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Abstract. Predictive business process monitoring exploits event logs to
predict how ongoing (uncompleted) cases will unfold up to their com-
pletion. A predictive process monitoring framework collects a range of
techniques that allow users to get accurate predictions about the achieve-
ment of a goal or about the time required for such an achievement for
a given ongoing case. These techniques can be combined and their pa-
rameters configured in different framework instances. Unfortunately, a
unique framework instance that is general enough to outperform others
for every dataset, goal or type of prediction is elusive. Thus, the selection
and configuration of a framework instance needs to be done for a given
dataset.
This paper presents a predictive process monitoring framework armed
with a hyperparameter optimization method to select a suitable frame-
work instance for a given dataset.

Keywords: Predictive Process Monitoring, Hyperparameter Optimization, Lin-
ear Temporal Logic

1 Introduction

Predictive business process monitoring [1] is a family of techniques that exploits
event logs extracted from information systems in order to predict how current
(uncompleted) cases of a process will unfold up to their completion. A predic-
tive process monitoring framework allows users to specify predicates, for example
using Linear Temporal Logic (LTL) or any other language, to capture boolean
functions over traces of completed cases. Based on the analysis of event logs, a
runtime component (the monitor) continuously provides the user with estima-
tions of the likelihood that the predicate will hold true upon completion of any
given running case of the process.

In previous work [1,?], we presented a customizable predictive process mon-
itoring framework comprising a set of techniques to construct models to predict



whether or not an ongoing case will ultimately satisfy a given classification func-
tion based both on: (i) the sequence of activities executed in a given case; and
(ii) the values of data attributes after each execution of an activity in a case.
The latter is important as, for example, in a patient treatment process, doctors
may decide whether to perform a surgery or not based on the age of the patient,
while in a sales process, a discount may be applied only for premium customer.

Incorporating in a single prediction framework a range of techniques that
can be combined and configured in different framework instances is a necessary
step in building a tool that supports predictive business process monitoring. The
construction and selection of the appropriate framework instance, indeed, can
greatly impact the performance of the resulting predictions [2]. Constructing
an effective instance of a predictive monitoring framework, able to maximize the
performance of the predictive techniques for a given dataset, is however non-
trivial. For example, this construction may imply a choice among different clas-
sification (e.g., decision trees or random forests) and clustering (e.g., k-means,
agglomerative clustering or dbscan) algorithms, as well as the hyperparameters
that these techniques require, have to be tuned according to the specific dataset
and prediction problem. While these choices may be challenging even for experts,
for non-experts they often result in arbitrary (or default-case) choices [3].

The conventional way to face this problem is combining manual and exhaus-
tive search [4]. In our case, this consists of two specific steps: first, it requires run-
ning different configurations of predictive techniques on an appropriate dataset
used for training and validating, and second it requires comparing the outcomes
of the different configurations to select the one that outperforms the others for
the given domain.

While this overall strategy has the potential to ease the construction of an
effective instance of predictive monitoring framework, its concrete realization
poses two challenges that may hamper its practical adoption. A first challenge
is provided by the computational burden of running different configurations of
predictive techniques. A second challenge is provided by the complexity of com-
paring different configurations and then select the best possible outcome for a
business analyst / process owner.

The framework presented in this paper provides a predictive process moni-
toring environment armed with a hyperparameter optimization method able to
address the two challenges emphasized above. First, it enables to run an ex-
haustive combination of different technique settings on a given dataset in an
efficient and scalable manner. This is realized through a meta-layer built on top
of the predictive framework. Such a layer is responsible of invoking the predictive
framework on different framework instances and to provide, for each of them, a
number of aggregated metrics (on a set of validation traces). The meta-layer is
also optimized to schedule and parallelize the processing of the configurations
across different threads and reuse as much as possible the pre-processed data
structures. Second, it provides user support for the comparison of the results,
thus enabling to easily select a suitable framework instance for a given dataset.
This is done by providing the user with a set of aggregated metrics (measuring



different dimensions) for each configuration. These metrics can be used for op-
portunely ranking the configurations according to the users needs and hence for
supporting the user in the parameter tuning.

After an introductory background section (Section 2), Section 3 and Section 4
introduce two motivating scenarios and the overall approach, respectively. The
overall architecture is then detailed in Section 5, and an evaluation presented in
Section 6. Section 7 and Section 8 conclude with related and future works.

2 Background

In this section we give an overview of background notions useful in the rest of
the paper.

Predictive Monitoring. The execution of business processes is generally subject
to internal policies, norms, best practices, regulations, and laws. For example, a
doctor may only perform a certain type of surgery, if a pre-operational screen-
ing is carried out beforehand. Meanwhile, in a sales process, an order can be
archived only after the customer has confirmed receipt of all ordered items.
Predictive Monitoring [1] is an emerging paradigm based on the continuous gen-
eration of predictions and recommendations on what activities to perform and
what input data values to provide, so that the likelihood of violation of business
constraints is minimized. In this paradigm, a user specifies a business goal in
the form of business rules.4 Based on an analysis of execution traces, the idea
of predictive monitoring is to continuously provide the user with estimations of
the likelihood of achieving each business goal for a given case. Such predictions
generally depend both on: (i) the sequence of activities executed in a given case;
and (ii) the values of data attributes after each activity execution in a case.

Linear Temporal Logic In our approach, a business goal can be formulated in
terms of LTL rules. LTL [5] is a modal logic with modalities devoted to describe
time aspects. Classically, LTL is defined for infinite traces. However, when fo-
cusing on the compliance of business processes, we use a variant of LTL defined
for finite traces (since business process are supposed to complete eventually).
We assume that events occurring during the process execution fall in the set of
atomic propositions. LTL rules are constructed from these atoms by applying
the temporal operators X (next), F (future), G (globally), and U (until) in ad-
dition to the usual boolean connectives. Given a formula ϕ, Xϕ means that the
next time instant exists and ϕ is true in the next time instant (strong next).
Fϕ indicates that ϕ is true sometimes in the future. Gϕ means that ϕ is true
always in the future. ϕUψ indicates that ϕ has to hold at least until ψ holds
and ψ must hold in the current or in a future time instant.

4 In line with the forward-looking nature of predictive monitoring, we use the term
business goal rather than business constraint to refer to the monitored properties.



Hyperparameter Optimization. Traditionally, machine learning techniques are
characterized by model parameters and by hyperparameters. While model pa-
rameters are learned during the training phase so as to fit the data, hyperpa-
rameters are set outside the training procedure and used for controlling how
flexible the model is in fitting the data. For instance, the number of clusters
in the k-means clustering procedure is a hyperparameter of the clustering tech-
nique. The impact of hyperparameter values on the accuracy of the predictions
can be huge. Optimizing their value is hence important but it can differ based
on the dataset. The simplest approaches for hyperparameter optimization are
grid search and random search. The former, builds a grid of hyperparameter
values, evaluates each of them by exploring the whole search space and returns
the one that provides the best result. The latter, instead of exhaustively explor-
ing the search space, selects a sample of values to be evaluated. Several smarter
techniques have been recently developed for the hyperparameter optimization.
For instance, Sequential Model based Optimization (SMBO) [6] is an iterative
approach that approximates the time-consuming function of a data set for given
hyperparameters with a surrogate which is cheaper to evaluate.

3 Two Motivating Scenarios

We aim at addressing the problem of easing the task of predictive process mon-
itoring, by enabling users to easily select and configure a specific predictive
process monitoring scenario to the needs of a specific dataset. In this section
we introduce two motivating scenarios, that will be used also as a basis for
the evaluation of the Predictive Process Monitoring Framework tool provided in
Section 6.

Scenario 1. Predicting patient history Let Alice be a medical director of an on-
cology department of an important hospital who is interested in predicting
the amount and type of exams patient Bob will perform. In particular, she
is interested in knowing if, given the clinical record of Bob: (a) he will be
exposed to two specific exams named tumor marker CA − 19.9 and ca −
125 using meia, and when; and (b) if the execution of a particular exam (CEA−
tumor marker using meia) can be followed by the fact that he will develop a
particular type of tumor in the future. Since her department has started an
innovative project aiming at using Process Monitoring techniques to analyse
event logs related to the patient history, her hospital owns a number of relevant
datasets to enable the usage of a process monitoring tool. She is therefore exposed
to the possibility to use the tool in order to make her predictions. However, when
ready to use the tool, she finds out that: (i) she needs to select the techniques of
the prediction framework she wants to use; (ii) for each of these techniques, she
has to set the hyperparameters needed for the configuration. However, being a
medical doctor she does not have the necessary knowledge to understand which
technique is better to use and the parameters to set. Her knowledge only enables
her to select the predicate she wants to predict and the dataset of similar cases



relevant for the prediction. Thus a way for helping her in understanding which
configuration works best for her dataset and specific prediction is needed.

Scenario 2. Predicting Problems in Building Permit Applications Let John be a
clerk handling building permit applications of a Dutch Municipality. The ma-
jority of regular building permit applications required for building, modifying or
demolishing houses must be accompanied with the necessary fees and documen-
tation, including design plans, photos and pertinent reports. They are therefore
often unsuccessfully checked for completeness, and the owner of the application
has to be contacted again for sending the missing data. This implies extra work
from his side and from the building permit applications office. Moreover, many
of the permit applications also require an environmental license (WABO) and
getting the WABO license can either be fast or demand for a long extension of
the building permit procedure. This would require a rescheduling of the work of
the building permit application office. John is therefore interested in knowing,
for example, (i) whether the 4 applications he has just received and of which he
has acknowledged receipt, will undergo a series of actions required to retrieve
missing data; (ii) whether these applications will demand for the environmental
license and for the (long) extension it could require. As in Scenario 1, the Munic-
ipality where John works stores all the necessary datasets to enable the usage of
Predictive Monitoring techniques, but the difficulty in choosing the right tech-
nique and the need of configuring parameters may seriously hamper his ability
to use the tool. Thus a way for helping him to set up the correct configuration
which works best for his dataset and specific prediction is needed also in this
scenario.

4 Approach

In this section we describe the approach to provide users with a prediction frame-
work equipped with methods to support them in the selection of the framework
instance that is most suitable for the dataset and the prediction they are inter-
ested in.

The approach is based on two main components: the Predictive Process Mon-
itoring Framework , in charge of making predictions on an ongoing trace, and the
Technique and Hyperparameter Tuner , responsible of the invocation of the Pre-
dictive Process Monitoring Framework with different configurations (framework
instances). Figure 1 shows the conceptual architecture of the framework. Besides
the framework instance, the Predictive Process Monitoring Framework takes as
input a training set, a prediction problem and an ongoing trace, and returns
as output a prediction related to the input prediction problem for the ongoing
trace. The Technique and Hyperparameter Tuner acts as a meta-layer on top
of the Predictive Process Monitoring Framework . Besides the training set and
the prediction problem, the Technique and Hyperparameter Tuner takes as in-
put a set of traces (validation set) and uses them to feed the Predictive Process
Monitoring Framework on a set of potentially interesting framework instances.



Fig. 1: Tuning-enhanced Predictive Process Monitoring Framework architecture

Specifically, for each considered framework instance, the traces of the valida-
tion set are replayed and passed as a stream of events to the Predictive Process
Monitoring Framework . Once a new trace is processed by the Predictive Pro-
cess Monitoring Framework and a predicted value returned, it is compared with
the actual value of the trace in the validation set. Based on this comparison and
other characteristics of the prediction (e.g., how early along the current trace the
prediction has reached a sufficient confidence level), a set of aggregated metrics
related to the performance (e.g., the accuracy or the failure rate) is computed.
Once the set of all the interesting framework instances has been processed, the
user can compare them along the performance dimensions.

5 Architecture

In this section we describe in detail the two layers of the Tuning-enhanced Pre-
dictive Process Monitoring Framework . We first introduce the Predictive Process
Monitoring Framework , by providing an overview of its modules and of the tech-
niques that are currently plugged in each of them, and we then present the tuner
layer that supports users in the selection of the framework instance that best
suites with their dataset and prediction problem.

5.1 Predictive Process Monitoring Framework

As shown in Figure 1, the Predictive Process Monitoring Framework requires as
input a set of past executions of the process. Based on the information extracted
from such execution traces, it tries to predict how current ongoing executions
will develop in the future. To this aim, before the process execution, a pre-
processing phase is carried out. In such a phase, state-of-the-art approaches
for clustering and classification are applied to the historical data in order to
(i) identify and group historical trace prefixes with a similar control flow, i.e.,
to delimit the search space on the control flow base (clustering from a control
flow perspective); and (ii) get a precise classification in terms of data of traces
with similar control flow (data-based classification). The data-structures (e.g.,
clusters and classifiers) computed at the different stages of the pre-processing
phase are stored. At runtime, the classification of the historical trace prefixes



Fig. 2: Predictive Process Monitoring Framework

Fig. 3: Framework instances overview

is used to classify new traces during their execution and predict how they will
behave in the future. In particular, the new trace is matched to a cluster, and
the corresponding classifier is used to estimate the (class) probability for the
trace to achieve a certain outcome and the corresponding (class) support (that
also gives a measure of the reliability of classification algorithm outcomes). The
overall picture of the framework is illustrated in Fig. 2.

Within such a framework, we can identify three main modules: the encod-
ing, the clustering and the supervised classification learning module. Each of
them makes available different techniques. Figure 3 shows an overview of these
techniques.

For instance, for the trace encoding a frequency based and a sequence based
approach have been plugged in the framework. The former is realized encod-
ing each execution trace as a vector of event occurrences (on the alphabet of
the events), while, in the latter, the trace is encoded as a sequence of events.
These encodings can then be passed to the clustering techniques available in the
framework: the dbscan clustering, the k-means clustering and the agglomerative
clustering algorithms. For instance, the euclidean distance, used by the k-means
clustering, is computed starting from the frequency based encoding, while the
edit distance, used by the dbscan clustering, is computed starting from the se-
quence based encoding of the traces. Within the supervised learning module, for



instance, decision tree and random forest learning techniques have been imple-
mented.

Each of these techniques requires in turn a number of hyperparameters (spe-
cific for the technique) to be configured. Specifically, k-means and agglomerative
clustering take as input the number of clusters, while the dbscan technique re-
quires two parameters: the minimum number of points in a cluster and the
minimum cluster ray.

Moreover, the framework also allows for configuring other parameters, such
as:

• size of prefixes of historical traces to be grouped in clusters and used for
training the classifiers;

• voting mechanism, so that the p clusters closest to the current trace are
selected, the prediction according to the corresponding classifiers estimated,
and the prediction with the highest number of votes (from the classifiers)
returned;

• when the prediction is related to a time interval, a mechanism for the defi-
nition of the time interval (e.g., q intervals of the same duration, based on
q-quantiles, based on a normal distribution of the time).

The framework can then be instantiated through different combinations of
these techniques and hyperparameters. Although pre-processing phase data struc-
tures are stored for reuse purposes, different configurations can demand for dif-
ferent data structures. Each choice of technique (and hyperparameter) in the
configuration can indeed affect the Predictive Process Monitoring Framework
flow at different stages. For instance, the choice of the encoding type affects the
clusters built from the historical traces; the choice of the classification learning
technique, does not affect the clusters but it does affect the classifiers built on
top of them.

The framework has been implemented as an Operational Support (OS) provider
of the OS Service 2.0 [7] of the ProM toolset. Specifically, an OS service is able
to interact with external workflow engines by receiving at runtime streams of
events and passing them to the OS providers.

5.2 Technique and Hyperparameter Tuning

The Tuning-enhanced Predictive Process Monitoring Framework has been de-
signed as a client-server architecture, where the Predictive Process Monitoring
Framework is the server, and the client is a toolset that can be used either (i) for
“replaying” a stream of events coming from a workflow engine and invoke the
server to get predictions on a specific problem; or (ii) for evaluation purposes
and, in particular, for supporting users in tuning framework techniques and hy-
perparameters according to the dataset and the input prediction problem.

When used for evaluation purposes, the client (the Technique and Hyper-
parameter Tuner) evaluates the Predictive Process Monitoring Framework for
each of the techniques and hyperparameter configurations. Specifically, for each



Fig. 4: Logical architecture

of them, the client replays each trace of the validation set and invokes the Predic-
tive Process Monitoring Framework for getting a prediction (and the associated
class probability) at different points of the trace (evaluation points). As soon as
the class probability and support of the returned prediction are above a certain
threshold (evaluation parameters), the prediction is considered reliable enough
and kept as the Predictive Process Monitoring Framework prediction at the spe-
cific evaluation point. The final predicted value is then compared with the actual
one. With this information for each trace, the client is finally able to provide the
users with few aggregated metrics about the performance of the framework in-
stance. In detail, the following three evaluation dimensions (and corresponding
metrics) are computed:

• Accuracy, which intuitively represents the proportion of correctly classified
results (both positive and negative); it is defined as:

accuracy =
TP + TN

TP + FP + TN + FN
(1)

Accuracy ranges between 0 and 1. High values of accuracy are preferred to
low ones.

• Failure rate, that is the percentage of traces which leads to a failure. Failure
rate ranges between 0 and 1. In this case low values are preferred to high
ones.

• Earliness, that is the ratio between the index indicating the position of the
last evaluation point (the one corresponding to the reliable prediction) and
the size of the trace under examination. Earliness ranges as well between
0 and 1 and a low value of earliness indicates early predictions along the
traces.

In order to speed-up the above time-consuming procedure, the client application
implements a scheduling mechanism that distributes the prediction computa-
tions across 2 or more parallel replayer threads.

Fig. 4 shows the logical architecture of the client application (left part) and
its interactions with the OS Service. It is composed of three main parts: the
Unfolding Module, the Scheduler Module and the Replayers.

The Unfolding Module combines the sets of techniques (and their hyperpa-
rameters) provided by the user through an intuitive GUI into a set of different



configuration runs. Each configuration run is associated with an ID (Run ID),
which is used to refer such a configuration. Once the list of the interesting con-
figurations has been created, the Configuration Sender sequentially sends each
configuration to the server that uses it to encode the traces, as well as to com-
pute clusters and classifiers for that specific configuration. Once the server has
done with the preprocessing, the Configuration Sender starts sending the traces
to the Replayer Scheduler in charge of optimizing the distribution of the traces
among different replayers on different threads. Each replayer sends the trace
(and the reference to the specific configuration run ID) to the server and waits
for the results. As soon as the results are provided by the OS Service, they are
progressively visualized in the result interface (Fig. 5). Each tab of the result
interface refers to a specific configuration run, while the summary tab reports a
summary of all the configuration runs with the corresponding evaluation met-
rics. From this interface the user can easily sort the configurations based on one
or more evaluation metrics.

Fig. 5: Result interface

6 Evaluation

In this section we provide an evaluation of the Tuning-enhanced Predictive Pro-
cess Monitoring Framework . In detail, we would like to investigate if it can be
used in practice to support users in selecting a suitable configuration for their
prediction problem. Specifically, we want to see (i) whether the Tuning-enhanced
Predictive Process Monitoring Framework is effective in returning a non-trivial
set of configurations specific for the dataset and the prediction problem; (ii)
whether the configuration(s) suggested by the the Tuning-enhanced Predictive
Process Monitoring Framework actually provide(s) accurate results for the spe-
cific prediction problem; (iii) whether the framework does it in a reasonable
amount of time.



6.1 Datasets

For the tool evaluation we used two datasets provided for the BPIC 2011 [8] and
2015 [9], respectively.

The first event log pertains to the treatment of patients diagnosed with cancer
in a large Dutch academic hospital. It contains 1140 cases, 149730 events and
622 event classes. In this case, we used our framework to predict the information
that, for instance, Alice is interested to know about Bob’s case (see Scenario 1
in Section 3). More formally, we used our framework to predict the compliance
of a case to the following two LTL rules:

– ϕ11 = F(“tumor marker CA− 19.9”) ∨ F(“ca− 125 using meia”),
– ϕ12 = G(“CEA− tumor marker using meia”→ F(“squamous cell carcinoma using eia”)).

The second log was provided by a Dutch municipality for the BPIC 20155.
The log is composed of 1199 cases, 52217 events and 398 event classes. The
data contains all building permit applications over a period of approximately
four years. It contains several activities, denoted by both codes (attribute con-
cept:name) and labels, both in Dutch and in English. In this case we used the
Tuning-enhanced Predictive Process Monitoring Framework to investigate the
configurations that are more suitable with respect to the John’s problem (see
Scenario 2 in Section 3). Formally, we investigate the following two LTL rules:

– ϕ21 = (F(“start WABO procedure′′) ∧ F(“extend procedure term′′)),
– ϕ22 = (G(“send confirmation receipt′′)→ F(“retrieve missing data”)).

6.2 Experimental Procedure

In order to evaluate the technique and hyperparameter tuning of the Tuning-
enhanced Predictive Process Monitoring Framework , we adopted the following
procedure.

1. We divided both our datasets in three parts: (i) training set: 70% of the
whole dataset; (ii) validation set: 20% of the whole dataset; (iii) testing set:
10% of the whole dataset.

2. For both the analyzed scenarios, we use the training and the validation
sets for identifying the most suitable (according to one or more evaluation
dimensions) Predictive Process Monitoring Framework configurations for the
specific dataset and prediction problem. Moreover, we computed the time
required for tuning the parameters with and without saved data structures
and with more replayers working in parallel.

3. We evaluate the identified configurations on the testing set.

6.3 Experimental Results

As described in Section 5, the Tuning-enhanced Predictive Process Monitoring
Framework explores all the configurations of a finite set and computes for each

5 Specifically, the first log of the BPI logs has been used.



of them, three evaluation metrics: accuracy, failure rate and earliness. Table 1 re-
ports, for each formula of each scenario, the descriptive statistics of these metrics
on a set of 160 different configurations, obtained by combining two algorithms
for the clustering step (dbscan and k-means), two algorithms for the classifier
learning step (decision tree and random forest) and varying a number of hyper-
parameters (e.g., the number of clusters for k-means or the number of trees in
the random forest).

Accuracy Failure Rate Earliness Computation

Rule Min Max Avg Std. dev Min Max Avg Std. dev Min Max Avg Std. dev Time (hours)

ϕ11 0.43 1 0.73 0.15 0 0.98 0.42 0.31 0 0.48 0.13 0.13 42.68

ϕ12 0.55 0.91 0.73 0.08 0 0.93 0.27 0.3 0 0.43 0.07 0.09 32.05

ϕ21 0.87 0.91 0.87 0.006 0 0.29 0.02 0.05 0 0.09 0.008 0.02 1.87

ϕ22 0.77 1 0.95 0.06 0 0.76 0.09 0.17 0 0.35 0.06 0.08 2.93

Table 1: Descriptive Statistics related to the tuning phase.

By looking at the table, we can get an idea of the distribution of the con-
figuration settings in the space of the evaluation metrics. We observe that such
a distribution is not the same for all the rules. For instance, for the rules in
the first scenario, the configurations produce values for all the three evaluation
metrics that are widely distributed (e.g., the failure rate for ϕ11 ranges from 0
to 0.98). When, as in this case, the results obtained by running different con-
figurations are distributed, the configuration that best fits with the user needs
can be identified in the tuning phase. On the contrary, for the other two rules,
and, in particular for ϕ21, the performance of the different tested configurations
do not vary significantly (both the difference between the minimum and the
maximum values and the standard deviation for ϕ21 are rather small). In this
case, the different configuration settings are mostly restricted within a limited
area of the space of the three evaluation metrics, thus making the results of the
prediction less dependent on the choice of the configuration. Therefore, Table 1
shows us that the Tuning-enhanced Predictive Process Monitoring Framework
can provide a spectrum of interesting configurations also when the configuration
choice is not trivial.

Among the configurations in the set, we picked the ones that a user could
be interested in a typical scenario like the ones considered in this evaluation.
We selected as choice criteria the performance of the configuration with respect
to each of the evaluation dimensions and the performance of the configuration
with respect to all the evaluation dimensions. Specifically, we selected, for each
evaluation dimension, the configuration that scores best (w.r.t. that dimension),
provided that the other two dimensions do not significantly underperform, as it
could happen in a typical scenario. Furthermore, we manually selected a fourth
configuration that balances the performance of the three evaluation dimensions.
Table 2 (Tuning column on the left of the table) shows, for each rule, the best (in
terms of accuracy, failure rate, earliness and a mix of the three) configurations
and the corresponding performance. The identified configurations differ one from
another not only for the hyperparameter values but also for the selected algo-



Rule Conf. ID
Choice Tuning Evaluation

Criterion Accuracy Failure Rate Earliness Accuracy Failure Rate Earliness

ϕ11

109 accuracy 0.92 0.46 0.074 0.86 0.57 0.056

4 fail. rate 0.6 0 0.02 0.86 0 0.009

50 earliness 0.73 0.06 0.004 0.62 0.05 0.003

108 balance 0.85 0.18 0.096 0.84 0.26 0.107

ϕ12

108 accuracy 0.89 0.43 0.016 0.95 0.46 0.129

76 fail. rate 0.75 0 0.03 0.73 0.02 0.026

149 earliness 0.64 0 0.001 0.69 0 0

154 balance 0.77 0.1 0.016 0.87 0.05 0.028

ϕ21

17 accuracy 0.91 0.29 0.033 0.92 0.12 0.013

86 fail. rate 0.87 0 0.004 0.91 0 0.002

65 earliness 0.87 0 0 0.91 0 0

65 balance 0.87 0 0 0.91 0 0

ϕ22

22 accuracy 1 0.12 0.246 1 0.26 0.335

136 fail. rate 0.98 0 0.021 1 0 0

127 earliness 0.98 0.04 0.001 1 0 0

25 balance 0.99 0.03 0.12 0.96 0.06 0.18

Table 2: Results related to the tuning evaluation.

rithms. For instance, in the configuration 109 of the rule ϕ11, identified as the
one with the best accuracy, the clustering algorithm is dbscan, while in the con-
figuration 22, i.e., the one with the best accuracy for the rule ϕ22, the clustering
algorithm is k-means.

In order to evaluate whether the identified configurations could actually an-
swer the prediction problem in the specific domain, we evaluated them on the
testing set. Table 2 (Evaluation column on the right) shows the results obtained
in terms of accuracy, failure rate and earliness. By comparing the results obtained
with the ones of the tuning, we observe that, according to our expectations, they
are quite aligned. Moreover, by further inspecting the table, we have a confir-
mation of the trend that we observed by looking at the descriptive statistics of
the data related to the tuning (Table 1). The values of the three metrics along
the four selected configurations are quite similar for the rules in the Scenario
2, while they differ for the configurations in Scenario 1. In this latter scenario,
hence, the user (e.g., Alice) has the possibility to choose the configuration based
on her needs. If, for instance, she is more interested in getting accurate pre-
dictions, she would choose the configuration 109 for ϕ11 and 108 for ϕ12. If,
she is more interested to get predictions, taking the risk that they could also
be inaccurate, then she would choose the configurations 4 and 76 for the two
rules, respectively. Similarly for early predictions and predictions balancing all
the three dimensions.

Finally, we looked at the time required by the Tuning-enhanced Predictive
Process Monitoring Framework for processing the configurations for each of the
four rules. The last column of Table 1 reports the overall time spent to this
purpose. Also in this case we can notice a difference in the computation time
required by the two datasets. This difference can be due to the difference in the



length of the traces in the two datasets. Indeed, the traces of the dataset related
to the Dutch academic hospital are on average longer than the ones in the Dutch
municipality dataset. Moreover, in order to investigate the time saved with the
reuse of data structures, we performed a run in which all the data structures
had already been computed and stored in the server and we observed a time
reduction of about 20%. Finally, we performed a further run with 8 replayers
rather than with a single replayer and we observed a time reduction of about
13.1%. The cause of such a limited reduction of the required time can mainly be
ascribed to the fact that the most time-consuming activities are the ones carried
out at the server side, rather than the client-side replayers.

Threats to Validity. Three main external threats to validity affect the results
of the evaluation: (i) the subjectivity introduced by the user; (ii) the potential
overfitting introduced during the tuning phase; and (iii) the limited analyzed
scenarios. Concerning the first threat, the user is involved in the process (and
hence in the evaluation) both in the initial definition of the configurations and in
the selection of the configuration. The results of the experiment could hence be
influenced by the human subjectivity in these choices. We tried to mitigate the
impact of this threat by analyzing what a user would do in “typical” scenarios. As
for the second threat, the construction of the configuration parameters would
have benefit of a cross-validation procedure, which would have increased the
stability of the results. Finally, although we only limited our evaluation to two
datasets and to two specific rules, the logs are real logs and the scenarios are
realistic.

7 Related Work

In the literature there are two main branches of works related to this paper:
those concerning predictive monitoring and those related to hyperparameter
optimization.

As for the first branch, there are works dealing with approaches for the gen-
eration of predictions, during process execution, focused on the time perspective.
In [10], the authors present a set of approaches in which annotated transition
systems, containing time information extracted from event logs, are used to: (i)
check time conformance; (ii) predict the remaining processing time; and (iii) rec-
ommend appropriate activities to end users working on these cases. In [11], an
ad-hoc predictive clustering approach is presented, in which context-related ex-
ecution scenarios are discovered and modeled through state-aware performance
predictors. In [12], the authors use stochastic Petri nets to predict the remaining
execution time of a process.

Another group of works in the literature focuses on approaches that gen-
erate predictions and recommendations to reduce risks. For example, in [13],
the authors present a technique to support process participants in making risk-
informed decisions with the aim of reducing the process risks. In [14], the authors
make predictions about time-related process risks by identifying and exploiting



statistical indicators that highlight the possibility of transgressing deadlines. In
[15], an approach for Root Cause Analysis through classification algorithms is
presented.

A key difference between these approaches and the Tuning-enhanced Pre-
dictive Process Monitoring Framework approach is that they rely either on
the control-flow or on the data perspective for making predictions at runtime,
whereas the predictive process monitoring framework [1,16] takes both perspec-
tives into consideration. In addition, we provide a general, customizable frame-
work for predictive process monitoring that is flexible and can be implemented
in different variants with different sets of techniques, and that supports users in
the tuning phase.

As for the second branch of works, several approaches in machine learning
have been proposed for the selection of learning algorithms [17], for the tuning
of hyperparameters [6], and for the combined optimization of both the algorithm
and hyperparameters [3]. Moreover, all these approaches can be also classified
in two further categories: those relying on knowledge from experiments with
previous machine learning problems (e.g., relying on the existence of a database
with this information) and those that are independent of other machine learning
approaches.

The problem that we address is to tune both the machine learning algorithm
and hyperparameter values and thus our work falls in the group of approaches
that cannot rely on previous experiments. One of the first works at the intersec-
tion of these two categories is Auto-WEKA [3]. The idea of this latter work is to
map the problem of algorithm selection to that of hyperparameter optimization
and to approach the latter problem based on sequential model-based optimiza-
tion and a random forest regression model. MLbase [18] also addresses the same
problem as Auto-WEKA and approaches it using distributed data mining algo-
rithms. Differently from all these approaches, the problem that we face in this
work is more complex. In our case, we have more than one machine learning
(sub-)problem (e.g., clustering and classification) and these sub-problems de-
pend on each other. Hence, the algorithm (and hyperparameters) optimization
for a (sub-)problem cannot be defined independently of the other sub-problems.
This is why the solution we propose combines manual and exhaustive search.

8 Conclusion

The contribution of this paper is a predictive process monitoring framework in-
corporating a hyperparameter optimization method that supports users in the
selection of the algorithms and in the tuning of the hyperparameters according
to the specific dataset and prediction problem under analysis. We evaluated the
approach on two datasets and we found that the Tuning-enhanced Predictive
Process Monitoring Framework provides users with interesting sets of tunable
configurations in a reasonable time. This allows users to adopt configurations
that generate accurate predictions for the specific dataset and prediction prob-
lem.



In the future we plan to further investigate: (i) how to increase the user
support; (ii) how to optimize the exhaustive search. Concerning the former, we
would like to provide users with an automatic heuristic-based approach for the
exploration of the search space. This would allow us to go beyond the exhaustive
analysis of a limited search space of the configurations by exploiting an objective
function to explore a larger search space. For instance, we could use as objective
function each of the evaluation metrics considered in this work or we could use
a multi-objective function for the optimization of all the three of them. As for
the latter we would like to borrow state-of-the-art techniques for the algorithm
selection and hyperparameter tuning and, if possible, to customize them for our
problem.

Finally, a further interesting direction is the prescriptive process monitoring.
The idea is making recommendations that takes into account user feedback in
order to improve them over time. Recommendations would allow user not only to
know whether a goal will be achieved but what to do for increasing the chances
to achieve the goal.
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