
Generating Business Process Models from
Object Behavior Models

Abstract

Object-oriented modeling is an established approach to document
information systems. In an object model, a system is captured in
terms of object types and associations, state machines and collabora-
tion diagrams, among others. Process modeling on the other hand,
provides a different approach whereby behavior is captured in terms
of activities, flow dependencies, resources, etc. These two approaches
have their relative advantages. Also, object models and process models
lend themselves to different styles of implementation. In this paper we
define a transformation from a meta-model for object behavior model-
ing to a meta-model for process modeling. The transformation relies
on the identification of causal relations in the object model. These
relations are encoded in a heuristics net from which a process model
is derived and then simplified. Using this transformation, it becomes
possible to apply established object-oriented techniques during system
analysis and design, and to transform the resulting object models into
executable process models that can be deployed in a workflow engine.
The proposal has been implemented in an object modeling tool.
Keywords: process model, object model, model transformation.

1 Introduction

Object modeling and process modeling are two established approaches to
describe information systems (Kueng, Bichler, Kawalek, & Schrefl, 1996).
Each of these approaches adopts a different perspective and corresponds to a
different way of thinking. Modeling an information system in terms of objects
leads to the definition of object types, associations, intra-object behavior

and inter-object interactions, which are captured using notations such as
Unified Modeling Language (UML) class, state and collaboration diagrams
(Booch, Rumbaugh, & Jacobson, 1998). Object models group related data
and behavior into classes, thus promoting modularisation and encapsulation.
Purported advantages of this approach include reuse and maintainability.
Object-oriented analysis and design techniques (e.g. those based on UML)
are well-established and widely used in practice.

Meanwhile, process models are structured in terms of activities (which
may be decomposed into sub-processes), events, control and data-flow de-
pendencies, and associations between activities and resources. Business Pro-
cess Modeling Notation (BPMN) (Object Management Group, 2006), UML
activity diagrams, Business Process Execution Language (BPEL) (Andrews
et al., 2003) and Yet Another Workflow Language (YAWL) (Aalst & Hofst-
ede, 2005) are examples of notations that capture the behavior of a system
in a process-oriented manner at various levels of details. Process models
provide a holistic view on the activities and resources required to achieve a
goal. Accordingly, they lend themselves to analysis through simulation and
other quantitative analysis techniques, and they have proven instrumental
in enabling communication between business and IT stakeholders (Becker,
Kugeler, & Rosemann, 2003).

Moreover, object modeling and process modeling typically lead to differ-
ent implementation styles. Whereas object modeling lends itself to imple-
mentation in an object-oriented programming environment, process models
naturally lead to workflow applications or other types of process-aware in-
formation systems, which provide advanced monitoring and controlling func-
tionality.

There is an opportunity to reconcile object-oriented and process-oriented
approaches to information system engineering in order to benefit from their
relative strengths. Each of these modeling approaches adopts a different per-
spective. In object models, behavior is split across object types, whereas in
process models, behavior is captured along chains of logically related activ-
ities. Thus, information captured in one approach may be missing or only
implicitly captured in the other approach. For example, a class in an object
model may contain references to activities (e.g. in a sequence diagram), but
objects are predominantly state-centric and do not explicitly define activities
or control flow relations between them. Likewise, a process model contains
implicit references to states or to classes representing resources, but a process
model is predominantly activity-centric.

Figure 1: Transforming an object-oriented to a process-oriented approach

Figure 1 shows the typical phases and deliverables involved in the object-
oriented development approach (OODA) and in the process-oriented devel-
opment approach (PODA). In this paper, we investigate how to bridge the
deliverables produced by the design phases of these two approaches. Specif-
ically, we present a transformation from detailed object behavior models to
process models. The transformation relies on the identification of causal re-
lations in the object model. These relations are encoded in a causal matrix
(also called heuristics net) from which we derive a process model represented
in YAWL. We choose YAWL as a target language for representing process
models for several reasons:

• Expressiveness: YAWL allows one to capture complex synchronization
scenarios that may arise as a result of communication between objects;

• Native support for sub-processes, thus enabling us to modularize the
generated process models

• Its executability, thus enabling us to test the resulting models.

Notwithstanding this choice, we argue that the proposed method could
be adapted to other process modeling notations such as BPMN.

One usage scenario of the proposal is the following. As a result of a legacy
of analysis and design initiatives, a substantial collection of object models of
an organisation’s software systems is available. However, a decision is taken
to re-deploy some of the applications into a business process management
system in order to benefit from the monitoring and controlling functionality
that such a system provides, and to improve the level of alignment between
the organisation’s business processes and the supporting applications. The
transformation method developed in this paper provides a foundation to
migrate the existing object models into (executable) process models, thus

allowing developers to reuse the body of knowledge stored in these models.
More generally, the co-existence of object-oriented and process-oriented ap-
proaches to system development may lead to situations where a project starts
with a model corresponding to one approach, and needs to switch to a model
corresponding to the other approach. The transformation method proposed
in this paper provides a bridge between these two approaches.

The proposed method has been implemented as a prototype tool. This
tool allows designers to edit object behavior models and to export them into
process-oriented models that can be deployed into the YAWL of workflow
system.

The paper is organised as follows. Section 2 introduces a motivating
example. Section 3 defines a meta-model for object behavior modeling. Sec-
tion 4 introduces an algorithm to transform an object behavior model into
a process model and presents reduction rules for YAWL models. Section 5
discusses related work and Section 6 concludes the paper.

2 Example

In this section we introduce an example of an object model that we have used
as a test scenario. The example deals with inspection and maintenance of
heavy equipment such as open mine excavators and shipping container cranes.
Such equipment is subjected to inspections at regular intervals when several
issues requiring maintenance may be raised with the equipment. Depending
on the severity of an issue and the criticality of the equipment some issues
will be determined to be resolved with higher urgency than others. The
application domain is presented as a high-level class diagram in Figure 2.
Each class may have one or more state machines as discussed later.

Figure 2: Asset inspection example – High-level class diagram

An Inspection for a particular piece of equipment may uncover zero or
more Issues to be resolved. These are added to the set of existing Issues that
can be derived for that piece of equipment. The main Inspection can only
be completed after all Issues have been resolved and completed. A Critical
Issue may also be detected during an Inspection or Follow-up Inspection.
These Critical Issues are identified separately due to the elevated need to
have them resolved. An Issue may raise a number of Follow-up Inspections,
which in turn may lead to new (critical) Issues being raised, and so on.

Figure 3: Example of an object behavior model

In Figure 3 a fragment of a state machine lifecycle corresponding to the
Inspection class, as well as two related state machines corresponding to the

Critical Issue and the Issue classes are shown. In this example a request is
accepted to begin an Inspection and an Issue is raised. The Issue continues to
be processed until it is resolved. At this time a number of other Critical Issues
may be identified with the equipment. During resolution of Critical Issues
an interim report is sent to a manager. The Critical Issues are processed
until they are resolved, at which time data is collected on all issues by the
Inspection state machine. For reasons of space we have not included an
example of a Follow-up Inspection lifecycle in the object behavior model.

3 Object Behavior Meta-Model

In order to present our transformation approach, we first need to agree on
meta-models for representing object behavior models and process models.
Meanwhile, to represent object models we adopt a meta-model inspired by
FlowConnect (Shared Web Services Pty. Ltd., August, 2003), a system that
supports the development of software applications based directly on exe-
cutable object behavior models.

FlowConnect is an attractive source meta-model for our proposal for two
reasons. Firstly, FlowConnect seamlessly integrates concepts from UML state
diagrams with concepts from UML sequence diagrams, allowing us to cap-
ture both intra-object and inter-object behavior in the same model. Sec-
ondly, the FlowConnect-based meta-model is a representative of other object-
oriented meta-models (e.g. Proclets (Aalst, Barthelmess, Ellis, & Wainer,
2001), Merode (Snoeck, Poelmans, & Dedene, 2000), OCoN (Wirtz, Weske,
& Giese, 2001)), thus it is possible to adapt the results presented here to
other meta-models.

The meta-model is presented as an Object Role Model (ORM) (Halpin,
2001) in Figure 4. At the highest level an object model is a container for
all classes in an object-oriented model. The object model contains one or
more classes that contain one or more state machines. A state machine
contains one or more states. For example, Request Accepted, Data Loaded
or Collect Ratings are states in an Inspection state machine, as shown in
Figure 3.

A transition connects two states within a state machine. In our asset
inspection example the transition T1 connects the Request Accepted state
to the Collect Ratings state in the Inspection state machine. A transition
may optionally be labelled by an Event-Condition-Action (ECA) rule. The

Task
(ID)

enables /checks into

State
(ID)

Signal
(ID)

State Machine
(ID)

belongs to /contains

Object Model
(ID)

belongs to /contains

has incoming /sent from source

has outgoing /sent to target

Condition
(ID)

depends upon

Event
(ID)

Action
(ID)

is triggered by

performs

is multiple instance task

U

Ordinal

State Gateway
(ID)

Class
(ID)

belongs to /contains

contains

Non-Spawn SignalSpawn Signal

Signal Type
(name)

{ 'terminating',
 'non-terminating' }

is of type

is spawn signal

is mandatory

Multiplicity
(symbol)

{ '1' .. '*' }

completion triggers

is initial/end state

Transition
(ID)

is linked by

Input Sub-state
(ID)

Gateway Type
(name)

{ 'pre-input',
 'post-input',
 'pre-output',
 'post-output' }

Gateway Mode
(name)

{ 'wait-for-one',
 'wait-for-all' }

has mode/is identified as

has lower bound

has upper bound

Gateway
Configuration

(name)

{ 'optimistic',
 'pessimistic' }

has configuration

relates to

Figure 4: Object behavior meta-model

occurrence of an event will cause the transition labeled by that event to
be performed provided that the condition associated with that event is

satisfied. When a transition is performed it may also execute an action.
The details of an ECA rule language are not specified in this article since
this is out of scope of this work.

Each state in a state machine contains three sub-states: a pre-gateway,
a main processing sub-state and a post-gateway. The pre- and post-
gateways are the entry and exit points of the main processing sub-state re-
spectively. The main processing sub-state is where work is completed in a
state and it may contain zero or more atomic tasks. A state that contains
zero tasks is empty and will pass control flow directly through the main
processing sub-state from the pre-gateway to the post-gateway.

A signal connects two gateways in different state machines together,
thus capturing an interaction between objects. Signals are denoted by a
dashed line. There are three types of signals: a spawn signal (double-filled
arrowhead) starts an instance of a state machine; a finish signal (double-
empty arrowhead) indicates that a state machine has completed its execution;
and a message signal (single solid arrowhead) corresponding to a (non-
terminating) interaction between two state machines. The output end of a
spawn signal can only be connected to the pre-gateway of the initial state in
the target state machine. Likewise, the input end of a finish signal can only
be connected to a final state post-gateway. A signal has a lower and upper
bound, which are the minimum and maximum number of times it can be
sent, i.e. the spawn signal Sig04 with a lower bound of 1 and upper bound
of ‘n’ can create between 1 to ‘n’ Critical Issues. For example, a message
signal Sig02 sent by the post-gateway in the Resolving Issue state in the
Issue state machine can only occur following a spawn signal Sig01 sent by
the post-gateway in the Req. Accepted state in the Inspection state machine.

Since signals can be both sent and received by a pre-gateway or post-
gateway, all gateways consist of two parts; an input part and an output
part. The input part of a gateway receives incoming signals from gateways
in other state machines. The output part allows a gateway to send outgoing
signals to gateways in other state machines. The order in which signals
are sent or received by a gateway depends on the gateway configuration: a
pessimistic gateway waits to receive all signals that it expects before sending
any (the input part comes before the output part), whereas an optimistic
gateway sends signals before waiting to receive any (the output part comes
before the input part). A pre-gateway has an additional mode to specify
whether it should wait for the first signal (wait-for-one) or all signals (wait-
for-all) before control flow will be released by the gateway. An example of a

pessimistic gateway in wait-for-all mode is the pre-gateway of the All Data
Collected state of the Inspection state machine.

4 From Object Behavior Models to Process

Models

In this section we introduce a proposal to transform an object behavior model
into a process model. The aim of the transformation is to preserve the causal
dependencies in the original object model. Transitions in each individual
state machines capture such causal dependencies. But in addition, a signal
between different state machines also caputures a (partial) causal dependency
between an action in the source state machine and an action in the target
state machine.

Accordingly, the essence of the transformation is to analyse the object
behavior model in order to extract a set of elementary causal dependencies
between events and signals. These elementary causal dependencies are repre-
sented as a causal matrix, also known as a heuristics net (Aalst, Medeiros, &
Weijters, 2005). From the causal matrix it is possible to obtain a Petri net,
which is then transformed into a YAWL net. The idea of using a heuristics
net comes from the ProM framework (Dongen, Medeiros, Verbeek, Weijters,
& Aalst, 2005), where heuristics nets are used as an intermediate step to
construct a Petri net from an event log.

Background: Heuristics nets

A heuristics net is composed of a set of transitions, which we call “tasks”
to put them in the context of this paper. Each task has an input and an
output. The input of a task T represents the different ways in which task T
can be started. Concretely, the input of a task is a set. If this set is empty, it
means that the task can be started even if no other task has been completed
(i.e. this is the initial task in the process model). If the input of a task is
not empty, it contains one of several disjunctions. Each of these disjunctions
should be read as an “Or” of several tasks. For example, the Petri Net in
Figure 5 has a disjunct { F,B,E } meaning that a choice between either task
F or task B or task E is made after task A has been completed.

The different disjunctions in an input are implicitly linked through an
“And”, meaning that each disjunct must be satisfied before the target task

Figure 5: Example heuristics net shown as a Petri net

can be started. For example, the input of task D is { {F,B,E}, {E,C}, {G} }.
For task D to be executed, either F or B or E must be completed, and either
E or C must be completed, and G must be completed.

Symmetrically, the output of a task determines which other tasks can be
executed after a given task completes. An empty output denotes a final task
in the process. Meanwhile, a non-empty output must be read as a set of
disjuncts and can contain multiple disjunctions. In Figure 5 the output of
task A is { {F,B,E}, {E,C}, {G} }, which means that after A is completed,
either F or B or E will be executed, and either E or C will be executed, and
G will be executed. Readers familiar with Petri nets will recognise that a
heuristics net is a Petri net of a particular form.

Transformation procedure

The transformation procedure consists of the following three steps, which are
performed in the order depicted in Figure 6:

I - Generate a heuristics net from an object model/state machine diagrams.

II - Generate a Petri net from a heuristics net.

III - Transform the Petri net into a YAWL process model.

Figure 6: An overview of the transformation procedure

Below, we present an algorithm that automates Step I. For each state
in an object model, this algorithm generates two tasks corresponding to the
pre- and post-gateway. In other words, each pre- or post-gateway in the
object model will lead to one task in the generated heuristics net. The
algorithm then identifies causal dependencies between these tasks. Causal
dependencies are derived from the transitions within a state machine, but also
from the interactions (i.e. signals) between state machines. Thus, indirectly,
interactions between object types are mapped into control-flow relations in
the resulting process model.

Algorithm 1 takes as input an object model and produces the correspond-
ing heuristics net. The algorithm iterates over each state gateway in order
to generate an input set (preTask) and output set (postTask). Because there
is a one-to-one mapping between state gateways and tasks, the algorithm
treats them interchangeably, meaning that it uses the identifiers of gateways
in the source object model as identifiers of tasks in the generated heuristics
net.

The following auxiliary functions are used in Algorithm 1:

• states : ObjectModel → Set of State, is the set of states in an object
model.

• pre, post : State→ Gateway, yields the pre or post gateway of a state.

• inputTransitions, outputTransitions : State→ Set of Transition, yields
the set of input/output transitions.

• source, target : Transition→ State, yields a transition’s source/target.

• inputSignals, outputSignals : Gateway → Set of Signal, yields a gate-
way’s input/output signals.

• mode : Gateway → GatewayMode, yields a gateway’s mode.

• explode : Set of Signal → Set of Set of Signal. explode({e1, e2, ... ,
en}) = {{e1}, {e2}, ... , {en}}.

Algorithm 1: Generation of a heuristics net

Input: om : ObjectModel
Output: preTask, postTask : Task → Set of Set of Task
predecessors, successors : Set of Gateway
foreach s ∈ states(om) do

predecessors := { post(source(t)) | t ∈ inputTransitions(s) };
successors := { pre(target(t)) | t ∈ outputTransitions(s) };
preInputSignals := { source(g) | g ∈ inputSignals(pre(s)) };
preOutputSignals := { source(g) | g ∈ inputSignals(post(s)) };
postInputSignals := { target(g) | g ∈ outputSignals(pre(s)) };
postOutputSignals := { target(g) | g ∈ outputSignals(post(s)) };
if mode(pre(s)) = wait-for-one then

preTask(pre(s)) := { predecessors, preInputSignals };
else

preTask(pre(s)) := { predecessors } ∪
explode(preInputSignals);

postTask(pre(s)) = { { post(s) }, postInputSignals(s) };
if mode(post(s)) = wait-for-one then

preTask(post(s)) := { { pre(s) }, preOutputSignals(s) };
else

preTask(post(s)) := { { pre(s) } } ∪
explode(preOutputSignals(s));

postTask(post(s)) := { successors } ∪
explode(postOutputSignals(s));

end

To analyse the inbound and outbound causal dependencies of a gateway,
we conceptually decompose each gateway into two parts: the input and the
output. The input corresponds to the signals the gateway has to wait for,
while the output corresponds to the signals it has to send out. Figure 7
depicts the decomposition of the pre- and post-gateways of a state into an
input and output part.

The input and output sets are generated as follows. The pre-gateway in-
put set is the union of the source of each incoming transition with the source
of each incoming signal, depending on the gateway mode (i.e. waits-for-one
or waits-for-all). If the gateway mode is waits-for-one then the preTask set is
the set of input transition sources (predecessors) and the set of pre-gateway
input signal sources. However if the gateway mode is waits-for-all then the

Figure 7: Pre- and post-gateways of a state

preTask set is the union of the set of input signal sources converted to a set of
set of signals by the explode function with the set of predecessors. The post-
Task set consists of the post-gateway and the targets of all outgoing signals
sent from the pre-gateway. The procedure for constructing the input and
output sets for a post-gateway is symmetric to the corresponding procedure
for a pre-gateway. After the application of Algorithm 1 a heuristics net is
constructed by inserting the input and output set as new rows in the net.

A heuristics net is a ‘flat’ representation of a process since it does not
capture sub-processes. When converting a heuristics net to a YAWL net, it
is desirable to incorporate sub-processes in the generated process model to
achieve some degree of modularity. This is done by identifying “sub-process
delimiters” in the object behavior model. Sub-process delimiters are the
points where an instance of a state machine is created by a spawn signal,
and the point(s) where a state machine finishes by sending a terminating
signal back to its parent process. In the absence of any message signals
between the parent and the child state machines, and assuming there is a
single finish signal located at the end of the of the child state machine, then
the child state machine can be modeled as a sub-process invoked by the
parent process.

YAWL has two kinds of sub-processes: composite tasks (which capture a
simple sub-process invocation) and multiple-instance composite tasks (a sub-
process that is executed multiple times concurrently). If the multiplicity of
the spawn signal from the parent to the child state machine equals “one”, the
child state machine is embedded into a composite task in the parent process.

If it is greater than one, the sub-process is embedded into a multiple instance
composite task.

In Step II of the transformation procedure the heuristics net is passed
to the heuristics net conversion tool in ProM to obtain a Petri net. Step III
is performed using a workflow net conversion plugin in the ProM framework
to combine the sub-process delimiters with the derived Petri net to create
an ‘unflattened’ YAWL process model where properties such as sub-process
definitions and task multiplicity are restored in the YAWL model as shown in
Figure 8. This step is merely a syntactic transformation that aims to exploit
the constructs in YAWL because any Petri net can be seen as a YAWL model.

Figure 8: Inspection process model in YAWL

YAWL Model Reduction Rules

The YAWL nets generated by the transformation method presented above
may contain tasks with empty decompositions, which we hereby call ep-
silon tasks. Indeed, in Algorithm 1 gateways in an object-oriented model are
converted to tasks in the heuristics net. These tasks then become empty
transitions when the heuristics net is converted to a Petri net, and these
empty transitions become epsilon tasks when the Petri net is converted to
YAWL. The resulting epsilon tasks thus correspond to state pre- and post-
gateways in the original model. For example, the epsilon task “Gatewayog5”
in Figure 8 corresponds to the post-gateway of state “Issue Data Record” in
Figure 3.

Below, we present four reduction rules to post-process the generated
YAWL nets in order to eliminate epsilon tasks. The following notation is
used to represent these reduction rules:

• ε: An epsilon task that has no decomposition.

• T : A task that may or may not have a decomposition.

• X: a placeholder for a control flow join decorator which may be bound
to an XOR-join, AND-join, or an OR-join decorator when the corre-
sponding rule is applied.

• Y: a placeholder for a control flow split decorator which may be bound
to an XOR-split, AND-split, or an OR-split decorator when the corre-
sponding rule is applied.

We now define and illustrate the following four reduction rules:

1. Task Input Combination.

2. Task Output Combination.

3. Task Join Combination.

4. Task Split Combination.

1. Task Input Combination: If a control node ε is connected via an
outgoing arc to a task node T , where T has no more than one incoming arc
from ε and ε has no other outgoing arcs, then the incoming arcs of the join
X become incoming arcs to T as shown in Figure 9.

Figure 9: Task Input Combination Reduction Rule

2. Task Output Combination: If a task node T is connected via an
outgoing arc to a control node ε where T has no more than one outgoing arc
to ε and ε has no more than one incoming arc from T , then the outgoing
arcs of the split Y become outgoing arcs of T , as shown in Figure 10.

Figure 10: Task Output Combination Reduction Rule

3. Task Join Combination: If a control node ε is connected to a task
T and ε has more than one incoming arc and both ε and T have the same
join type (e.g. AND-join), then ε and T can be combined to become T . The
incoming arcs to both ε and T are combined to become incoming arcs to the
join X at T (minus the arc that connects ε to T) as shown in Figure 11.

Figure 11: Task Join Combination Reduction Rule

4. Task Split Combination: If a task T is connected to a control node
ε and T has more than one outgoing arc and both nodes have the same split
type (e.g. AND-split) and ε has no more than one incoming arc from T , then
the outgoing arcs from T and ε (minus the arc connecting T to ε) can be
combined to become outgoing arcs of T as shown in Figure 12.

Figure 12: Task Split Combination Reduction Rule

Additional considerations are needed to deal with the conditions on the
arcs of the resulting split if Y is an XOR-split or an OR-split decorator. Let
us first examine the case where Y is an XOR-split. In YAWL an evaluation
order is associated with outgoing arcs of an XOR-split. At runtime control
is passed along the first arc in this evaluation order for which the condition

evaluates to true. If there is no arc for which the condition evaluates to
true, then control is passed along the arc that is last in the evaluation order,
regardless of its associated condition. Let us call r the arc that joins that two
tasks to be merged, and c the condition associated with r. We distinguish
the case where r is the last arc in the evaluation order, from the case where
r is not the last arc. If r is the last arc, the evaluation order of the arcs of
the combined XOR-split should be the following: first should come the arcs
of the first XOR-split until arriving at arc r (and no including arc r which
is removed because of the merger). The arcs of the second XOR-split should
then be evaluated in their original order.

If r is not last in the evaluation order, the condition of each arc associated
with the second XOR-split should be changed to reflect that control can
only be passed along that arc if both condition c and the original condition
associated to that arc evaluate to true. For example, if the tasks in Figure 13
are combined using the Task Join Combination rule where the arcs of the first
and second XOR-split are evaluated from top to bottom, then the evaluation
order of the combined task is s, u, v, t (r is replaced by u, v) and the
conditions associated with u and v become conjunctions consisting of their
original condition and condition c. In contrast, if r was last in the evaluation
order, the conditions associated with the arcs of the second XOR-split do not
need to be changed because control would pass along r even if c evaluated
to false.

Figure 13: Task Split Combination Reduction Rule (XOR-split)

Let us now consider the case where Y is an OR-split. In YAWL, an OR-
split has a designated outgoing arc, namely the default arc, along which the
control flow is passed at runtime if none of the conditions associated with its
outgoing arcs evaluates to true (including the condition of the default arc).
We distinguish the case where arc r is the default arc and the case where r
is not the default arc.

In the former case, control would pass to the second node in the original

model if either all conditions associated with the outgoing arcs of the first
OR-split evaluate to false, or the condition associated with the default arc
of this first OR-split evaluates to true. Accordingly, the condition associated
with an arc that originates from the second OR-split should be equal to the
conjunction of the original condition and a disjunction consisting of c and
a conjunction where the elements are negations of the conditions associated
with the outgoing arcs of the first OR-split (excluding r). For example, if the
tasks in Figure 14 are combined using the Task Join Combination rule where
r is the default arc of the first OR-split and u is the default arc of the second
OR-split, the conditions of the arcs u and v become c4 ∧ (c ∨ (¬c2 ∧ ¬c3))
and c5 ∧ (c ∨ (¬c2 ∧ ¬c3)) respectively. In addition, the default arc of the
second OR-split becomes the default arc of the OR-split resulting from the
reduction. In this example, u becomes the default arc.

Figure 14: Task Split Combination Reduction Rule (OR-split)

The situation is simpler if r is not the default arc. In this case, the
condition of an arc originating from the second OR-split is equal to the
conjunction of c and the original condition. Meanwhile, the conditions in the
arcs originating from the first OR-split are carried over unchanged. Finally,
the OR-split resulting from the reduction is equal to the default arc from the
first OR-split.

Also, the proposed reduction rules only deal with patterns consisting of
combinations of tasks (with or without decorators). They do not deal with
cancellation regions, but this is not an issue since the YAWL nets generated
by the proposed transformation do not have cancellation regions. Similarly,
the generated YAWL models do not have explicit conditions (except for start
and end conditions) and therefore we do not need to deal with explicit con-
ditions in the reduction rules.

The application of the model reduction rules to the YAWL model from the
asset inspection example (Figure 8) is shown in Figure 15. In this example
it has been possible to apply the reduction rules to merge all of the control

nodes (pre- and post-gateways) with tasks. The model is now clearer to read
and the original control flow behavior has been maintained.

Figure 15: Reduced Inspection process model in YAWL

Other model reduction rules have been proposed in the literature: these
include Murata’s Petri net transformation rules (Murata, 1989) and Wynn’s
state-space reduction rules (Wynn, 2006). Murata’s rules allow one to trans-
form a Petri net while preserving soundness: if the original net is sound, the
net resulting after applying a transformation rule is also sound. Murata’s
rules can also be used to eliminate tau-transitions (i.e. transitions without
labels) in a net while preserving its semantics. However, Murata’s rules are
defined on Petri nets and need some adaptation to be applicable to YAWL
nets. This is the idea followed by Wynn et al. (Wynn, 2006) who propose a
set of reduction rules for cutting down large YAWL nets to ease verification.
Again, these rules could potentially be used to eliminate tasks with empty
decompositions in YAWL models. However Wynn’s reduction rules are much
more complex than what we need to post-process YAWL nets. This is the
reason why we designed a specific set of reduction rules.

Implementation and testing

The proposal including the model reduction rules has been implemented in
Java on top of the Eclipse platform.1 The tool includes a graphical editor for
object behavior models and a module that supports the transformation of
state-based object behavior models to YAWL nets. The tool implementation
relies on libraries from the ProM framework2 to perform the transformation

1http://www.eclipse.org/platform/
2http://www.processmining.org

from heuristic nets to Petri nets and from Petri nets to flat YAWL mod-
els. Subsequently, these YAWL models are unflattened and then reduced
according to the reduction rules as explained above.

The modeling tool, the model transformation technique and the reduction
rules have been tested using several variants of an asset inspection example.
The working example shown in this paper is one of the simplest variants.
Other variants of different sizes and levels of complexity were also used in
the tests including one with 53 states and 13 objects.

Future plans for the tool includes adding support for data flow modeling
and resource modeling and enhancing the model transformation technique to
cater for these other modeling perspectives.

5 Related Work

Object-oriented (OO) design methodologies that use the UML to design and
develop Information Systems have been proposed such as OCoN (Wirtz et
al., 2001). These proposals link UML diagrams to phases of the process
development lifecycle to produce a schema as output at the conclusion of
the lifecycle. Our proposed approach extends these design methodologies
by allowing process analysts and designers to produce a completely process-
oriented view of an OO model.

An architecture for mapping between OO and activity-oriented process
modeling approaches has been proposed by Snoeck et al. (Snoeck et al.,
2000). Object associations and business rules are captured using object-
relationship diagrams and an object-event table models the behavior of do-
main objects, which are similar to our mapping artifacts. Aspects that appear
to be missing from this architecture include a consideration of the various
kinds of control flow splits and joins between objects. We consider that this
control flow information is necessary for all process specifications and this
information should be derived directly from an object-oriented analysis.

The object behavior model that we consider in this paper is based on the
one supported by FlowConnect: a workflow management system developed
by Shared Web Services.3 The FlowConnect meta-model is an example of an
executable object behavior (meta-)model tailored to support the design and
automation of business processes. Another notable example is the Business
State Machines model supported by IBM Websphere Process Server (IBM

3http://www.sws.com.au

Corporation, 2005), which also relies on a paradigm based on communicating
state machines.

Proclets (Aalst et al., 2001) are a formal (Petri net-based) model for
representing workflows in terms of collections of modules, each of which cap-
tures the behavior of a class of objects. Proclets provide a formal basis
for reasoning about behavioral correctness, in particular, to identify dead-
locks. Another formal approach to object-oriented business process modeling,
namely artifact-centric process modeling, has been proposed by Bhattacharya
et al. (Bhattacharya, Gerede, Hull, Liu, & Su, 2007), based on earlier work
reported in (Nigam & Caswell, 2003). An artifact-centric process model
is composed of a collection of artifact schemas and service schemas, where
services act upon (and coordinate) artifacts. The behavior of artifacts and
services is captured as state-transition systems. Bhattacharya et al. provide
a computational complexity analysis of static analysis problems over these
models. In our work, we have not considered static analysis issues, although
we hint that static analysis could be performed on the YAWL nets generated
from an object model.

Reijers et al. proposed a methodology for Product-Based Workflow De-
sign (PBWD) that presented an analytical clean-sheet approach for process
design specified by the bill-of-material for products that are affected by a
process (Reijers, Limam, & Aalst, 2003). However, PBWD focuses on in-
ferring the high-level structure of a business process, and not its detailed
behavior. In particular, the PBWD approach does not consider the issue of
describing the behavior of product lifecycles in an executable manner (e.g. as
state machines), and automatically generating business process models from
such lifecycles.

One of the closest works to ours is that of Küster et al. (Küster, Ryndina,
& Gall, 2007) who also define a transformation from object behavior models
to process models. Küster et al. represent object behavior models (called
object lifecycles) as state machines and process models as UML activity dia-
grams. In addition to the difference in the target language (activity diagrams
versus YAWL), we see two other differences between our proposal and that
of Küster et al. First, the process models generated by the transformation
method of Küster et al. are flat (i.e. they do not contain sub-processes).
Second, the object behavior meta-model that we consider is more sophisti-
cated. In our object meta-model, synchronisation dependencies are captured
as asynchronous signals that are sent and received before and/or after each
state. The meta-model we consider also allows us to capture signals that

one object of one type sends to multiple objects of another type (i.e. 1-n
relations). In contrast, in the model considered in Küster et al., synchroni-
sation dependencies are captured as synchronisation events which are akin
to synchronous message exchanges between one object of one type and one
object of another type.

This article consolidates and extends the work that we previously pre-
sented in (Redding, Dumas, Hofstede, & Iordachescu, 2008). In this previous
publication, we did not consider the issue of generating YAWL models with
sub-processes (instead we generated flat models) and we did not consider the
possibility of using reduction rules to improve the readability of the gener-
ated YAWL models. Moreover, in this extended version, we also report on an
implementation of the proposal in the form of a modeling tool that exports
object behavior models as YAWL nets.

6 Conclusions and Future Work

Object technology is a mainstream approach to implementing Information
Systems. Mainstream object-oriented analysis and design practices (e.g.
those based on UML) are based on concepts of objects whose structure is
captured as classes and whose behavior and interactions are captured as
state machines, sequence diagrams and similar notations. On the other hand,
recent trends have seen an uptake of approaches to Information Systems en-
gineering that treat processes as a central concept throughout the system
development lifecycle.

The co-existence of these two approaches may lead to situations where
a project starts with a model corresponding to one approach and needs to
switch to a model corresponding to the other approach. In this paper, we have
proposed an approach to help bridge these differences in terms of the control
flow logic and discussed how the conversion technique has been implemented.

Future work will continue on the topic of transforming object-oriented
models to process-oriented models and vice-versa. There is a need to cover
not only the control-flow aspects as outlined in this paper, but also data
flow and resource allocation. We also note that a similar problem arises in
the opposite direction, i.e. moving from a process-oriented to object-oriented
design for the purpose of implementing process-oriented design models us-
ing object-oriented technology. Therefore another future challenge will be a
proposal of a reverse transformation from process-oriented to object-oriented

models.

References

Aalst, W. M. P. van der, Barthelmess, P., Ellis, C. A., & Wainer, J.
(2001). Proclets: A Framework for Lightweight Interacting Workflow
Processes. International Journal of Cooperative Information Systems ,
10 (4), 443–481.

Aalst, W. M. P. van der, & Hofstede, A. H. M. ter. (2005). YAWL: Yet
Another Workflow Language. Information Systems , 30 (4), 245–275.

Aalst, W. M. P. van der, Medeiros, A. K. A. de, & Weijters, A. J. M. M. (2005,
June 20-25). Genetic Process Mining. In Applications and Theory of
Petri Nets, 26th International Conference, ICATPN 2005 (pp. 48–69).
Miami, USA: Springer.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
et al. (2003). Business Process Execution Language for Web Services,
Version 1.1. (http://dev2dev.bea.com/webservices/BPEL4WS.html)

Becker, J., Kugeler, M., & Rosemann, M. (2003). Process Management.
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Bhattacharya, K., Gerede, C., Hull, R., Liu, R., & Su, J. (2007, September
24-28). Towards Formal Analysis of Artifact-Centric Business Process
Models. In Proceedings of the 5th International Conference on Busi-
ness Process Management (BPM) (pp. 288–304). Brisbane, Australia:
Springer.

Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The Unified Modeling Lan-
guage User Guide. Boston, MA, USA: Addison-Wesley Professional.

Dongen, B. F. van, Medeiros, A. K. A. de, Verbeek, H. M. W., Weijters,
A. J. M. M., & Aalst, W. M. P. van der. (2005, June 20-25). The
ProM Framework: A New Era in Process Mining Tool Support. In
26th International Conference on Applications and Theory of Petri
Nets (ICATPN) (pp. 444–454). Miami, USA: Springer.

Halpin, T. (2001). Information modeling and relational databases: from
conceptual analysis to logical design. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

IBM Corporation. (2005). Business State Machines. http://

publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/

com.ibm.wbit.help.ae.ui.doc/topics/cundstat.html.

Kueng, P., Bichler, P., Kawalek, P., & Schrefl, M. (1996). How to compose an
object-oriented business process model? In Proceedings of IFIP TC8,
WG8.1/8.2 working conference on method engineering (pp. 94–110).
London, UK: Chapman & Hall, Ltd.

Küster, J. M., Ryndina, K., & Gall, H. (2007, September 24-28). Genera-
tion of Business Process Models for Object Life Cycle Compliance. In
Proceedings of the 5th International Conference on Business Process
Management (BPM) (pp. 165–181). Brisbane, Australia: Springer.

Murata, T. (1989, April). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE (invited paper), 77 (4), 541-580.

Nigam, A., & Caswell, N. S. (2003). Business artifacts: An approach to
operational specification. IBM Systems Journal , 42 (3), 428-445.

Object Management Group. (2006). Business Process Modelling Notation,
Ver 1.0. (http://www.bpmn.org)

Redding, G., Dumas, M., Hofstede, A., & Iordachescu, A. (2008, February).
Transforming Object-oriented Models to Process-oriented Models. In
Business Process Management Workshops – Proceedings of the Interna-
tional Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws
(Vol. 4928). Brisbane, Australia: Springer.

Reijers, H. A., Limam, S., & Aalst, W. M. P. van der. (2003). Product-Based
Workflow Design. Journal of Management Information Systems , 20 (1),
229–262.

Shared Web Services Pty. Ltd. (August, 2003). FlowConnect Model.
(http://www.flowconnect.com.au)

Snoeck, M., Poelmans, S., & Dedene, G. (2000, August). An architecture
for bridging OO and business process modelling. In 33rd International
Conference on Technology of Object-Oriented Languages (TOOLS) (pp.
132–143). Mont-Saint-Michel, France: IEEE Computer Society.

Wirtz, G., Weske, M., & Giese, H. (2001). The OCoN Approach to Workflow
Modeling in Object-Oriented Systems. Information Systems Frontiers ,
3 (3), 357–376.

Wynn, M. T. K. (2006). Semantics, Verification, and Implementation of
Workflows with Cancellation Regions and OR-joins. Unpublished doc-
toral dissertation, Queensland University of Technology.

