
Event Structures as a Foundation for Process
Model Differencing, Part 1: Acyclic processes

Abel Armas-Cervantes, Luciano Garćıa-Bañuelos, and Marlon Dumas

Institute of Computer Science, University of Tartu, Estonia
{abel.armas,luciano.garcia,marlon.dumas}@ut.ee

Abstract. This paper considers the problem of comparing process mod-
els in terms of their behavior. Given two process models, the problem
addressed is that of explaining their differences in terms of simple and
intuitive statements. This model differencing operation is needed for ex-
ample in the context of process consolidation, where analysts need to
reconcile differences between process variants in order to produce consol-
idated process models. The paper presents an approach to acyclic process
model differencing based on event structures. First the paper considers
the use of prime event structures. It is found that the high level of node
duplication inherent to prime event structures hinders on the usefulness
of the difference diagnostics that can be extracted thereon. Accordingly,
the paper defines a method for producing (asymmetric) event structures
with reduced duplication.

1 Introduction

Large companies with mature business process practices often manage multiple
versions of the same process. Such variants may stem from distinct products,
different types of customers (e.g. corporate vs. private customers), different leg-
islations across countries in which a company operates, or idiosyncratic choices
made by multiple business units over time. In some scenarios, analysts need
to find ways to consolidate multiple process variants into a single one for the
purpose of improving efficiency and creating economies of scale. In this setting,
analysts need to accurately understand the differences between multiple vari-
ants in order to determine how to reconcile them. In this paper, we define a
process model differencing operator that provides intuitive guidance to analysts,
allowing them to understand the differences between a pair of process variants.

Behavioral profiles (BPs) [1] are a promising approach to tackle problems
pertaining to the management of process variants. The idea behind BPs is to
encode a process in terms of behavioral relations between every pair of tasks. In
BPs, a pair of tasks is related by one of three types of relations: strict order(↦),
exclusive order(+) or interleaving(9). BPs have been used for defining behavioral
similarity metrics [2] and for process comparison and merging [3], among other
applications. Nevertheless, BPs suffer from the following issues:
1. BPs do not correspond to any known notion of equivalence. Specifically, two

processes may have the same BP while not being trace equivalent. Recipro-
cally, two processes may be trace equivalent, yet have different BPs.

2. BPs mishandle the following patterns of behavior : (a) task skipping, (b) be-
havior inside cycles – which is confused with interleaved parallelism – and
(c) duplicate tasks.

Consider for example the variants of a land development process depicted in
Figure 1(a)-(c), and their BPs presented aside. Firstly, even if we abstract away
from task “c” both variants are non-trace equivalent, yet their BPs are identical
(Issue 1). Secondly, note that task “b” is not always executed in the first variant,
meaning that it can be skipped (Figure 1(a)). This fact is not captured in the
BPs (Issue 2a). Finally, consider tasks “d”,“e” and “f” present in both variants.
The order in which these tasks are executed is captured in both BPs using the
interleaving relation. However, the actual order clearly differs between the two
variants. This issue stems from the fact that these tasks are contained in a cycle
and BPs confuse cycles and interleaved parallelism (Issue 2b).

!"#$%&'(
)*#&

!"#$%&'(
+,#&-#./%0&-

1'2%-%&3(
)*#&

455,02'(
)*#&

657#/'(
1'3%-/',

657#/'(
898:

!

"

$

%

&

(a)

a b c d e f

a + 9 ↦ ↦ ↦ ↦
b 9 + ↦ ↦ ↦ ↦
c ←[← [9 9 9 9

d ←[← [9 9 9 9

e ←[← [9 9 9 9

f ←[← [9 9 9 9

(b)

!"#$%&'(
)*#&

!"#$%&'(
+,#&-#./%0&-

123#/'(
4'5%-/',

622,07'(
)*#&

123#/'(
898:

!

" # $%

(c)

a b d e f

a + 9 ↦ ↦ ↦
b 9 + ↦ ↦ ↦
d ←[← [9 9 9

e ←[← [9 9 9

f ←[← [9 9 9

(d)

Fig. 1. Variants of land development process

The paper makes a step forward by presenting an approach to process model
differencing that does not suffer from issues 1 and 2a above – although it still
suffers from not being able to handle cyclic models nor models with duplicate
tasks. The presented approach is based on Event Structures (EVs), which allow
us to ensure that two models are treated as equivalent iff they are fully concur-
rent bisimilar (cf. issue 1). First, the paper considers the use of Prime Event
Structures (PES) for process model differencing. However, it is found that PESs
inherently involve a significant amount of duplication, which degrades the useful-
ness of the diagnosis. To address this issue, the use of Acyclic Event Structures
(AES) is considered. It is shown that AES can provide a more compact represen-
tation (less duplication), thus leading to a more compact diagnosis of differences.

In the proposed approach, differences between process models are captured
by means of a (sparse) matrix wherein each cell represents a difference involving
one or two tasks. This matrix can be directly translated into simple and intuitive
statements. For instance, the difference between the process models depicted in

Figure 1 can be expressed in terms of statements of the following form:1 “In
model (a), task b sometimes precedes {d, e, f}, whereas in model (b) task b
always precedes {d, e, f}”, “Task c is present only in model (a)”, “In model (a),
task d and e are executed in any order, while d always precedes e in model (b)”.

The discussion throughout the paper is developed assuming that the input
process models are given as Petri nets. However, this is not a limitation given the
existence of mappings from common process modeling notations to Petri nets.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces some notions and notation used in the rest of the paper.
Section 4 presents the acyclic process model differencing approach based on PES
and AES. Finally, Section 5 concludes and discusses directions for future work.

2 Related work

Approaches for process model comparison may be divided into those based on
node label similarity, process structure similarity and behavior similarity [4, 5].
In this paper we focus on behavior similarity. Nevertheless, we acknowledge
that node label similarity plays an important in the alignment of nodes (e.g.,
tasks) across the process models being compared. Here, we assume that such
an alignment is given, i.e. for each node label in one model we are given the
corresponding (“equivalent”) node label in the other model. This is equivalent to
assuming that the same node labels are used across both models being compared.

There exists a number of equivalence notions for concurrent systems [6].
Several methods for testing the equivalence of two systems according to these
notions have been developed. However, most of these methods focus on determin-
ing whether or not two systems are equivalent. Relatively few previous research
delves into the question of diagnosing all differences between two systems.

Perhaps one of the earliest work on diagnosing concurrent system differences
is [7], which presents a technique to derive equations in a process algebra char-
acterizing the differences between two Labeled Transition Systems (LTSs). This
technique iteratively traverses the data structures used for testing bisimulation
equivalence and generates a minimal equation characterizing differences for pairs
of states in the input LTSs. However, the use of a process algebra makes the feed-
back difficult to grasp for end users (process analysts in our context). In [8], a
method for assessing the dissimilarity of LTSs in terms of “edit” operations is
presented. However, we contend that providing feedback in the form of a series
of elementary edit operations (add or remove events) is not simple and intu-
itive, since it does not directly tell the analyst what relations exist in one model
that do not exist in the other. [9] presents a method for diagnosing differences
between pairs of process models using standard automata theory. Differences be-
tween a pair of models are captured by means of templates of the form “a node
in a model has more dependencies than in the other one” or “a node in a model
may be executed multiple times in one model but at most once in the other”.

1 Note that the cycle is not taken into account in this comparison.

The method of [9] suffers from two major limitations. First, the set of reported
differences is not guaranteed to be complete. Second, the differences are given in
a coarse-grained manner. With respect to the example in Figure 1, [9] gives as
diagnosis that task “c” has additional dependencies in the first model viz. the
second, without explaining the additional dependencies. We note that all three
techniques above rely on LTSs and are not able to recognize concurrency rela-
tions. Thus, these techniques do not diagnose differences such as “in one model
two tasks are done concurrently while in another they are done in sequence.”

In this paper, we rely on event structures to capture the behavior of process
models. Event structures represent concurrent systems in terms of behavioral
relations between events. Other representations of process models in terms of
behavioral relations have been proposed in the literature. Causal footprints [10]
represent behavior as a set of tuples, each comprising a task, its preset, and its
postset. These sets of tuples are then mapped to points in a vector space and
euclidian distance is used to compute a metric of similarity between a given pair
of footprints. This technique however is not intended to provide a diagnosis of
differences between pairs of models. Alpha relations are another example of a
representation of process models using behavioral relations [11]. Alpha relations
include direct causality, conflict and concurrency, and are derived from execu-
tion logs for the purpose of process mining. Alpha causality is not transitive.
This choice makes alpha relations unsuitable for process model comparison, be-
cause causality has a localized scope. Moreover, alpha relations cannot capture
so-called “short loops” and hidden tasks (including scenarios where a task may
be skipped). The ordering relations graph [12, 13] is another representation of
(acyclic) process models in terms behavioral relations. However, it too has prob-
lems with hidden tasks. The class of asymmetric event structures characterized
in the present paper is a refinement of the ordering relations graph.

3 Preliminaries

This section covers basic concepts on Petri nets and partial ordered sets. In
particular, the notions of branching processes, behavior relations, and fully con-
current bisimulation are reviewed because they are cornerstones to our approach.

3.1 Petri nets

Definition 1 (Petri net, Net system). A tuple (P,T,F) is a Petri net, where
P is a set of places, T is a set of transitions, with P ∩T = ∅, and F ⊆ (P ×T)∪
(T × P) is a set of arcs. A marking M ∶ P → N0 is a function that associates
each place p ∈ P with a natural number (viz., place tokens). A net system N =
(P,T,F,M0) is a Petri net (P,T,F) with an initial marking M0.

Places and transitions are conjointly referred to as nodes. We write ●y = {x ∈
P ∪ T ∣ (x, y) ∈ F} and y● = {z ∈ P ∪ T ∣ (y, z) ∈ F} to denote the preset and
postset of node y, respectively. F + and F ∗ denote the irreflexive and reflexive
transitive closure of F , respectively.

The semantics of a net system can be defined in terms of markings. A marking
M enables a transition t if ∀p ∈ ●t ∶M(p) > 0. Moreover, the occurrence of t leads
to a new marking M ′, with M ′(p) = M(p) − 1 if p ∈ ●t ∖ t●, M ′(p) = M(p) + 1
if p ∈ t ● ∖ ● t, and M ′(p) = M(p) otherwise. We use M

tÐ→ M ′ to denote the
occurrence of t. The marking Mn is said to be reachable from M if there exists
a sequence of transitions σ = t1t2 . . . tn such that M

t1Ð→ M1
t2Ð→ . . .

tnÐ→ Mn. A
marking M of a net is n-safe if M(p) ≤ n for every place p. A net system N is
said n-safe if all its reachable markings are n-safe. In the following we restrict
ourselves to 1-safe net systems. Hence, we identify the marking M with the set
{p ∈ P ∣ M(p) = 1}.

!

"

#

$
!"

!#

$"

!%

!&

!'

!(

$#

$%

$&

$'

Fig. 2. A labeled net system

A labeled Petri net N = (P,T,F, λ) is a net
(P,T,F), where λ ∶ P × T → Λ ∪ {τ} is func-
tion that associates a node with a label. Given
a node x, if λ(x) ≠ τ then x is said to be observ-
able, otherwise x is said to be silent. A labeled
net system N = (P,T,F,M0, λ) is similarly de-
fined. An example of labeled net system is shown in Figure 2. There, transitions
display their corresponding label inside the rectangle. Note that t2 is a silent
transition, hence λ(t2) = τ . Herein, we consider each place to be labeled with its
corresponding identifier, e.g., λ(p0) = p0.

3.2 Deterministic and branching processes

The partial order semantics of a net system is commonly formulated in terms
of runs or, more precisely, prefixes of runs that are referred to as deterministic
processes [14]. A process itself can be represented as an acyclic net with no
branching nor merging places, i.e., ∀p ∈ P ∶ ∣●p∣ ≤ 1 ∧ ∣p●∣ ≤ 1. Alternatively,
all runs can be accommodated in a single tree-like structure, called branching
process [14], that may contain branching places and explicitly represents three
behavior relations: causality, concurrency and conflict defined as follows.

Definition 2 (Behavior relations). Let N = (P,T,F) be a net and x, y ∈ P∪T
two nodes in N .
– x and y are in causal relation, denoted as x <N y, iff (x, y) ∈ F +. The inverse

causality relation is denoted >N . We use ≤N to the denote the reflexive
causality relation.

– x and y are in conflict, denoted as x #N y, iff there exist two transitions
t, t′ ∈ T such that t and t′ are distinct, ●t ∩ ●t′ ≠ ∅, and (t, x), (t′, y) ∈ F ∗. If
x #N x then x is said to be in self-conflict.

– x and y are concurrent, denoted as x ∥N y, iff neither x <N y, nor y <N x,
nor x #N y.

The tuple R = (<N ,#N ,∥N) denotes the behavior relations of N . We can
now provide a formal definition for branching process.

Definition 3 (Branching process). Let N = (P,T,F,M0) be a net system.
The branching process β = (B,E,G, ρ) of N is the net (B,E,G) defined by the

inductive rules in Figure 3. The rules also define the function ρ ∶ B ∪E → P ∪T
that maps each node in β to a node in N . %(B) is a shorthand for ⋃b∈B ρ(b).

For sake of clarity, the elements of B and E in a branching process are
called conditions and events, respectively. Min(β) denotes the set of minimal
elements of B∪E with respect to the transitive closure of G. Henceforth, Min(β)
corresponds to the set of places in the initial marking of N , i.e., %(Min(β)) =M0.
Figure 4 presents the branching process of the net system from Figure 2. Note
that every node in the branching process has multiple labels. The label outside
of the node, say “e0(t0)”, indicates that the underlying event is named “e0”
and that it corresponds to transition “t0” in the net system. The events in
the branching process also display the label in the original net system, e.g.,
“b”. This label can be determined by a composition of functions λ and ρ, i.e.,
λβ =def λN ○ ρβ . p ∈M0

b = ⟨∅, p⟩ ∈ B ρ(b) = p
t ∈ T B′ ⊆ B B′2 ⊆ ∥β %(B′) = ●t

e = ⟨B′, t⟩ ∈ E ρ(e) = t
e = ⟨B′, t⟩ ∈ E t● = {p1, . . . , pn}
bi = ⟨t′, pi⟩ ∈ B ρ(bi) = pi

Fig. 3. Branching process, inductive rules

One important characteristic of a
branching process is that it does not
contain merging conditions. To over-
come this restriction, some nodes in
the net system need to be represented
more than once in the branching pro-
cess. When comparing Figures 2 and
Figure 4, we can notice that place p4

is mapped to conditions b4 and b5, place p5 is in turn mapped to b6 and b7, and
that transition t4 is mapped to events e4 and e5.

!

"

#

$

!"#$"%

$

!&#$&%
!'#$'%

("#)"%

(&#)&%

!*#$*%

(*#)*% !+#$+%

('#)'% !,#$+%

(+#)+%

(,#)+%

!-#$,%

!.#$,%

Fig. 4. Branching process of the
net system in Figure 2

Note that G in a branching process is
acyclic, and hence G+ is a partial order.
Moreover, no event e ∈ E is in self-conflict.
Engelfriet [14] showed that every Petri net
has a unique (possibly infinite) maximal
branching process up to isomorphism, a.k.a.
net unfolding. The branching process of an
acyclic net system is finite.

We continue by formally defining deter-
ministic processes, which will be used for introducing the notion of equivalence
we rely on, namely fully concurrent bisimulation. By the same token, we intro-
duce the notion of configuration.

Definition 4 (Configuration, deterministic process). Let N = (P,T,F,M0)
be a net system and β = (B,E,G, ρ) its corresponding branching process.
– A configuration C of β is a set of events, C ∈ E, such that:

i) C is causally closed, i.e., e ∈ C ⇒ e′ ≤β e ∶ e′ ∈ C, and
ii) C is conflict free, i.e., ∀e, e′ ∈ C ∶ ¬(e #β e

′).
– A deterministic process π = (Bπ,Eπ,Gπ, ρ) is the net induced by a configu-

ration C, where Bπ = ●C ∪C●, Eπ = C, and Gπ = G ∩ (Bπ ×Eπ ∪Eπ ×Bπ).
– The initial deterministic process of N , denoted π̂, is the process induced by

the empty configuration C = ∅.

Let C and C ′ be configurations of β, such that C ⊂ C ′, and π and π′ be
the processes induced by C and C ′, respectively. Moreover, if X = C ′ ∖C, then
we write π′ = π ⊕X and we say that π′ is an extension of π. Given a process
π we are interested in extensions to π appending exactly one observable event,
whenever such extension exists, i.e., π⊕X such that ∣{x ∣ x ∈X ∧ λβ(x) ≠ τ}∣ = 1.
With abuse of notation, we shall write π ⊕λ X to denote a process extension
with exactly one observable event. In a branching process, each event e can be
associated with a unique set of events that causally precede e, denoted ⌈e⌉ =
{e′ ∣ e′ ≤ e}, and referred to as the local configuration of e.

3.3 Fully Concurrent Bisimulation

The notion of equivalence that we adopt in this work is known as fully concurrent
bisimulation [15]. This bisimulation can be informally stated as follows: given two
net systems, any sequence of observable events (viz., run or process) that might
be possibly performed by one net system must also be possibly performed by
the other net system and vice-versa, as for other conventional bisimulations, but
additionally causal dependencies between observable events must be preserved
in the bisimulation. The latter is required to be in-line with the partial order
semantics. Below, we provide the corresponding formal definition.

Definition 5 (Fully concurrent bisimulation). Let N1 = (P1, T1, F1,M
1
0 , λ1)

and N2 = (P2, T2, F2,M
2
0 , λ2) be labeled net systems, and β1 = (B1,E1,G1, ρ1)

and β2 = (B2,E2,G2, ρ2) be their corresponding branching processes. The set of
triples B ⊆Π1 × Γ ×Π2 is a fully concurrent bisimulation for N1 and N2 iff:
– Π1 and Π2 are the set of deterministic processes of N1 and N2, respectively,

and Γ ∶ E1 → E2 is a relation from observable events in β1 to observable
events in β2.

– If π̂1 and π̂2 are the initial deterministic processes of N1 and N2, respectively,
then (π̂1,∅, π̂2) ∈ B.

– Γ is a bijection w.r.t. labeling, i.e., ∀e ∈ Dom(Γ) ∶ λβ1(e) = λβ2(Γ (e)),
preserving causality, i.e., ∀e, e′ ∈Dom(Γ) ∶ e <π1 e

′ ⇔ Γ (e) <π2 Γ (e′).
– ∀(π1, Γ, π2) ∈ B:

a) if π′1 = π1⊕λ1 X1 is an extension of π1 with exactly one observable event,
then there exists a tuple (π′1, Γ ′, π′2) ∈ B with π′2 = π2 ⊕λ2 X2 and Γ ⊆ Γ ′.

b) if π′2 = π2 ⊕λ2 X2 is an extension of π2 with exactly one observable event,
then there exists a tuple (π′1, Γ ′, π′2) ∈ B with π′1 = π1 ⊕λ1 X1 and Γ ⊆ Γ ′.

Two net systems N1 and N2 are said fully concurrent bisimulation equivalent,
denoted N1 ≈fcb N2, if there exists a fully concurrent bisimulation for them.

Note that fully concurrent bisimulation is defined in terms of process exten-
sions with exactly one observable event and, hence, there is implicitly an ab-
straction of invisible behavior. This abstraction is convenient for our purposes,
such that we lift it to the the level of behavior relations. Let N = (P,T,F,M0, λ)
be a labeled net system and β = (B,E,G, ρ) be its branching process. Moreover,
let E′ be the set of observable events, i.e., E′ = {e ∣ e ∈ E ∧ λβ(e) ≠ τ}. Then

R∣λ = (<β ∩E′2,#β∩E′2,<β ∩E′2) defines the observable behavior relations, that
is the behavior relations of N restricted to observable behavior.

If there exists a mapping of transitions in two net systems such that this
mapping preserves their underlying behavior relations, then we say their behavior
relations are isomorphic. This is formally defined as follows.

Definition 6 (Isomorphism of observable behavior relations). Let N1 =
(P1, T1, F1,M

1
0 , λ1) and N2 = (P2, T2, F2,M

2
0 , λ2) be labeled net systems, and

β1 = (B1,E1,G1, ρ1) and β2 = (B2,E2,G2, ρ2) be their corresponding branching
processes. Moreover, let E′

1 ⊆ E1 and E′
2 ⊆ E2 be the set of observable events of

the branching processes of N1 and N2, and R∣λ1 and R∣λ2 their corresponding
observable behavior relations. R∣λ1 and R∣λ2 are said isomorphic, denoted R∣λ1 ≅
R∣λ2 , iff there exists a bijection ϕ ∶ E′

1 → E′
2 such that:

– ∀e ∈ E′
1 ∶ λβ1(e) = λβ2(ϕ(e)), and

– ∀e, e′ ∈ E′
1 ∶ (e <β1 e

′ ⇔ ϕ(e) <β2 ϕ(e′)) ∨ (e #β1 e
′ ⇔ ϕ(e) #β2 ϕ(e′)) ∨

(e ∥β1 e
′⇔ ϕ(e) ∥β2 ϕ(e′)).

The following Theorem establishes the relation between fully concurrent
bisimulation equivalence and isomorphism of observable behavior relations for
two net systems. The corresponding proof can be found in [12].

Theorem 1 ([12]). Let N1 = (P1, T1, F1,M
1
0 , λ1) and N2 = (P2, T2, F2,M

2
0 , λ2)

be labeled net systems. Moreover, let T ′1 ⊆ T1 and T ′2 ⊆ T2 be the set of observable
transitions of N1 and N2, respectively. Assume there exists a bijection ψ ∶ T ′1 → T ′2
such that ∀t ∈ T ′1 ∶ λ1(t) = λ2(ψ(t)), then the following holds:

N1 ≈fcb N2 ⇔ R∣λ1 ≅R∣λ2

3.4 Partial Ordered Sets

We conclude this section by recalling some definitions from the theory of partial
ordered sets (posets) [16]. Let ⟨D,⊑⟩ be a poset. For a subset X of D, an element
y ∈ D is an upper (lower) bound of X, iff x ⊑ y (x ⊒ y), for each element
x ∈X. An element y ∈D is a greatest (least) element, iff for each element x ∈D
the property x ⊑ y (x ⊒ y) holds. An element y ∈ D is a maximal (minimal)
element, iff there is no element x ∈ D s.t. y ⊏ x (x ⊏ y); Dmax and Dmin denote
the sets of maximal and minimal elements of D, respectively. Two elements
x, y ∈ D are consistent, denoted x ↑ y, iff they have a joint upper bound, i.e.,
x ↑ y ⇔ ∃ z ∈ D ∶ x ⊑ z ∧ y ⊑ z; otherwise, they are said inconsistent. A subset
X of D is pairwise consistent, written X⇑, iff every pair of elements in X is
consistent in D, i.e., X⇑ ⇔ ∀x, y ∈ X ∶ x ↑ y. A poset ⟨D,⊑⟩ is coherent, iff
each pairwise consistent subset X of D has a least upper bound (lub) ⊔X. An
element x ∈ D is a complete prime, iff for each subset X of D, with lub ⊔X, it
holds x ⊑ ⊔X ⇒ ∃ y ∈X ∶ x ⊑ y. We shall write PP to denote the set of complete
primes of a poset P . A poset P = ⟨D,⊑⟩ is prime algebraic, iff PP is denumerable
and every element in D is lub of the set of complete primes it dominates, i.e.,
∀ x ∈ D ∶ x = ⊔{y ∣ y ∈ PP ∧ y ⊑ x}. A set S is denumerable, iff it is empty
or there exists an enumeration of S that is a surjective mapping from the set of
positive integers onto S.

4 Comparison of acyclic process models

In this section, we explore the use of event structures (EVs) in the process
model differencing. The presentation is organized in two parts. Subsection 4.1
introduces the more basic EV, namely Prime Event Structures (PESs). By the
same token, we define an operator on event structures, that operationalizes the
comparison of behavior relations. In spite of their faithful representation of be-
havior, PESs incur in a great amount of duplication. In Subsection 4.2, we con-
sider Asymmetric Event Structures (AESs) as an alternative representation that
reduces the amount of duplication observed in PESs.

4.1 Prime Event Structures

A Prime Event Structure (PES) is a model for computation introduced in [16].
Aligned with the concepts of in the previous section, we formally define PESs.

Definition 7 ((Labeled) Prime Event Structure). Let N = (P,T,F,M0, λ)
be a net system and β = (B,E,G, ρ) be its corresponding branching process. The
prime event structure of β is the tuple ξ = (E, ≤ξ, #ξ), where ≤ξ = ≤β ∩ E2 and
#ξ = #β ∩E2. A labeled prime event structure also considers a labeling function
λξ = λN ○ ρ, that associates each event e ∈ E with the label of its corresponding
transition t ∈ T , i.e., λξ(e) = λN(t) ⇒ ρ(e) = t.

The conflict relation #ξ is said hereditary w.r.t. ≤ξ, meaning that for all
e, e′, e′′ ∈ E, if e #ξ e

′ and e′ ≤ξ e′′ then e #ξ e
′′. The behavior relations of a PES

ξ = (E, ≤ξ, #ξ) are given by the tuple Rξ = (<ξ, #ξ, E
2 ∖ (<ξ ∪ >ξ ∪ #ξ)) [16].

Clearly, PES behavior relations correspond to the behavior relations of the
branching process of a net system as introduced in Definition 2, but restricted
to the set of events. Armed with Theorem 1, we can use a finer restriction and
focus only on observable behavior. A PES without invisible behavior shall be
denoted ξ̄.

e0:d

e1:τ e2:e e3:f

e4:g e5:g

#

(a) ξ1

e0:d

e1:e e3:f

e5:g e4:g
#

(b) ξ̄1

d

e f

g

(c) ξ̄2

d

e

g

(d) ξ̄3

Fig. 5. Examples of prime event structures

Figures 5(a) and 5(b)
present the PESs with
and without invisible be-
havior for the net sys-
tem in Figure 2, in the
form of a labeled graph.
There, nodes correspond
to events, (solid) directed
edges represent causality,
e.g., e0:d Ð→ e1:e in Figure 5(b), whereas (dotted, decorated) undirected edges
represent conflict, e.g., e3:f �#� e4:g also in Figure 5(b). Both transitive causal
and hereditary conflict relations are not shown to simplify the graph. When a
pair of events is neither direct nor transitively connected, such events are consid-
ered to be concurrent. To further simplify the graphs, nodes in a PES will only
display event labels and not their identifiers, when it is clear from the context,
e.g., Figures 5(c)–(d).

e0:d e1:e e3:f e4:g e5:g

e0:d ∥ < < < <
e1:e > ∥ ∥ < <
e3:f > ∥ ∥ # <
e4:g > > # ∥ #
e5:g > > > # ∥

(a) Rξ̄1

d e f g

d ∥ < < <
e > ∥ ∥ <
f > ∥ ∥ <
g > > > ∥

(b) Rξ̄2

d e g

d ∥ < <
e > ∥ <
g > > ∥

(c) Rξ̄3
Fig. 6. Matrix representation

The PES ξ̄2 is a variant of behavior for the net system in Figure 2, where the
transition labeled f is not skipped (i.e., the silent transition t2 is not present).
The differences in behavior of ξ̄1 and ξ̄2 are evident. There is one run in ξ̄1
involving events {d, e, g}, cf., path highlighted with thick gray edges, and that is
not present in ξ̄2. Note that the occurrence of event e4:g precludes that of event
e3:f, because they are “in conflict”, which corresponds with the intuition that
the transition labeled f may be skipped.

Alternatively, the behavior relations of PESs can be represented with matri-
ces, as illustrated in Figure 6. The subindexes of the relations were omitted for
the sake of readability. As usual, we write Rξ[e, e′] to refer to the cell in the
intersection of the row associated to event e and the column of e′. Therefore,
Rξ̄2[e, f] =∥ asserts the fact that events e and f are concurrent in ξ̄2. Note that
all behavior relations are represented in the matrix, including the inverse causal
relation. Moreover, every event is self-concurrent, that by definition.

In order to characterize the differences on the behavior relations displayed
by two PESs, we define a binary operator as follows.

Definition 8 (Symmetric difference of PES behavior relations). Let
ξ1 = (E1, ≤ξ1 , #ξ1 , λξ1) and ξ2 = (E2, ≤ξ2 , #ξ2 , λξ2) be labeled prime event
structures, and let Rξ1 = (<ξ1 , #ξ1 ,∥ξ1) and Rξ2 = (<ξ2 , #ξ2 ,∥ξ2) be their corre-
sponding behavior relations. The mappings of events w.r.t. labelings µ ∶ E1 → E2

and µ̆ ∶ E1 ∪{Ñ}→ E2 ∪{Ñ}, where Ñ is a marker for identifying missing events,
are defined as:
– µ maps pairs of events having the same labeling, i.e., ∀(e1, e2) ∈ µ ∶ λξ1(e1) =
λξ2(e2), and

– µ̆ extends µ by including event mismatches, such that if (E1 ∖ dom(µ)) and
(E2 ∖ cod(µ)) are the set of events that could not be mapped in µ, then they
are paired with Ñ, i.e., µ̆ = µ ∪ (E1 ∖dom(µ))× {Ñ} ∪ {Ñ}× (E2 ∖ cod(µ)).

Let (e1, e2), (e′1, e′2) ∈ µ̆ be event mappings. The symmetric difference of Rξ1 and
Rξ2 , denoted Rξ1 △Rξ2 , is defined as follows:

Rξ1 △Rξ2 [(e1, e2), (e′1, e′2)] =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋅ if Rξ1[e1, e
′
1] =Rξ2[e2, e

′
2]

(Rξ1[e1, e
′
1],Rξ2[e2, e

′
2]) if Rξ1[e1, e

′
1] ≠Rξ2[e2, e

′
2]

(ω, Rξ2[e2, e
′
2]) if e1 = Ñ or e′1 = Ñ

(Rξ1[e1, e
′
1], ω) if e2 = Ñ or e′2 = Ñ

where ω stands for unspecified behavior relation.

(d,d) (e,e) (f,f) (e5:g,g) (e4:g,g)

(d,d) ⋅ ⋅ ⋅ ⋅ ⋅
(e,e) ⋅ ⋅ ⋅ ⋅ ⋅
(f,f) ⋅ ⋅ ⋅ ⋅ (#,<)

(e5:g,g) ⋅ ⋅ ⋅ ⋅ (#,∥)
(e4:g,g) ⋅ ⋅ (#,>) (#,∥) ⋅

(a) Rξ̄1 △Rξ̄2

(d,d) (e,e) (f,Ñ) (g,g)

(d,d) ⋅ ⋅ (<, ω) ⋅
(e,e) ⋅ ⋅ (∥, ω) ⋅
(f,Ñ) (>, ω) (∥, ω) (∥, ω) (<, ω)
(g,g) ⋅ ⋅ (>, ω) ⋅

(b) Rξ̄2 △Rξ̄3

Fig. 7. Example symmetric difference of the behavior relations of PESs in Figure 5

Figures 7(a) presents the symmetric difference of the behavior relations of
PES ξ̄1, ξ̄2 (cf., Figure 5). Every cell filled up with “⋅” stands for a perfect match
on the behavior of the process models being compared. Interestingly, in this ex-
ample a large portion of behavior is matched. Let us consider the last column
in the matrix. Due to the symmetry of the relations, the analysis of the last row
would lead to similar conclusions. On the one hand, Rξ̄1 △Rξ̄2 [(f,f), (e4:g,g)] =
(#,<) should be read as “for the first process model, in some cases, task f is
in conflict with task g whereas in the other process model task f always pre-
cedes task g”. On the other hand, Rξ̄1 △Rξ̄2 [(e5:g,g), (e4:g,g)] = (#,∥) should
be read as “in the first process model task g is involved in two different com-
putations (i.e., runs) that are in conflict”. It should be recalled that, by def-
inition, task g is self-concurrent. The overall conclusion would be that task f
may be skipped in the first process model. The matrix in Figure 7(b) illustrates
the case of missing tasks. The interpretation of this matrix is rather simple:
Rξ̄2 △Rξ̄3 [(d, d), (f,Ñ)] = (<, ω) should be read as “task f is only present in the
first process model where, additionally, d precedes f”, and so forth.

PESs provide a faithful representation of behavior but at the expense of dupli-
cation. This duplication stems from the fact that a new branch in the branching
process is started at the point where each conflict place is found. Conversely,
concurrency does not induce duplication. Hence, in the worst case scenario the
number of events is exponential in size w.r.t. the average fan-out of the conflict
places, i.e., O(mn) where n is the number of events and m is the average size
of the poset of places. An additional side-effect is that the comparison of PESs
requires a combinatorial number of matches among duplicate events.

4.2 Asymmetric Event Structures

d

e f

g

(a) ϑ1

d e f g

d ∥ < < <
e > ∥ ∥ <
f > ∥ ∥ ⇢
g > > ⇠ ∥

(b) Rϑ1

(d,d) (e,e) (f,f) (g,g)

(d,d) ⋅ ⋅ ⋅ ⋅
(e,e) ⋅ ⋅ ⋅ ⋅
(f,f) ⋅ ⋅ ⋅ (<,⇢)
(g,g) ⋅ ⋅ (>,⇠) ⋅

(c) Rξ̄2 △Rϑ1

Fig. 8. Comparison with AESs

To address the problems above, we consider
an alternative to PESs known as Asymmet-
ric Event Structures (AESs) [17]. In addition
to the usual causality relation ≤, an AES in-
troduces the asymmetric conflict relation ⇢.
Given two events e, e′ ∈ E, we say that e is in
asymmetric conflict with e′, denoted e ⇢ e′,
with two intuitive interpretations: (i) when-
ever both e and e′ occur in a run, e is ob-
served before e′, and (ii) the occurrence of

e′ precludes that of e. We note that in the
original definition of AES, duplication of events is not a concern. Henceforth, we
develop an approach to identifying the asymmetric conflict relation.

When comparing the AES ϑ1 (cf., Figure 8(a)) with the PES ξ̄1 (cf., Fig-
ure 5(b)), both of them displaying the observed behavior of the net system in
Figure 2, one can immediately note a more compact representation. While in ξ̄1,
there are two events with the same label, namely e4:g and e5:g, in ϑ1 only one
event carries the label g. It turns out that the PES ξ̄2 (cf., Figure 5(c)) is also an
AES, such that we can compare the observable behavior relations Rξ̄2 and Rϑ1

directly. The corresponding symmetric difference is presented in Figure 8(c).
In the following, we present a method to compute the asymmetric conflict re-

lation. We start by computing an equivalence relation on the underlying branch-
ing process, relation that relies on node labeling and that respects the local
environment of events2. Such an equivalence, referred to as future equivalence,
has been introduced in [18] and can be formally stated as follows.

Definition 9 (Future equivalence). Let β = (B,E,G, ρ, λβ) be a labeled branch-
ing process. The relation ∼ ⊆ B2 ∪E2 on nodes of β is a future equivalence iff:
– ∀x,x′ ∈ B ∪E ∶ x ∼ x′ ⇒ λβ(x) = λβ(x′) ∧ (x #β x

′ ∨ x = x′), and
– ∀e, e′ ∈ E ∶ e ∼ e′ ⇒ ⟨●e⟩∼ = ⟨●e′⟩∼ ∧ ⟨e●⟩∼ = ⟨e′●⟩∼.

where ⟨x⟩∼ = {x′ ∣ x′ ∼ x} and ⟨X⟩∼ = {⟨x⟩∼ ∣ x ∈X}.

Going back to the branching process in Figure 4, its corresponding future
equivalence relation is {{e4:g, e5:g},{b4:p4, b5:p4},{b6:p5, b7:p5}}. Interestingly,
the future equivalence relation can be used to fold a branching process into a
Petri net that exhibits the same behavior (see [18, Theorem 8.7] for a formal
proof). Indeed, after merging all future equivalent nodes of the branching process
in Figure 4, we shall obtain the Petri net in Figure 2. An algorithm to compute
future equivalences suitable for our setting is described in [19]. In contrast to
previous work, we require future equivalent nodes to be in conflict: merging two
concurrent events would eliminate one event from the run, merging two causal
events would introduce a loop, both cases are undesirable in our setting.

Intuitively, an equivalence class ⟨e⟩∼ identifies a set of nodes in a branching
process from which runs evolve isomorphically. Conversly, an equivalence class
⟨e⟩∼ can possibly have multiple different causes, collectively referred to as history.
Such an intuition is formally defined as H(e) = {⌈e′⌉ ∣ e′ ∈ ⟨e⟩∼}. Now, let e ∈ E be
an event, then (i) the events in ⋂H(e) are the strict causes of e, i.e., every event
e′ ∈ ⋃H(e) is always observed before e, independently of the run, (ii) the events
in ⋃H(e)∖⋂H(e) are the weak causes of e, i.e., every event e′ ∈ ⋃H(e)∖⋂H(e)
is observed before e in at least one run, but not in all runs. The notion of weak
causes of an event is indeed the way we use for identifying the asymmetric conflict
relation. The following definition formalizes the transformation of an AES.

Definition 10 (Branching process to AES). Let β = (B, E, G, ρ, λβ) be
a labeled branching process, and let ∼ be a future equivalence on β. The tuple
2 The environment of an event is to the set of conditions in its preset and postset

ϑ = (Eϑ, ≤full
ϑ , #ϑ, ⇢ϑ, λϑ) is the asymmetric event structure (AES) of β

induced by ∼, where
Eϑ = {⟨e⟩∼ ∣ e ∈ E},
≤full
ϑ = {(⟨e⟩∼ , ⟨e′⟩∼) ∣ e, e′ ∈ E ∧ e ≤β e′},

#ϑ = {(⟨e⟩∼ , ⟨e′⟩∼) ∣ e, e′ ∈ E ∧ (e, e′) ∈ #β∖ ∼},
⇢ϑ = {(⟨e⟩∼ , ⟨e′⟩∼) ∣ e, e′ ∈ E ∧ e ∈ ⋃H(e′) ∖⋂H(e′)}, and
λϑ(⟨e⟩∼) = λβ(e), for all e ∈ E.

Note that the relation ≤full
ϑ is a partial order and embeds the asymmetric

conflict relation. Henceforth, for AESs we decompose ≤full
ϑ into the strict cause

relation, i.e., <ϑ = <full
ϑ ∖ ⇢ϑ, and the asymmetric conflict relation, i.e., ⇢ϑ.

The relation ≤full
ϑ can then be trivially derived from <ϑ and ⇢ϑ. Technically,

e #ϑ e′ can also be represented as e ⇢ϑ e′ ∧ e′ ⇢ϑ e, but we consider that
the symmetric conflict is more appropriate as feedback to modelers. As for PES,
the concurrency relation on AES is given by ∥ϑ = E2

ϑ ∖ (<full
ϑ ∪ >full

ϑ ∪ #ϑ). The
behavior relations of ϑ shall be denoted by the tuple Rϑ = (<ϑ, #ϑ, ⇢ϑ, ∥ϑ).

Definition 11 (AES Configuration). Let ϑ = (Eϑ, ≤full
ϑ , #ϑ, ⇢ϑ, λϑ) be an

AES. An AES configuration of ϑ is a set of events C ⊆ Eϑ such that
– <full

ϑ ∩ C2 is well-founded, i.e., it forms a non-infinite chain,
– for all e ∈ C, if e′ <full

ϑ e ∧ e′ ∉ C, then there exists e′′ ∈ C s.t. e′ #ϑ e
′′.

As a consequence of the last condition, an AES configuration C is conflict-
free, i.e., ∀e, e′ ∈ C ∶ ¬(e #ϑ e

′). The set of all AES configurations of an AES ϑ
shall be denoted Conf(ϑ). In spite of the differences in their definitions, the set
of configurations of a branching process β (cf., Definition 4) is the same as the
set of AES configurations (cf., Definition 11) induced by a future equivalence
∼ on β. Intuitively, an equivalence class ⟨e⟩∼ corresponds to a set of events
in the branching process from which computation evolves independently, but
isomorphically in different branches. When ⟨e⟩∼ is mapped to a single event
into an AES all the branches stemming from events in ⟨e⟩∼ are merged into
a single branch. However, the original set of configurations for ⟨e⟩∼ can still
be rebuilt by appending a copy of the merged branch to each configuration
⌈e′⌉ in H(e) = {⌈e′⌉ ∣ e′ ∈ ⟨e⟩∼}. This intuition is formally confirmed in [19,
Lemma 1]. Now, we define an order ⊑ on AES configurations, referred to as AES
configuration extension, such that C ⊑ C ′ stands for “C can evolve into C ′”.

Definition 12 (AES Configuration Extension). Let ϑ = (Eϑ,≤full
ϑ ,#ϑ,⇢ϑ

, λϑ) be an AES and X,X ′ ⊆ Eϑ sets of events. We say that X ′ extends X,
denoted X ⊑X ′, iff (i) X ⊆X ′, and (ii) ¬(e′ <full

ϑ e) for all e ∈X,e′ ∈X ′ ∖X.

The relation above defines a partial order on the set of configurations of AES
ϑ, denoted La(ϑ) = ⟨Conf(ϑ), ⊑⟩. Following the approaches in [16] and [20], we
now characterize La(ϑ).

Theorem 2. Let ϑ = (Eϑ, ≤full
ϑ , #ϑ, ⇢ϑ, λϑ). Then, La(ϑ) = ⟨Conf(ϑ), ⊑⟩ is

a prime algebraic coherent partial order. Its complete primes are AES configura-
tions of the form [e]X = {e′ ∣ e, e′ ∈ X ∧ (e′, e) ∈ ≤full

ϑ ∩ X 2}, with X ∈ Conf(ϑ).

∅

{d}x0

{d,τ}x1

{d,e,g,τ}x4

{d,e}x2 {d,f}x3

{d,e,f,g}x5

(a) La(ϑ1))

x4:g x5:g

x1:τ x2:e x3:f

x0:d

#

(b) P(La(ϑ1))

AES

NS BProc Poset

PES

β
ϑ

ξ

La

L

PConf

(c)

Fig. 9. (a) Poset, and (b) PES induced from AES ϑ1. (c) Overall transformations.

Proof. Let X ⊆ Conf(ϑ) be a set of pairwise consistent AES configurations, i.e.,
X ⇑. If e, e′ ∈ ∪{X ∣ X ∈ X}, then there exist X,Y ∈ X s.t. e ∈ X and e′ ∈ Y .
Since X ⇑ there exists an AES configuration Z s.t. X ⊑ Z and Y ⊑ Z. Therefore
¬(e #ϑ e

′) since Z is conflict-free, ∪{X ∣ X ∈ X} ∈ Conf(ϑ), and ⊔X = ∪X is
lub in Conf(ϑ). Hence, La(ϑ) is coherent.

For any AES configuration X ∈ Conf(ϑ), we have X = ⊔{[e]X ∣ e ∈ X}.
Hence, if X is complete prime, then there exists e ∈ X s.t. X = [e]X . This
shows that the complete primes of Conf(ϑ) are AES configurations of the form
[e]X . Moreover, the formula X = ⊔{[e]X ∣ e ∈ X} alludes to the fact that any
AES configuration is the lub of the complete primes it dominates. PLa(ϑ) is
denumerable since it is a subset of the power set of a finite denumerable set, i.e.,
the set of events Eϑ. Hence, La(ϑ) is prime algebraic. ⊓⊔

Given the poset La(ϑ) = ⟨Conf(ϑ), ⊑⟩, we know from [16] that P(La(ϑ)) =
(PP , ≤, #) is a prime event structure, where ≤ is ⊑ restricted to PLa(ϑ), and
for all ⌈e⌉, ⌈e′⌉ ∈ PLa(ϑ) ∶ ⌈e⌉ # ⌈e′⌉ iff ⌈e⌉ and ⌈e′⌉ are inconsistent in La(ϑ).
Moreover, a labeling function for such PES is given by λP(La(ϑ))(⌈e⌉) = λϑ(e)
for all ⌈e⌉ ∈ PLa(ϑ). By applying the notions above, we can derive the poset
shown in Figure 9(a) and then the PES in Figure 9(b). The isomorphism of
Figures 9(b) and 5(a) is not a surprise, considering the canonicity of posets [16].
All transformations implied in the approach are summarized in Figure 9(c).

An AES built using Definition 10 considers all the equivalence classes in the
branching process. However, the comparison of AESs may happen in two phases,
first with observable behavior and then with a subset of τ -labeled events. We
conjecture that only a subset of τ -labeled events needs to be kept to allow the
construction of AES configurations and preserve fully concurrent bisimulation.

5 Conclusion

In this work, we defined an acyclic process model differencing operator based
on prime event structures (PESs) and asymmetric event structures (AESs). The
high level of duplication inherent to PES hinders on the usefulness of this repre-
sentation for the purpose at hand. Hence, AESs were considered as an alternative
to reduce duplication. A tailor-made method for computing AESs was described.

We foresee a number of avenues for future research. First, we aim at charac-
terizing the minimal set of τ -labeled events required to preserve fully concurrent
bisimulation. Naturally, we target to extend the current approach so as to cover

process models with cycles and duplicate tasks. A promising direction for deal-
ing with cyclic process models includes techniques of net unfoldings for finding a
finite representation of cyclic behavior. Finally, future research will include ex-
periments to assess the readability of the feedback stemming from this approach
and its applicability in real-world settings.

References

1. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based
on Behavioral Profiles of Process Models. IEEE TOSEM 37(3) (2011) 410–429

2. Weidlich, M., Mendling, J., Weske, M.: A Foundational Approach for Managing
Process Variability. In: Proc. CAiSE 2011. LNCS 6741. Springer (2011) 267–282

3. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity - a proper metric. In:
Proc. BPM 2011. LNCS 6896. Springer (2011) 166–181

4. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Sys. 36(2) (2011) 498–516

5. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.: Similarity search of business process
models. IEEE Data Eng. Bull. 32(3) (2009) 23–28

6. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inf. 37 (2001) 229–327

7. Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Proc.
CAV 1991. LNCS 531. Springer (1991) 364–372

8. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Proc.
TACAS 2006. LNCS 3920. Springer (2006) 426–440

9. Dijkman, R.: Diagnosing differences between business process models. In: Proc.
BPM 2008. Volume 5240 of LNCS 5240. Springer (2008) 261–277

10. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business
Process Models. In: Proc. CAiSE 2008. Volume 5074. (2008) 450–464

11. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE TKDE 16(9) (2004) 1128–1142

12. Polyvyany, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Sys. 37(6) (2012) 518–538

13. Polyvyanyy, A., Garćıa-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. CoRR abs/1108.2384 (2011)

14. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28 (1991) 575–591
15. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri

nets. Acta Inf. 28 (1991) 231–264
16. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains,

Part I. Theoretical Computer Science 13 (1981) 85–108
17. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event

structures, and processes. Information and Computation 171(1) (2001) 1–49
18. Fahland, D.: From Scenarios to Components. PhD thesis, Humboldt-Universität

zu Berlin (2010)
19. Fahland, D., van der Aalst, W.: Simplifying mined process models: An approach

based on unfoldings. In: Proc. BPM 2011. LNCS 6896. Springer (2011) 362–378
20. Boudol, G., Castellani, I.: Flow Models of Distributed Computations: Event Struc-

tures and Nets. Technical Report 1482, INRIA Sophia-Antipolis (1991)

