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ABSTRACT
In a distributed scenario it is possible to find systems consisting
of independent parties that collaboratively execute a business pro-
cess, but cannot disclose a subset of the data used in this process
to each other. Such systems can be modelled using the PE-BPMN
notation: a privacy-enhanced extension of the BPMN process mod-
eling notation. Given a PE-BPMN model, we address the problem
of verifying that the content of certain data objects is not leaked
to unauthorized parties. To this end, we formalise the semantics of
PE-BPMN collaboration diagrams via a translation into process al-
gebraic specifications. This formalisation enables us to apply model
checking to detect unintended data leakages in a PE-BPMN model.
We specifically consider data leakages in the context of secret shar-
ing technology. The approach has been implemented on top of
the mCRL2 toolset, and integrated into the Pleak toolset support-
ing privacy analysis of business processes. The proposal has been
evaluated using real scenarios.
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1 INTRODUCTION
The design of collaborative distributed systems is made complex by
the need of coordinating the interactions of various components
while satisfying at the same time privacy requirements [10, 32].
In such a distributed scenario, it results that organisations need
to focus on the way they manage internal activities as well as
on the way they exchange information during the execution of
everyday business processes, being sure that privacy requirements
about data are not violated due to internal accesses and message
exchanges. Critical scenarios are those where sensitive data, e.g.,
patient records in an hospital or financial information in a company,
are exchanged among parties, belonging to the same or different
organisations, having different access rights. Nowadays, this issue
is even more important considering the adoption by the European
Union of the General Data Protection Regulation (GDPR for short).

To face this issue, modelling languages for distributed systems
need to be extended to include security and privacy aspects [16].
Focusing on the BPMN notation, which is widely adopted by in-
dustry and academia, various extensions are indeed available in
the literature (e.g., [35, 37]). Among others, in this paper we rely
on PE-BPMN [32, 33], specifically devised to express data privacy
features and mechanisms in the model. However, even if from the
design point of view this enhanced model permits to specify privacy
requirements, there is still a lack of techniques to ensure at design
time that these are not violated. In particular, a methodological ap-
proach is missing, and related supporting tools, for detecting data
leakages, i.e., situations where a party of the collaborative system
can infer secret information or has illegal access to it [5].

In this paper, we face this challenge by defining a novel verifi-
cation methodology for data leakage detection in PE-BPMN
models. It differentiates from other approaches for BPMN-based
models available in the literature [19, 20, 26], as they permit to
check only general correctness properties (e.g., safeness [42] and
soundness [41, 43]) without considering data handling concerns
and, hence, privacy issues.

The paper specifically studies the question of verifying collabo-
rative business processes enhanced with secret sharing technology.
Secret sharing is a technique that splits a secret among a set of
parties, by giving to each party a randomised share. The secret can
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be reconstructed by combining all or some qualified subset of the
shares [16]. In this setting, an important privacy violation property
that we would like to check is as follows: "Is it possible to leak all
pieces of a secret data such that an unauthorised party can reconstruct
the secret?".

To achieve this goal we rely on a formalisation of PE-BPMN
in terms of the process algebra mCRL2 [12]. We use a process
algebraic approach in order to take advantage of its intrinsic compo-
sitional nature. This is, indeed, particularly effective in collaboration
models, as the behaviours of the distributed parties can be sepa-
rately rendered as process algebra specifications, which then can
be simply composed in parallel to obtain the overall collaboration
behaviour. Our choice of using mCRL2 is motivated by (i) the suit-
ability of the operators and features provided by this formalism to
easily express both control-flow, messages-flow and data aspects of
PE-BPMN models; and (ii) the availability of the advanced model
checking capabilities provided by the mCRL2 toolset. Regarding
this latter point, the mCRL2 model checker takes as input proper-
ties expressed as µ-calculus formulae [1], which can conveniently
formalise privacy requirements.

To validate the feasibility and applicability of the proposed ap-
proach, we have implemented it as a tool that takes as input a
PE-BPMN model, computes its corresponding mCRL2 specification,
and checks for data leakages due to misuse of secret sharing technol-
ogy. Specifically, the tool checks if an unauthorized party may gain
access to a qualified subset of the shares required to reconstruct a
data object, given the processing and interaction logic in the PE-
BPMN model. The tool also provides an example pathway for each
detected data leakage.We have integrated the tool as a plug-in
in the Pleak privacy analysis toolset [2, 40] andwe have used
it to encode and analyze various realistic scenarios.

The rest of the paper is organised as follows. Sec. 2 provides an
overview of PE-BPMN and mCRL2. Sec. 3 presents the proposed
approach. Sec. 4 discusses the tool implementation and illustrates
its use. Finally, Sec. 5 reviews related works and Sec. 6 concludes
and discusses directions for future work.

2 BACKGROUND
The BPMN notation allows one to capture processes performed
within an organization and across organizations. The latter type
of process is called a collaborative process and is represented by a
BPMN collaboration diagram (or BPMN collaboration for short). A
BPMN collaboration consists of a set of processes, each performed
by an independent party (e.g., buyer and seller). These processes
are executed in parallel and synchronize via message exchanges
(dashed arcs). Each process in a BPMN collaboration is captured as
a separate pool (denoted as a rectangle). A process consists of tasks
(rounded rectangles), events (circles) and gateways (diamonds). A
task represents a logical unit of work. An event represents some-
thing triggered by the environment (e.g., a message). A gateway is
used to capture a choice (XOR gateways, marked by a “×”) or the
parallel execution or synchronization of multiple branches (AND
gateways, marked with a “+”). These three types of elements (tasks,
events, gateways) are connected via sequence flows (directed arcs).
A sequence flow indicates that the source element must be executed
before the target element. To capture data manipulation, each task

Figure 1: Elements of the BPMN Notation.

may be associated (via directed dotted arcs) to one or more input or
output data objects. The intended meaning is that when the task is
executed, it reads the current state of each input object, and when
it completes it writes into the output data objects. These concepts
are summarized in Fig. 1.

PE-BPMN [32] is a conservative extension of BPMN that allows
designers to annotate tasks with stereotypes corresponding to dif-
ferent types of privacy enhancing technologies (PETs), e.g. encryp-
tion, secret-sharing, secure enclaves. In this paper, we specifically
consider secret sharing technology. With respect to secret shar-
ing, the main stereotypes supported in PE-BPMN are SSSharing,
which indicates that a task splits a data object into multiple secret
shares, SSComputation, which indicates that multiple tasks with
the same name but in separate pools perform a common secure
multi-party computation, and SSReconstruction, which indicates
that a task reconstructs a data object from multiple shares.

To formalise PE-BPMN collaborations, we use mCRL2 [12, 21], a
specification language that extends the Algebra of Communicating
Processes (ACP for short, [9]) with features for modeling data. The
subset of mCRL2 processes used in this paper is given by the
following grammar:

P ::= act | .i ∈I Pi | +i ∈I Pi | | |i ∈I Pi | allow(ActSet, P)

| comm(CommSet, P) | hide(ActSet, P) | K

| sum p1, ...,pn : sortName . P

where: act denotes an action either of the form a, with no param-
eter (including the silent action tau), or of the form a(d1, . . . ,dn ),
with data expression parameters di ; sortName identifies a sort,
which can be predefined or defined in a data specification; ActSet
denotes a set of actions; and CommSet denotes a set of commu-
nication expressions, each one defining the renaming of multi-
actions (i.e., communicating actions that occur simultaneously)
to a single action. Let us comment on process syntax. We denote
with .i ∈I Pi the sequence of processes, with +i ∈I Pi the choice
among processes, and with | |i ∈I Pi the interleaving among pro-
cesses. The sum operator sum p1, . . . ,pn : sortName . P is a gener-
alisation of the choice operator that permits to express in a concise
way the choice between a (possibly infinite) number of processes,
by instantiating in P the placeholders p1, . . . ,pn with values of
type sortName (e.g., sum n : Nat . a(n) is equivalent to the process
a(0) + a(1) + a(2) + . . .). The allow operator allow(ActSet, P) de-
fines the set of actions ActSet that the process P can execute; all
other actions, except for tau, are blocked. The communication
operator comm(CommSet, P) permits synchronising actions in P
according to the communication expressions CommSet ; for exam-
ple, comm({a |b -> c}, (a | | b)) says that the parallel actions a and
b must communicate, resulting in a c action. The hide operator
hide(ActSet, P) hides those actions produced by P that are inActSet ,
i.e. it turns these actions into tau actions. Finally, K permits to call
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a process definition of the form K = P , where K is a unique process
identifier.

The mCRL2 specification language is supported by a toolset
that provides equivalence and model checking functionalities. The
properties to be checked are specified in a first-order modal µ-
calculus extended with data-dependent formulae [1].

3 A METHODOLOGY FOR DATA LEAKAGE
VERIFICATION IN PE-BPMN
COLLABORATIONS

We present in this section our methodology for verification of data
leakages, referring in particular to secret sharing technology, in
PE-BPMN models.

3.1 Overview
The input model of our verification methodology is a PE-BPMN col-
laboration diagram. To simplify the formal treatment, we make two
assumptions on the input model: (i) the model iswell-structured [22]
(also known as block-structured), imposing gateways in each pro-
cess to form single-entry-single-exit fragments; and (ii) each task
can send/receive at most one message. The first assumption is not
overly restrictive, as it has been shown in previous works that a
large class of process models can be re-written as block-structured
process models [28]. The second assumption comes without loss of
generality, as it is always possible to safely transform a complex
task with multiple outgoing/incoming message flows in a sequence
of separate tasks, each of which with at most a message flow, with
exactly the same meaning. This simplification is also aligned with
generally accepted modelling guidelines [14, 25].In fact, it helps to
avoid misunderstandings in the execution order among the send/re-
ceive actions performed within a task, thus allowing the designer
to get a clear understanding of what is happening in the model
execution. Our methodology (cf. Fig. 2) consists of three steps: (1)
control-flow transformation, (2) data-object and message flow trans-
formation, and (3) verification.

In the first step, the process in each pool of the PE-BPMN model
is transformed into a process algebra specification. This step fo-
cuses on the control-flow perspective of the model, i.e. we abstract
from data objects and message flows. More specifically, the data-
abstracted structure of each process is represented as a process tree,
which is an intermediate representation that can be then easily
transformed into a mCRL2 process specification.

In the second step, the specification of each task is enhanced to
capture interactions with data objects and exchange of messages,
while each data and message communication is encoded via a buffer.
The generated terms for processes and data handling are then com-
bined via parallel composition, resulting in an overall data-aware
specification of the collaboration.

Finally, in the third step, a set of “no-leakage" properties are gen-
erated and checked against the mCLR2 specification. In particular,
we check the following properties, and if a property is not satisfied,
we generate a counter-example:

(1) Is it possible that a taskT can read a set of data D?, i.e. is there
a path in the model leading to a state where D is part of the
T ’s knowledge?

Figure 2: Methodological overview.

(2) Is it possible that a participant P can read a set of data D?, i.e.
is there a reachable state in which P has knowledge of every
element in D?

3.2 Control-flow transformation
The first step of our methodology consists of generating, via a
transformation function, a mCRL2 specification from a PE-BPMN
collaboration. The result is a coarse-grain specification, as it only
considers the control-flow structure of the PE-BPMN model. To
simplify the formal definition of the transformation, as well as its
implementation, we resort to a tree-based representation of PE-
BPMN models. In particular, we have defined a structure, called
process tree, which is a variant of RPST (Refined Process Structure
Tree) introduced in [29, 44].

Definition 3.1 (Process Trees). The syntax of process trees is as
follows.

t ::= start | end | task(n) | seq(t1, ..., tk )

| xor (t1, ..., tk ) | and(t1, ..., tk ) | while(t)

where n denotes a unique task identifier.
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PE-BPMN Element Process tree
start

end

task(n)

seq(t1, . . . , tn )

xor (t1, . . . , tn )

and(t1, . . . , tn )

while(t)

t1 . . . tn

Table 1: Correspondence between the PE-BPMN block-
structures and process tree elements.

The correspondence between the graphical representation of
a PE-BPMN model and its process tree representation is straight-
forward, as shown in Table 1. The generation of the process tree
corresponding to a process of a PE-BPMN collaboration is signifi-
cantly simplified by the well-structuredness assumption. We refer
to the literature about RPST, in particular to [29], for details on the
procedure for the generation of the tree-based representation. We
explain it by means of an example. Let us consider the collaboration
model in Fig. 3. The process trees corresponding to the processes

Figure 3: Example of a PE-BPMN collaboration.

of the two parties, which are graphically depicted in Fig. 4 and 5,

are as follows:
P : seq(start,and(task(A), xor (task(B), task(C))), task(D), end)

Q : seq(start, task(E), task(F ), end)

We can notice that there is a direct correspondence between tree
nodes and (blocks of) elements in the PE-BPMN model. Notably,
while the children order does not matter for and and xor nodes, it
is relevant for seq nodes (as one may expect, the execution order is
from left to right).

seq

start and

task(A) xor

task(B) task(C)

task(D) end

Figure 4: Process tree of party P from Fig. 3

We can now formalise the control-flow transformation step by
means of the translation function T : P→ M, where P is the set
of process trees andM the set of mCRL2 terms.

Definition 3.2 (Translation function). Function T is inductively
defined as follows:

T(start) = tau

T(end) = tau

T(task(n)) = n({ })

T (seq(t1, . . . , tn )) = T(t1). . . . .T(tn )

T (xor (t1, . . . , tn )) = T(t1) + . . . + T(tn )

T (and(t1, . . . , tn )) = T(t1) | | . . . | | T (tn )

T (while(t)) = P with P = tau + (T (t).P)

where P is a fresh process identifier for the specification.

We comment on salient points. start and end elements are ren-
dered as silent actions, as they do not have any observable effect.
A task(n) is translated into a visible action n({ }), where n is the
task identifier and { } represents the initial knowledge of the task
(which is empty at this stage, since we do not take into account data
yet). Sequence (seq(t1, ..., tn )), exclusive(xor (t1, ..., tn )) and parallel
(and(t1, ..., tn )) blocks are expressed by means of sequential, choice
and interleaving operators, respectively. The while block (while(t))
is rendered as a process call; the called process has a fresh identifier
and is a recursive process that non-deterministically can stop the
iteration or executing the loop body and restart.

We have seen so far how to transform the process of a given
party. Let us consider now a collaboration among multiple parties.

seq

start task(E) task(F ) end

Figure 5: Process tree of party Q from Fig. 3.
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Definition 3.3 (Collaboration translation). Given a collaboration
involving n parties, let t1, . . . , tn be the process trees generated from
each of them, the overall specification can be defined as:

Party1 = T(t1); ... Partyn = T(tn );
init (Party1 | | ... | | Partyn )

where init is a keyword in mCRL2 that defines the initial behaviour.

For example, the model in Fig. 3 is transformed into the following
specification:

P = tau . (A({ }) | | (B({ }) + C({ }))) .D({ }) . tau;
Q = tau . E({ }) . F ({ }) . tau;
init (P | | Q)

Processes P and Q inherit the name from the participant of the
collaboration that they are specifying.

3.3 Data-object and message flow
transformation

In the previous step, we have defined a mCRL2 specification deal-
ing with the control-flow of the model, but without taking into
account the data handling. We fill this gap in the second step of our
methodology.

In PE-BPMN the exchange of data is asynchronous and can take
place either intra-pool, via data-object connections between tasks of
the same process, or inter-pool, via message flows connecting tasks
of separate processes. Both forms of communication rely on buffers
and involve a non-blocking sending task. They differ, instead, on
the behaviour of the receiving task: in the inter-pool interaction
the receive is blocking if the buffer is empty, while in this case in
the intra-pool one the execution of the receiving task can continue
as an empty message will be received. These two behaviours are
captured by means of two buffer specifications. In addition, a task
can have incoming data-objects that are not produced by other
tasks; the information they bring is called prior knowledge. This
information is hence directly inserted inside the task specification.

Therefore, in the second step of the methodology, the PE-BPMN
model is analysed to extract all information concerning commu-
nication, which is then used to enrich the mCRL2 specification
produced in the previous step. We illustrate below how the task
specifications are enhanced with data information and how the two
kinds of buffers are defined.

Definition 3.4 (Data-aware specification of tasks). Given a task
with label n, j incoming data links/message flows, r outgoing data
links/message flows, and data e ′1, ..., e

′
p as prior knowledge, its

mCRL2 specification becomes the following one:
sum e11, ..., e1k1 :Data.i1(e11, ..., e1k1 ).
... .

sum ej1, ..., ejkj :Data.i j (ej1, ..., ejkj ).

n(union({e ′1, ..., e
′
p }, {e11, ..., e1k1 , ..., ej1, ..., ejkj })).

o1(e
′′
11, ..., e

′′
1h1 ). ... .or (e

′′
r1, ..., e

′′
rhr

)

Using the . operator among incoming/outgoing message flows
we impose an arbitrary order among how a task is receiving/sending
the data that is not given in the BPMN model. This decision does
not really affect the behaviour of the specification, as we will see
later, because the result of this interactions are going to be hidden

in the final specification. As an example, let us consider the task in
Fig. 6. Its data-aware translation is as follows:

sum e1 : Data.i(e1).
A
(
union({data2,data3}, {e1}

)
. o(e1,data2)

where e1 is a placeholder for a data to be received, say data1, by
means of the input action i . The prior knowledge {data2,data3}
will be then extended with the new element e1 using the union
function. Finally, data are transmitted in output via action o.

Figure 6: Example of a task.

Every communication between two tasks internal to a pool is
realised by means of a dedicated buffer.

Definition 3.5 (Intra-communication buffer). The intra-communication
buffer is a process of the following form:

B(d1, ...,dn : Data) = sum e1, ..., en : Data. i(e1, ..., en ).B(e1, ..., en )
+ o(d1, ...,dn ).B(d1...dn )

where B is a fresh name for a process with n parameters, i the
input channel for writing in the buffer and o the output channel for
reading from it.

Notably, the buffer is defined as a recursive process in order to
deal with more than one communication in case of loops in the
model. Every intra-communication buffer is put in parallel with the
other processes at top level of the specification, and is initialized as
B(eps1, ..., epsn ), where eps represents the empty parameter. This
is indeed a non-blocking buffer: if no data is written in the buffer,
it provides an empty information. Notice that, for the sake of sim-
plicity, we have used a 1-position buffer that, each time it receives
new data, it rewrites the current one.

Definition 3.6 (Intra-communication protocol). In a collaboration
with k participants, let be T1 and T2 tasks in the same pool. T1
is sending a set of data D = {d1, . . . ,dn } to T2, then an intra-
communication buffer B exist. T1, T2 and B defined as following:

PT1 = t1({d1, . . . ,dn }).ot1 (d1, . . . ,dn )

PT2 = sum e1, . . . , en : Data.it2 ({d1, . . . ,dn }).t2({d1, . . . ,dn })
B(d1, . . . ,dn : Data) = sum e1, . . . , en : Data.i(e1, ..., en ).B(e1, ..., en )

+ ob (d1, ...,dn ).B(d1...dn )

Then the communication among these elements is specified as
follows:

init hide({sendread},allow({sendread, t1, t2} ∪Act,

comm({ot1 |it2− > sendread},

P1 | |P2 | |...| |Pk | |B(eps1, . . . , epsn ))))

where sendread it is a keyword action used to represent the result
of the communication and P1, P2, . . . , Pk are the processes repre-
senting the parties in the collaboration.
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From the definition it is clear that for every communication a
buffer process B will be part of the initial behaviour of the specifi-
cation in order to receive at any time in the execution a set of data.
Then, a communication function (ot1 |it2− > sendread) between the
output channel of the sending task (ot1 ) and the input channel of
the receiving task (it2 ) is generated, and their synchronization is
forced by allowing only the execution of the communication func-
tion. Finally, since we are not interested in observing the sendread
synchronisation actions, they will be transformed into tau actions
using an enclosing hide operator.

Figure 7: Example of intra-communication.

Let us consider the minimal example in Fig. 7 showing the role
of the buffer. The communication between task A and B is specified
as follows:

P = PA .PB
PA = A({data1,data2}).oA(data1,data2)

BAB (d1,d2) = sum e1, e2 :Data.iAB (e1, e2).BAB (e1, e2)
+oAB (d1,d2).BAB (d1,d2)

PB = sum e1, e2 :Data.iB (e1, e2).B({e1, e2})

init hide({sendread},allow({sendread,A,B},

comm({oA |iAB → sendread,oAB |iB → sendread},

P | | B(eps, eps))))

Also every communication between two tasks not in the same
pool has its own buffer.

Definition 3.7 (Inter-communication buffer). A buffer for an inter-
communication between two tasks is defined as follows:

B(d1, ...,dn :Data) = sum e1, ..., en : Data.i(e1, ..., en ).B(e1, ..., en )
+ ((!empty({d1, ...,dn })) → o(d1, ...,dn )

.B(eps1, ..., epsn ))

where empty is a function that, given a parameter of typeMemory
(i.e., a set of parameters of type Data), returns true when the mem-
ory is empty, i.e. all di are eps , f alse otherwise. The buffer is ini-
tialized again with empty data.

This is a blocking buffer, because when it is empty the output
along o is not provided (due to the condition operator Cond → P ,
meaning “if Cond then do process P”), hence the receiving task has
to wait.

Figure 8: Example of inter-communication.

Definition 3.8 (Inter-communication protocol). In a collaboration
with k participants, let be T1 and T2 two tasks in different pools
where T1 is sending a set of data D = {d1, . . . ,dn } to T2, then an
inter-communication buffer B exist and their communication is
specified as in Def. 3.6.

Hence, the only difference between "intra" and "inter" commu-
nication is the used buffer. As an example, the communication
between tasks A and B in Fig. 8 is specified as follows:

PA = A({data1}).oA(data1)
BAB (d1) = sum e1 :Data.iAB (e1).BAB (e1)

+ ((!empty({d1})) → oAB (d1).BAB (eps))
QB = sum e1 :Data.iB (e1).B({e1})

init hide({sendread},allow({sendread,A,B},

comm({oA |iAB → sendread,oAB |iB → sendread},

PA | | QB | | B(eps))))

Finally, to show how the pieces of the puzzle fall into place, we
refer again to the example in Fig. 3. We report in Listing 1 an excerpt
of the mCRL2 code1 resulting from the execution of the second step
of the methodology (the full mCRL2 specification is reported in the
Appendix). We distinguish among two data types, namelyData and
Memory. The former is an enumeration of the data objects used
inside the model, like e.g. data1, data2 and eps . Memory, instead,
is a set of elements of type Data. Moreover, we define functions
union and empty (lines 9 and 11 of Listing 1). Functionunion makes
the union of two variables of type Memory and is used to add
knowledge to tasks; e.g., E(union{}{e7}) (line 20) means that we
add to the empty knowledge of E the value of e7. Function empty
takes as input a variable of typeMemory and returns false if it exists
an element inside the memory different from eps , i.e. if there is at
least one data inside the message. The function is used to avoid the
sending of empty messages (line 31).

1 s o r t Memory = Se t ( Data ) ;
2 s o r t Data = s t r u c t da t a 3 | d a t a 2 | d a t a 1 | eps ;
3 map
4 union : Memory # Memory −> Memory ;
5 empty : Memory −> Bool ;
6 var
7 m0 ,m1 : Memory ;
8 eqn
9 union (m0 ,m1 ) = m0+m1 ;
10 %* is the operator for intersection among sets
11 empty (m0 ) = { d : Data | ( { d } ∗ m0! = { } ) &&( d ! =eps ) } == { } ;
12 a c t
13 sendread , t0 , t 2 : Bool #Memory ;
14 A, memory1 , E , . . . : Memory ;
15 o5 , o6 , i 11 , o9 , i 4 , i 16 , sendread , o18 , . . . : Data ;
16 proc
17 %Starting proc ess of party Q
18 P36 = ( P10 . P11 . t 2 ( t rue , { eps } ) ) ;
19 %Task E
20 P10 = sum e7 : Data . i 1 9 ( e7 ) . E ( union ( { } , { e7 } ) )
21 . o14 ( e7 ) . t 2 ( f a l s e , { e7 } ) ;
22 %Task A
23 P1 = A( union ( { } , { da ta1 , d a t a 2 } ) ) . o18 ( da t a 1 )
24 . o10 ( da t a 2 ) . t 0 ( f a l s e , { da ta1 , d a t a 2 } ) ;
25 %Memory of Q participant
26 P27 ( e5 : Memory ) = sum e3 : Bool . sum e4 : Memory . t 2 ( e3 , e4 ) .
27 ( ! e 3 )−>P27 ( union ( e4 , e5 ) ) <>memory3 ( e5 ) . d e l t a ;
28 %Non-blocking buffer
29 P47 ( e10 : Data ) = ( sum e8 : Data . i 8 ( e8 ) . P47 ( e8 ) ) + ( o9 ( e10 ) . P47 ( e10 ) ) ;
30 %Blocking buffer
31 P63 ( e12 : Data ) = ( sum e7 : Data . i 1 6 ( e7 ) . P63 ( e7 ) ) +

1We show here the actual code taken as input by the mCRL2 tools, which also includes
the required language keywords and the data specification. To improve readability, we
also create a process definition for each task, we use task names instead of identifiers
(e.g. A instead of Task_0hcmawl ), and we omit irrelevant tau actions.
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32 ( !empty ( { e12 } )−>o17 ( e12 ) . P63 ( eps ) ) ;
33 i n i t h ide ( { t22 , sendread , t 2 3 } ,
34 a l l ow ( { memory3 , A , E , sendread , . . . } ,
35 comm ( { o18 | i16− >sendread , t 2 | t2−>sendread , . . . } ,
36 P36 | | P63 ( eps ) | | P47 ( eps ) | | P27 ( { } ) . . . ) ) ) ;

Listing 1: mCRL2 specification of the example in Fig. 3.

3.4 Verification
The last step of our methodology covers the verification of privacy-
related properties over the obtained specification of the model.
These properties are expressed using a first-order modal µ-calculus
supported by the mCRL2 toolset, which extends the standard µ-
calculus to include features for dealing with data. As already men-
tioned in Sec. 3, we are interested in automatically generating
formulae modelling two types of properties: Pro1 focusses on the
task knowledge, and Pro2 focusses on the participant knowledge.

Definition 3.9 (Task Formula). Given a task T with a knowledge
set of dimensionm and a set of dataD = {d1, ...,dn }, property "does
T knows about D can be expressed as

< true∗.exists e1, ..., em−n :
Data.T ({e1, ..., em−n,d1, ...,dn }) > true

Formula < f > true corresponds to the diamond modality,
which is satisfied whenever there exists a path where the formula
f is satisfied. true∗ means that any sequence of actions can be
performed beforeT . exists e1, ..., em−n : Data defines placeholders
for parameters of type Data, which are used to simulate the value
of the other elements inside the Memory. As usual, we consider
as an example, the model in Fig. 3, and we want to answer to the
following question:

Is it ever possible that task F knows about data1?
This property can be translated as < true∗.F ({data1}) > true .

In the example, the following path reaches a state where this
property holds: B → A → E → F , where B is the action represent-
ing task B and is the first one executed to reach that state, followed
byA, E and finally F . The above formula is an “eventually” formula,
so it is evaluated to true if there exists at least one path for which
the formula is satisfied.

In order to define the second property we need to introduce a
new concept (see process P27 at line 25 in Listing 1).

Definition 3.10 (Participant memory). Given a party in a collabo-
ration diagram, its knowledge (i.e., the set of elements of type Data
that are gained by the execution of its tasks) is stored in a memory
defined as follows:

M(m : Memory) =

sum b :Bool . sum mem : Memory. t(b,mem).

(!b) → M(union(m,mem)) <> memoryM (m).delta

where !b is the negation of the boolean variable b, delta is a special
process in mCRL2 that cannot perform any action (i.e., it is the
deadlock process), whilememoryM is the visible action performed
byM .

Every time that a task in a party is executed, it synchronises
with the action t of the corresponding memory (unique for each
party’s memory) sending a boolean and a memory value. When
the boolean parameter is equal to f alse , the memory is updated

with the new data, then the process is called again to receive new
information. Only when the party terminates its execution, i.e. the
boolean is true , the memory action is performed and the execution
stops (with delta).

Definition 3.11 (Participant formula). Given a participant P and
its associatedmemory processM with a knowledge set of dimension
m and a set of data D = {d1, ...,dn }, property "does P knows about
D" can be expressed as

< true∗.exists e1, ..., em−n :
Data.memoryM ({e1, ..., em−n,d1, ...,dn }) > true

Participants are not identified by identifiers, but by their actions
in the memory processes. As an example, we can instantiate the
second property for the model in Fig. 3 as follows:

Is it ever possible that participant Q know about data2?
This property is expressed as < true∗.memory1({data2}) > true ,
wherememory1 is the action connected to party Q that contains
all the data gained in its execution. The result of the verification is
f alse .

We can now focus on the formalisation of properties concerning
the Secret Sharing privacy technology. It can be implemented us-
ing three different stereotypes: SSsharing, SScomputation, and
SSreconstruction [32]. SSsharing tasks decide how the input data
is split into shares and which ones are necessary for computation
and reconstruction (1 input data, 2 or more shares as output). SS-
computation defines a common script that will be executed over
the data by all the participants (1 or more share/data as input, 1
share as output) and SSreconstruction puts together the shares in
order to get the result (2 or more shares as input, 1 data as output).
Recall that every SSsharing task has a parameter, called threshold,
which defines howmany shares are needed to reconstruct the secret.
Essentially a secret sharing protocol with threshold t is violated
when:

• A party P has n >= t shares of a secret and it is not either
the one that creates it (it has the SSsharing task) nor the one
that has to reconstruct it (it has the Reconstruction task).

• A party P has n >= t computed shares (i.e. output coming
from different SScomputation tasks) and the conditions are
the same as above (no SSsharing and no SSreconstruction
task).

The formula previously defined above are suitable to verify proper-
ties in PE-BPMNmodels that use the secret sharing task stereotypes.

Definition 3.12 (Secret sharing violation formula). Given a PE-
BPMN model with n + 1 parties, where party p0 creates shares S
with a threshold t , |C | = |S | results from each computation made
by each party, the violation formula is defined as disjunction of
participant formulae as follows:

< true∗.exists e1, ..., em−n : Data.memoryp1 ({e1, ..., em, S
′}) > true | |

...

< true∗.exists e1, ..., em−n : Data.memorypn ({e1, ..., em, S
′}) > true | |

< true∗.exists e1, ..., em−n : Data.memoryp1 ({e1, ..., em,C
′}) > true | |

...

< true∗.exists e1, ..., em−n : Data.memorypn ({e1, ..., em,C
′}) > true
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where S ′ and C ′ are the shares and computation’s output with the
minimum combination such that |S ′ | = |C ′ | = t .

If the formula is satisfied, then a violation of the property exists
in the model.

Figure 9: PE-BPMNmodel where the secret sharing property
is violated.

For example, the secret sharing property for the model in Fig. 9
is defined by the following formula ϕ:

< true∗.exists p0,p1 : Data.memoryPar ty2({p0,p1, s1, s2}) > true | |

< true∗.exists p0,p1 : Data.memoryPar ty2({p0,p1, r1, r2}) > true | |

< true∗.exists p0,p1 : Data.memoryPar ty2({p0,p1, rr1, rr2}) > true

Notably, we do not verify if Party 1 knows about s1 and s2, i.e. the
shares, because it generates them.

The mCRL2 framework provides a toolchain allowing to obtain
the answers:

1 mcr l 2 2 l p s spec . mcr l2 spec . l p s
2 l p s 2 l t s spec . l p s spec . l t s
3 l t s c o n v e r t l t s c o n v e r t −e tau− s ta r spec . l t s spec . l t s
4 l t s 2 p b e s −c −f fo rmula . mcf spec . l t s spec . pbes
5 pb e s s o l v e −− f i l e = spec . l t s spec . pbes
6 l t s c o n v e r t −eweak−trace spec . e v i d ence . fsm

In the above sequence of instructions, “spec.mcrl2" is the file con-
taining our specification. From that, we generate an LPS model that
we will transform into an LTS. We apply a tau-reduction over the
LTS to reduce the size of the state space. This is useful because
every communication, internal or external, generates a tau. Then,
the new LTS combined with the “formula" will create the pbes to
be solved. pbessolve solves the set of equations and can give as a
counter-example another LTS. To extract information from it, we
transform it into an FSM (finite state machine) operating a minimi-
sation based on the weak-trace equivalence. In such a way, we can
extract a path that represents the ordered sequence of actions that
leads to the solution of the formula.

4 TOOL IMPLEMENTATION AND
VALIDATION

In this section, we present our verification tool and provide details
about its integration in Pleak. Then, we show how it can be applied
in practice.

Tool Support. The proposedmethodology has been implemented
as a command-line Java tool that takes as input a PE-BPMN model
(in XML format) and produces a leakage diagnosis. The jar is avail-
able at https://github.com/pleak-tools/pleak-leakage-detection-analysis.
The tool consists of a parser and a verification module. The parser
works in two steps: first, it takes in input a PE-BPMN model and
generates a set of process trees, than the process trees are trans-
formed in a specification following the mCRL2 input language. The
first step is supported by the open-source Java library jBPT [3]
that we have integrated, while the second step is fully supported
by our implementation. The verification module checks the secret
sharing properties over the mCRL2 specification. Our tool has been
integrated as a plug-in in the PE-BPMN editor of Pleak. This plug-in
allows a designer to model the diagram and invokes our analyzer
from Pleak’s PE-BPMN editor to obtain a list of secret sharing
leakages, including an example pathway for each detected leakage.

Model # pool # task # sss # msg
Translat.
Time
(ms)

Verif.
Time
(ms)

Violation

Model1 4 16 1 24 709 435 Yes
Model2 2 8 1 10 644 1 Yes
Model3 2 8 1 11 630 <1 Yes
Model4 2 3 1 6 598 <1 Yes
Model5 4 12 1 20 858 9 No
Model6 3 12 1 19 741 80 No
Model7 2 6 1 8 698 <1 Yes
Model8 2 7 1 8 721 <1 No
Model9 2 3 1 6 706 <1 No
Model10 2 8 2 11 766 <1 No
Table 2: Experiment results of checking PE-BPMN models
using our tool.

Checking Secret Sharing on PE-BPMNModels. We have used
our tool to analyze a set of PE-BPMN models2 defined by designers
with Pleak. Table 2 summarizes the characteristics of these mod-
els, including the number of secrets, the time necessary to parse
and verify them, and the results of the verification (secret sharing
violation or not). These tests were performed on a laptop running
Windows 10 Pro 64 bits with an Intel(R) Core(TM) i7-5500U CPU
and 8 GB of RAM (but only 256MB allocated to the Java heap).
As expected, the translation time is not affected by the structure
of the model, while the verification time appears to increase with
the increasing complexity of the model. Specifically, the execution
time seems greatly affected by three factors: the size of the checked
formula, the numbers of elements in the set Data and the size of

2These models are available at: https://github.com/pleak-tools/pleak-leakage-
detection-analysis/tree/master/pe-bpmn%20models

https://github.com/pleak-tools/pleak-leakage-detection-analysis
https://github.com/pleak-tools/pleak-leakage-detection-analysis/tree/master/pe-bpmn%20models
https://github.com/pleak-tools/pleak-leakage-detection-analysis/tree/master/pe-bpmn%20models
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Figure 10: PE-BPMN model where the secret sharing prop-
erty is preserved.

each participant’s memory (i.e., the whole set of data of each par-
ticipant up to the task execution). Empirically, we noticed that the
translation of a formula and LTS in a pbes by recursively evaluating
the guards in the LPS leads to a state space explosion.

With reference to the example3 in Fig. 9, we observe that the
formula ϕ is violated, because there is a path in which party 2 gets
to know both secret shares (s1, s2), although this party is not the
one that is expected to reconstruct the secret (it does not have the
reconstruction task). One of the possible paths that leads to this error
is: Share → Send share → Intermediate Message Event → Task.
In the resulting state, both s1 and s2 are part of the knowledge of
party 2. On the other hand, in Fig. 10 it seems at a first glance that
party 2 will receive both the shares, but this is not the case because
there is a XOR gateway both on the sending and the receiving side.
A less trivial scenario is shown in Fig. 11. Here, there is a path in
which party Cmakes a computation over ss1, but it also receives the
result that party D computed (result2) when it is selected (instead
of B) to make this operation.

5 RELATEDWORK
In this section, we discuss the most relevant attempts in formalising
BPMN models without and with data, and we compare our work
with other verification approaches.
On Formalising BPMN. Several formalisations have been pro-
posed in order to disambiguate the semi-formal semantics of BPMN.
The most common formalisations of BPMN are given via map-
pings to various formalisms focusing on core elements of the no-
tation, such as Petri Nets [4, 7, 17, 23, 34], and process calculi
[15, 27, 30, 31, 45]. Some approach also translate processes into
a model checker input language, e.g. Masalagiu et. al. [24] verify
BPMN by translating it (via a Petri Net intermediate model) into the
model checker input language TLA+. Considering process algebras,

3Notably, in addition to the PE-BPMN elements discussed in the previous sections, our
tool also supports the message intermediate event. From the formal point of view, this
does not require any extension, as this element can be safely dealt with as a receiving
task.

Figure 11: PE-BPMN model where the secret sharing prop-
erty is violated.

in [30] a translation to COWS is proposed in order to reason about
qualitative and quantitative behaviour of the business process. How-
ever, the support for specifying and handling data is missing in the
verification method. In [45] a formalization from BPMN to CSP is
proposed, and also in this case data objects are not considered and
the refinement ordering used as verification method makes difficult
to construct behavioural properties like the one for verifying a
sssharing violation. This kind of formalisations are influenced by
the constructs of the used language and the features of the related
verification techniques. None of these approaches supports the
management of data, which represents a barrier on the verification
of data related properties.

Focusing on BPMN with data, only few formalisations are avail-
able in the literature (e.g., [11, 18]). In [11] the authors propose a
semantic framework for BPMN with data. This approach is based
on BPMN 1.0 and has a one-process view, while our focus is on the
communication among multiple processes, as we are interested in
exchange of data including secrets among multiple collaboration
parties. While in [18], BPMN models with data objects are for-
malised in terms of rewriting logic. Also in this case, collaboration
scenarios are not considered, while they are of main importance in
our approach.

On Verification for Leakage Detection.Much effort has been
devoted to the formalisation and verification of business processes
(e.g., [19, 20, 26, 39]). Nevertheless, less attention has been paid
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to the security perspective over data of the models. Considering
privacy issues and data leakage detection, some attempts have been
already made using Petri Nets [5], process graphs [38] and also
session types [13] to detect if a leakage exists and where. Unfortu-
nately, these approaches are coarse-grained verification techniques
that do not consider more advanced features, like the notion of
data, instead of tokens, and they do not take into account and make
difficult to represent security policies, like PETs. In [6] the authors
focus on solving the problem of data privacy by implementing, at
design time, GDPR (General Data Protection Regulation) patterns
without introducing new BPMN elements, but neither a way to
apply verification nor validation is proposed. Regarding GDPR, in
[8] the authors propose a systematic approach to operationalize
it; in this respect, our proposal could be used in the last step to
automatize the way of evaluating the solution, if PETs are used.
In [36], an extension of BPMN with security policies expressed as
queries is proposed, together with a way to analyse them. In this
case, however, the user should learn two languages: the one for
modelling, using the new elements, and the one to apply verifi-
cation, to manually write the queries. In addition, the framework
is not able to give a counter-example of a violation, which is an
important hint to correct errors occurring at design time as fast as
possible.

6 CONCLUSION AND FUTUREWORK
Wehave proposed amethodology for verification of privacy-enhanced
BPMN collaborations. Ourmethodology permits to detect situations
where a participant in a collaboration can reconstruct a data object
he/she is not authorised to access, by gathering a sufficient subset of
secret shares of this object. The methodology is based on a formali-
sation of PE-BPMN collaborations in terms of mCRL2 specifications,
complemented with an encoding of data leakages as properties in
mCRL2’s property specification language. The methodology has
been implemented as a tool available both as a stand-alone appli-
cation and as a plug-in in the Pleak toolset for business process
privacy analysis. The tool takes as input a PE-BPMN collaboration
and returns a list of detected leakages and a sample pathway leading
to a state where each leakage occurs.

In this paper, we focused on detecting leakages arising from
misuse of secret sharing technology. The proposed methodology
however opens the door to verifying other related security proper-
ties. For example, the same formalisation could be used to detect
situations where an unauthorised party gets access both to an en-
crypted data object and to the corresponding private key. We also
foresee that the proposed technique can be used to check liveness
properties such as “will a given participant, who needs to recon-
struct a data object, eventually get all the secret shares required for
this reconstruction?”. Extending the proposed approach to address
these and potentially other privacy and security-related properties
is an avenue for future work.

Another plan of future work is to encode the PET’s underlying
protocols directly into the generated mCRL2 specification. This
approach would potentially enable us to reduce the computation
time needed to check a property, since it would result in a reduction
of the state space exploration in case of a violation.

Finally, the proposed transformation from PE-BPMN collabora-
tions is currently restricted to collaborations where each party’s
process is block-structured. While the class of block-structured
BPMN process models is relatively expressive [28], lifting this re-
striction would be desirable. A challenge here is how to lift this
restriction while still taking advantage of the compositionality
of the process algebraic approach in order to obtain manageable
mCRL2 specifications.
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A COMPLETE MCRL2 SPECIFICATION OF
THE MODEL IN FIG. 3

1 s o r t Memory = Se t ( Data ) ;
2 s o r t Data = s t r u c t da t a 3 | d a t a 2 | d a t a 1 | eps ;
3 map
4 union : Memory # Memory → Memory ;
5 empty : Memory → Bool ;
6 var
7 m0 ,m1 : Memory ;
8 eqn
9 union (m0 ,m1 ) = m0+ m1 ;
10 empty (m0 ) = { d : Data | ( { d } ∗ m0! = { } ) &&( d ! =eps ) } == { } ;
11 a c t
12 t21 , t20 , t23 , t 2 2 ;
13 sendread , t0 , t 2 : Bool #Memory ;
14 Task_07m8xua , memory1 , Task_102audm , Task_0d860z3 ,
15 In te rmed ia teThrowEvent_0h7g12c , Task_0kra3 lu , memory3 , Task_0mj268e :

Memory ;
16 o5 , o6 , i 11 , o9 , i 4 , i 12 , i 15 , i 7 , i 16 , o10 , i 8 , o13 , i 19 , o14 , o17 , sendread , o18 :

Data ;
17 proc
18 P10 = sum e7 :

Data . i 1 9 ( e7 ) . In t e rmed ia t eThrowEvent_0h7g12c ( union ( { } , { e7 } ) )
19 . o14 ( e7 ) . t 2 ( f a l s e , { e7 } ) ;
20 P39 ( e9 : Data ) = ( sum e6 : Data . i 4 ( e6 ) . P39 ( e6 ) ) + ( o5 ( e9 ) . P39 ( e9 ) ) ;
21 P4 = ( P2+P3 ) ;

https://www.mcrl2.org/
https://pleak.io/home
https://github.com/jbpt/codebase
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22 P36 = ( P10 . P11 . t 2 ( t rue , { eps } ) ) ;
23 P27 ( e5 : Memory ) = sum e3 : Bool . sum e4 : Memory . t 2 ( e3 , e4 ) .
24 ( ! e 3 )→P27 ( union ( e4 , e5 ) ) <>memory3 ( e5 ) . d e l t a ;
25 P2 = Task_102audm ( { } ) ;
26 P72 = ( t 2 0 . P1 . t 2 1 . P6 . t 0 ( t rue , { eps } ) ) ;
27 P6 = sum e6 : Data . i 7 ( e6 ) . sum e8 :

Data . i 1 1 ( e8 ) . Task_07m8xua ( union ( { } , { e6 , e8 } ) ) .
28 t 0 ( f a l s e , { e6 , e8 } ) ;
29 P75 = ( t 2 0 . P4 . t 2 1 ) ;
30 P34 = ( P72 | | P75 ) ;
31 P17 ( e2 : Memory ) = sum e0 : Bool . sum e1 : Memory . t 0 ( e0 , e1 ) .
32 ( ! e 0 )→P17 ( union ( e1 , e2 ) ) <>memory1 ( e2 ) . d e l t a ;
33 P47 ( e10 : Data ) = ( sum e8 : Data . i 8 ( e8 ) . P47 ( e8 ) ) + ( o9 ( e10 ) . P47 ( e10 ) ) ;
34 P1 = Task_0k ra3 lu ( union ( { } , { da ta1 , d a t a 2 } ) ) . o18 ( da t a 1 ) . o10 ( da t a 2 ) .
35 t 0 ( f a l s e , { da ta1 , d a t a 2 } ) ;

36 P11 = sum e7 :
Data . i 1 5 ( e7 ) . Task_0d860z3 ( union ( { } , { e7 } ) ) . t 2 ( f a l s e , { e7 } ) ;

37 P55 ( e11 : Data ) = ( sum e7 :
Data . i 1 2 ( e7 ) . P55 ( e7 ) ) + ( o13 ( e11 ) . P55 ( e11 ) ) ;

38 P63 ( e12 : Data ) = ( sum e7 :
Data . i 1 6 ( e7 ) . P63 ( e7 ) ) + ( !empty ( { e12 } )→o17 ( e12 ) . P63 ( eps ) ) ;

39 P3 = Task_0mj268e ( union ( { } , { d a t a 3 } ) ) . t 0 ( f a l s e , { d a t a 3 } ) . o6 ( da t a 3 ) ;
40 i n i t h ide ( { t22 , sendread , t 2 3 } , a l l ow ( { Task_102audm , memory3 ,
41 Task_07m8xua , Task_0d860z3 , memory1 , Task_0kra3 lu , t22 , Task_0mj268e ,
42 sendread , t23 , In t e rmed ia t eThrowEvent_0h7g12c } , comm ( { o9 | i 1 1→sendread ,
43 o18 | i 1 6→sendread , o17 | i 1 9→sendread , t 0 | t 0→sendread , o6 | i 4→sendread ,
44 o5 | i 7→sendread , t 2 0 | t 2 0→ t22 , t 2 | t 2→sendread , o13 | i 1 5→sendread ,
45 t 2 1 | t 2 1→ t23 , o10 | i 8→sendread , o14 | i 1 2→ s endread } ,
46 P34 | | P39 ( eps ) | | P36 | | P63 ( eps ) | | P55 ( eps ) | | P47 ( eps ) | | P27 ( { } ) | | P17 ( { } ) ) ) ) ;
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