.948 0.843 0.892 0.774 0.805 0.789 125 64 0.33 187.2
SIMAsm 0.920 0.839 0.878 0.772 0.807 0.789 125 63 0.43 160.4

ETM 0.620 0.910 0.738 0.301 0.389 0.339 95 32 1.00 14,400
IM 0.948 0.556 0.701 0.523 0.002 0.004 193 123 1.00 1.7
SM 0.783 0.877 0.828 0.514 0.596 0.552 129 49 0.36 0.6

HPOsm 0.808 0.851 0.829 0.561 0.582 0.572 133 56 0.30 1398.9
BPIC152f RLSsm 0.870 0.797 0.832 0.667 0.670 0.668 156 86 0.20 158.3

ILSsm 0.869 0.795 0.830 0.663 0.680 0.671 157 86 0.20 157.6
TABUsm 0.870 0.794 0.830 0.665 0.667 0.666 150 83 0.23 176.8
SIMAsm 0.871 0.775 0.820 0.677 0.662 0.669 159 93 0.26 167.4

ETM 0.680 0.880 0.767 0.238 0.172 0.199 84 29 1.00 14,400
IM 0.950 0.554 0.700 0.480 0.002 0.003 159 108 1.00 1.3
SM 0.774 0.925 0.843 0.436 0.764 0.555 96 35 0.49 0.5

HPOsm 0.783 0.910 0.842 0.477 0.691 0.564 99 39 0.56 9230.4
BPIC153f RLSsm 0.812 0.903 0.855 0.504 0.775 0.611 110 53 0.35 151.5

ILSsm 0.833 0.868 0.850 0.533 0.775 0.631 120 66 0.23 153.8
TABUsm 0.832 0.852 0.842 0.558 0.690 0.617 121 64 0.23 173.4
SIMAsm 0.827 0.839 0.833 0.565 0.694 0.623 123 71 0.18 159.4

ETM 0.650 0.930 0.765 0.351 0.292 0.319 83 28 1.00 14,400
IM 0.955 0.585 0.726 0.567 0.001 0.002 162 111 1.00 2.4
SM 0.762 0.886 0.820 0.516 0.615 0.562 101 37 0.27 0.5

HPOsm 0.785 0.860 0.821 0.558 0.578 0.568 103 40 0.27 736.4
BPIC154f RLSsm 0.825 0.854 0.839 0.634 0.672 0.652 114 57 0.21 146.9

ILSsm 0.853 0.807 0.829 0.649 0.657 0.653 117 64 0.27 147.8
TABUsm 0.811 0.794 0.803 0.642 0.661 0.651 115 61 0.24 161.7
SIMAsm 0.847 0.812 0.829 0.624 0.649 0.636 117 61 0.18 148.2

ETM 0.570 0.940 0.710 0.365 0.504 0.423 88 18 1.00 14,400
IM 0.937 0.179 0.301 0.242 0.000 0.000 134 95 1.00 2.5
SM 0.806 0.915 0.857 0.555 0.598 0.576 110 38 0.34 0.6

HPOsm 0.789 0.941 0.858 0.529 0.655 0.585 102 30 0.33 972.3
BPIC155f RLSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 159.3

ILSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 153.8
TABUsm 0.885 0.818 0.850 0.739 0.746 0.743 137 79 0.14 173.3
SIMAsm 0.867 0.811 0.838 0.734 0.727 0.731 137 78 0.16 154.3

ETM 0.990 0.920 0.954 0.981 0.010 0.019 57 32 1.00 14,400
IM 0.980 0.700 0.817 0.934 0.046 0.087 34 20 1.00 13.9
SM 0.996 0.958 0.977 0.959 0.311 0.470 22 17 0.46 2.9

HPOsm 0.887 1.000 0.940 0.685 0.696 0.690 20 9 0.35 2452.7
RTFMP RLSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 142.8

ILSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 143.8
TABUsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 114.8
SIMAsm 0.986 1.000 0.993 0.875 0.893 0.884 23 15 0.39 131.0

ETM 0.830 0.660 0.735 0.696 0.096 0.169 108 101 1.00 14,400
IM 0.991 0.445 0.614 0.741 0.012 0.024 50 32 1.00 1.3
SM 0.764 0.706 0.734 0.349 0.484 0.406 32 23 0.94 0.4

HPOsm 0.925 0.588 0.719 0.755 0.293 0.423 33 34 0.39 28,846
SEPSIS RLSsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 145.4

ILSsm 0.812 0.625 0.706 0.455 0.436 0.445 35 28 0.86 157.1
TABUsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 137.0
SIMAsm 0.806 0.613 0.696 0.477 0.445 0.460 35 30 0.77 137.2

Table 2: Comparative evaluation results for the public logs.

13

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Method Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

ETM 0.990 0.811 0.892 0.977 0.213 0.350 23 12 1.00 14,400
IM 0.902 0.673 0.771 0.232 0.051 0.084 20 9 1.00 3.8
SM 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 0.4

HPOsm 0.999 0.948 0.972 0.989 0.620 0.762 19 14 0.53 298.3
PRT1 RLSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 155.3

ILSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 153.2
TABUsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 10.3
SIMAsm 0.983 0.964 0.974 0.814 0.722 0.765 20 15 1.00 132.6

ETM 0.572 0.943 0.712 0.105 0.788 0.186 86 21 1.00 14,400
IM ex ex ex 0.329 0.179 0.232 45 33 1.00 2.3
SM 0.795 0.581 0.671 0.457 0.913 0.609 29 23 1.00 0.3

HPOsm 0.826 0.675 0.743 0.501 0.830 0.625 21 13 0.67 406.4
PRT2 RLSsm 0.886 0.421 0.571 0.629 0.751 0.685 29 34 1.00 141.4

ILSsm 0.890 0.405 0.557 0.645 0.736 0.688 29 35 1.00 172.3
TABUsm 0.866 0.425 0.570 0.600 0.782 0.679 29 33 1.00 143.1
SIMAsm 0.886 0.424 0.574 0.629 0.751 0.685 29 34 1.00 139.7

ETM 0.979 0.858 0.915 0.858 0.313 0.459 51 37 1.00 14,400
IM 0.975 0.680 0.801 0.874 0.481 0.621 37 20 1.00 0.9
SM 0.882 0.887 0.885 0.381 0.189 0.252 31 23 0.58 0.4

HPOsm 0.890 0.899 0.895 0.461 0.518 0.488 26 14 0.81 290.2
PRT3 RLSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 138.4

ILSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 144.2
TABUsm 0.944 0.902 0.922 0.589 0.519 0.552 30 20 0.60 134.7
SIMAsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 133.7

ETM 0.844 0.851 0.847 0.629 0.950 0.757 64 28 1.00 14,400
IM 0.927 0.753 0.831 0.615 0.952 0.747 27 13 1.00 1.1
SM 0.884 1.000 0.938 0.483 1.000 0.652 25 15 0.96 0.5

HPOsm 0.973 0.930 0.951 0.929 0.989 0.958 26 24 0.31 867.5
PRT4 RLSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 140.1

ILSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 152.3
TABUsm 0.955 0.914 0.934 0.883 0.988 0.932 26 26 0.77 138.6
SIMAsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 136.9

ETM 0.980 0.796 0.878 0.890 0.611 0.725 41 16 1.00 14,400
IM 0.989 0.822 0.898 0.946 0.444 0.604 23 10 1.00 2.9
SM 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 0.3

HPOsm 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 105.1
PRT6 RLSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 141.1

ILSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 144.2
TABUsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 124.9
SIMAsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

ETM 0.900 0.810 0.853 0.969 0.217 0.355 60 29 1.00 14,400
IM 1.000 0.726 0.841 1.000 0.543 0.704 29 13 1.00 1.3
SM 0.914 0.999 0.954 0.650 1.000 0.788 29 10 0.48 0.6

HPOsm 0.944 1.000 0.971 0.772 1.000 0.871 22 9 0.64 173.1
PRT7 RLSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 139.2

ILSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 142.9
TABUsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 134.0
SIMAsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 131.9

ETM 1.000 0.627 0.771 0.748 0.001 0.003 61 45 1.00 14,400
IM 0.964 0.790 0.868 0.945 0.001 0.001 41 29 1.00 4.6
SM 0.970 0.943 0.956 0.905 0.206 0.335 45 47 0.84 0.5

HPOsm 0.936 0.943 0.939 0.810 0.243 0.374 30 22 0.73 1214.3
PRT10 RLSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 153.0

ILSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 155.4
TABUsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 117.6
SIMAsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 136.7

Table 3: Comparative evaluation results for the proprietary logs.

14

5]. Analysing the complexity of the models, we note that most of the times (nine cases

Fig. 2: BPIC14f models discovered with SIMA (above) and SM (below).

out of 16) the F-score improvement achieved by the metaheuristics comes at the cost
of size and CFC. This is expected, since SM tends to discover models with higher pre-
cision than fitness [7]. What happens is that to improve the F-score, new behavior is
added to the model in the form of new edges (note that new nodes are never added).
Adding new edges leads to new gateways and consequently to increasing size and CFC.
On the other hand, when the precision is lower than fitness and the metaheuristic aims
to increase the value of this measure to improve the overall F-score, the result is the
opposite: the model complexity reduces as edges are removed. This is the case of the
RTFMP and PRT10 logs. As an example of the two possible scenarios, Figure 2 shows
the models discovered by SIMA and SM from the BPIC14f log (where the model dis-
covered by SIMA is more complex than that obtained with SM), while Figure 3 shows
the models discovered by SIMA and SM from the RTFMP log (where the model dis-
covered by SIMA is simpler). Comparing the results obtained by the metaheuristics
with HPOsm, we can see that our approach allows us to discover models that cannot
be discovered simply by tuning the hyperparameters of SM. This relates to the solution
space exploration. Indeed, while HPOsm can only explore a limited number of solutions
(DFGs), i.e. those that can be generated by the underlying APDA, SM in this case, by
varying its hyperparameters, the metaheuristics go beyond the solution space of HPOsm
by exploring new DFGs in a pseudo-random manner.

In terms of execution times, the four metaheuristics perform similarly, having an
average discovery time close to 150 seconds. While this is considerably higher than the
execution time of SM (∼ 1 second on average), it is much lower than HPOsm and ETM,
while consistently achieving higher accuracy.

15

Fig. 3: BPIC14f models discovered with SIMA (above) and SM (below).

5 Conclusion

This paper showed that the use of S-metaheuristics is a promising approach to en-
hance the accuracy of DFG-based APDAs. The outlined approach takes advantage of
the DFG’s simplicity to define efficient perturbation functions that improve fitness or
precision while preserving structural properties required to ensure model correctness.

The evaluation showed that the metaheuristic extensions of Split Miner achieve con-
siderably higher accuracy for a clear majority of logs in the benchmark, particularly
when using fine-grained measures of fitness and precision based on Markovian abstrac-
tions, but also when using measures based on trace alignment. These accuracy gains
come at the expense of slightly higher model size and structural complexity. The re-
sults also show that the choice of S-metaheuristics (among the four considered in this
paper) does not visibly affect accuracy nor model complexity. The metaheuristic exten-
sions do come with a penalty in terms of execution times. The execution times of the
metaheuristic-enhanced versions of Split Miner are∼ 2-3 minutes versus∼ 1 second for
the base miner. Interestingly, the S-metaheuristics improve accuracy even with respect a
hyperparameter-optimized version of Split Miner, while achieving considerably lower
execution times. This means that the metaheuristic extensions of Split Miner explore
solutions that cannot be constructed by varying the filtering and parallelism thresholds.

The study reported here is limited to one APDA (Split Miner). A possible direc-
tion for future work is to define and evaluate extensions of this approach for other
DFG-based APDAs such as Fodina and Inductive Miner. Also, the approach focuses on
improving F-score, while it could be applied to optimize other objective functions (e.g.
combinations of F-score and model complexity) or to perform Pareto-front optimiza-
tion, i.e. finding Pareto-optimal solutions with respect to multiple quality measures.
Finally, this study only considered four S-metaheuristics. There is room for investi-
gating other metaheuristics or other variants of simulated annealing, e.g. using differ-
ent cooling schedules. Finally, the paper only considered one baseline approach that
uses a P-metaheuristics (ETM). A more detailed comparison of tradeoffs between S-
metaheuristics and P-metaheuristics in this setting is another avenue for future work.
Acknowledgements. We thank Raffaele Conforti for his input to an earlier version
of this paper. This research is partly funded by the Australian Research Council
(DP180102839) and the Estonian Research Council (IUT20-55).

16

References
1. A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and W. van der Aalst. Mea-

suring precision of modeled behavior. ISeB, 13(1), 2015.
2. A. Adriansyah, B. van Dongen, and W. van der Aalst. Conformance checking using cost-

based fitness analysis. In EDOC. IEEE, 2011.
3. S. Alizadeh and A. Norani. Icma: a new efficient algorithm for process model discovery.

Applied Intelligence, 48(11), 2018.
4. A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa, and D. Reissner.

Abstract-and-compare: A family of scalable precision measures for automated process dis-
covery. In BPM. Springer, 2018.

5. A. Augusto, A. Armas Cervantes, R. Conforti, M. Dumas, M. La Rosa, and D. Reissner.
Measuring fitness and precision of automatically discovered process models: A principled
and scalable approach. Technical report, University of Melbourne, 2019.

6. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno. Automated Discovery of
Structured Process Models From Event Logs: The Discover-and-Structure Approach. DKE,
2017.

7. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella, M. Mecella, and
A. Soo. Automated discovery of process models from event logs: Review and benchmark.
IEEE TKDE, 31(4), 2019.

8. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and A. Polyvyanyy. Split miner: automated
discovery of accurate and simple business process models from event logs. KAIS, 2018.

9. I. Boussaı̈d, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Information
Sciences, 237, 2013.

10. J. Buijs, B. van Dongen, and W. van der Aalst. On the role of fitness, precision, generalization
and simplicity in process discovery. In CoopIS. Springer, 2012.

11. A. Burattin and A. Sperduti. Automatic determination of parameters’ values for heuristics
miner++. In IEEE Congress on Evolutionary Computation, 2010.

12. V. R. Chifu, C. B. Pop, I. Salomie, I. Balla, and R. Paven. Hybrid particle swarm optimization
method for process mining. In ICCP. IEEE, 2012.

13. R. Conforti, M. La Rosa, and A. ter Hofstede. Filtering out infrequent behavior from business
process event logs. IEEE TKDE, 29(2), 2017.

14. A. K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of
Technology, 2006.

15. D. Gao and Q. Liu. An improved simulated annealing algorithm for process mining. In
CSCWD. IEEE, 2009.

16. F. Glover. Future paths for integer programming and links to artificial intelligence. Comput-
ers & operations research, 13(5), 1986.

17. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. science,
220(4598), 1983.

18. S. Leemans, D. Fahland, and W. van der Aalst. Discovering block-structured process models
from event logs containing infrequent behaviour. In BPM Workshops. Springer, 2014.

19. S. Leemans, D. Fahland, and W. van der Aalst. Scalable process discovery and conformance
checking. Software & Systems Modeling, 2016.

20. J. Ribeiro and J. Carmona Vargas. A method for assessing parameter impact on control-flow
discovery algorithms. In Algorithms & Theories for the Analysis of Event Data, 2015.

21. W. Song, S. Liu, and Q. Liu. Business process mining based on simulated annealing. In
ICYCS. IEEE, 2008.

22. T. Stützle. Local search algorithms for combinatorial problems. PhD thesis, Darmstadt
University of Technology, 1998.

23. W. van der Aalst. Process Mining - Data Science in Action. Springer, 2016.
24. S. vanden Broucke and J. De Weerdt. Fodina: a robust and flexible heuristic process discov-

ery technique. DSS, 2017.
25. A. Weijters and J. Ribeiro. Flexible heuristics miner (FHM). In CIDM. IEEE, 2011.

