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ABSTRACT
Predictive business process monitoring methods exploit histori-
cal process execution logs to provide predictions about running
instances of a process, which enable process workers and man-
agers to preempt performance issues or compliance violations. A
number of approaches have been proposed to predict quantitative
process performance indicators, such as remaining cycle time, cost,
or probability of deadline violation. However, these approaches
adopt a black-box approach, insofar as they predict a single scalar
value without decomposing this prediction into more elementary
components. In this paper, we propose a white-box approach to
predict performance indicators of running process instances. �e
key idea is to �rst predict the performance indicator at the level
of activities, and then to aggregate these predictions at the level
of a process instance by means of �ow analysis techniques. �e
paper speci�cally develops this idea in the context of predicting
the remaining cycle time of ongoing process instances. �e pro-
posed approach has been evaluated on four real-life event logs and
compared against several baselines.
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1 INTRODUCTION
Predictive business process monitoring techniques seek to deter-
mine the future state or properties of ongoing process instances
based on models extracted from historical event logs. A wide range
of predictive monitoring techniques have been proposed to predict
for example compliance violations [13, 14], the next activity or the
remaining sequence of activities of a process instance [8, 23], or
quantitative process performance indicators, such the remaining
cycle time of a process instance [18, 19, 22]. �ese predictions can
be used to alert process workers to problematic process instances or
to support resource allocation decisions, e.g. to allocate additional
resources to instances that are at risk of a deadline violation.

�is paper addresses the problem of predicting quantitative pro-
cess performance indicators, with a speci�c focus on predicting
the remaining cycle time of ongoing process instances. Existing
approaches to this problem adopt a “black-box” approach by build-
ing stochastic models or regression models which, given a process
instance, predict the remaining execution time as a single scalar
value, without seeking to explain this prediction in terms of more
elementary components. Yet, quantitative performance indicators
such as cost or time are aggregations of corresponding performance
indicators of the activities composing the process. In particular, the
cycle time of a process instance consists of the sum of the cycle time
of the activities performed in that process instance. In this respect,
existing techniques allow us to predict the aggregate value of a per-
formance indicator for a running process instance, but they do not
explain how each activity contributes to this aggregate prediction.

Motivated by this observation, this paper proposes a “white-box”
approach to predicting quantitative performance indicators of run-
ning process instances based on a general technique for quantitative
process analysis known as �ow analysis. �e idea of �ow analysis
is to estimate a quantitative performance indicator at the level of a
process by aggregating the estimated values of this performance
indicator at the level of the activities in the process, taking into
account the control-�ow relations between these activities. Ac-
cordingly, in order to predict the remaining cycle time of a process
instance, we propose to �rst estimate the cycle time of each activity
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that might potentially be executed within this process instance, and
then to aggregate these estimates using �ow analysis.

In addition to providing predictions that can be traced down to
the level of individual activities, we show via an empirical evalua-
tion with real-life business process event logs, that the proposed
technique achieves comparable and sometimes higher prediction
accuracy relative to several state-of-the-art “black-box” baselines.

�e remainder of the paper is structured as follows. Section 2
presents the related work on process prediction, with an emphasis
on the prediction of remaining time. Section 3 introduces the im-
portant concepts and notations used in the paper. Section 4 outlines
the details of the proposed approach. Next, Section 5 presents an
experimental evaluation of our approach and compares it with the
baseline techniques. Finally, Section 6 concludes the paper and
outlines future work directions.

2 RELATEDWORK
A wide range of predictive business process monitoring problems
have been studied in previous work, including the prediction of
delays and deadline violations, remaining cycle time, outcome, and
future events of a running case.

�e problem of predicting delays and deadline violations in busi-
ness processes has been addressed by di�erent authors. Pika et
al. [16] propose a technique for predicting deadline violations by
identifying process risk indicators that cause the possibility of a
delay. Metzger et al. [15] present techniques for predicting “late
show” events (i.e. delays between the expected and the actual time
of arrival) in a freight transportation process by �nding correla-
tions between “late show” events and external variables related to
weather conditions or road tra�c. Finally, Senderovich et al. [20]
apply queue mining techniques to predict delays in case executions.

Another group of works address the prediction of the remaining
cycle time of running cases. Van Dongen et al. predict the remain-
ing time by ��ing non-parametric regression models based on the
frequencies of activities within each case, their average durations,
and case a�ributes [24]. Van der Aalst et al. [22] propose a remain-
ing time prediction method by constructing a transition system
from the event log using set, bag, or sequence abstractions of ob-
served events. Polato et al. [17] re�ne this method by proposing a
data-aware transition system annotated with classi�ers and regres-
sors. Rogge-Solti and Weske [18, 19] model business processes as
stochastic Petri nets and perform Monte Carlo simulation to predict
the remaining time of a process instance. De Leoni et al. [5, 6]
propose a general framework to predict various characteristics of
running instances, including the remaining time, based on correla-
tions with other characteristics and using decision and regression
trees. �e remaining time prediction problem has also been exten-
sively studied in the context of so�ware development processes.
For example, Kikas et al. [10] predict issue resolution time in Github
projects using static, dynamic and contextual features. In this paper,
we show that the remaining cycle time of a process instance can be
decomposed into a sum of the cycle times of the activities that are
yet to be performed in that process instance. �us, estimating cycle
times of individual activities, we can estimate the entire remaining
time of a case.

Another category of techniques aim to predict the outcome of
running cases. For example, Maggi et al. [14], propose a framework
to predict the outcome of a case (normal vs. deviant) based on the
sequence of activities executed in a given case and the values of
data a�ributes of the last executed activity in a case. �is la�er
framework constructs a classi�er on-the-�y (e.g. a decision tree
or random forest) based on historical cases that are similar to the
(incomplete) trace of a running case. Other approaches construct
a collection of classi�ers o�ine. For example, [13] construct one
classi�er for every possible prediction point (e.g. predicting the
outcome a�er the �rst event, the second one and so on). Conforti
et al [4] apply a multi-classi�er (decision trees) at each decision
point of the process, to predict the likelihood of various types of
risks, such as cost overruns and deadline violations.

A �nal group of techniques aim to predict future event(s) of a
running case. Lakshmanan et al. [12] use Markov chains to estimate
the probability of future execution of a given task in a running case;
Breuker et al. [3] use probabilistic �nite automata to predict the
next activity to be performed while Tax et al [21] predict the entire
continuation of a running case as well as timestamps of future
events using long short-term memory (LSTM) neural networks.

In this paper, we do not address the problems of case outcome
prediction and future events prediction, although our approach
could in principle be extended in these directions.

3 BACKGROUND
In this section, we introduce concepts used in later sections of this
paper.

3.1 Event Logs, Traces and Sequences
For a given set A, A∗ denotes the set of all sequences over A and
σ = 〈a1,a2, . . . ,an〉 a sequence of lengthn; 〈〉 is the empty sequence
and σ1 · σ2 is the concatenation of sequences σ1 and σ2. hdk (σ ) =
〈a1,a2, . . . ,ak 〉 is the pre�x of length k (0 < k < n) of sequence
σ and tlk (σ ) = 〈ak+1, . . . ,an〉 is its su�x. For example, for a
sequence σ1 = 〈a,b,c,d,e〉, hd2 (σ1) = 〈a,b〉 and tl2 (σ1) = 〈c,d,e〉.

Let E be the event universe, i.e., the set of all possible event
identi�ers, and T the time domain. We assume that events are
characterized by various properties. One of these properties is the
timestamp of an event1, meaning that there is a function πT ∈
E → T that assigns timestamps to events. Other properties of an
event include its activity, resource performing the event, etc.

De�nition 3.1 (Trace). A trace is a �nite non-empty sequence of
events σ ∈ E∗ such that each event appears only once and time
is non-decreasing, i.e., for 1 ≤ i < j ≤ |σ | : σ (i ) , σ (j ) and
πT (σ (i )) ≤ πT (σ (j )). A trace in a log represents the execution of
one case.

De�nition 3.2 (Event log). An event log is a set of events, each
linked to a particular trace and globally unique, i.e., the same event
cannot occur twice in a log.

3.2 Flow Analysis
Flow analysis is a family of techniques that enables estimation of
the overall performance of a process given knowledge about the
1Hereina�er, we refer to the event completion timestamp unless otherwise noted.
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performance of its activities. For example, using �ow analysis one
can calculate the average cycle time of an entire process if the
average cycle time of each activity is known. Flow analysis can also
be used to calculate the average cost of a process instance knowing
the cost-per-execution of each activity, or calculate the error rate
of a process given the error rate of each activity [7]. �e main
advantage of the �ow analysis is that the estimation can be easily
explained in terms of its elementary components.

De�nition 3.3 (Cycle time of an activity). A cycle time of an activ-
ity i is the average time it takes between the moment the activity
is ready to be executed and the moment it completes. By “ready to
be executed” we mean that all activities upon which the activity
in question depends have completed. Formally, cycle time is the
di�erence between the timestamp of the activity and the timestamp
of the previous activity. i.e. πT (σ (i ))−πT (σ (i−1)) for 1 ≤ i ≤ |σ |.
Here, πT (σ (0)) denotes the start time of the case.

�e cycle time of an activity includes the processing time of the
activity, as well as all waiting time prior to the execution of the
activity. Processing time refers to the time that actors spend doing
actual work. On the other hand, waiting time is the portion of the
cycle time where no work is being done to advance the process.
�is may include time spent in transferring information about the
case between process participants, for example when documents
are exchanged by post, as well as time when the case is waiting
for an actor to process it. In many processes, the waiting time
makes up a considerable proportion of the overall cycle time. �is
situation may, for example, happen when the work is performed in
batches. In a process related to the approval of purchase requisitions
at a company, the supervisor responsible for such approvals in a
business unit might choose to batch all applications and check them
only once at the start or the end of a working day [7].

To understand how �ow analysis works, we start with an exam-
ple of a process with sequential fragments of events as in Figure 1a.
Each fragment has a single entry �ow and a single exit �ow and
has a cycle time Ti . Since the fragments are performed one a�er
the other, we can intuitively conclude that the cycle time CT of a
purely sequential process with N event fragments is the sum of the
cycle times of each fragment [7]:

CT =
N∑
i=1

Ti (1)

Let us consider a process model with a decision point between
N mutually exclusive fragments, represented by an XOR gateway
(Figure 1b). In this case, the cycle time of a process model is

CT =
N∑
i=1

pi ·Ti , (2)

where pi denote the branching probabilities, i.e. frequencies
with which a given branch i of a decision gateway is taken.

In case of parallel, or AND gateways where activities can be
executed concurrently as in Figure 1c, the combined cycle time of
multiple fragments is determined by the slowest of the fragments,
that is:

CT = max
i=1...n

Ti (3)

Another recurrent pa�ern is the one where a fragment of a pro-
cess may be repeated multiple times, for instance because of a failed
quality control. �is situation is called rework and is illustrated in
Figure 1d. �e fragment is executed once. Next, it might be repeated
each time with a probability r referred to as rework probability. �e
average number of times that the rework fragment is expected to
be executed can be obtained via the geometric series [7], and the
cycle time of the fragment in this case is:

CT =
T

1 − r (4)

(a)

(b)

(c)

(d)

Figure 1: Typical process model patterns: sequential (a),
XOR-block (b), AND-block (c) and rework loop (d).

Besides cycle time, �ow analysis can also be used to calculate
other performance measures. For instance, assuming we know
the average cost of each activity, we can calculate the cost of a
process more or less in the same way as we calculate cycle time. In
particular, the cost of a sequence of activities is the sum of the costs
of these activities. �e only di�erence between calculating cycle
time and calculating cost relates to the treatment of AND-blocks.
�e cost of an AND-block such as the one shown in Figure 1c is not
the maximum of the cost of the branches of the AND-block. Instead,
the cost of such a block is the sum of the costs of the branches. �is
is because a�er the AND-split is traversed, every branch in the
AND join is executed and therefore the costs of these branches add
up to one another [7].
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In case of block-structured process models that can be repre-
sented as a sequence of event fragments with a single entry and a
single exit, we can relate each fragment to one of the four described
types and use the aforementioned equations to estimate the required
performance measure. However, in case of an unstructured process
model or if a model contains other modeling constructs besides
AND and XOR gateways, the method for calculating performance
measures becomes more complicated.

A major limitation of �ow analysis is that it does not consider
the fact that a process behaves di�erently depending on the load, i.e.
the number of process instances that are running concurrently. For
example, the cycle time of a process for handling insurance claims
would be much slower if the insurance company was handling
thousands of claims at once, due for example to a recent natural
disaster as compared to the case where the load is low and the
company may be handling only a hundred claims at once. When the
load increases and the number of process workers remains constant,
the waiting times tend to increase. �is phenomenon is referred to
as resource contention. It occurs when there is more work to be done
than resources available to perform the work. In such scenarios,
some tasks will be in waiting mode until a required resource is
freed up. Flow analysis does not take into account the e�ects of
increased resource contention. Instead, the estimates obtained from
�ow analysis are only applicable if the level of resource contention
is relatively stable over the long term.

4 APPROACH
In this section, we describe the proposed approach to predict the
remaining time. We �rst provide an overview of the entire solution
framework and then focus on the key parts of our approach.

4.1 Overview
Our approach exploits historical execution traces in order to dis-
cover a structured process model. Once the model has been dis-
covered, we identify its set of activities and decision points and
train two families of machine learning models: one to predict the
cycle time of each activity, and the other to predict the branching
probabilities of each decision point. To speed up the performance
at runtime, these steps are performed o�ine (Figure 2).

At runtime, given an ongoing process instance, we align its
partial trace with the discovered process model to determine the
current state of the instance. Next, we traverse the process tree
obtained from the model starting from the state up to the process
end and deduce a formula for remaining time using rules described
in Section 3.2. �e formula includes cycle times of activities and
branching probabilities of decision points that are reachable from
the current execution state. �ese components are predicted using
previously trained regression and classi�cation models. Finally, we
evaluate the formula and obtain the expected value of the remaining
cycle time.

4.2 Discovering Process Models from Event
Logs

�e proposed approach relies on a process model as input. How-
ever, since the model is not always known or might not conform
to the real process, generally we need to discover the model from

Figure 2: Overview of the proposed approach.

event logs. For that, we use a two-step automated process discov-
ery technique proposed in [2] that has been shown to outperform
traditional approaches with respect to a range of accuracy and
complexity measures. �e technique has been implemented as a
standalone tool 1 as well as a ProM plugin, namely StructuredMiner.

�e technique in [2] pursues a two-phase “discover and structure”
approach. In the �rst phase, a model is discovered from the log
using a heuristic process discovery method that has been shown
to consistently produce accurate, but potentially unstructured or
even unsound models. In the second phase, the discovered model
is transformed into a sound and structured model by applying two
techniques: a technique to maximally block-structure an acyclic
process model and an extended version of a technique for block-
structuring �owcharts. �is approach has been shown to outper-
form traditional ”discover structured” approaches with respect to a
range of accuracy and complexity measures.

A structured model is internally represented as a process tree. A
process tree is a tree where each leaf is labeled with an activity and
each internal node is labeled with a control-�ow operator: sequence,
exclusive choice, non-exclusive choice, parallelism, or iteration.

4.3 Replaying Partial Traces on the Process
Model

For a given partial trace, to predict its remaining time, we need
to determine the current state of the trace relative to the process
model. For that, we map, or align, a trace to the process model
using the technique described in [1] which is available as a plugin
for the open-source process mining platform Apromore.

�e technique treats a process model as a graph that is composed
of activities as nodes and their order dependencies as arcs. A case
replay can be seen as a series of coordinated moves, including those
over the model activities and gateways and those over the trace
events. In that sense, a case replay is also termed an alignment of a
process model and a trace. Ideally, this alignment should result in
as many matches between activity labels on the model and event
labels in the trace as possible. However, practically, the replay may
choose to skip a number of activities or events in search of more
matches in later moves. Moves on the model must observe the
semantics of the underlying modeling language which is usually
expressed by the notion of tokens. For example, for a BPMN model,
a move of an incoming token over a XOR split gateway will result in
a single token produced on one of the gateway outgoing branches,
1Available at h�p://apromore.org/platform/tools
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while a move over an AND split gateway will result in a separate
token produced on each of the gateway outgoing branches. �e
set of tokens located on a process model at a point in time is called
a marking. On the other hand, a move in the trace is sequential
over successive events of the trace ordered by timestamps, one a�er
another. �us, a�er every move, either on the model or in the trace,
the alignment comes to a state consisting of the current marking of
the model and the index of the current event in the trace.

In [1], cases are replayed using a heuristics-based backtracking
algorithm that searches for the best alignment between the model
and a partial trace. �e algorithm can be illustrated by a traversal
of a process tree starting from the root node, e.g. using depth-�rst
search, where nodes represent partial candidate solution states
(Figure 3). Here the state represents the aforementioned alignment
state of the case replay. At each node, the algorithm checks whether
the alignment state till that node is good enough. If so, it generates
a set of child nodes of that node and continues down that path;
otherwise, it stops at that node, i.e. it prunes the branch under the
node, and backtracks to the parent node to traverse other branches.

Figure 3: Backtracking algorithm (taken from [1]).

4.4 Obtaining the Flow Analysis Formulas
Having determined the current state of the case execution, we
traverse the process model starting from that state until the process
completion in order to obtain the �ow analysis formulas.

As a running example, let us consider a simple process model
in Figure 4. Applying the �ow analysis formulas described in Sec-
tion 3.2, the average cycle time of this process can be decomposed
as follows:

CT = TA +max(TB +TC ,TD ) +TF + p2
(
TG +

TH
1 − r

)
(5)

Note that one of the branches of gateway X21 is empty and
therefore does not contribute to the cycle time. �erefore, only the
branch with the probability p2 is included in the equation.

�e components of the formula – cycle times of individual ac-
tivities and branching and rework probabilities – can be estimated
as averages of their historical values. However, since we deal with
ongoing process cases, we can use the information that is already
available from the case pre�x to predict the above components.

Consider, we have a partial trace hd (σ ) = 〈A,D,B〉. Replaying
this trace on the given model as described in the Section 4.3, we
�nd the current marking to be in the states B and D within the
AND-block. Traversing the process model starting from these states
until the process end, we obtain the following formula:

CTr em = max(TB +TC ,TD) +TF + p2
(
TG +

TH
1 − r

)
(6)

Since the activity A has already been executed, it does not con-
tribute to the remaining cycle time. �us, it is not a part of the
formula. Furthermore, TB and TD have been executed, however,
since they form one of the terms of the formula wherein TC is
still unknown, they cannot be omi�ed, but their actual cycle times
should be taken. All the other formula terms need to be predicted
using the data from hd (σ ).

Similarly, if a current marking is inside a XOR block, its branch-
ing probabilities need not be predicted. Instead, the probability of
the branch that has actually been taken is set to 1 while the other
probabilities are set to 0.

A more complex situation arises when the current marking is
inside the rework loop. In this case, we “unfold” the loop as shown
in the Figure 5. Speci�cally, we separate the already executed occur-
rences of the rework fragment from the potential future occurrences
and take the former out of the loop. Let us consider a partial trace
hd (σ ) = 〈A,D,B,C,F ,G,H 〉. Since H has occurred once, according
to the process model (Figure 4), with a probability r , it may be
repeated, otherwise, the rework loop is exited. To signal this choice,
we take the �rst occurrence of H out of the loop, and place a XOR
gateway a�er it. One of the branches will contain a rework loop of
future events with the same probability r , while the other one will
re�ect an option to skip the loop altogether. �us, the cycle time of
the whole fragment can be decomposed as follows:

CTH = TH′ + r
TH

1 − r , (7)

where TH′ refers to the cycle time of already executed occurrence(s)
of H . It is highlighted in bold font, meaning that we should take
the actual cycle time rather than the predicted.

4.5 Computing the Remaining Time
We can use the �ow analysis formulas produced by the method
described in Section 4.4 to compute the remaining cycle time of
a case, given: (i) an estimate of the cycle time of each activity
reachable from the current execution state; and (ii) an estimate of
the branching probability of each �ow stemming from a reachable
XOR-split (herein called a reachable conditional �ow). Given an
execution state, these estimates can be obtained in several ways
including:

(1) By using the prediction models produced for each reachable
activity and for each reachable conditional �ow, taking into
account only traces that reach the current execution state.
We herein call this approach predictive �ow analysis.

(2) By computing the mean cycle time of each reachable ac-
tivity and the traversal frequency of each reachable condi-
tional �ow, again based only on the su�xes of traces that
reach the execution state in question. We call this approach
mean �ow analysis
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x32x31x21 end

A

start x11

B

D

C

x12
F HG

x22

p2

p1
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Figure 4: Example process model. Highlighted is the current marking

H

1-r

H

H*

r
1-r

1-r
r

r

(a) (b)

Figure 5: Unfolding the rework loop of F

�e rationale for the mean �ow analysis is that the pre�x size
can have two opposite e�ects on prediction accuracy. If a pre�x is
too short, there might not be enough information in it to predict
cycle times of some activities and gateways’ branching probabilities,
especially those that are executed near the process end. On the
other hand, if the pre�x is long, for activities and gateways that are
usually executed at the beginning of the process, we will not have
enough training data to �t the model. As an example, let us consider
an activity that, according to the process model, usually occurs in
the 4th or 5th position in the process, but in a few cases can occur
in the 8th position. �en, to �t a model for a pre�x length 5, as
training data we can only use these few cases, since for most other
cases, the activity will not occur a�er the 5th event. In cases where
the accuracy of the produced predictive models is insu�cient, we
can then use the mean historical activity cycle times instead.

In order to make use of predictive models, we need to encode
process execution traces in the form of feature vectors. In this paper,
we use index-based encoding as described in [13] that concatenates
the case a�ributes and, for each position in a trace, the event oc-
curring in that position and the value of each event a�ribute in
that position. �is type of trace encoding is lossless and has been
shown to achieve a relatively high accuracy and reliability when
making early predictions of binary process properties [13, 25].

For each activity in the process model, to predict its cycle time,
we train a regression model, while for predicting branching prob-
abilities we �t classi�cation models for each corresponding XOR
gateway. In the la�er case, each branch of a gateway is assigned

a class starting from 0, and the model makes predictions about
the probability of each class. �e predictive models are trained for
pre�xes hdk (σ ) of all traces σ in the training set for 2 ≤ k < |σ |.
We do not train and make predictions a�er the �rst event, since
for those pre�xes there is no su�cient data available to base the
predictions upon.

As an example, let us consider a snapshot of the log with one
completed case in Table 1 that corresponds to the process model
in Figure 4. �e events are ordered according to their completion
timestamp.

Table 1: Extract of an event log.

Case Case a�ributes Event a�ributes
ID Channel Age Activity Timestamp Resource
1 Email 37 A 9:13:00 R03
1 Email 37 B 9:14:20 R12
1 Email 37 D 9:16:00 R07
1 Email 37 C 9:18:00 R03
1 Email 37 F 9:18:10 R21
1 Email 37 G 9:18:50 R12
1 Email 37 H 9:19:00 R12

To encode traces as feature vectors, we include both case at-
tributes and event a�ributes. �us, the �rst case in the log will be
encoded as such:

~X = (Email,37; A,B,D,C,F,G,H; 9:13:00,R03; 9:14:20,R12;
9:16:00,R07; 9:18:00,R03; 9:18:10,R21; 9:18:50,R12; 9:19:00,R12)

Now, to create the training set for hdk (σ ), we cut the feature
vectors to include the event a�ributes up to the k-th event and
case a�ributes (which are usually known since the beginning of
the case). Furthermore, we add the value of the target variable y
to be learned. For example, if we are to predict the cycle time of
activity G for pre�xes k = 2, the training sample based on the data
extracted from the �rst case in Table 1 would be created as follows:

D2
G =

{
~X 2,yG

}
= {Email,37; A,B; 9:13:00,R03; 9:14:20,R12; 40}

Here 40 is the cycle time of G for the �rst case, determined as
the time di�erence (in seconds) between the completion timestamp
of G and the completion timestamp of the previous activity F . It
should be noted that for a case that follows the upper branch of
the gateway x21, the process terminates a�er F , thus G is never
executed and its cycle time is unde�ned. �erefore, we exclude
such cases from the training data. Conversely, if an activity occurs
multiple times in a case, we take its average cycle time.
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Similarly, if we are to predict the branching probabilities for X32
gateway for pre�xes k = 2, we would assign class 0 to the branch
that leads to rework and class 1 to the other branch. �en, the �rst
training sample would be:

D2
x32 =

{
~X 2,yx32

}
= {Email,37; A,B; 9:13:00,R03; 9:14:20,R12; 1}

Since H is not repeated for the �rst case, we assign class 1 to the
gateway. Evidently, the probability of class 0 would be equal to the
rework probability r .

5 EVALUATION
In the following section, we empirically compare the predictive
�ow analysis and the mean approaches between them and against
baselines proposed in previous work. In particular, we seek to
answer the following speci�c research questions:

RQ1. Do �ow analysis-based techniques provide accurate pre-
dictions in comparison with state-of-the-art baselines?

RQ2. Do �ow analysis-based techniques provide stable results
at di�erent stages of ongoing cases?

�e �rst question focuses on the quality of the predictions, while
the second one relates to the stability of the results at di�erent
stages of running cases. Next, we describe the conducted exper-
iments to answer these research questions. �e source code and
supplementary material required to reproduce the experiments re-
ported in this paper can be found at h�p://github.com/verenich/
�ow-analysis-predictions

5.1 Datasets
We conducted the experiments using four real-life event datasets.
Table 2 summarizes the basic characteristics of each dataset.

First three datasets originate from the Business Process Intelli-
gence Challenge (BPIC’12)1 and contain data from the application
procedure for �nancial products at a large �nancial institution. �is
process consists of three subprocesses: one that tracks the state of
the application (BPIC’12 A), one that tracks the state of the o�er
(BPIC’12 O), and a third one tracks the states of work items associ-
ated with the application (BPIC’12 W). For the la�er subprocess, we
retain only events of type complete. �e fourth dataset is based on
the log that contains events from a ticketing management process
of the help desk of an Italian so�ware company2. Each case starts
with the insertion of a new ticket into the ticketing management
system and ends when the issue is resolved and the ticket is closed.

As mentioned in Section 3.2, �ow analysis technique cannot read-
ily deal with unstructured models. Even though the tool described
in Section 4.2 aims to mine maximally structured models, it does
not always succeed in doing so. Speci�cally, it sometimes produces
models with overlapping loops which our current implementation
is unable to deal with. One solution to this problem could be to
simplify the process model by removing the transitions that cause
overlapping loops. However, this may severely decrease the accu-
racy of the discovered model, which will, in turn, negatively a�ect
the accuracy of the �ow analysis-based predictions of remaining

1doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
2doi:10.17632/39bp3vv62t.1

time. Hence, instead, we remove the cases that cause overlapping
loops from the event log (up to 15% of cases in each log).

Table 2: Summary of datasets.

Dataset
Number of Mean Mean case

cases activities case events duration,
variants per case days

BPIC’12 A 12,007 10 10 4.49 7.5
BPIC’12 O 3,487 7 6 4.56 15.1
BPIC’12 W 9,650 6 2,263 7.50 11.4
helpdesk 3,218 5 8 3.30 7.3

5.2 Experimental Setup
To assess the quality of the prediction of continuous variables, well-
known error metrics are Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Mean Percentage Error (MAPE) [9], where
MAE is de�ned as the arithmetic mean of the prediction errors,
RMSE – as the square root of the squared prediction errors, while
MAPE measures error as the average of the unsigned percentage er-
ror. We observe that the value of remaining time tends to be highly
varying across cases, with values at di�erent orders of magnitude.
RMSE would be very sensitive to such outliers. Furthermore, the
remaining time can be very close to zero, especially near the end
of the trace, thus MAPE is skewed in such situations. Hence, we
use MAE to measure the error in predicting the remaining time.

We employ several baselines to compare our approach to. Firstly,
we use a transition system (TS) based method proposed by van der
Aalst et al. [22] applying both set, bag and sequence abstractions.
Secondly, we use a method proposed by Leontjeva et al. [13] who
compared several types of business process sequence encodings
for prediction of the boolean case outcome. �is method can be
naturally adjusted to predict the remaining time by replacing the
classi�cation task with the regression task. For the purpose of this
paper, we will reproduce only two types of the original encodings
– index-based and frequency-based, as the others were shown to
have either very similar or inferior performance. Next, we evaluate
against the stochastic Petri-net (SPN) based approach proposed by
Rogge-Solti and Weske [18, 19]. Speci�cally, we use the method
based on the constrained Petri net, as it was shown to have the
lowest prediction error. However, their original approach makes
predictions at �xed time points, regardless of the arriving events.
To make the results comparable to our approach, we modify the
method to make predictions a�er each arrived event. Finally, we
used a combined estimator along the lines of [24] where the feature
set includes the frequencies of activities within each case, their
average durations, and case a�ributes.

In our experiments, we order the cases in the logs based on
the time at which the �rst event of each case has occurred. �en,
we split the logs into two parts. We use the �rst part (2/3 of the
cases) as a training set, i.e. as historical data to train the predictive
models. �e remaining 1/3 of the cases are used to evaluate the
accuracy of the predictions. Furthermore, we perform a �ve-fold
cross-validation on the training set in order to select the optimal
values of the training parameters such as the number of trees and
the number of variables at each split for a random forest model.
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5.3 Results
Table 3 summarizes the performance of the predictive and mean
�ow analysis techniques, as well as the baselines approaches for
each dataset. We make predictions for pre�xes hdk (σ ) of traces σ
in the test set starting from k = 2. However, since for very long
pre�xes, there are not enough traces with that length, and the error
measurements become unreliable, we stop the predictions a�er
k reaches the 70th-percentile length of the traces in the log, i.e.
at least 70% of the traces in the log have a length smaller than k .
�us, since the BPIC’12 W log contains longer traces, the pre�x
sizes evaluated are higher for this log. Additionally, we report the
average performance across all pre�xes, weighted over the relative
frequency of traces with that pre�x (i.e. longer pre�xes get lower
weights, since not all traces reach that length).

We observe that for most logs, the prediction accuracy of �ow
analysis-based techniques is at least as good as that of the baselines.
At the same time, for all logs except BPIC’12 O, mean �ow analysis,
on average, provides the best results among all the methods. Specif-
ically, it outperforms the predictive �ow analysis. �e la�er is due
to the lack of data a�ributes in the event logs that would be able
to accurately explain the variation in the cycle times of individual
activities and branching probabilities of each conditional �ow. To
further investigate this issue, for each activity in the BPIC’12 A and
BPIC’12 O logs, we analyze the performance of regressors trained
to predict its cycle time and compare it with a constant regressor
used in the mean �ow analysis. In Table 4 we report MAE of cycle
times for each activity and each technique, as evaluated on the test
set. Since for each pre�x length we have a separate regressor, we
report weighted average values, as in Table 3. In addition, we report
the actual average cycle time values of each predicted activity based
on the test set.

As can be seen from Table 4, in the BPIC’12 O log, prediction-
based cycle times are more accurate than the constant ones for
longer activities which make up the largest portion of the remaining
cycle time. Furthermore, the di�erence between the two approaches
is higher for BPIC’12 O. Hence, for this log, we can estimate the
remaining time more accurately with the predictive �ow analysis.

Another observation is related to the very low accuracy of the
predictive �ow analysis on the BPIC’12 W log. Having closely in-
spected this log, we found that it contains sequences of two or more
events in a row of the same activity. In other words, activities are
frequently reworked multiple times. As mentioned in Section 3.2,
�ow analysis techniques assume a constant rework probability r .
However, in many real-life processes r subsequently decreases af-
ter each execution of the rework loop, meaning that the rework
becomes less and less likely. �us, if r is inaccurately predicted in
predictive �ow analysis, this error propagates further. To verify our
hypothesis, we modify the log keeping only the �rst occurrence
of each repeated event in a sequence. To keep the remaining time
calculations correct, we retain the last event of a case, even if it is a
repeated event. Having run the experiments on the modi�ed log
(Table 5), we notice that predictive �ow analysis becomes almost
as accurate as mean �ow analysis, thus proving our hypothesis.

Summing up, the experiments suggest that �ow analysis-based
techniques provide relatively accurate estimations of the remaining
cycle time across all logs. �us, we can positively answer RQ1.

Our experiments also show that �ow analysis-based techniques
are able to provide relatively accurate predictions starting from
the early stages of an ongoing case. �e general trend is a stable
reduction in MAE values as a case progresses. �is is due to the
increasing amount of a�ributes in the pre�x to base the predictions
upon. Furthermore, the actual remaining times intuitively decreases
at later stages of a case, thus its prediction error also decreases. We
can then provide a positive answer to RQ2.

Execution Times. �e execution time of the proposed approach
is composed of the execution times of the following components:
(i) training the predictive models; (ii) replaying the partial traces on
the process model (�nding an alignment) and deriving the formulas;
(iii) applying the models to predict the cycle times and branching
probabilities and calculating the overall remaining time. For real-
time prediction, it is crucial to output the results faster than the
mean case arrival rate. �us, we also measured the average runtime
overhead of our approach. All experiments were conducted on a
laptop with a 2.4 GHz Intel Core i5 processor and 8 Gb of RAM.

For a given pre�x length k , training all the models takes between
20 and 200 seconds depending on the pre�x size and the number
of models to train. Replaying the test traces takes between 5 and
45 seconds, for a given length of the pre�x. Finally, making the
predictions takes less than 4 seconds per pre�x length. �is shows
that our approach performs within reasonable bounds for most
online applications.

5.4 �reats to Validity
�e datasets used in this evaluation, except for the BPIC’12 W,
have only the completion timestamps, but not the start timestamps.
�us, it is impossible to discern the actual processing time from the
waiting time. �e la�er can have a signi�cant impact on the overall
cycle time depending on the case arrival rate and the resource load.
As these factors are not accounted for in the predictive models,
their accuracy is rather low.

We reported the results with a single learning algorithm (random
forest). With decision trees and gradient boosting, we obtained
qualitatively the same results, relatively to the baselines. However,
our approach is independent of the learning algorithm used. �us,
using a di�erent algorithm does not in principle invalidate the re-
sults. �at said, we acknowledge that the goodness of �t, as in
any machine learning problem, depends on the particular classi-
�er/regressor algorithm employed. Hence, it is important to test
multiple algorithms for a given dataset, and to apply hyperparam-
eter tuning, in order to choose the most adequate algorithm with
the best con�guration.

�e proposed approach relies on the accuracy of the branching
probability estimates provided by the classi�cation model. It is
known however that the likelihood probabilities produced by clas-
si�cation methods are not always reliable. Methods for estimating
the reliability of such likelihood probabilities have been proposed
in the machine learning literature [11]. A possible enhancement of
the proposed approach would be to integrate heuristics that take
into account such reliability estimates.
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Table 3: MAE values (in days) for pre�xes of di�erent lengths.

Method
Pre�x length

Avg 2 3 4 5 6 7 8 9 10

BPIC’12 A
Predictive �ow analysis 9.48 9.60 10.38 9.68 7.04
Mean �ow analysis 8.32 7.89 9.62 8.81 6.88
TS set abstraction [22] 9.16 8.39 10.53 10.31 8.02
TS bag abstraction [22] 9.16 8.39 10.53 10.31 8.02
TS sequence abstraction [22] 9.16 8.39 10.53 10.31 8.02
Index-based encoding [13] 9.07 8.21 10.48 10.38 7.99
Frequency-based encoding [13] 9.16 8.40 10.52 10.28 8.02
Constrained SPN [19] 8.44 9.15 8.47 7.41 6.89
Combined estimator [24] 9.05 8.19 10.48 10.32 8.03

BPIC’12 O
Predictive �ow analysis 5.96 7.46 6.40 2.55
Mean �ow analysis 6.33 8.00 6.81 2.53
TS set abstraction [22] 6.05 8.03 6.81 2.54
TS bag abstraction [22] 6.05 8.03 6.81 2.54
TS sequence abstraction [22] 6.05 8.03 6.81 2.54
Index-based encoding [13] 6.36 8.06 6.82 2.52
Frequency-based encoding [13] 6.33 8.02 6.81 2.54
Constrained SPN [19] 5.49 6.46 6.46 2.42
Combined estimator [24] 6.34 8.04 6.80 2.52

BPIC’12 W
Predictive �ow analysis 14.48 15.38 15.33 15.83 14.32 16.08 11.62 12.52 13.67 12.21
Mean �ow analysis 7.35 8.58 8.01 7.49 7.20 6.87 6.70 6.61 6.36 6.21
TS set abstraction [22] 7.99 9.04 8.70 8.20 7.93 7.50 7.34 7.35 6.94 6.75
TS bag abstraction [22] 7.95 8.84 8.71 8.22 7.95 7.42 7.26 7.27 6.93 6.83
TS sequence abstraction [22] 7.91 8.84 8.70 8.22 7.91 7.40 7.21 7.22 6.84 6.74
Index-based encoding [13] 7.64 8.71 8.29 7.86 7.50 7.24 7.02 6.95 6.69 6.53
Frequency-based encoding [13] 7.79 8.77 8.64 8.19 7.93 7.40 7.20 7.24 6.85 6.66
Constrained SPN [19] 9.60 8.77 9.36 9.68 9.97 10.15 10.02 10.01 9.71 9.39
Combined estimator [24] 7.66 8.74 8.30 7.91 7.59 7.28 7.02 6.93 6.64 6.43

Helpdesk
Predictive �ow analysis 5.97 5.24 9.36 2.76
Mean �ow analysis 5.27 5.10 6.10 3.28
TS set abstraction [22] 5.52 5.44 5.92 5.14
TS bag abstraction [22] 5.59 5.49 6.15 3.08
TS sequence abstraction [22] 5.59 5.49 6.15 3.08
Index-based encoding [13] 5.58 5.39 6.54 3.26
Frequency-based encoding [13] 5.61 5.50 6.17 3.28
Constrained SPN [19] 5.54 5.34 6.53 4.29
Combined estimator [24] 5.54 5.39 6.34 3.27

6 CONCLUSION AND FUTUREWORK
�e paper has put forward some potential bene�ts of a “white-box”
approach to predicting quantitative process performance indicators.
Rather than predicting single scalar indicators, we demonstrated
how these indicators can be estimated as aggregations of corre-
sponding performance indicators of the activities composing the
process. In this way, the predicted indicators become more ex-
plainable, as they are decomposed into elementary components.
�us, business analysts can pinpoint the bo�lenecks in the process
execution and provide be�er recommendations to keep the process
compliant with the performance standards.

We implemented and evaluated two approaches – one where the
formulas’ components are predicted from the trace pre�x based on

the models trained on historical completed traces, and the other
one that instead uses constant values obtained from the historical
averages of similar traces. We evaluated the approaches to predict
the remaining cycle time, as one of common process performance
indicators. �e empirical evaluation has shown that the proposed
techniques are, on average, able to yield more accurate predictions
at di�erent stages of running cases than the surveyed baselines.

We identi�ed a limitation of �ow analysis-based approaches
when dealing with traces with rework loops, i.e. multiple occur-
rences of the same fragment of activities in a row. A direction for
future work is to further investigate the factors a�ecting the per-
formance of the proposed approaches in order to be�er understand
their strength and weaknesses. Furthermore, we plan to extend
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Table 4: MAE of cycle time predictions of individual activi-
ties and their actual mean cycle times (in days).

Activity
MAE Mean cycle

Predictive Mean time

BPIC’12 A
A CANCELLED 11.97 12.02 14.36
A APPROVED 7.61 7.51 7.36
A DECLINED 3.72 3.74 3.74
A REGISTERED 5.92 5.96 3.70
A ACTIVATED 4.46 4.47 2.88
A ACCEPTED 0.43 0.78 0.76
A PREACCEPTED 0.04 0.13 0.09
A FINALIZED 0.01 0.01 0.01

BPIC’12 O
O CANCELLED 8.68 9.75 18.20
O SENT BACK 2.79 4.01 9.42
O ACCEPTED 2.60 2.59 4.22
O DECLINED 2.50 2.43 3.54
O SENT < 0.01 < 0.01 < 0.01

Table 5: MAE values (in days) for pre�xes of di�erent
lengths for the modi�ed BPIC’12W log with excluded event
duplicates.

Method
Pre�x length

Avg 2 3 4 5

Predictive �ow analysis 6.70 8.22 5.86 4.45 4.27
Mean �ow analysis 6.15 7.69 5.14 3.88 4.14
TS Set abstraction [22] 6.70 8.40 5.82 3.94 4.27
TS Bag abstraction [22] 6.69 8.40 5.82 4.04 3.97
TS Sequence abstraction [22] 6.69 8.40 5.82 4.04 3.97
Index-based encoding [13] 6.54 8.14 5.66 4.15 4.04
Freq-based encoding [13] 6.71 8.44 5.83 4.03 4.00
Constrained SPN [19] 7.82 7.76 8.14 7.70 7.46
Combined estimator [24] 6.50 8.12 5.59 4.09 3.99

the proposed approaches so that they would be able to deal with
more complex models with overlapping loops, using structuring
techniques such as the one proposed in [26].

With some modi�cations in the derivation of the �ow analysis
formulas, the proposed approaches can be extended to predict other
quantitative performance indicators. In future work, we aim to
extend and evaluate the approaches to predict the process cost or
error rate.
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