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Abstract. It is common for the observed behavior of a business process to dif-
fer from the behavior captured in its corresponding model, as workers devise
workarounds to handle special circumstances, which over time become part of the
norm. Process model repair methods help modelers to realign their models with
the observed behavior as recorded in an event log. Given a process model and an
event log, these methods produce a new process model that more closely matches
the log, while resembling the original model as close as possible. Existing repair
methods identify points in the process where the log deviates from the model,
and fix these deviations by adding behavior to the model locally. In their quest for
automation, these methods often add too much behavior to the model, resulting
in models that over-generalize the behavior in the log. This paper advocates for an
interactive and incremental approach to process model repair, where differences
between the model and the log are visually displayed to the user, and the user
repairs each difference manually based on the provided visual guidance. An em-
pirical evaluation shows that the proposed method leads to repaired models that
avoid the over-generalization pitfall of state-of-the-art automated repair methods.
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1 Introduction

Modern information systems maintain detailed data about the execution of the business
processes they support. These data can generally be extracted in the form of event logs
consisting of sets of traces, i.e. sequences of events produced during the execution of a
process case, where each event records the occurrence of a process activity.

Process mining is a family of methods for analyzing business processes based on
event logs [24]. Among others, process mining methods allow analysts to compare
the actual execution of a process against its expected execution captured in a process
model. This model-to-log comparison operation is known as conformance checking.
A conformance checking method takes as input a process model and an event log, and
identifies a set of discrepancies between the behavior observed in the log and that allowed
by the model. Once an analyst has identified relevant discrepancies between a process
model and an event log via conformance checking, they may wish to modify the process
model in order to better reflect reality. This operation is known as process model repair.



Process model repair methods take as input a process model, an event log and a set of
discrepancies between the model and the log, and produce a model that resembles the
original model as much as possible, but does not have the designated discrepancies.

The quality of a process model repair method can be captured via three metrics:
structural similarity (how much the produced model structurally resembles the original
model), fitness (howmuch behavior observed in the event log is captured by the repaired
process model), and precision (how much behavior is allowed by the repaired model
but never observed in the log). A repaired model should be as structurally similar as
possible to the original model, it should have a higher fitness than the original model
(since the designated discrepancies are fixed) and it should not degrade precision (i.e. it
should not add behavior that is not observed in the log).

Existing process model repair methods [10,21] identify points in the process where
the log deviates from the model, and determine the model change operations required
to reconcile such deviations. While the aim of [10] is to automatically generate repaired
models with higher fitness w.r.t. the original model, [21] aims solely at finding the
change operations to be performed. The latter method can associate different costs to the
change operations and control the model change via a budget. Further, [21] shows that
using only two change operations (insert and skip a task), which can be automatically
applied over the model, it is possible to obtain a repaired model with higher fitness w.r.t.
the original model. The authors in [21] acknowledge the importance of other metrics in
addition to fitness, though the identification of techniques to improve on such metrics
during repair is left to future work. In their quest for automation, these methods often add
too much behavior to the original model, and thus the repaired model tends to grossly
over-generalize the event log. In other words, these methods focus on maximizing fitness
at the expense of precision.

This paper advocates for an interactive and incremental approach to process model
repair for models in the BPMN language, where differences between the control-flow
of the model and the log are visually displayed to the user and the user repairs each
difference manually, at their discretion, based on visual guidance. In fact, some of these
differences may underpin positive deviations, e.g. workarounds introduced to improve
process performance, and as such, the user may wish to repair the model accordingly, so
that these workarounds can become standard practices. On the other hand, differences
that point to negative deviations, e.g. the violation of some compliance rule, should not
be incorporated into the model. The paper purports that this approach allows users to
strike a better tradeoff between the above metrics by giving them a more ample range of
choices at each step of the repair process. This hypothesis is validated via an empirical
evaluation on a battery of synthetic model-log pairs capturing recurrent change patterns
as well as a real-life model-log pair.

To illustrate the benefits of our approach w.r.t. existing ones we consider the process
model in Fig. 1a and the log {〈A, B,C, D, E, F,G, H〉, 〈A, B,C, D, F, E,G, H〉}. Our ap-
proach provides the visual difference feedback to the user shown in Fig. 1b. Assuming
this difference relates to a positive deviation, the user may repair the model in the way
indicated in Fig. 1c. This model is similar to the original one, fixes the discrepancy
shown in the visual feedback and does not add behavior w.r.t. the original model. Fig-
ures 1d and 1e are the repaired versions generated by the automatic repair methods
in [21] and [10], respectively.1 Even though the three models 1c - 1e can fully replay

1 Both methods produce Petri nets but for simplicity we present the repaired models in BPMN.
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the log (perfect fitness), the models 1d and 1e have lower precision. For instance, tasks
B,C, E, F, H can be repeated any number of times in Fig. 1d.
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(b) Visual feedback (our approach)
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(e) Repaired model with [10]

Fig. 1: Examples of process model repairs using different approaches

The paper is organized as follows. Section 2 discusses the limitations of existing
process model repair methods. Section 3 introduces the conformance checking method
presented in [12], which we use as a starting point. Next, Section 4 presents the proposed
model repair approach, while Section 5 discusses the results of the empirical evaluation.
Finally Section 6 summarizes the contribution and outlines future work directions.

2 Related work

Process model repair methods take as a starting point a set of discrepancies identified via
a conformance checkingmethod such as trace alignment [2,17]. Thismethod computes a
set of optimal trace alignments between each trace of a log and the closest corresponding
trace of the model. An alignment is a pair of traces, which, in addition to symbols
representing tasks, may also contain silent moves. A silent move represents a deviation
between the trace of the log and the trace of the model. It may be a move on log (a task
is observed in the log at a point where it is not allowed in the model) or conversely, a
move on model. A trace alignment is optimal if it requires a minimum amount of moves.

In [10], the authors present a process model repair method based on alignments.
This method starts by computing the optimal alignments between the log and the model,
then identifies the non-conforming parts between them and, finally, adds i) loops,
ii) subprocesses, and iii) skips of tasks. This approach guarantees a repaired model that
fits the log perfectly. Another method, presented in [21], is also based on alignments.
However, it only has two types of repair operations: skip a task and insert a new task
loop. Unlike [10], this method seeks to maximize fitness while controlling the amount
of changes by assigning a cost to each repair operation and setting a maximum budget.

The methods in [10] and [21] are based on change operations that add behavior
to the model. While the former adds subprocesses, loops and skips, the latter adds
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Fig. 2: Examples of automatic process model repairs that over-fit (low precision)

skips and self-looping tasks. Although these changes have a positive impact on fit-
ness, they negatively affect precision. Consider for example the model in Fig. 2a
and log {〈I, A, B, X,C,O〉, 〈I, A, B, X, D,O〉, 〈I, B, A, X,C,O〉, 〈I, B, A, X, D,O〉}. The re-
pairedmodels produced by [21] and [10] are shown in Figs. 2b and 2c, respectively. Even
though both models perfectly fit the log, they allow additional behavior that is neither
allowed in the original model nor observed in or implied by the log. For example, in
Fig. 2b there are two tasks with label X that can be repeated before and after C, while in
Fig. 2c, the same applies to task A. Furthermore, in both repaired models, tasks C and
D can co-occur, even though this never happens in the log.

The work in [7] proposes a genetic algorithm that given a reference model and a log,
discovers a newmodel that is similar to the reference model andmore closely fits the log.
This method optimizes the result along five dimensions: fitness, precision, simplicity,
generalization and structural similarity to the reference model. The method generates
candidate models (represented as process trees), which are evolved until one of them
is found to be optimal w.r.t. a given threshold on the allowed changes. Unlike process
model repair methods, this method does not update the original model but discovers a
new (possibly very different) one.

The authors of [22] consider the problem of model repair in a context where the
log is not necessarily reliable (i.e. there is missing or incorrect data). Hence the analyst
needs to indicate to what extent they trust the model and to what extent they trust the
log. If the analyst trusts the model but not the log, the log is fully re-generated so that it
matches the original model. If the analyst trusts the log but not the model, the model is
re-discovered from the event log using an automated process model discovery method,
creating a model that can potentially be very distant from the original one. If the user
partially trusts the model and the log, a new (repaired) model-log pair is generated, such
that the repaired model and log match, and their respective behavior is within a certain
distance of the original model and log.

Finally, processmodel repair has also been approached in the context of unsoundness.
For example, [11] uses a multi-objective optimization technique to automatically turn
an unsound Petri net into a corresponding sound model in a minimal number of change
operations, in an attempt to keep a high structural similarity to the original model. In
this case, however, the input to the technique is only an (unsound) model.

3 Behavioral alignment
Behavioral alignment [12] is a conformance checking method that identifies events
or behavioral relations between tasks occurrences that are observed at a given point
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in the log but not allowed in the corresponding state of the model, and vice-versa.
This method operates in four steps. First, it compresses the event log into a graph
of behavioral relations between task occurrences known as an event structure [19].
Second, it expands the process model into another event structure. Third, it computes a
(partially) synchronized product between these two event structures. Finally, it extracts
a set of difference statements from the product.

A Prime Event Structure (PES) [19] is a graph of events representing occurrences
of tasks. Events are linked via three relations: i) Causality (e < e′) indicates that event
e is a prerequisite for e′; ii) Conflict (e # e′) implies that e precludes the execution of
e′; and iii) Concurrency (e ‖ e′) indicates that e and e′ co-occur in any order. A PES
represents the computations of a system by means of configurations, sets of events that
can occur together. Fig. 3b shows the PES extracted from the log shown in Fig. 3a. A
label e:A represents an event e signifying an occurrence of task A. For example, e9:H,
e10:H, e11:H and e12:H are events representing different occurrences of task H. A directed
black arc between events represents causality, while a dotted edge represents conflict.
Concurrency is denoted by the lack of any (direct or transitive) link between two events,
e.g. events e1:B and e2:C are concurrent. The PES of a log represents every trace in the
log as a configuration. E.g., the first trace in Fig. 3a is represented by the configuration
{e0:A, e1:B, e2:C, e4:D, e7:E, e11:H}.

Trace
A B C D E H
A B C D F H
A C B D E H
A C B D F H
A B D E H
A B D F H

(a) Event log

e0:A

e1:B e2:C

e3:D e4:D

e5:E e6:F e7:E e8:F

e9:H e10:H e11:H e12:H

(b) Induced PES

Fig. 3: Example of an event log and its corresponding PES

Any BPMN pro-
cess model can be ex-
panded into a PES us-
ing a technique known
as unfolding. In this al-
ternative representation
of the behavior of the
model, each event is as-
sociated to a single task,
thus it is always possi-
ble to determine which
task originated a given
event. Consider the loan application process model shown in Fig. 4a, which is unfolded
into a corresponding PES in Fig. 4b. For conciseness, the PES prefix uses short labels A,
B, ..., I (shown next to each task in the BPMN model) instead of the full task labels. The
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PES of a model can also contain cutoff-corresponding event relations, graphically repre-
sented as directed red dotted arrows (see Fig. 4b), to denote “jumps” in the continuation
of the process execution (e.g., in the case of looping behavior).

The event structure mirrors the BPMN model: the first event is f0:A and is followed
by concurrent events f1:B and f2:C. A silent event ( f3:τ) captures their synchronization.
Subsequently, f4:D is followed by two events in conflict ( f5:F and f6:E). Event f6:E
can only be followed by f9:H , while f5:F can be followed either by event f7:I (itself
followed by f10:G) or by a silent event f8:τ which is in conflict with f7:I. The cutoff-
corresponding relation ( f10:G, f3:τ) tells us that the process can jump back to the point
just before D is executed, while ( f8:τ, f6:E) captures the jump from F to H .

The event structure of the log and that of the model are compared by computing
a partially synchronized product (PSP) [4,12]. A PSP is a state machine where each
state is a triplet 〈Cl,Cr, ξ〉, where Cl is a configuration of the PES of the log, Cr is a
configuration of the PES of the model, and ξ is a partial mapping between them. The
construction of the PSP starts with the empty configurations. At each step, a pair of
events from each PES is matched (added to ξ) if and only if their labels are the same
and their causal relations with the other matched events coincide. When an event cannot
be matched, it is “hidden” to allow the comparison to proceed. A “hide” edge captures
behavior observed in the log but not allowed in the model (lhide), or behavior allowed
in the model but not observed in the log (rhide). The method relies on an A∗ heuristic to
build a PSP that finds, for each configuration in the log, the most similar configuration
in the model (a.k.a. optimal), i.e., the one with the minimum number of hides.

Cl = {e0, e1}, Cr = { f0, f1}
ξ = {(e0, f0)A, (e1, f1)B}

Cl = {e0, e1, e2}, Cr = { f0, f1, f2}
ξ = {(e0, f0)A, (e1, f1)B, (e2, f2)C}

Cl = {e0, e1}, Cr = { f0, f1, f2}
ξ = {(e0, f0)A, (e1, f1)B}

match B

match C rhide f2:C

lhide e2:C
lhide e3:D

Fig. 5: Fragment of the PSP for PES from
Figs. 3b and 4b

Figure 5 presents an excerpt of the
PSP of the events structures in Figs. 3b
and 4b. The topmost box is the state
where configurations Cl = {e0, e1} (log
PES) and Cr = { f0, f1} (model PES)
have been processed, resulting in the
mapping {(e0, f0)A, (e1, f1)B}. Given
the above state, the events {e2:C, e3:D}
from log PES would be enabled, and so
is f2:C from the other PES. Under such conditions, four moves are possible in the PSP:
(i) the matching of events e2 and f2, both carrying the label C, (ii) the (left) hiding of
f2:C, and (iii) the (right) hiding of e2:C and e3:D. Fig. 5 presents only the states reached
after operations “match C” and “rhide f2:C”. However, the full PSP will contain optimal
matchings for all runs in the PES of the event log.

Pattern Statement
TaskReloc In the log, B occurs after [A] instead of [A,C, D]
ConcConf In the model, after [A], B and C are concurrent, while in the log they are mutually exclusive
CausConc In the model, after [A], B occurs before C, while in the log they are concurrent
CausConf In the model, after [A], B occurs before C, while in the log they are mutually exclusive
TaskSub In the log, after [A], B is substituted by X
TaskAbs/Ins In the log, C occurs after [A, B] instead of [A,C]
UnmRepetition In the log, A is repeated after [B]
TaskSkip In the log, after [A], B is optional
UnobsAcyclicInter In the log, tasks [A, B, . . . ] do(es) not occur after tasks [D, E, F]
UnobsCyclicInter In the log, the cycle involving tasks [A, B, . . . ] does not occur after tasks [D, E, F]

Table 1: Verbalization of mismatch patterns
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Fig. 6: Mismatch patterns in the PSP

The dissimilarities between a model and a log can be of two types, mismatching
behavior and behavior only observed in the model (not observed in the log); while
the former is captured by means of hide operations in the PSP, the latter is the model
behavior not observed in the log. The mismatching behavior patterns defined in [12] are
shown in Fig. 6, while their verbalizations are displayed in Table 1. In the verbalizations,
the capital letters are placeholders for the activities involved in the differences. Note
that UnobsAcyclicInter and UnobsCyclicInter in Table 1 refer to the behavior solely
contained in the model.

Roughly speaking, given a PSP both the mismatching behavior patterns and the
additional behavior in the model are identified, verbalized and reported. For instance,
the fragment of the PSP shown in Fig. 5 captures the pattern in Fig. 8d that is verbalized
as “In the event log, task C can be skipped, while in the model it cannot”.

4 Extending conformance checking to process model repair

In this section, we first describe two improvements over the behavioral alignmentmethod
introduced above: four of the existing patterns are redefined to consider sequences of
tasks (also referred to as intervals) instead of individual tasks, and an order for the
detection of differences is established in a way that more specific patterns are detected
before more general ones. Next, we describe a method for interactive process model
repair based on the visualization of the differences detected by the revised behavioral
alignment method.

4.1 Extension, order and impact of differences

The patterns in Table 1 define combinations of hide and match operations to de-
scribe predefined templates expressing behavioral differences. Those patterns cap-
ture differences involving single tasks (TaskSkip, TaskSub, UnmRepetition, TaskRe-
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loc and TaskAbs), pairs of tasks (CausConc, ConcConf and CausConf) or even se-
quences of tasks (UnobsAcyclicInter and UnobsCyclicInter). Patterns involving se-
quences of tasks can offer condensed dissimilarities, which otherwise should be
spelled out one by one. Thus, as a first contribution, we redefined four patterns,
those displayed in Fig. 8, to consider sequences of tasks instead of single tasks.

.

.

. .

. .

. .

match (A)

match (B)

match (C)

match (D)

rhide (B)

rhide (C)

match (D)

Fig. 7: Interval skip

In addition, to obtain a more condensed feedback, the new
definitions fix some of the issues of the original definitions. For
example, even though the PSP in Fig. 7 shows the case when
tasks B andC are optional (i.e., they occur in both the model and
the log, or only in the model), the original definition considers
only the optionality of a single task.

A sequence of tasks that can occur one after the other either
in the model or in the log is referred to as an interval (Int).
For example, according to the PSP in Fig. 7, the occurrence of
tasks B and C represents an interval since these two tasks occur
consecutively in themodel after an occurrence ofA. For the sake
of brevity, the rhide, lhide or match of an interval is denoted
as rhide(Int), lhide(Int) or match(Int), respectively. Specifically, given an interval
Int = [B,C], rhide(Int) denotes a sequence of rhide(B) followed by rhide(C), and
analogously for lhide and match. The changes in the patterns in Fig. 8 are highlighted
in red, and Int-1 and Int-2 are two different intervals in Fig. 8b.
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match (C)
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match (A)

op = match(Int) rhide(Int)

match (C) match (C)

(d) TASKSKIP

Fig. 8: Mismatch patterns extended to consider intervals instead of individual tasks

The detection of differences consists of traversing the PSP and once a pattern is
found, all the involved hide operations are discarded. As such, a hide operation cannot
be reported as part of two differences. However, a single hide operation can be explained
by various patterns. For example, given the PSP in Fig. 7, it is possible to identify two
TaskAbs patterns (i.e., “In the model, B occurs after [A] and before [D]” and “In the
model, C occurs after [A] and before [D]”) or a single TaskSkip pattern (i.e., “In the
model, after [A], the interval [B, C] is optional”). The latter offers a deeper insight
into the difference, in a more compact manner, and is thus preferred. Therefore, as a
second contribution, we define a specific order on the detection of the differences, such
that those involving intervals are identified first, then differences involving pairs of tasks
are identified, and finally those involving only single tasks. The order for each of the
patterns is shown in the first column of Tables 2-4.
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The proposed repair approach starts from the premise that not all existing differences
shall be reconciled but only those pointing to positive deviations, and among them, some
may have higher priority than others. For example, differences involving critical tasks,
or differences that refer to a particular type of mismatch pattern (e.g., TaskAbs), or
affecting a larger number of traces in the log, may be given higher priority. In this
regard, as a third contribution we propose a notion of impact for each mismatch pattern.
We define this notion based on the frequency of the events in the log, such that differences
with higher impact shall be reconciled first.2 The construction of the PES enriched with
information about the frequency of the events, can be found in [23]. Consider the patterns
in Fig. 6 and a log with X amount of traces. The impact of a given pattern is defined
as Y/X , where Y is i) the frequency of the event (or the minimum frequency of the
events in an interval) involved in the operation op for the patterns TaskReloc, TaskSub,
TaskAbs/Ins, UnmRepetition and TaskSkip; ii) the minimum frequency of the event
in op1 and in op2 for the patternsCausConf andCausConc; and iii) the frequency of the
event in op1 plus the frequency of the event in op2 for the patternConcConf. Intuitively,
this notion represents the proportion of traces involving the events in a given difference.
This simple impact measure can be replaced with a more sophisticated notion, e.g. one
that depends on factors that are exogenous to the log such as the cost of rectifying the
model according to a given difference.

4.2 Visualization of differences
The cornerstone of our interactive and incremental model repair approach is the vi-
sualization of the differences. It exploits the fact that diagrams are powerful tools for
presenting information in a more concise and precise manner than text [18]. Thus, the
visualization of differences can be easier to understand than the textual description
generated by the conformance checker. Intuitively, every mismatch pattern is translated
into a graphical representation, which can be overlaid on the model, and suggests the
change to be done for reconciling a given difference. This alternative representation
uses standard BPMN notation, so no new symbols are added, and uses a color code
to represent the suggested changes. Variations in color are easily distinguishable, more
than changes in shapes [18], and can help coping with potential model complexity. This
idea incarnates the principle of graphical highlighting, which have been shown in [15]
to lead to more understandable process models.

Some techniques that have approached the problem of representing differences be-
tween graphs and/or models can be broadly categorized into two groups: those that
use color-coding of differences in a merged graph for the visualization of differences
(see e.g. [14,6,13,20]), and those that overlay the two compared models, such that both
models are visible in the same picture [3]. In the visualization proposed in this paper,
however, the differences are not directly represented as such to the user. Rather, the
required change is shown, indicating what needs to be changed in order to repair the
model such that it matches the behavior observed in the log.

The color code used for the representation of the differences is as follows. An element
in the BPMNmodel – task, sequence flow (i.e. arc) or gateway – involved in a difference
can either be grey (element to be removed) or red with thicker lines (element to be
inserted or task affected by the difference); whereas the elements that are not involved in
the difference are left unchanged. The proposed visualizations for all mismatch patterns

2 The same rationale of reconciling changes with higher impact first is proposed in [21].
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are displayed in Tables 2 - 4. For instance, consider the fourth pattern in Table 2, where
task b has to be relocated after o. As a result, task b in the model is grayed out (along with
its incoming and outgoing arcs), while a new task b is inserted after o. The background
of the new task is colored white, so that it is easier to distinguish new tasks from those
already present in the model (those with a yellow background).

The differences are classified with respect to two criteria, scope and type of change
in the model. The scope can be local or cross-context. The local changes occur in a
single part of the model, e.g., TaskAbs denotes the case when a task was not observed
in the log, and thus it has to be removed from the model; whereas, cross-context changes
involve two different parts in the model, e.g., TaskReloc denotes the case when an
interval of tasks has to be moved from one location to another. The second criterion
is the type of change: tasks modification, sequence flows modification, or gateways
modification. In our context, a modification implies either the removal of elements, or
the removal and insertion of elements.

A local change can be further subdivided into two classes: interval and binary.
A local-interval change can be formally defined as a triplet 〈I1, I2,C〉, such that I1 is
an interval of tasks in the model, I2 is an interval of tasks to be inserted and C is a
configuration. A local-binary change is a triplet 〈e1, e2,C〉, where e1 and e2 are tasks
in the model, and C is a configuration. Finally, a cross context change is defined as
〈I,C1,C2〉, where I is an interval, and C1 and C2 are configurations. C1 is the source of
the difference and C2 is the target of the modification. We refer to the start (resp. end) of
a difference as the element in the model that precedes (resp. follows) the tasks in I1, I2,
{e1, e2} and I, depending on the scope of the change. In order to build the visualization
of a difference, we take as input the triplets generated by the conformance checker, and
obtain the elements in the model involved in such differences. Subsequently, we generate
a triplet 〈Y, H, A〉, such that Y contains the elements to be grayed out, H contains the
elements to be highlighted and A contains the elements to be added. Each set of patterns,
grouped by the type of change in the model, is presented below.

Order Type Input Suggested repair Sentence

16 TaskAbs
I1 = {b }
I2 = ∅
C = {i, a }

New Process

i a b o

i a b o

i o

a

ba

i a b o b

i a b o

In the model, Task b occurs after [i,
a] and before [o]

6 UnobsAcyclic
I1 = {a, b }
I2 = ∅
C = {i }

New Process

i a b o

i a b o

i o

a

ba

i a b o b

i a b o

In the log, the interval [a, b] does
not occur after [i]

8 TaskSub
I1 = {a }
I2 = {c }
C = {i }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a b o

In the log, after i, the interval [a] is
substituted by Task c

1 TaskReloc
I = {b }
C1 = {i, a }
C2 = {i, a, b, o }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a b o

In the log, the interval [b] occurs
after [i, a, o] instead of [i, a]

2 TaskReloc
I = {b }
C1 = {i, a, o }
C2 = {i, a }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b
In the model, the interval [b]

occurs after [i, a, o] instead of [i, a]

Table 2: Tasks modification patterns

Tasksmodification. This set of differences covers three cases: tasks need to be removed
from the model, tasks need to be relocated and tasks need to be substituted. Table 2
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presents the patterns in this category and shows an example of both their visualization
and their verbalization. The graphical representation of these differences consists in
graying out the tasks (and their arcs) in the interval I1 for the local-interval changes,
and the tasks in the interval I for the cross-context changes. New arcs, and tasks in the
case of task substitution, are inserted to connect the start with the end of each difference
(i.e., the tasks around the grayed out elements). Finally, for the last two cross-context
changes, new tasks and arcs are inserted representing the relocation of the intervals to
the target of the modification. For instance, the fourth pattern – TaskReloc in Table 2
suggests to relocate task b after {i, a, o}. Thus, task b and its incoming/outgoing arcs are
grayed out, a new arc is inserted to connect a with o, and a new task b is added after o.

Sequence flows modification. The differences in this category cover the cases when
existing arcs need to be removed, and new gateways and/or arcs need to be inserted.
Thus, no task needs to be grayed out or highlighted. The patterns in this category are
presented in Table 3. The arcs to be grayed out are the incoming and outgoing arcs of
the tasks in I for cross-context changes, in I1 for local-interval changes, and in {e1, e2}
for local-binary changes. Finally, depending on the pattern, new gateways have to be
inserted with corresponding arcs for connecting the elements involved by the difference.
For instance, the second pattern (TaskSkip) in Table 3 suggests that task b should be
optional. The incoming and outgoing arcs of b are grayed out, and new XOR gateways
are added to allow the skip of b after a.

Order Type Input Suggested repair Sentence

15 TaskAbs
I = {b }
C1 = {i, a }
C2 = {d, c }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b

i a

b

ob

d c e

i a ob

i a ob

i a ob

i a ob

In the log, Task b occurs after [d, c] and
before [e]

3 TaskSkip
I1 = {b }
I2 = ∅
C = {i, a }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b

i a

b

ob

d c e

i a ob

i a ob

i a ob

i a ob

In the log, after a, the interval [b] is optional

7 UnmRepetition
I1 = {b }
I2 = ∅
C = {i, a }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b

i a

b

ob

d c e

i a ob

i a ob

i a ob

i a ob

In the log, the interval [b] is repeated after a

9 CausConc
e1 = a
e2 = b
C = {i }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b

i a

b

ob

d c e

i a ob

i a ob

i a ob

i a ob In the model, after i, Task a occurs before
Task b, while in the log they are concurrent

14 CausConf
e1 = a
e2 = b
C = {i }

New Process

i a b o

i a b o

i o

c

ba

i a b o b

i a o b

b

i a

b

ob

d c e

i a ob

i a ob

i a ob

i a ob

In the model, after i, Task a occurs before
Task b, while in the log they are mutually

exclusivethe log they are concurrent

Table 3: Sequence flows modification patterns

Gateways modification. The last set of differences are changes that affect the gateways
present in the model, i.e. a gateway needs to be deleted or replaced by another gateway
(e.g. an XOR gateway is replaced by an AND gateway). The patterns in this category are
shown in Table 4. The elements to be highlighted are the tasks in the interval I and I1
in the case of TaskSkip and UnobsCyclic, respectively, and tasks e1 and e2 for the rest
of the differences. The elements grayed out are the relevant gateways (AND gateways
for the first two patterns and XOR gateways for the last four), and their outgoing and
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Order Type Input Suggested repair Sentence

10 CausConc
e1 = a
e2 = b
C = {i }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the log, after i, Task a occurs before
Task b, while in the model they are

concurrent

12 ConcConf
e1 = a
e2 = b
C = {i }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the model, after i, Task a and Task b
are concurrent, while in the log they are

mutually exclusive

13 CausConf
e1 = a
e2 = b
C = {i }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the log, after i, Task a occurs before
task Task b, while in the model they are

mutually exclusive

11 ConcConf
e1 = a
e2 = b
C = {i }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the log, after i, Task a and Task b are
concurrent, while in the model they are

mutually exclusive

4 TaskSkip
I = {b }
C1 = {i, a }
C2 = {i, a, o }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the model, after i, the interval [b] is
optional

5 UnobsCyclic
I1 = {b }
I2 = ∅
C = {ı, a }

NewProcess3

i a o
b

i
a

o
b

i a o
b

i
a

o
b

i
a

o
b

i
a

o
b

In the log, the cycle involving [b] does
not occur after [i]

Table 4: Gateways modification patterns

incoming arcs. Finally, depending on the pattern, new gateways and arcs are inserted to
connect the elements involved in the pattern. For example, the first and third patterns in
Table 4 suggest to remove the gateways and to define a causality order between a and b.
In these two patterns, a (the task occurring first) is connected to i, and b (occurring last) is
connected to o. In the case of the second and the fourth patterns in Table 4, the existing
gateways have to be substituted by another type, thus changing the parallel behavior
between tasks a and b to exclusive, or vice versa. The substitution is as follows: existing
gateways and their incoming and outgoing arcs are grayed out, and new gateways and
arcs are inserted. Specifically, in bothConcConf patterns, the fork gateway is connected
to i, a and b, emulating the connections of the fork gateway to substitute, while the join
gateway is connected to a, b and o.

5 Evaluation
We implemented our approach as part of the OSGi pluginCompare [5] for the Apromore
online process analytics platform.3 This plugin takes as input a BPMNprocessmodel and
a log in MXML or XES format. Its output is a set of textual differences according to the
mismatch patterns described in this paper.When selected, a difference is also represented
graphically on top of the input process model. The user can apply a difference at a time
to repair the model accordingly. At each application, the differences between the model
and the log are recomputed. Once a difference has been selected, it can be automatically
applied by the tool. Users can apply differences until the model and the log capture
the same behavior, or until desired.4 An example of the graphical representation of a
difference, i.e., TaskSkip pattern, over a model is depicted in Figure 9.

3 Available at http://www.apromore.org
4 A screencast of the tool can be found at https://youtu.be/3d00pORc9X8
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Using this tool, we conducted a two-pronged evaluation to compare our approach to
the two existing baseline approaches in [21] (hereafter called Base1) and [10] (Base2).
First, we applied each approach on a battery of synthetic event logs generated from
a real-like model of a loan origination process, to assess how each of them performs
in identifying and repairing elementary changes. Next, we applied each approach on a
real-life model-log pair for a road traffic fines management process.

Fig. 9: Example of the visualization of a difference in Compare

We compared the quality of the repaired models produced by the three approaches in
terms of their fitness, precision and F-Score (the harmonic mean of fitness and precision)
w.r.t. the event log, as well as in terms of their structural similarity w.r.t. the original
model.We used fitness and precision based on trace alignment [2,1], as thesemetrics can
be computed reasonably quickly, and because the two baseline methods were designed to
optimize the fitness measure based on trace alignments. Trace alignment-based fitness
[2] measures the degree to which every trace in the log can be aligned with a trace
produced by the model, while trace alignment-based precision [1] measures how often
the model escapes these aligned traces by adding extra behavior not recorded in the
log. We computed model similarity as one minus the graph-edit distance between the
two models. The graph-edit distance measures the number of node and edge insertions,
removals and substitutions to transform one graph into the other. We used the measure in
[8] (with a greedymatching strategy), as it has been shown to provide a good compromise
between matching accuracy and performance.

5.1 Experiment with synthetic datasets

In the first experiment, we used a battery of 17 synthetic model-log pairs. Starting from
a textbook example of a process for assessing loan applications [9] (see Fig. 10), we
generated 17 altered versions of this base model by applying different change operations.
Next, we used the BIMP simulator5 to generate an event log from each altered process
model. By pairing the base model with these logs, we obtained 17 model-log pairs.

To avoid bias towards any of the evaluated approaches, we selected the change
operations to apply from an independent taxonomy of simple change patterns [25],
which constitute solutions for realizing commonly occurring control-flow changes in
information systems. As such, this taxonomy of changes is different from the mismatch
patterns presented in this paper, which are based on the difference as observed in the
PSP. However, each pattern in one taxonomy can be expressed by one or more patterns
in the other taxonomy.

5 http://bimp.cs.ut.ee
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Loan_baseline
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application

form
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Receive
updated

application
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application

back to
applicant
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Reject
application
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application

rejected

Prepare
acceptanc

e pack

Check if
home
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Send
acceptance

pack

Send
acceptance
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insurance

Verify
repayment
agreement

Cancel
application
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application
canceled

Approve
application

Loan
application
approved

Loan
application

received

applicant
disagrees

applicant
agrees

applicant
not eligible

applicant
eligible

form
complete

form
incomplete

home
insurance

required

home
insurance

not required

Fig. 10: BPMN model of a loan origination process (source: [9])

The simple change patterns from [25], summarized in Table 5, capture elementary
ways of modifying a process model, such as adding/removing a fragment, putting a
fragment in a loop, swapping two fragments, or parallelizing two sequential fragments.
Non-applicable patterns such as changing branching frequency or inlining a subprocess
were excluded, resulting in eleven change patterns. These patterns can be grouped into
three categories based on their type: Insertion (“I”), Resequentialization (“R”) and
Optionalization (“O”). From these categories, following the same method as in [16,23],
we constructed six composite change patterns by subsequently nesting simple change
patterns from each category within each other: “IOR”, “IRO”, “OIR”, “ORI”, “RIO”,
and “ROI”. For example, the composite pattern “IRO” can be obtained by adding a
fragment (“I”), putting it in parallel with an existing fragment (“R”), and skipping the
latter (“O”). As a result, we obtained a total of 17 change patterns.

Simple pattern Explanation Category
Add/Remove Add/remove fragment I
Cond./Seq. Make two fragments conditional/sequential R
Conc./Seq. Make two fragments concurrent/sequential R
Loop Make fragment loopable/non-loopable O
Skip Make fragment skippable/non-skippable O
Cond. move Move fragment into/out of conditional branch I
Conc. move Move fragment into/out of concurrent branch I
Synchronize Synchronize two parallel fragments R
Duplicate Duplicate fragment I
Replace Substitute fragment I
Swap Swap two fragments I

Table 5: Simple control-flow change patterns from [25]

In order to use our ap-
proach without user input,
we automatically selected
the difference retrieved from
our tool that has the high-
est impact in terms of in-
volved log traces, applied
that to the original model
to obtain a repaired model,
recomputed the differences
and picked again the most
impactful difference, until
no more differences existed
or five differences had been
selected. This mechanized version of our approach only removes the interaction with
the user but preserves its incremental nature. However, given the limit to maximum
five differences, there is no guarantee that all the discrepancies between model and log
would be repaired.

Table 6 reports the results of the first experiment, where for each bidirectional
pattern (e.g. Add/Remove), we applied the pattern in both directions and reported the
average measurements. Our approach always achieves the highest structural similarity
w.r.t. the original model (on average 0.92, with values ranging from 0.86 to 0.97).
This is substantially higher than the similarity obtained by Base1 (avg=0.72, min=0.60,
max=0.88) and byBase2 (avg=0.79,min=0.71,max=0.88). Despite the higher similarity,
the models repaired by our approach have the highest F-Score in all but one case. In

14



fact, while both baselines aim to maximize fitness, obtaining a perfect fitness in most
cases, our approach keeps the fitness high while improving precision, often substantially
(avg=0.97 against 0.68 for Base1 and 0.94 for Base2), hence striking a better balance
between the two accuracy measures. The only exception is the synchronization pattern,
where our F-Score is 0.95 against 0.97 for the two baselines. The repair introduced in
this case was more specific than the behavioral difference reported by our approach,
resulting in a lower fitness compared to the two baselines (0.94 instead of 1.00), despite
having a slightly higher precision (0.97 instead of 0.95).

A
dd/R

em
ove

C
ond./Seq.

C
onc./Seq.

Loop

Skip

C
ond.m

ove

C
onc.m

ove

Synchronize

D
uplicate

R
eplace

Sw
ap

IO
R

IRO

O
IR

O
R
I

R
IO

RO
I

Ba
se
1
[2
1] Similarity 0.74 0.68 0.88 0.57 0.82 0.72 0.70 0.88 0.67 0.73 0.63 0.60 0.70 0.62 0.82 0.80 0.72

Fitness 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 0.68 0.94 0.92 0.36 0.87 0.70 0.72 0.95 0.52 0.64 0.55 0.59 0.45 0.46 0.92 0.84 0.50
F-Score 0.81 0.97 0.96 0.53 0.93 0.82 0.84 0.97 0.69 0.78 0.71 0.74 0.62 0.63 0.96 0.91 0.67

Ba
se
2
[1
0] Similarity 0.79 0.79 0.88 0.78 0.77 0.75 0.74 0.88 0.82 0.79 0.71 0.82 0.88 0.71 0.79 0.83 0.74

Fitness 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.81 0.76 1.00 1.00 0.88
Precision 0.97 0.98 0.92 0.95 0.85 0.93 0.93 0.95 0.98 0.97 0.93 0.97 0.97 0.88 0.95 0.94 0.83
F-Score 0.99 0.99 0.96 0.98 0.92 0.97 0.96 0.97 0.99 0.96 0.97 0.96 0.88 0.82 0.98 0.97 0.86

O
ur

s

Similarity 0.86 0.92 0.97 0.95 0.93 0.90 0.88 0.92 0.94 0.93 0.95 0.86 0.90 0.87 0.91 0.97 0.91
Fitness 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 0.97 0.98 0.92 0.96 0.97 0.98 0.98 0.97 0.98 0.97 0.97 0.95 0.97 0.96 0.95 0.98 0.95
F-Score 0.99 0.99 0.96 0.98 0.99 0.99 0.99 0.95 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.98

Table 6: Evaluation results on the synthetic datasets

In summary, despite the relative simplicity of the introduced changes, the two base-
line approaches generate models that are much more distant from the original model, yet
less accurate in capturing the log behavior, than the models produced by our approach.

5.2 Experiment with real-life dataset

In the second experiment, we used a real-life model-log pair of a process for managing
road traffic fines in Italy. The normative process model, available as a Petri net (see
Fig. 11), is obtained from a textual description of this process [17]. The log6 is extracted
from the information system of a municipality. It contains 150,370 traces of which 231
are distinct and a total of 561,470 events. This log contains a number of anomalies,
presumably due to noise and other factors. Examples are traces 〈Create fine→ End〉 and
〈Create Fine→ Send Fine→ End〉, which cannot be replayed in the model.

Covering all log behavior will naturally increase fitness, but at the same time will
result in a highly complex and over-fitting model. From the results reported in Table 7,
we can see that both baselines cover all log behavior (perfect fitness), but result in a very
low precision and hence F-Score, and a repaired model that is very different from the
original one. In this table, we also report model size as the sum of the number of places
and transitions in the Petri net.

6 http://dx.doi.org/10.4121
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These results exacerbate the differences between the three approaches al-
ready exposed in Table 6, clearly demonstrating the advantages of our ap-
proach over the two baselines. Our approach reduces the fitness of the original
model by 0.07, but dramatically increases the precision and, thus the F-score.

Similarity Fitness Precision F-Score Size
Original model - 0.99 0.77 0.87 28
Base1 [21] 0.46 1.00 0.45 0.62 46
Base2 [10] 0.55 1.00 0.49 0.65 50
Ours 0.90 0.92 0.90 0.91 29

Table 7: Evaluation results on the real-life dataset

In addition, it produces a much
more readable model (the size is
almost half of that of the base-
lines) which is very close to the
original model (the similarity is
0.90 vs. 0.46 for Base1 and 0.55
for Base2). Figure 12 shows the
repaired model obtained by our
approach, while Fig. 13 shows the model obtained by Base2 (for the sake of comparison,
we show the model in Petri nets).

Start Create
Fine

Send
Fine

Send
Notification

Payment Payment

Send for
Credit
Collection

Payment
Add
Penalty

Appeal to Judge

Notify
Offender

Appeal to
Prefecture

Receive Result

Send Appeal

End

Fig. 11: Normative model of the road traffic fines management process (source: [17])

Start Create
Fine

Send
Fine

Send
Notification

Payment

Send for
Credit
Collection

Payment

Add
Penalty

Payment

Appeal to Judge

Notify
Offender

Appeal to
Prefecture

Receive Result

Send Appeal

End

Fig. 12: Our repaired model of the road traffic fines management process

In this second experiment, we only applied the top two differences in terms of
number of affected traces, as identified by our tool. Next, we tried a subsequent repair
iteration: this increased the precision to 0.93 and the F-Score to 0.92 at the cost of
reducing the similarity to 0.86 and increasing the size to 31 nodes. Given that in this
dataset the original model is a normative specification, it is up to the user to select
which model-log discrepancies to repair based on domain knowledge. In fact, unfitting
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behavior could be the result of non-compliance, and as such related discrepancies should
not be applied to the model, but rather provide opportunities to rectify current practices.
Alternatively, they may expose practical workarounds to improve performance, which
could in principle be imported into the normative model. In turn, additional model
behavior may point to norms that are ignored in practice, again providing opportunities
for rectifying current practices.

Start Create
Fine

Insert Date Appeal
to Prefecture
Send Fine

Appeal to Judge

Send Appeal to
Prefecture

Payment

Send Appeal
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Payment

Insert Fine
Notification

Insert Date
Appeal to
Prefecture

Payment

Add Penalty

Send for Credit
Collection

Appeal to Judge

Insert Date Appeal
to Prefecture

Send Appeal
to Prefecture

Insert Date Appeal
to Prefecture

Receive Result Ap-
peal from Prefecture

Notify Result Ap-
peal to Offender

End

Fig. 13: Process model for the road traffic fines management process repaired by Base2

6 Conclusion

This paper presented a process model repair approach that differs from previous pro-
posals in that it does not seek to fix each discrepancy automatically by adding behavior,
but rather, it overlays each discrepancy on top of the model, and lets the user decide
incrementally which discrepancies to fix and how, based on the provided visual guid-
ance. Further, the fixes suggested through visual guidance are more accurate (in the
sense that they do not add behavior w.r.t. the log), than those provided by state-of-the-
art model repair methods. This characteristic is confirmed by the empirical evaluation,
which showed that our approach leads to repaired models with a higher F-Score and
higher structural similarity relative to two state-of-the-art process model repair methods.
The empirical evaluation is limited to a collection of synthetically modified model-log
pairs, and one real-life model-log pair. This restricted dataset is a potential threat to
the validity of the findings. Conducting a more comprehensive evaluation with further
real-life model-log pairs is thus an avenue for future work.

While interactivity is a strength of our approach, it is also a potential limitation
insofar as the effort required to repair model-log pairs with many discrepancies may
be prohibitive. Another avenue for future work is to automatically identify sets of
compatible discrepancies that affect the same model fragment, which can be repaired
together in a way that leads to a very similar model with higher F-Score.
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