
Differential Privacy Analysis of Data Processing
Workflows

Marlon Dumas1, Luciano Garćıa-Bañuelos1, and Peeter Laud2

1 University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

2 Cybernetica, Estonia
peeter.laud@cyber.ee

Abstract. Differential privacy is an established paradigm to measure
and control private information leakages occurring as a result of dis-
closures of derivatives of sensitive data sources. The bulk of differential
privacy research has focused on designing mechanisms to ensure that the
output of a program or query is ε−differentially private with respect to
its input. In an enterprise environment however, data processing gener-
ally occurs in the context of business processes consisting of chains of
tasks performed by multiple IT system components, which disclose out-
puts to multiple parties along the way. Ensuring privacy in this setting
requires us to reason in terms of series of disclosures of intermediate and
final outputs, derived from multiple data sources. This paper proposes a
method to quantify the amount of private information leakage from each
sensitive data source vis-a-vis of each party involved in a business pro-
cess. The method relies on generalized composition rules for sensitivity
and differential privacy, which are applicable to chained compositions of
tasks, where each task may have multiple inputs and outputs of differ-
ent types, and such that a differentially private output of a task may be
taken as input by other tasks.

1 Introduction

The broad availability of rich consumer data is driving businesses to become
increasingly data-driven in their daily operations. In particular, it is becoming
common practice for businesses to exploit private data about their current or
potential customers to design, sell and deliver services. As a broader set of orga-
nizational stakeholders become involved in processing personal customer data –
sometimes across organizational boundaries – it becomes increasingly critical to
measure and control private information leakages.

Differential privacy [5] has emerged as a promising foundation to quantify
and control private information leakages stemming from access to sensitive data
sources. The bulk of research in this field has focused on designing mechanisms
to ensure that the output of a given program or query is ε−differentially private
with respect to a collection of input objects, for a given privacy budget ε. In other
words, the contribution of each object in the input collection to the output is
bounded by a term dependent on the privacy budget.

1

In an enterprise environment however, data processing generally occurs in the
context of business processes consisting of complex chains of tasks performed by
a range of IT system components and human actors. Ensuring privacy in this
setting requires us to reason not only in terms of an individual disclosure of
the output of a program or query to one party, but rather in terms of series of
disclosures to a range of parties.

This paper addresses the problem of analyzing differential privacy in the
context of business processes that involve multiple tasks, such that the output of
one task may be used as input by other tasks, and such that intermediate or final
outputs are disclosed to multiple parties. The paper addresses this problem in the
setting where business processes are codified using graphical models consisting
of processing nodes that extract data from potentially sensitive data sources,
transform the extracted data, and disclose derivatives thereof using a differential
privacy mechanism. Given such a graphical model, the paper outlines a technique
to address the following question: How much information about individual objects
in each input data collection does one execution of a process model disclose to
each involved party?

To illustrate this problem, we consider a simplified process to produce a
report about combined (data and call) service usage at a telecommunication ser-
vices provider. This process is depicted in Figure 1 using the standard Business
Process Model and Notation (BPMN) [13]. The telco provider is represented by
a pool.3 There is a separate pool below it, corresponding to a contractor hired
by the telco to provide business consultancy services. To provide its services, the
contractor needs to access weekly “service summary reports” produced by the
telco. Inside the telco’s pool, there are two roles represented by the lanes labeled
“Data Analyst 1” and “Data Analyst 2”. The process starts when a new sum-
mary report is created (cf. the start event labelled “summary report required”).
First, Data Analyst 1 performs a task wherein a set of call records are accessed
in order to prepare a call summary table. We assume that this collection of call
records (represented by a data collection – rectangle with a folded corner and
three vertical stripes) contains sensitive data. Hence, Data Analyst 1 does not
get the actual data collection, but only the result of a differentially private query.
As a result of this task, a “Call summary table” is produced. Next, an automated
task is executed that combines the previous “Call summary table” with another
collection of “Data connection records” in order to produce a “Combined report”.
Again, since collection“Data connection records”contains sensitive data records,
the program executing this latter task incorporates a differential privacy mech-
anism, which ensures that the combined report is ε2- (resp. ε3-) differentially
private with respect to “Data connection records” (resp. “Call summary table”).
The combined report is then checked by Data Analyst 2, who may modify it.
The process ends with a “message event” denoting the fact that the combined
report is sent out to the contractor.

3 A pool in BPMN (represented by a horizontal rectangle) represents an indepen-
dent organizational entity that communicates with other entities via message flows,
represented via dashed arrows.

2

Fig. 1. Model of a report preparation process (in BPMN).

Given a graphical process model annotated with metadata about differen-
tially private data releases, the technique proposed in this paper calculates for
each stakeholder in the process (Data Analyst 1, Data Analyst 2 and Contrac-
tor) and for each input of the process (here the “Call records” and the “Data
connection records”), how much ε privacy budget the stakeholder consumes with
respect to the data collection in question during one execution of the process.
This output can be used by an analyst to fine-tune the process (e.g. by adjusting
the εi privacy budgets) in order to achieve a certain level of privacy vis-a-vis of
each stakeholder and each data collection.

The proposed technique relies on a theoretical foundation that provides com-
position rules to calculate sensitivity and differential privacy of chained compo-
sitions of tasks, where these tasks take multiple inputs and produce multiple
outputs of different types. The paper outlines an algorithm that applies these
composition rules iteratively in order to calculate end-to-end differential privacy
for a given process.

The rest of the paper is structured as follows. Section 2 introduces concepts
and associated notation used subsequently. Section 3 presents the definitions of
differential privacy and sensitivity and associated composition rules. Next, Sec-
tion 4 introduces a notation for privacy-enhanced process modeling and presents
an algorithm for differential privacy analysis of such models. Finally Section 5
discusses related work and Section 6 summarizes the contribution and outlines
directions for future work.

2 Notation and preliminaries

We use R and N to denote the sets of real and natural numbers, respectively.
The sets of non-negative real and extended real numbers are denoted by R+ and
R∞+ = R+ ∪ {∞}. If a, b ∈ R, then [a, b] denotes the set {x ∈ R | a ≤ x ≤ b}.

3

If X is a set then D(X) denotes the set of all countable probability distribu-
tions of X. The elements of X are mappings χ : X → [0, 1], such that the set
supp(χ) = {x ∈ X |χ(x) > 0} is (at most) countable.

Given a probability distribution ψ ∈ D(X × Y), we let proj1ψ ∈ D(X) and
proj2ψ ∈ D(Y) denote its projections to the first and second component, re-
spectively. These are defined by proj1ψ(x) =

∑
y∈Y ψ(x, y) for all x ∈ X and

similarly for proj2ψ, where the sum is well-defined due to the support of ψ being
countable. For χ ∈ D(X) and φ ∈ D(Y) we let χ⊗φ ⊆ D(X × Y) denote the set
of all such probability distributions ψ that satisfy proj1ψ = χ and proj2ψ = φ.

Let f : X → D(Y) and g : Y → D(Z). There is an obvious way to “compose”
f and g, the result of which we denote with g ◦Kl f and which is defined by

Pr[(g ◦Kl f)(x) = z] =
∑
y∈Y

Pr[f(x) = y] · Pr[g(y) = z] (1)

for all x ∈ X and z ∈ Z.

The notion of sensitivity of mappings used in this paper relies on (extended)
metric spaces defined as follows.

Definition 1 (Metric space). A metric space is a set X together with a metric
dX on it. A mapping dX : X ×X → R+ is a metric if it satisfies the following
conditions:

– for all x, y ∈ X: dX(x, y) = 0 iff x = y;
– for all x, y ∈ X, dX(x, y) = dX(y, x);
– for all x, y, z ∈ Z, dX(x, z) ≤ dX(x, y) + dX(y, z).

An extended metric may also take the value ∞. An extended metric space is a
set X together with an extended metric on it.

3 Differential Privacy

LetR be the set of possible database records and X = NR be the set of databases
(i.e. a database is a multiset of records). Let O be a set of possible outcomes
and M : X → O a probabilistic map (an information release mechanism). For

r ∈ R let x1
r∼ x2 denote that x1, x2 differ only by r, i.e. x1(r) = x2(r)± 1 and

x1(r′) = x2(r′) for all r′ ∈ R\{r}. Two databases x1, x2 ∈ X are adjacent if

x1
r∼ x2 for some r ∈ R. Let dX be any (extended) metric on X.

Definition 2 (Differential privacy [5]). Let ε ∈ R. The mechanism M is
ε-differentially private if Pr[M(x1) ∈ S] ≤ eε ·Pr[M(x2) ∈ S] for all S ⊆ O and
all adjacent databases x1, x2 ∈ X .

There are a number of ways to make information release mechanisms private,
but the most commonly used techniques amount to adding a certain amount of
noise to the output of the mechanism. The noise has to be sampled from the
correct distribution, in order to obtain the bounds on the ratio of probabilities, as

4

demanded by Def. 2. The Laplacian distribution has the necessary properties [6].
The required magnitude of the noise depends on the function that is computed
by the mechanism. A function that may have very different outputs for databases
differing only a little requires more noise to be added than a function that changes
only slowly.

Sensitivity is a key tool to reason about the differential privacy of information
release mechanisms. It gives upper bounds for the ratio of the change in the value
of the function with respect to a change in the argument of the function. For
mechanisms that first compute a “useful” function and then add noise to it, the
differential privacy of the resulting mechanism is the ratio of the sensitivity of
that function and the magnitude of the added noise.

Definition 3 (Sensitivity). Let X and Y be two metric spaces with distances
dX and dY on them. Let c ∈ R+. We say that a function f : X → Y is c-
sensitive, if for all x1, x2 ∈ X, the inequality dY (f(x1), f(x2)) ≤ c · dX(x1, x2)
holds.

Differential privacy itself can also be seen as an instance of sensitivity. Indeed,
define the following extended metric ddp over D(Y):

ddp(χ, χ′) = sup
y∈Y

∣∣ln(χ(y)/χ′(y))
∣∣ .

Then a mechanismM from X to Y is dX -private iff it is 1-sensitive with respect
to the distances dX on X and ddp on D(Y).

The well-known composition theorems of differential privacy are instantia-
tions of more general results on sensitivity of composed mappings. We start with
the simplest result for sensitivity.

Proposition 1. Let f : X → Y be c-sensitive with respect to the distances dX
on X and dY on Y . Let f ′ : Y → Z be c′-sensitive with respect to the distances
dY on Y and dZ on Z. Then f ′ ◦ f : X → Z is c · c′-sensitive with respect to the
distances dX on X and dZ on Z.

Proof. Let x, x′ ∈ X. Then dZ(f ′(f(x)), f ′(f(x′))) ≤ c′ · dY (f(x), f(x′)) ≤ c′ · c ·
dX(x, x′).

This proposition can be generalized to multivariate mappings. Let i ∈ {1, . . . , n}.
We say that a mapping f ′ : Y1×· · ·×Yn → Z is c′i-sensitive in its i-th argument,
if for all tuples (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y1 × · · · × Yi−1 × Yi+1 × · · · × Yn,
the univariate mapping f(y1, . . . , yi−1, ·, yi+1, . . . , yn) is c′i-sensitive.

Proposition 2. For i ∈ {1, . . . , n}, let fi : X → Yi be ci-sensitive with respect
to the distances dX on X and dYi on Yi. Let f ′ : Y1×· · ·×Yn → Z be c′i-sensitive
with respect to the distances dYi on Yi and dZ on Z (for all i ∈ {1, . . . , n}). Then
the mapping g : X → Z, defined by g(x) = f ′(f1(x), . . . , fn(x)), is

∑n
i=1 cic

′
i-

sensitive with respect to the distances dX on X and dZ on Z.

5

Proof. Let x, x′ ∈ X. Let zi = f ′(f1(x), . . . , fi(x), fi+1(x′), . . . , fn(x′)). Then
z0 = g(x′), zn = g(x) and by Prop. 1, dZ(zi−1, zi) ≤ cic

′
i · dX(x, x′). The claim

of the proposition follows from the triangle inequality.

The sequential composition theorem for differential privacy [12, Thm. 3] is
really just a special case of Prop. 2. In their setting, there is a dataset x ∈ X
and information release mechanismsM1 andM2, which are respectively ε1- and
ε2-differentially private. Let the possible set of outcomes ofMi be Mi. FirstM1

and then M2 are invoked on x; the exact invocation of M2 may depend on the
result ofM1. Finally, the result ofM2 is published. This result may include the
result ofM1, because it affected the invocation ofM2. Such composition ofM1

and M2 is shown to be (ε1 + ε2)-differentially private.
Prop. 2 applies to this setting in the following manner. We have M1 : X →

D(M1) and M2 : X ×M1 → D(M2). Let M2 : X × D(M1) → D(M2) be the
lifting of M2 to probability distributions in its second argument:

Pr[M2(x, χ) = m2] =
∑

m1∈M1

χ(m1)Pr[M2(x,m1) = m2] .

Consider the Hamming distance on X (two datasets in X are adjacent iff their
distance is 1), and the distance ddp on both D(M1) and D(M2). Let f1 ≡ idX ,
f2 ≡M1 and f ′ ≡M2. The sensitivity of f1 is 1, the sensitivity of f2 is ε1, and
the sensitivities of f ′ in its first and second argument are ε2 and 1, respectively.
The latter follows the fact that no post-processing of a differentially private
query can lower the privacy guarantees it provides. We now apply Prop. 2 and
find that the composition of f ′ with f1×f2 is (ε1+ε2)-sensitive. This composition
corresponds to the invocation of M1 and M2 one after another, as described
above.

4 Privacy Analysis of Data Processing Workflows

In this section, we introduce a graphical notation for capturing data processing
workflows with differential privacy, and we define algorithms to analyze the end-
to-end differential privacy of such workflows.

4.1 Data Processing Workflows

In Section 1, we presented a motivating example of a business process using the
BPMN notation. While BPMN is a widely used standard, it is also rather com-
plex. It comprises several dozen types of notational elements, covering several
flavors of parallel and conditional branching, sequential and parallel repetition,
exception handling and transactional constructs among others. For privacy anal-
ysis purposes, we propose to reason on a simpler and more abstract graphical
notation, herein called data processing workflow. This simpler process modeling
notation is focused on capturing how data sources taken as input by a business

6

process are transformed into intermediate and final outputs, each of which is dis-
closed to one or multiple parties. Below we introduce data processing workflows
without considering the notion of “disclosure to a party”. The latter notion is
added in Section 4.3.

A data processing workflow consists of data nodes, processing nodes and data-
flow arcs. A data-flow arc connects a data node to a processing node or vice-
versa. A data node without any incoming arc is called a source data node. It
corresponds to an object or collection of objects that are given as input to the
workflow. A data node without any outgoing arc is called an output node (i.e.
it is data produced by an execution of the workflow). A data node with both
incoming and outgoing arcs is called an intermediate node.

Figure 2 shows an example of a data processing workflow. Data nodes are
represented as rounded rectangles, while data nodes are rectangles with their
top-right corner folded over.

A

B

C

D

x1

x2

x3

x4

x5

x6

x7

Fig. 2. Example of a data processing workflow

Formally, a Data Processing Workflow W is a tuple (D,P, F), where D and
P are two finite, disjoint sets, and F is a relation on (D × P) ∪ (P × D). For
convenience, we will refer to D ∪ P as the set of nodes N . The elements of
D are data nodes and the elements of P are processing nodes, that is, nodes
representing computations over some input data.

Given a node n ∈ N , we define •n = {m | (m,n) ∈ F} (the predecessors
of n) and n• = {m | (m,n) ∈ F} (the successors of n). A workflow W is said
well-formed if it induces an acyclic, weakly connected graph, with the following
additional restrictions: every node d ∈ D has at most one successor and at most
one predecessor, i.e. | •d | ≤ 1 and | d• | ≤ 1, and every node p ∈ P has at least
one predecessor and at least one successor node, i.e. | •p | ≥ 1 and | p• | ≥ 1. In
the following, we consider only well formed workflows.

A privacy-enhanced workflow is a workflow annotated with differential pri-
vacy and sensitivity values, which we assume are derived separately via an
analysis of a program or query implementing the data processing node (as dis-
cussed later in Section 5). Formally, a Privacy-enhanced workflow is a tuple
(W, E , C), where W = (D,P, F) is a workflow and E and C are mappings of type

7

⋃
p∈P •p×{p}×p• → R+, associating a differential privacy and sensitivity value

(respectively) to an output produced by a processing node, relative to an input
of this processing node.

For example, a privacy-enhanced version of the workflow shown in Figure 2
is shown in Figure 3. In the figure, we use εA[x1, x3] = 0.2 to denote the tuple
(x1, A, x3, 0.2) ∈ E , meaning that performing A is ε-differential private with
ε = 0.2, when processing x1 as input and producing x3. Similarly, cA[x1, x3] = 0.4
is used to denoted the tuple (x1, A, x3, 0.4) ∈ C, which means that A takes as
input x1 and produces x3 with a sensitivity of 0.4.

A

B

C

D

x1

x2

x3

x4

x5

x6

x7

εA[x1, x3] = 0.2
cA[x1, x3] = 0.4

εA[x1, x4] = 0.2
cA[x1, x4] = 0.4

εB [x2, x5] = 0.2
cB [x2, x5] = 0.4

εB [x3, x5] = 0.2
cB [x3, x5] = 0.4

εC [x4, x6] = 0.2
cC [x4, x6] = 0.4

εD[x5, x7] = 0.2
cD[x5, x7] = 0.4

εD[x6, x7] = 0.2
cD[x6, x7] = 0.4

Fig. 3. Example of a privacy-enhanced workflow

A workflow W = (D,P, F) is interpreted in the following manner. For each
d ∈ D, there is a set Xd and a metric dd on D(Xd). For each p ∈ P and each
d ∈ p•, there is a mapping fp→d :

∏
d′∈•pXd′ → D(Xd), which can be lifted to

fp→d :
∏
d′∈•pD(Xd′)→ D(Xd).

Let S ⊆ D be the set of all data nodes d, such that •d = ∅. For each d ∈ D,
an interpretation of W defines a mapping JW Kd :

∏
d′∈S D(Xd′) → D(Xd) as

follows. Let χd′ ∈ D(Xd′) for each d′ ∈ S and let X be the tuple (χd′)d′∈S . Then

JW Kd(X) =

{
χd, if d ∈ S
fp→d((JW Kd′′(X))d′′∈•p), otherwise, where {p} = •d.

The mappings JW Kd are well-defined due to the acyclicity of W .

The annotations of a privacy-enhanced workflow (W, E , C) match the inter-
pretation of W if for all p ∈ P , d′ ∈ •p and d ∈ p•,

– the sensitivity of fp→d in its argument “d′” is cp[d
′, d] with respect to the

distances dd′ on D(Xd′) and dd on D(Xd);

– the sensitivity of fp→d in its argument “d′” is εp[d
′, d] with respect to the

distances dd′ on D(Xd′) and ddp on D(Xd).

8

These requirements talk about metrics over the sets of probability distributions
D(Xd), and sensitivities of lifted mappings in terms of these metrics. In ap-
pendix A we discuss, how metrics on sets Xd can be lifted to probability distri-
butions and what should the sensitivities of the original mappings fp→d be.

4.2 Data Node-Based Analysis of workflows

As stated in Section 1, we are interested in computing upper bounds of the in-
formation disclosed when data nodes are accessed by a user playing a given role
in the process. In order to do so, we leverage the concepts and definitions of
Section 3 to design an algorithm that computes the differential privacy and sen-
sitivity values of every intermediate and output data node in a privacy enhanced
workflow, relative to every source data node. Subsequently in Section 4.3, we
show how to aggregate the privacy and sensitivity values calculated in this way,
in order to compute a bound of the information that a party playing a given
role can extract from each source data node, given the data that are disclosed
to them during one execution of the workflow.

The proposed algorithm is given in Figure 3. The input of the algorithm is
a privacy-enhanced workflow, while the output consists of two matrices, namely
ddp and dc, of size |S| × |O| where S is the set of source data nodes in the
workflow and O is the set of intermediate and output data nodes. A cell in ddp
(respectively dc) gives a differential privacy bound (resp. sensitivity bound) of a
given intermediate or output data node o relative to a source data node s. The
main idea of the algorithm is to iterate over the processing nodes in the workflow
in topological order (which requires that the workflow is well-formed and thus
acyclic). At each step, we compute the value of ddp[s, o] and dc[s, o] for each
output o of the current processing node p, using the previously computed values
for the input data nodes of p, as well as the formulas for composing sensitivity
values given in Propositions 1-3 of Deliverable D1.1 and existing formulas for
composition of ε−differentially private information release mechanisms.

Example 1. We use the example in Figure 3 to illustrate the algorithm. To this
end, we consider the topological order [A,B,C,D] of processing nodes4.

During the first iteration, in line 1 the algorithm sets p to the processing
node A. In line 2, the algorithm iteratively selects a source data node (i.e. s ∈
D : |•s| = 0) and one successor of p such that the latter is reachable from the
selected source node. The first iteration of the inner loop then processes the pair
s = x1 and o = x3. Since x1 is a direct predecessor of A the algorithm will
perform lines 4-5. As a result, we have that ddp[x1, x3] = εA[x1, x3] = 0.2 and
dc[x1, x3] = cA[x1, x3] = 0.4. The second iteration of the inner loop, in turn,
will process the pair s = x1 and o = x4. The latter will result in ddp[x1, x4] =
εA[x1, x4] = 0.2 and dc[x1, x4] = cA[x1, x4] = 0.4. This will complete the first
iteration of the outer loop because none of the successors of A is reachable from
x2. The following matrices summarize the outcome of the first iteration:

4 Note that there exists another topological order of the processing nodes of the ex-
ample, namely [A,C,B,D]. Either one would produce the same output matrices.

9

Algorithm 1: Differential privacy of a workflow

Data: A well-formed workflow (W,S), with W = (D,P, F)
Result: The matrices ddp and dc

1 foreach processing node p ∈ P in topological order do
2 foreach s ∈ D, o ∈ p• : |•s| = 0 ∧ (s, o) ∈ F+ do
3 if s ∈ •p then
4 ddp[s, o] = εp[s, o]
5 dc[s, o] = cp[s, o]

6 else

7 ddp[s, o] =
∑

i∈•p:(s,i)∈F+

min (ddp[s, i], dc[s, i] · εp[i, o])

8 dc[s, o] =
∑

i∈•p:(s,i)∈F+

(dc[s, i] · cp[i, o])

9 end

10 end

11 end
12 return ddp, dc

x3 x4 x5 x6 x7
x1 εA[x1, x3] = 0.2 εA[x1, x4] = 0.2
x2

ddp

x3 x4 x5 x6 x7
x1 cA[x1, x3] = 0.4 cA[x1, x4] = 0.4
x2

dc

In the second iteration, the algorithm sets p to the processing node B (line 1).
The inner loop first computes the values for source node x1 and the only successor
of B, that is x5. This time, the algorithm executes lines 7-8, because x1 is not a
direct predecessor of B. Note that x3 is the only direct predecessor of B which
is reachable from x1 and, as a result, there is only one term in the summation of
line 7. Therefore, in line 7 we have that ddp[x1, x5] = min(ddp[x1, x3], dc[x1, x3] ·
εB [x3, x5]) = min(0.2, 0.4 · 0.2) = 0.08 and in line 8 dc[x1, x5] = dc[x1, x3] ·
cB [x3, x5] = 0.4 · 0.4 = 0.16. In the second iteration of the inner loop, the
algorithm computes the values associated to the source node x2 and the only
successor of b, that is x5. Since x2 is direct predecessor of B, the algorithm sets
ddp[x2, x5] = εB [x2, x5] = 0.2 and dc[x2, x5] = cB [x2, x5] = 0.4.

The third iteration selects p = C and proceeds in a similar way as for the
second iteration. The following matrices summarize the values computed at the
end of this iteration.

x3 x4 x5 x6 x7
x1 0.2 0.2 0.08 0.08
x2 0.2

ddp

x3 x4 x5 x6 x7
x1 0.4 0.4 0.16 0.16
x2 0.4

dc

In the final iteration, the algorithm computes the values by selecting p to
be the processing node D. In the inner loop, the algorithm will first select the
source node x1. Note that D has x7 as its only successor. However, there are two

10

direct predecessors of D, namely x5 and x6. Therefore the computation of ddp
involves the summation of the values that come from x5 and x6. Thus, we have
that:

ddp[x1, x7] = min (ddp[x1, x5], dc[x1, x5] · εD[x5, x7]) +

min (ddp[x1, x6], dc[x1, x6] · εD[x6, x7])

= min (0.08, 0.16 · 0.2) + min (0.08, 0.16 · 0.2)

= 0.064

and

dc[x1, x7] = (dc[x1, x5] · cD[x5, x7]) + (dc[x1, x6] · cD[x6, x7])

= (0.16 · 0.4) + (0.16 · 0.4)

= 0.128

In the final iteration of the inner loop, the algorithm computes the values
for s = x2 and o = x5. In this case however, there is only one term in the
summation. Therefore, ddp[x2, x7] = min (ddp[x2, x5], dc[x2, x5] · εD[x5, x7]) =
min (0.2, 0.4 · 0.2) = 0.08. Finally, dc[x2, x7] = dc[x2, x5] · cD[x5, x7] = 0.4 · 0.4 =
0.16.

The following matrices summarize the outcome of the algorithm.

x3 x4 x5 x6 x7
x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7
x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

The correctness of Algorithm 1 is established by the following theorem.

Theorem 1. Let (W, E , C) be a privacy-enhanced workflow with W = (D,P, F).
Let W have an interpretation that matches the annotations E and C. Let x ∈ S
and y ∈ O. Let the matrices ddp and dc be computed by Alg. 1 from (W, E , C).
Then JW Ky is ddp[x, y]-differentially private and dc[x, y]-sensitive in its argument
“x” according to the distances dx on D(Xx) and dy on D(Xy).

Proof. The theorem is proved by induction over the data nodes of W , taken in
topological order. First we amend ddp and dc with columns corresponding to
data nodes in S, defining dc(x, x) = 1 and ddp(x, x) = ∞ for all x ∈ S, as well
as dc(x, y) = ddp(x, y) = 0 for all x, y ∈ S with x 6= y. We now proceed with the
induction.

Base case: y ∈ S. Then JW Ky takes the component “y” from its tuple of argu-
ments. The values ddp(x, y) and dc(x, y) describe the sensitivity and differential
privacy of the protection.

Induction step: let {p} = •y and let the differential privacy and sensitivity
claims hold for all JW Ky′ , where y′ ∈ •p. We note that fp→y is 1-sensitive for all
its inputs, if the distance on both the input and the output is ddp. The reason for
this is, that no post-processing can degrade the privacy level of a differentially
private mapping.

11

Let Cy′ be the sensitivity of JW Ky′ in its argument “x”. By induction hy-
pothesis, Cy′ ≤ dc[x, y′]. Prop. 2 now gives us that the sensitivity of JW Ky in its
argument“x” is at most

∑
y′∈•p Cy′ ·cp[y′, y] ≤

∑
y′∈•p dc[x, y

′]·cp[y′, y] = dc[x, y]
by Alg. 1.

Similarly, let Ey′ be differential privacy level of JW Ky′ in its argument “x”; by
induction hypothesis, Ey′ ≤ ddp[x, y

′]. On each D(Xy′), we may consider either
the distance dy′ or ddp. The sensitivity of JW Ky′ (in argument “x”) is c1y′ =

Cy′ according to dy′ or c0y′ = Ey′ according to ddp. The sensitivity of fp→y in
argument“y′”according to the distance dy′ [resp. ddp] onD(Xy′) and the distance
ddp on D(Xy) is ε1y′ = εp[y

′, y] [resp ε0y′ = 1]. Let b[y′] ∈ {0, 1} for each y′ ∈ •p.
According to Prop. 2, the differential privacy of JW Ky is

∑
y′∈•p c

b[y′]
y′ · εb[y

′]
y′ ,

obtained by considering the distance dy′ (if b[y′] = 1) or ddp (if b[y′] = 0) on
D(Xy′). This bound for differential privacy holds for any choice of bits b[y′].
Hence the differential privacy of JW Ky is

min
∀y′∈•p:b[y′]∈{0,1}

∑
y′∈•p

c
b[y′]
y′ · ε

b[y′]
y′ =

∑
y′∈•p

min(c0y′ · ε0y′ , c1y′ · ε1y′) =

∑
y′∈•p

min(Ey′ ·1, Cy′ ·cp[y′, y]) ≤
∑
y′∈•p

min(ddp[x, y
′], dc[x, y

′]·cp[y′, y]) = ddp[x, y]

by Alg. 1.

4.3 Role-based privacy analysis of workflows

So far, we have considered workflows without a notion of parties to whom data is
disclosed. To capture this latter aspect, we extend the notion of privacy-enhanced
workflow with a disclosure relation Disc ⊆ D ×R, such that Disc(n, r) denotes
the fact that data node n is disclosed to role r. We assume here a classical role-
based access control model, entailing that all users who play role r are able to
access all data nodes disclosed to role r.

Given the matrices ddp and dc computed from a privacy-enhanced workflow
W and given the relation Disc capturing the disclosure of data nodes to roles,
we can now compute a differential privacy bound εr(s) of the information that a
given role r can extract from a given source data node s – i.e. how much a party
playing a given role can learn about individual records of a given input s of W :

εr(s) =
∑

(n,r) ∈ Disc : (s,n) ∈ F+

ddp[s, n] (2)

Example 2. Given the matrices computed in the previous example:

x3 x4 x5 x6 x7
x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7
x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

12

we can compute the differential privacy guarantee with respect to data node x1
that can be made for a party playing a role r that has access to both data nodes
x5 and x6 in the workflow shown in Figure 3:

εr(x1) = ddp[x1, x5] + ddp[x1, x6]

= 0.08 + 0.08 = 0.16

In Equation 2, we sum up the ε values calculated for each intermediate/output
data node that is disclosed to role r. This is a worst-case bound, applicable in
the case of “sequential composition” of differentially private release mechanisms.
The underpinning assumption is that if a role has access to two data nodes n1
and n2 produced from a given source data node s via two different paths in the
workflow, these two paths use the same or overlapping parts of data source s. If
this is not the case, meaning that n1 and n2 derive from independent parts of
s, a tighter bound may be applied – in the best case max(ddp[s, n1], ddp[s, n2])
instead of ddp[s, n1] + ddp[s, n2], based on existing results for so-called “parallel
composition” of differentially private release mechanisms. Hence, if we annotated
a privacy-enhanced workflow with additional metadata capturing independence
relations between multiple accesses to the same data source, we could refine the
calculation of the differential privacy budgets. Investigating this refinement is a
direction for future work.

5 Related work

Differential privacy has been widely studied in the context of program analysis,
using e.g. types [10] or theorem proving [2]. These techniques allow one to reason
about the differential privacy of the output of a program relative to its input. In a
similar vein, techniques have been proposed to analyze sensitivity and differential
privacy for database queries expressed in SQL-like languages (e.g. PINQ) [12].
In this latter work, the aim is to ensure that the output of a given query is
differentially private with respect to the input tables, for a given privacy budget.
Again, these techniques are geared at analyzing that the output of a processing
node is differentially private with respect to its input. In this respect, these
proposals are complementary to ours: They can be used to analyze the sensitivity
and differential privacy of each data processing node in a workflow.

Perhaps the closest work to ours is Featherweight PINQ [7]. This latter work
defines a calculus that can be used to determine the sensitivity of parallel and
sequential compositions of queries defined in a workflow-like notation. However,
it does not provide a framework that combines sensitivity and differential privacy
under the same roof as we do in our proposal.

Our work is also related to d-privacy [14]: a generalization of differential pri-
vacy that turns any metric on the set of possible datasets into a composable
privacy metric, of which differentially privacy is a special case. In this paper, we
build upon these and related ideas in [4, 8] in order to define new composition

13

rules for processing nodes with differentially-private release mechanism, specifi-
cally rules that combine sensitivity and differential privacy in a way that allows
us to calculate differentially private bounds when a differentially-private output
of a node is fed as input to another differentially-private node.

Previous work on privacy analysis of business processes [1, 9] relies on Petri
net reachability analysis and model checking to detect data objects that are de-
classified to unauthorized parties either in full or in part. These approaches adopt
a multi-level security model, wherein the objects and subjects of the system are
divided in security levels. The goal of these techniques is to identify cases where
information from an object of a higher security level is copied to an object with
lower security level. However such techniques are boolean: they detect potential
leakages but fail to quantify them, which is the goal of the present paper.

The workflow notation employed in this paper is conceptually similar to
graphical workflow notations used in data warehousing [11] – where they are
referred to as Extract-Transform-Load (ETL) workflows – and also bears resem-
blances with data analytics workflow notations such as the one embodied in the
popular KNIME toolset [3]. The results presented in this paper can potentially
be applied to analyze workflows in these related notations.

6 Conclusion

To summarize, the main contributions of this paper are:

1. Theoretical results on sensitivity of composed mappings that generalize well-
known composition theorems of differential privacy and allow us to calculate
differential privacy bounds in the case where the differentially-private output
of a function is used as input to another differentially-private function.

2. A notion of privacy-enhanced workflow where tasks (processing nodes) trans-
form input objects into output objects using differentially private mecha-
nisms and each intermediate or output object is disclosed to one or more
roles.

3. An algorithm that given a data processing workflow and given the sensitivity
and differential privacy leakage of each processing node in the workflow,
estimates the differential privacy leakage generated by the disclosure of data
to each role involved in the workflow.

The proposed analysis technique has been implemented in a tool called
Pleak.5 Pleak allows one to: (i) model a process using the standard Business
Process Model and Notation (BPMN); (ii) annotate the elements of the process
model with sensitivity and differential privacy metadata; and (iii) obtain a table
stating the differential privacy budget consumed by each role (lane or pool) in
the process relative to each input data collection. Internally, the tool extracts
a data processing workflow from the BPMN model, and applies the technique
presented above. At present, only a subset of BPMN is supported, comprising

5 The tool is available at http://pleak.io/ for research purposes.

14

tasks, sequence flows, parallel gateways, data objects, lanes and pools. Also, the
input process models are assumed to be acyclic. These restrictions are meant to
ensure the BPMN model can be transformed into a data processing workflow.

In future, we will extend the notion of data processing workflow in order to
lift some of the restrictions imposed so far, particularly the restriction that data
processing workflows do not contain conditional branching nor cycles. To this
end, we need to extend the theoretical foundation to reason about conditional
branches in a differentially private computation. Also, as stated in Section 4.3, we
plan to enhance the workflow notation to capture independence relations between
multiple accesses to the same data source, so as to calculate tighter bounds
for differential privacy budgets when multiple computations access independent
parts of the same data collection (e.g. distinct sets of attributes).

Acknowledgments. This work is funded by DARPA’s “Brandeis” programme.

References

1. Rafael Accorsi, Andreas Lehmann, and Niels Lohmann. Information leak detec-
tion in business process models: Theory, application, and tool support. Inf. Syst.,
47:244–257, 2015.

2. Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst., 35(3):9, 2013.

3. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. KNIME -
the Konstanz Information Miner: Version 2.0 and Beyond. SIGKDD Explorations,
11(1):26–31, November 2009.

4. Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and
Catuscia Palamidessi. Broadening the scope of differential privacy using metrics.
In Emiliano De Cristofaro and Matthew Wright, editors, Privacy Enhancing Tech-
nologies - 13th International Symposium, PETS 2013, Bloomington, IN, USA, July
10-12, 2013. Proceedings, volume 7981 of Lecture Notes in Computer Science, pages
82–102. Springer, 2013.

5. Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceed-
ings, Part II, volume 4052 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2006.

6. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes
in Computer Science, pages 265–284. Springer, 2006.

7. Hamid Ebadi and David Sands. Featherweight PINQ. CoRR, abs/1505.02642,
2015.

8. Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Gen-
eralized differential privacy: Regions of priors that admit robust optimal mecha-
nisms. In Franck van Breugel, Elham Kashefi, Catuscia Palamidessi, and Jan

15

Rutten, editors, Horizons of the Mind. A Tribute to Prakash Panangaden - Essays
Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday, volume
8464 of Lecture Notes in Computer Science, pages 292–318. Springer, 2014.

9. Simone Frau, Roberto Gorrieri, and Carlo Ferigato. Petri net security checker:
Structural non-interference at work. In 5th International Workshop on Formal
Aspects in Security and Trust (FAST), October 9-10, Malaga, Spain, pages 210–
225. Springer, 2008.

10. Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. Linear dependent types for differential privacy. In Roberto Giacobazzi and
Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 357–370. ACM, 2013.

11. Ralph Kimball, Laura Reeves, Warren Thornthwaite, Margy Ross, and Warren
Thornwaite. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing,
Developing and Deploying Data Warehouses. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1998.

12. Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Ugur Çetintemel, Stanley B. Zdonik, Donald Koss-
mann, and Nesime Tatbul, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island,
USA, June 29 - July 2, 2009, pages 19–30. ACM, 2009.

13. Object Management Group. Business Process Model and Notation (BPMN) Ver-
sion 2.0, 2011.

14. Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger:
a calculus for differential privacy. In Paul Hudak and Stephanie Weirich, editors,
Proceeding of the 15th ACM SIGPLAN international conference on Functional pro-
gramming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, pages
157–168. ACM, 2010.

A Lifting distances to probability distributions

To interpret a privacy-enhanced DP-workflow (W, E , C) (where W = (D,P, F)),
we have to give metrics dd on D(Xd) for each d ∈ D. Moreover, for the inter-
pretation to be matched by the annotations, the mappings fp→d between these
probability distributions must have the sensitivities given by E and C. It may be
more natural to assume that the interpretation gives us metrics on Xd, not on
D(Xd). It is also more natural to require the mappings fp→d to have a certain
sensitivity.

We thus define that a pre-interpretation consists of sets Xd for each d ∈ D
together with a metric d[d on it, as well as the mappings fp→d for each p ∈ P and
d ∈ p•. We have to specify what kind of interpretation it generates, and when to
the annotations E , C match the pre-interpretation. The key for this is to specify
the metric dd on D(Xd).

Let X be a set and dX a metric on it. It turns out that the following definition
of a metric d#X on D(X) is a suitable one. Let χ, χ′ ∈ D(X). Then

d#X(χ, χ′) = inf
ψ∈χ⊗χ′

sup
(x,x′)∈supp(ψ)

dX(x, x′) . (3)

16

The proposed metric d#X can be seen as a kind of “worst-case” earth mover’s
distance (or Wasserstein metric). In the“usual”earth mover’s distance, one would
take the average over ψ, not the supremum over supp(ψ).

The suitability of the construction (3) is given by the following two proposi-
tions. Note that the first of them would not hold for the “usual” earth mover’s
distance.

Proposition 3. Let f : X → D(Y) be ε-sensitive according to the distance dX
on X and distance ddp on D(Y). Then the lifting f : D(X)→ D(Y) is ε-sensitive

according to the distance d#X on D(X) and ddp on D(Y).

Proof. Let χ, χ′ ∈ D(X), ψ ∈ χ⊗ χ′ and y ∈ Y . Then

Pr[f(χ) = y] =
∑
x∈X

χ(x) · Pr[f(x) = y] =
∑

x,x′∈X
ψ(x, x′) · Pr[f(x) = y] ≤

∑
x,x′∈X

ψ(x, x′) · eε·dX(x,x′)Pr[f(x′) = y] ≤

∑
x,x′∈X

ψ(x, x′) · esupx∈supp(ψ(·,x′)) ε·dX(x,x′)Pr[f(x′) = y] =

∑
x′∈X

χ′(x′) · esupx∈supp(ψ(·,x′)) ε·dX(x,x′)Pr[f(x′) = y] ≤

esupx,x′∈supp(ψ) ε·dX(x,x′) ·
∑
x′∈X

χ′(x′) · Pr[f(x′) = y] =

esupx,x′∈supp(ψ) ε·dX(x,x′) · Pr[f(χ′) = y],

where supp(ψ(·, x′)) denotes the set of all x ∈ X, such that ψ(x, x′) > 0. We
obtain

ddp(f(χ), f(χ′)) = sup
y∈Y

∣∣∣∣ln Pr[f(χ′) = y]

Pr[f(χ) = y]

∣∣∣∣ ≤
inf

ψ∈χ⊗χ′
sup

x,x′∈supp(ψ)
ε · dX(x, x′) = ε · d#X(χ, χ′) .

Proposition 4. Let f : X → D(Y) be c-sensitive according to the distance dX
on X and distance d#Y on D(Y), where d#Y is constructed from some distance dY
on Y according to (3). Then f : D(X) → D(Y) is c-sensitive according to the

distance d#X on D(X) and d#Y on D(Y).

Proof. Let χ, χ′ ∈ D(X). Define F as the following set of mappings of type
X ×X → D(Y × Y):

F = {ξ | ∀x, x′ ∈ X : ξ(x, x′) ∈ f(x)⊗ f(x′)} .

Also consider the set Φ ⊆ D(Y × Y), defined as follows:

Φ = {
∑

x,x′∈X
ψ(x, x′) · ξ(x, x′) |ψ ∈ χ⊗ χ′, ξ ∈ F} .

17

In the definition of Φ, we take the averages over ξ(x, x′) with the weights given
by ψ(x, x′). We have Φ ⊆ f(χ)⊗f(χ′) because the first [resp. second] projection
of any element of Φ is f(χ) [resp. f(χ′)]. We now have

d#Y (f(χ), f(χ′)) = inf
φ∈f(χ)⊗f(χ′)

sup
(y,y′)∈supp(φ)

dY (y, y′) ≤

inf
φ∈Φ

sup
(y,y′)∈supp(φ)

dY (y, y′) = inf
ψ∈χ⊗χ′

inf
ξ∈F

sup
(x,x′)∈supp(ψ)

sup
(y,y′)∈supp(ξ(x,x′))

dY (y, y′) =

inf
ψ∈χ⊗χ′

sup
(x,x′)∈supp(ψ)

inf
φ∈f(x)⊗f(x′)

sup
(y,y′)∈supp(φ)

dY (y, y′) =

inf
ψ∈χ⊗χ′

sup
(x,x′)∈supp(ψ)

d#Y (f(x), f(x′)) ≤ inf
ψ∈χ⊗χ′

sup
(x,x′)∈supp(ψ)

c·dX(x, x′) = c·d#X(χ, χ′)

These two propositions tells us how to turn a pre-interpretation of a privacy-
enhanced DP-workflow into an interpretation. We define dd = (d[d)

for each
d ∈ D. The annotations E , C match the pre-interpretation if for all p ∈ P ,
d′ ∈ •p and d ∈ p•:

– the sensitivity of fp→d in its argument “d′” is cp[d
′, d] with respect to the

distances d[d′ on Xd′ and dd on D(Xd);
– the sensitivity of fp→d in its argument “d′” is εp[d

′, d] with respect to the
distances d[d′ on Xd′ and ddp on D(Xd).

In this way, the corresponding interpretation is also matched by the annotations.

18

