Process Mining Reloaded:
Event Structures as a Unified Representation of
Process Models and Event Logs

Marlon Dumas and Luciano Garcia-Banuelos

University of Tartu, Estonia

Abstract. Process mining is a family of methods to analyze event logs
produced during the execution of business processes in order to extract
insights regarding their performance and conformance with respect to
normative or expected behavior. The landscape of process mining meth-
ods and use cases has expanded considerably in the past decade. How-
ever, the field has evolved in a rather ad hoc manner without a unifying
foundational theory that would allow algorithms and theoretical results
developed for one process mining problem to be reused when addressing
other related problems. In this paper we advocate a foundational ap-
proach to process mining based on a well-known model of concurrency,
namely event structures. We outline how event structures can serve as
a unified representation of behavior captured in process models and be-
havior captured in event logs. We then sketch how process mining op-
erations, specifically automated process discovery, conformance checking
and deviance mining, can be recast as operations on event structures.

1 Introduction

Process mining [1, 2] is a family of methods concerned with the analysis of event
records produced during the execution of business processes. Process mining
methods allow analysts to understand how a given process is executed on a day-
to-day basis and to detect and analyze deviations with respect to performance
objectives or normative pathways. Process mining has gained significant practical
adoption in recent years, as evidenced by a growing number of case studies and
commercial tools. An overview of methods, tools and case studies in this field is
maintained by the IEEE Task Force on Process Mining.'

The main input of a process mining method is a business process event log,
that is, a collection of event records relevant to a given business process. An
event log is generally structured as a set of traces. Each trace consists of the
sequence of events produced by one execution of the process (a.k.a. a case). An
event in a trace denotes the start, end, abortion or other relevant state change
of the process or an activity therein.

Most typically, event logs used in the context of process mining consist of
events that signal the start or the end of each activity of the process. As a min-
imum, an event record contains an identifier of the case of the process to which
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the event refers, a timestamp and an event class, that is, a reference to an ac-
tivity in the process under observation. Each event in a trace may additionally
carry a payload consisting of attributes such as the resource(s) involved in the
execution of an activity or other data recorded alongside the event — for exam-
ple if an event represents the creation of a loan application, possible attributes
include the name of the applicant and the amount of the requested loan.

A simplified example of a log of a loan application process is sketched in
Table 1. In this table, CID stands for “Customer Identifier” and constitutes the
primary key that should be used to group the records in the log into traces.

Table 1: Extract of a loan application log.
| CID | Event Type | Timestamp [ .. ‘
13219|Enter Loan Application 2007-11-09 11:20:10|. ..
13219|Retrieve Applicant Data 2007-11-09 11:22:15/...
13220|Enter Loan Application 2007-11-09 11:22:40|. ..

13219|Compute Installments 2007-11-09 11:22:45]. ..
13219|Notify Eligibility 2007-11-09 11:23:00. ..
13219|Approve Simple Application|2007-11-09 11:24:30]. ..
13220|Compute Installments 2007-11-09 11:24:35]. ..

The output of process mining can be manifold, ranging from a model of the
process, to a summarized view of the most frequent paths of the process or a
description of the deviations of the process with respect to normative or expected
behavior.

Process mining has been an active field of research for over a decade [1,2].
During this time, a number of process mining operations have been extensively
studied. One widely studied operation is automated process discovery. This op-
eration takes as input a log L and produces a process model M that is “likely”
to have generated the traces in log L. For example, given the log in Table 1, the
output of an automated process discovery method could be the process model
shown in Figure 1, which uses the standard Business Process Model and Notation
(BPMN) [3].

Another widely researched operation is conformance checking, which given a
model and a log, produces an enumeration of their differences, that is, a descrip-
tion of the behavior observed in the log but not in the model, as well as behavior
allowed by the model but not observed in the log. Related to the latter is model
repair, where instead of simply enumerating the differences between a model M
and a log L, the goal is to produce a process model M’ that is “similar” to M
and can parse every trace in the log.

Until now, process mining methods have been developed on a case-by-case
basis using disparate approaches and representations. Attempts have been made
at identifying a small number of primitive operations from which other opera-
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Fig. 1: Process model corresponding to the log extract in Table 1

tions can be defined [2] — but each of these primitives has been formally defined
and developed independently, without an underpinning foundational theory.

In this paper we advocate a foundational approach to process mining based
on a well-known model of concurrency, namely event structures [4]. We show
that event structures can be used to represent both models and logs in a unified
manner and that this unified representation can serve to define process mining
operations that have until now been approached using different formalisms.

2 Overview of Process Mining Operations

Following a well-accepted classification in the broader field of data mining, pro-
cess mining methods can be broadly classified into offline methods and online
methods. Offline process mining methods aim at providing insights about the
process as it is or as it has been observed in the logs. Online process mining
methods on the other hand aim at providing insights about currently running
cases of a process, like for example predicting the completion time of an ongoing
case, or predicting whether an ongoing case will lead to a positive or a negative
outcome [5]. For the sake of scoping the discussion, we hereby focus on offline
process mining methods. Online process mining methods come with strong non-
functional requirements, particularly with respect to performance and scalability,
that deserve a separate treatment.

From the literature on process mining, one can distill the following broad
classes of offline process mining operations: (i) automated process discovery and
model enhancement; (ii) conformance checking and model repair; and (iii) de-
viance mining. Other classes of process mining operations include concept drift
analysis [6] and variant identification [7], but we shall herein concentrate on the
former three classes of operations for the sake of illustration.

Automated process discovery is a family of methods that given a log L generate
a model M that “approximates” log L. A range of algorithms for automated
process discovery have been proposed over the past decade, based on various
representations of behavior. For example, the a-algorithm [8] starts by inferring



a matrix of behavioral relations between pairs of event classes in the log, specifi-
cally direct follows, causality, conflict and concurrency relations. Given a matrix
capturing all such relations, the algorithm constructs a Petri net by applying
a set of rules. Similarly, the heuristics miner [9] relies on behavioral relations
between all pairs of event classes found in the log, but additionally takes into ac-
count the relative frequency of the direct follows relation between pairs of tasks.
These data are used to construct a graph of events (called a Heuristics net),
where edges are added based on a number of heuristics. The Heuristics net can
then be converted into a Petri net or a BPMN model for example. Van der Werf
et al. [10] propose a process model discovery method where behavioral relations
observed in the logs are translated to an Integer Linear Programming (ILP)
problem, while Carmona et al. [11] approach the problem of automated process
discovery using theory of regions. Finally, the InductiveMiner [12] discovers a
tree where each internal node represents a block-structured control-flow con-
struct (e.g. block-structured parallelism or block-structured choice). Such trees
can then be trivially transformed into a block-structured Petri net for example.

Automated process discovery methods can be evaluated along four dimen-
sions: fitness, precision, generalization and complexity [1,13]. Fitness measures
to what extent the traces in a log can be parsed by a model. Precision measures
the additional behavior allowed by a discovered model not found in the log. A
model with low precision is one that parses a proportionally large number of
traces that are not in the log. Generalization captures how well the discovered
model generalizes the behavior found in the log. For example, if a model dis-
covered using 90% of traces in the log can parse all or most of the remaining
10% of traces in the log, it is said the model generalizes well the log. Finally,
process model complexity is intended as a proxy for understandability. It can
be measured in terms of size (number of nodes and/or edges) or using a num-
ber of structural complexity metrics such as cyclomatic complexity or density
that have been empirically shown to be correlated with understandability and
error-proneness [14].

Related to automated process discovery is a family of methods known as
process model enhancement [15], which given a model M and a log L (such that
L is likely to have been produced by M) generate an annotated process model
M'. A sub-family of model enhancement methods produce annotations referring
to performance measures such as waiting times and processing times for each
activity and branching probabilities for each branch of a decision point. Another
family of model enhancement methods produce annotations related to resources:
who performs which activity and who hands-over work to whom? In any case,
from an algorithmic perspective, process model enhancement generally does not
bring additional challenges with respect to automated process discovery.

Conformance checking is concerned with describing how and where actual pro-
cess executions (recorded in an event log) deviate with respect to a given process
model. This problem has been approached using replay techniques [15] and trace
alignment techniques [16]. Replay takes as input one trace at a time and deter-
mines what maximal prefix of the trace (if any) can be parsed by the model.



When it is found that a prefix can no longer be parsed by the model, error-
recovery techniques are used to correct the parsing error and to continue parsing
as much as possible the remaining input trace. Alignment-based techniques on
the other hand seek to find for each trace in the log, the closest corresponding
trace(s) produced by the model and to determine where exactly in these traces
the model and the log diverge.

Closely related to the problem of conformance checking is that of model
repair [17], where instead of simply enumerating the differences between a model
M and a log L, the goal is to generate a process model M’ that is similar to M
and can parse all the traces in the log. Model repair can be seen as a generative
counter-part of conformance checking.

Deviance mining [18] is a family of process mining methods that aim at detecting
and explaining differences between executions of a business process that lead to
a positive outcome vs. those that lead to a negative outcome — with respect to a
given labeling of cases into positive vs. negative ones. For example, one specific
deviance mining problem is that of explaining the differences between executions
of a process that fulfill a given service-level objective vs. those that do not.

Existing approaches to deviance mining can be classified into two cate-
gories [18]: model delta analysis [19,20] and sequence classification. The idea
of model delta analysis is to apply automated process discovery methods to
the traces of positive cases and to the traces of negative cases separately. The
discovered process models are then visually compared in order to identify dis-
tinguishing patterns. This approach however does not scale up to large and
complex logs. Sequence classification methods [21,22,20] construct a classifier
(e.g. a decision tree) that can determine with sufficient accuracy whether a given
trace belongs to the positive or the negative class. The crux of these methods
is how sequences are encoded as feature vectors for classifier learning. Several
sequence mining techniques have been explored for feature extraction in this set-
ting. These techniques generally extract patterns of the form activity A occurs
before activity B, which are frequent in (e.g.) positive cases but not in negative
ones or vice-versa. An evaluation of these techniques on real-life logs has shown
however that their explanatory power is rather limited [18], meaning that dozens
or hundreds of rules are required to explain the differences between positive and
negative cases.

Observations The above overview illustrates that various process mining prob-
lems have been approached from different angles and using disparate represen-
tations and approaches. Automated process discovery for example has been ap-
proached using representations based on binary relations between event classes
as well as tree-based representations of (block-structured) process models. Mean-
while, conformance checking has been approached using replay (parsing) as well
as trace alignment — techniques that are in essence disconnected from those
used for automated process discovery. On the other hand, deviance mining has
been approached using sequence mining techniques, which reason in terms of
sequences and patterns on sequences. Again, these techniques are disconnected



from the previous ones. As a further case in point, the problem of concept drift
analysis [6] — where the goal is to detect and explain how the behavior of a given
process has evolved over time — has been approached using sequence patterns as
well as abstractions of sets of traces based on polyhedra [23].

Underpinning these observations is the fact that the representations used to
reason about the behavior captured in process models are different from those
used to reason about the behavior captured in event logs. When reasoning on
process models, representations based on behavioral relations or Petri nets tend
to be favored. When reasoning from the perspective of logs, representations based
on sequences are often preferred. Below we advocate for a unified representation
of process models and event logs that provides a unified perspective into existing
process mining problems and methods.

3 Event Structures as a Foundation for Process Mining

We contend that event structures [4] — a well-known model of concurrency — can
serve as a common representation of process models and event logs for the pur-
pose of defining and implementing process mining operations. Below we provide
a brief overview of event structures and their relation with process models and
event logs. We then sketch how conformance checking and deviance mining can
be recast as problems of comparison of event structures, and we briefly discuss
how automated process discovery could be tackled under this framework.

3.1 Event structures

A Prime Event Structure (PES) [4] is a graph of events, where an event e rep-
resents the occurrence of an action (e.g. a task) in the modeled system (e.g. a
business process). If a task occurs multiple times in a run, each occurrence is
represented by a different event. The order of occurrence of events is defined
via binary relations: i) Causality (e < ¢’) indicates that event e is a prerequisite
for €’; ii) Conflict (e#e€’) implies that e and €’ cannot occur in the same run;
iti) Concurrency (e || €') indicates that no order can be established between e
and €.

Definition 1 (Labeled Prime Event Structure [4]). A Labeled Prime Event
Structure over the set of event labels L is the tuple £ = (E, <,#, \) where

— FE is a set of events (e.g. tasks occurrences),

— < C E x FE is a partial order, referred to as causality,

— # C E x E is an irreflexive, symmetric conflict relation,

— A E — L is a labeling function.

We use < to denote the irreflexive causality relation. The concurrency relation of
& is defined as || = E%\ (< U <71 U #). Moreover, the conflict relation satisfies
the principle of conflict heredity, i.e. e#te’ Ne' < e = efte” fore,e',e” € E.

For illustration, Fig. 2 presents side-by-side a BPMN process model and a
corresponding PES £'. Nodes are labelled by an event identifier followed by the



(b) Prime event structure "

Fig.2: Sample BPMN process model and corresponding PES

label of the represented task, e.g. “e2:C” tells us that event es represents an
occurrence of task “C”. The causality relation is depicted by solid arcs whereas
the conflict relation is depicted by dotted edges. For the sake of simplicity, tran-
sitive causal and hereditary conflict relations are not depicted. Every pair of
events that are neither directly nor transitively connected are in a concurrency
relation. Note that three different events refer to the task with label “E”. This
duplication is required to distinguish the different states where task “E” occurs.

A state on an event structure (hereby called a configuration) is characterized
by the set of events that have occurred so far. For instance, set {eg:A,e1:B} —
highlighted in Fig. 2(b) — is the configuration where tasks “A” and “B” have
occurred. In this configuration, event {es3:D} can no longer occur because it is
in conflict with {e;:B}. On the other hand, events {e2:C} and {e4:E} can occur,
but the occurrence of one precludes that of the other. Formally:

Definition 2 (Configuration). Let £ = (E, <,#,\) be a prime event struc-
ture. A configuration of £ is the set of events C C E such that

— C is causally closed, i.e. Vo' e Ele € C: e/ <e=¢ €C, and

— C is conflict-free, i.e. Ve, e' € C' = —(efte’).

The local configuration of an event e € E is the set |e| = {€ | ¢ < e}. Similarly,
the (set of) strict causes of an event e € E is defined as |e) = |e] \ {e}.

We denote by Conf(€) the set of all possible configurations of £ and by
MaxConf(E) the subset of maximal configurations with respect to set inclusion.
In the running example, MazConf(E') = {{eo, 1, €2, €5}, {€o, e1,ea}, {eo, €3,¢6}}-

Prime event structures can be extracted from Petri nets using well-known
unfolding techniques. In the case of acyclic nets, a full unfolding can be computed
and a PES can be trivially derived therefrom. In the case of bounded Petri nets
with cycles, it is possible to calculate a finite prefix unfolding that captures all
the behavior in the original net. A PES can then be derived from such prefix
unfolding. Several prefix unfoldings have been defined in the literature, such as
the complete prefiz unfolding [24]. In [25] we defined a type of unfolding that
additionally captures all the causes of every event — including events inside a
cycle — thus allowing us to pinpoint which events are repeated and which are not.
This information allows us to do more fine-grained reasoning on the repetitive
behavior of a process compared to a complete prefix unfolding.



3.2 From logs to event structures

In previous work [26], we presented a method to generate a PES from an event
log. The method consists of two steps. First the event log, seen as a set of traces, is
transformed into a set of runs by invoking a concurrency oracle. In essence, each
trace is turned into a run by relaxing the total order induced by the trace into
a partial order such that two events are not causally related if the concurrency
oracle has determined that they occur concurrently. The concurrency oracle is
left open. Existing concurrency oracles such as those proposed in the « process
mining algorithm [8] or in [27] can be used for this purpose.

Second, the set of runs are merged into an event structure in a lossless man-
ner, meaning that the set of maximal configurations of the resulting event struc-
ture is exactly equal to the set of runs. In this way and modulo the accuracy of
the concurrency oracle, we ensure that the resulting event structure is a lossless
representation of the input log.

For example, consider the log given in Figure 3(a). This event log consists
of 10 traces, including 3 instances of distinct trace ¢; (as specified in column
“N”), 2 instances of t3, so on and so forth. Using the concurrency oracle of the «
algorithm we conclude that event classes B and C' are in a concurrency relation,
thus we construct the set of runs in Figure 3(b). In this latter figure, the notation
e:A indicates that event e represents an occurrence of event class A in the original
log. By merging together events with the same label and the same history (i.e.
same prefix), we obtain the PES in Figure 3(c). In this figure, the notation
{e1,€2...e;}:A indicates that events {e1, e ... e; } represent occurrences of event
class A in different runs.

en:A fo:A go:A
e1:B e2:C  f1:B  g1:D {eo, fo,g90}:A

Trace |Ref|N \’ ‘/ l’ l’ I/l\
ABCE| ;|3 es:E F2E - g2E g /1B < {ea}:C ~n {g1}:D
ACBE| ty | 2
ABE |t |2 T Up) T3 l \ l, l
ADE |t4|3 {f2}:E {e3}:E {g2}:E

(a) Event log (b) Runs (c) Induced PES

Fig. 3: Example of construction of a PES from a set of traces

3.3 Comparison of event structures

In previous work [25], we presented a technique for comparing pairs of event
structures. This technique operates by performing a Partially Synchronized Prod-
uct (PSP) of the event structures, which is in essence a synchronized simulation



starting from the empty configurations. At each step, the events that can occur
given the current configuration in each of the two event structures (i.e. the en-
abled events) are compared. If they match, the simulation adds those events to
the current configurations and continues. If on the other hand an enabled event
in the current configuration of one event structure does not match with an en-
abled event in the current configuration in the other event structure, a mismatch
is declared and this mismatch will be reflected in a difference statement that tells
us that there is a pair of matching configurations where an event can occur or
a behavioral relation holds in one event structure, but not in the other. Having
diagnosed the difference, the unmatched event is “hidden” and the simulation
jumps to the next matching configurations.

Figure 5 presents an excerpt of the PSP for £! and £2, shown in Figure 2 and
Figure 4 respectively. Note that MaxConf(E?) = {{fo, f1, f2, fa}s {fo, f3, f5}}-
Clearly, all maximal configurations of £2 can be matched to configurations of £'.
The right-hand leaf node in the PSP illustrates the matching of configuration
{eo, e1,e2,e5} from E and { fo, f1, f2, f4} from E2. There, the set m records the
fact that all the events in both configuration have been matched, [h records
that none of the events from ' (the one to the left of the “product”) has been
hidden, and rh records that no event from £2 has been hidden. Similarly, the leaf
node at the left-hand side corresponds to the best matching of configurations
{eo,e1,e4} and {fo, f1, fo, f4}, respectively from ! and 2. The cloud at the
top indicates that some states precedes to the matching of a pair of events
sharing the label “B”. The label on the edge from the cloud to the node just
below records such matching. The configuration {eg, e;} enables the occurrence
of e4:E but that occurrence precludes the occurrence of es:C. This gives rise to
a behavioral mismatch, that is resolved by hiding f5:C. The red arrow in the
PSP captures this hiding: the event fo:C from £? (right-hand side model in the
product) is hidden. Note that in the target box, m remains the same, i.e. no
additional matching, whereas rh records now the hiding of f5:C. By aggregating
the information in the states and edges associated to the moves “rhide C” and
“match C” on the PSP, it is possible to diagnose that “Task 'C’ in model 1 can
be skipped, whereas the same task is always executed in model 2”.

Further details on the event structures comparison method are given in [25].
A tool implementing this method, namely BP-Diff, is described in [28]. BPDiff
takes as input two process models captured in standard BPMN notation and
outputs a number of statements describing their behavioral differences. Each
difference is verbalized in natural language and can also be visually represented
on top of the process model. The tool performs the comparison at the level of
event structures. Prior to the comparison step, BP-Diff converts the input BPMN
process model into a Petri net and unfolds the latter into an event structure.

3.4 Folding of event structures

The PES derived from a given Petri net is generally not a space-efficient repre-
sentation of behavior as it may contain significant amount of duplication (several
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Fig.5: Fragment of PSP of the PESs in Figs. 2(b) and 3

events referring to the same task). A more compact representation can be ob-
tained by using asymmetric event structures [29], which replace the symmetric
conflict relation of PES with an asymmetric one. AES lend themselves to ap-
plying folding techniques. The idea of such folding techniques is to identify sets
of events in the AES that can be merged into a single event while preserving
behavior. This folding of events can be performed when two events with the
same label are future-equivalent, meaning they have the same possible continua-
tions. Under such conditions, such events can be merged into a single one thanks
to the asymmetric conflict relation. The resulting folded AES is more compact
and thus more convenient for the purpose of comparing pairs of process models,
insofar as their comparison produces less statements of differences. In [25] we
discuss how to derive a canonically folded AES from a PES, which can be used
to provide a more compact diagnosis of the differences between two given PES.

We foresee that similar folding techniques can be used more widely to sim-
plify an event structure produced from a given event log, such that the simplified
event structure can be used to synthesize a process model. By allowing events to
be folded even in situations where some behavior is lost or added, we can strike
different tradeoffs between the four quality dimensions of discovered process
models mentioned in Section 2 (precision, recall, generalization and complex-
ity). A similar idea has been applied in [30] in order to simplify process models
generated by existing automated process discovery methods.

To illustrate how folding can be used to simplify event structures at the
expense of precision, consider the event structure £ in Figure 6(a). A Petri net
synthesized from this net is shown in Figure 6(b). We note that events e3:D
and e4:D refer to the same task D. Furthermore, the set of possible futures of
e3:D is included in that of e4:D — the latter having an additional possible future
consisting of an occurrence of F'. If we define a rule that folds two events under
such conditions, we would fold e5:E and eg:E into {es,eq}:E (with an empty
future) and then we would fold e3:D and e4:D into {e3, es}:D — with {es5, eg}:E
and e7:F as its futures. The resulting event structure then leads to the simpler net
in Figure 6(c), which has more behavior (i.e. generalizes) the net in Figure 6(b).
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Fig.6: Nets synthesized from an unfolded and a folded event structure with
added behavior.

We also foresee that a similar approach can serve to identify opportunities to
introduce cycles when synthesizing a Petri net from an event structure. Consider
for example the event structure in Figure 7(a). Event m1:B and m4:B share a
common future consisting of an occurrence of D — with m1:B having a an addi-
tional future consisting of occurrences of C; B and D. Under these conditions,
one could generalize the behavior by allowing ml : B and m3 : B to be folded,
so that the net in 7 can be synthesized thereon.

3.5 Process mining operations and event structures
To recap, we have observed that:

— Event structures can be losslessly derived both business process models via

unfoldings of Petri nets

Event structured can be losslessly derived from event logs via concurrency

oracles and merging of runs.

Event structures allow fine-grained comparison of behavior, which can be

materialized as difference statements in natural language or graphical form.

— Event structures can be folded (and thus simplified) by merging occurrences
of events with the same label and “equivalent futures” — with or without loss
of behavioral precision depending on the choice of future equivalence. This
folding can be used to trade-off behavioral precision and simplicity.

These operations on event structures can be used to recast the previously
reviewed process mining problems as follows:
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— Deviance mining can be achieved by computing an event structure from each
of the sub-logs induced by the labeling function (e.g. the log of “positive”
cases and the log of “negative” cases) and comparing the two logs. In other
words, this is a log-to-log comparison problem. In [26] we have empirically
shown that the difference diagnostics produced in this way is more com-
pact (less and simpler statements) than deviance diagnostics obtained using
sequence classification techniques.

— Conformance checking an event log against a process model can be achieved
by computing an event structure from the model, another from the log and
comparing the resulting event structures to enumerate their differences. In
other words, conformance checking is a model-to-log comparison problem.

— Automated process discovery of a process model from an event log can be
achieved by: (i) computing an event structure from a log; (ii) transforming
the resulting event structure via folding rules that achieve a trade-off be-
tween simplicity and behavioral accuracy (measured by means of fitness and
precision); and (iii) utilizing the information in the resulting event structure
in order to supplement a model synthesis algorithm.

Similarly although not covered in this paper, business process drift analy-
sis can also be recast as a log-to-log comparison problem: comparing the log
before and after a hypothesized change point. Meanwhile, model repair can be
approached as a problem of repairing an event structure, by adding and deleting
a minimal amount of relations and events in such a way that the new event
structure is an accurate (or more accurate) representation of the runs in the log
than the original model.

The above relations between operations on event structures and process min-
ing operations are summarized in Figure 8.
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4 Outlook

We have outlined a vision for a principled approach to process mining based on
event structures as a unified representation of process models and event logs.
The realization of this vision however requires a number of challenges to be
addressed.

A key challenge is handling repeated behavior. Complete prefix unfoldings
allow us to fully capture the behavior of a cyclic (bounded) process model. In
turn, the information in this prefix unfolding can be directly encoded in an event
structure. However, comparing event structures obtained from process models
with those obtained from event logs is challenging because in the event structure
derived from a log repeated behavior is not explicitly captured: It exists by
virtue of a sub-event structure appearing multiple times in the event structure.
Similarly, synthesizing a process model from the event structure derived from a
log requires being able to detect and isolate repeated behavior.

Regarding automated process discovery, defining the right folding rules to
simplify the event structure produced from the log is a crucial step. These folding
rules will have to trade off simplicity versus accuracy — a tradeoff that existing
process mining algorithms try to strike as well. In this respect, event structures
merely provide us a way of studying such tradeoffs from a new perspective.
Also, the use of event structures for process model synthesis would require new
techniques to be developed or existing ones to be heavily adapted, e.g. adapting
existing synthesis techniques based on merging of runs [31].

Finally, scalability might become a challenge, not so much in the log-to-log
comparison case [26], but rather when cycle detection and folding operations
come into play.



In summary, the proposed vision offers numerous opportunities to revisit
long-standing challenges in the field of process mining from an angle that will
hopefully allow algorithms and theoretical results to be reused across different
problems and use cases.
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