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Abstract

Robotic Process Automation (RPA) is a technology to automate routine work such
as copying data across applications or filling in document templates using data
from multiple applications. RPA tools allow organizations to automate a wide
range of routines. However, identifying and scoping routines that can be auto-
mated using RPA tools is time consuming. Manual identification of candidate
routines via interviews, walk-throughs, or job shadowing allow analysts to iden-
tify the most visible routines, but these methods are not suitable when it comes
to identifying the long tail of routines in an organization. This article proposes
an approach to discover automatable routines from logs of user interactions with
IT systems and to synthetize executable specifications for such routines. The ap-
proach starts by discovering frequent routines at a control-flow level (candidate
routines). It then determines which of these candidate routines are automatable
and it synthetizes an executable specification for each such routine. Finally, it
identifies semantically equivalent routines so as to produce a set of non-redundant
automatable routines. The article reports on an evaluation of the approach using
a combination of synthetic and real-life logs. The evaluation results show that
the approach can discover automatable routines that are known to be present in a
UI log, and that it identifies automatable routines that users recognize as such in
real-life logs.
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1. Introduction

Robotic Process Automation (RPA) allows organizations to improve their pro-
cesses by automating repetitive sequences of interactions between a user and one
or more software applications (a.k.a. routines). Using this technology, it is possi-
ble to automate data entry, data transfer, and verification tasks, particularly when
such tasks involve multiple applications. To exploit this technology, organizations
need to identify routines that are amenable to automation [1]. This can be achieved
via interviews, walk-throughs, job shadowing, or by examining documented pro-
cedures [1]. These approaches are not always cost-efficient in large organizations,
as routines tend to be scattered across the process landscape.

To tackle this gap, several research studies have proposed techniques to an-
alyze User Interaction (UI) logs in order to discover repetitive routines that are
amenable to automation via RPA [2, 3, 4, 5, 6]. However, existing approaches in
this space make various assumptions that limit their applicability.

First, all of the existing approaches for discovering frequent and/or automat-
able routines from UI logs assume that the UI log consists of a set of traces (seg-
ments) of a task that is presupposed to contain one or more routines. In practice,
however, UI logs are not segmented. Instead, a recording of a working session
consists of a single sequence of actions encompassing many instances of one or
more routines, interspersed with other events that may not be part of any routine.

Second, most of the existing approaches [2, 3, 4] discover frequent routines
and/or automatable routines, but they do not produce an executable routine speci-
fication.

Third, existing approaches do not take into account the fact that the same
routine may be performed differently (albeit equivalently) by different workers,
or sometimes even by the same worker. In other words, existing approaches may
produce redudant routines as output.

This article addresses these gaps by presenting an approach to discover au-
tomatable routines from unsegmented UI logs. The approach splits the unseg-
mented UI log into a set of segments, each representing a sequence of steps that
appears frequently in the unsegmented UI log. It then applies sequential pattern
mining techniques to find candidate routines for automation and evaluates their
automatability. For each automatable routine, the approach synthesizes an exe-
cutable routine specification, which can be compiled into an RPA bot. This bot
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can then be executed by an RPA tool to replicate the underlying routine automati-
cally.

The proposed approach has been implemented as an open-source prototype
called Robidium [7]. Using this implementation, we have evaluated the proposed
approach on synthetic and real-life UI logs in terms of its execution times and its
ability to accurately discover routines from an UI log.

This article is an extended and revised version of a conference paper [8]. The
conference version focused on the discovery of frequently repeated routines from
unsegmented UI logs (i.e. candidate routines). This article extends this initial ap-
proach in two ways. First, this article presents an approach to post-process the
identified candidate routines in order to assess their automatability and, in case a
routine is fully automatable, to generate an executable routine specification. Sec-
ond, this article proposes a method to identify semantically equivalent routines,
so as to produce a non-redundant set of automable routines.

This article provides a concrete realization of a high-level architecture for dis-
covering automatable routines from UI logs, sketched in [9]. To this end, the arti-
cle proposes concrete techniques to implement each of the building blocks in [9],
except for the UI log recording step, which is documented in [10].

The article is structured as follows. Section 2 provides an overview of related
work. Section 3 describes the approach, while Section 4 reports the results of the
evaluation. Finally, Section 5 concludes the paper and discusses the directions for
future work.

2. Related work

The problem addressed by this article is denominated as Robotic Process Min-
ing (RPM) in [9]. RPM is a family of methods to discover repetitive routines
performed by employees during their daily work, and to turn such routines into
software scripts that emulate their execution. The first step in an RPM pipeline is
to record the interactions between one or more workers and one or more software
applications [10]. The recorded data is represented as a UI log – a sequence of
user interactions (herein called UIs), such as selecting a cell in a spreadsheet or
editing a text field in a form. The UI log may be filtered to remove irrelevant UIs
(e.g., misclicks). Next, it may be decomposed into segments (segmentation). The
discovered segments are then scanned to identify routines that occur frequently
across these segments. Finally, the resulting frequent routines (a.k.a. candidate
routines) are analyzed in order to identify those that are automatable and to derive
executable routine specifications.
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In this section, we review previous research related to the three core research
challenges of RPM identified in [9]: UI log segmentation, discovery of frequent
(candidate) routines and discovery of automatable routines.

2.1. UI Log Segmentation
Given a UI log (i.e., a sequence of UIs), segmentation consists in identifying

non-overlapping subsequences of UIs, namely segments, such that each subse-
quence represents the execution of a task performed by an employee from start to
end. In other words, segmentation searches for repetitive patterns in the UI log. In
an ideal scenario, we would observe only one unique pattern (the task execution)
repeated a finite number of times. However, in reality, this scenario is unlikely
to materialize. Instead, it is reasonable to assume that an employee performing
X-times the same task would make some mistakes or introduce variance in how
the task is performed.

The problem of segmentation is similar to periodic pattern mining on time se-
ries. While several studies addressed the latter problem over the past decades [11,
12], most of them require information regarding the length of the pattern to dis-
cover or assume a natural period to be available (e.g., hour, day, week). This
makes the adaptation of such techniques to solve the problem of segmentation
challenging unless periodicity and pattern length are known a priori.

Under the same class of problems, we find web session reconstruction [13],
whose goal is to identify the beginning and the end of web navigation sessions in
server log data (e.g., streams of clicks and web page navigation) [13]. Methods
for session reconstruction are usually based on heuristics that rely on structural
organization of web sites or time intervals between events. The former approach
covers only the cases when all the user interactions are performed in the web
applications, while the latter approach assumes that users make breaks in-between
two consecutive segments – in our case, two routine instances.

Lastly, segmentation also relates to the problem of correlation of event logs
for process mining. In such logs, each event should normally include an identifier
of a process instance (case identifier), a timestamp, an activity label, and possi-
bly other attributes. When the events in an event log do not contain explicit case
identifiers, they are said to be uncorrelated. Various methods have been proposed
to extract correlated event logs from uncorrelated ones. However, existing meth-
ods in this field either assume that a process model is given as input [14] or that
the underlying process is acyclic [15]. Both of these assumptions are unrealistic
in our setting: a process model is not available since we are precisely trying to
identify the routines in the log, and a routine may contain repetition.

4



Recent work on UI log segmentation [16] proposes to use trace alignment be-
tween the logs and the corresponding interaction models to identify the segments.
In practice, however, such interaction models are not available beforehand. In this
article, we outline a segmentation approach that does not require any models as
inputs nor does it require that the user specifies one or more explicit delimiters
between segments (e.g. that the user specifies that a given symbol X represents
the start and/or the end of a segment).

2.2. Frequent Routine Discovery
Dev and Liu [17] have noted that the problem of routine identification from

(segmented) UI logs can be mapped to that of frequent pattern mining, a well-
known problem in the field of data mining [18]. Indeed, the goal of routine iden-
tification is to identify repetitive (frequent) sequences of interactions, which can
be represented as symbols. In the literature, several algorithms are available to
mine frequent patterns from sequences of symbols. Depending on their output,
we can distinguish two types of frequent pattern mining algorithms: those that
discover only exact patterns [19, 20] (hence vulnerable to noise), and those that al-
low frequent patterns to have gaps within the sequence of symbols [21, 22] (hence
noise-resilient).

Depending on their input, we can distinguish between algorithms that operate
on a collection of sequences of symbols and those that discover frequent pat-
terns from a single long sequence of symbols [20]. The former algorithms can be
applied to segmented UI logs, while the latter can be applied directly to unseg-
mented ones. However, techniques that identify patterns from a single sequence
of symbols only scale up when identifying exact patterns. While such approaches
discover the frequently repeated routines, they do not analyze whether they are au-
tomatable. In other words, these approaches focus on the discovery of the control-
flow models instead of executable specifications.

The identification of frequent routines from sequences of actions is related to
the problem of Automated Process Discovery (APD) [23], which has been stud-
ied in the field of process mining. Recent works [24, 2] show that RPA can ben-
efit from process mining. In particular, the work in [2] proposes to apply tra-
ditional APD techniques to discover process models of routines captured in UI
logs. However, traditional APD techniques discover control-flow models, while,
in the context of RPA, we seek to discover executable specifications that capture
the mapping between the outputs and the inputs of the actions performed during a
routine.
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2.3. Discovery of Automatable Routines
The discovery of automatable sequences of user interactions has been widely

studied in the context of Web form and table auto-completion. For example, Ex-
cel’s Flash Fill feature detects string patterns in the values of the cells in a spread-
sheet and uses these patterns for auto-completion [25]. However, auto-completion
techniques focus on identifying repetitions of keystrokes (sequences of charac-
ters). In this article, we look at routines that involve transfering data across fields
in one or more applications as well as editing field values.

The discovery of data transfer routines that are amenable for RPA automation
has been addressed in [3]. This latter paper proposes a technique to discover
sequences of actions such that the inputs of each action in the sequence (except
the first one) can be derived from the data observed in previous actions. However,
this technique can only discover perfectly sequential routines, and is hence not
resilient to variability in the order of the actions, whereas in reality, different users
may perform the actions in a routine in a different order.

Another technique for routine identification [1] attempts to identify candidate
routines from textual documents – an approach that is suitable for earlier stages
of routine identification and could be used to determine which processes or tasks
could be recorded and analyzed in order to identify routines.

In [6] the authors present an approach to automatically discover routines from
UI logs and automate them in the form of scripts. This approach, however, as-
sumes that all the actions within a routine are automatable. In practice, it is
possible that some actions have to be performed manually, and they can not be
automated.

The approach presented in [4] aims at extracting rules from segmented UI
logs that can be used to fill in forms automatically. However, this approach only
discovers branching conditions that specify whether a certain activity has to be
performed or not (e.g., check the box of the form). It focuses only on the copy-
paste operations and does not identify more complex manipulations.

In previous work [5], we mapped the problem of discovering routines related
to the data transferring to the problem of discovering data transformations. In this
paper, we reuse this idea and extend it to tackle the problem of assessing if and to
what extent a frequent (candidate) routine is automatable, and if such, producing
an executable specification.
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3. Approach

In this section, we describe our approach for discovering executable routine
specifications from User Interaction (UI) logs. We adhere to the RPM pipeline
proposed by Leno et al. [9], which we implemented in five macro steps (see Fig-
ure 1): i) preprocessing and normalization; ii) segmentation; iii) candidate routine
identification; iv) automatability assessment; v) routines aggregation.

UI log
Preprocessing and 

normalization

Executable 
specifications

Candidate routines 
identification

Automatability 
assessment

Segmentation

Routines
aggregation

Figure 1: Outline of the proposed approach

Our approach takes as input a UI log, which is a chronologically ordered se-
quence of UIs between a worker and computer-based applications. In this paper,
we assume that the applications used by the worker are either spreadsheet man-
agement applications or web browser applications. A UI log is usually recorded
during the execution of the worker’s daily tasks using specialized logging tools,
for example, the Action Logger tool [10].

An example of a UI log is provided in Table 1. Each row of Table 1 captures
one UI (e.g., clicking a button or copying the content of a cell). Each UI is charac-
terized by a timestamp, a type, and a set of parameters, or payload (e.g., applica-
tion, button’s label and value of a field). The payload of a UI is not standardized,
and depends on the UI type and application. Consequently, the UIs recorded in the
same log may have different payloads. For example, the payload of UIs performed
within a spreadsheet contains information regarding the spreadsheet name and the
location of the target cell (e.g., cell row and column). In contrast, the payload of
the UIs performed in a web browser contains information regarding the webpage
URL, the name and identifier of the UI’s target HTML element and its value (if
any); – see Table 1 rows 1 and 2.
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UI UI Payload
Row Timestamp Type P1 P2 P3 P4 P5 P6

1 2019-03-03T19:02:18 Click button (Web) https://unimelb.edu.au New Record newRecord button – –
2 2019-03-03T19:02:20 Select cell (Excel) StudentRecords Sheet1 A 2 Albert Rauf –
3 2019-03-03T19:02:23 Copy cell (Excel) StudentRecords Sheet1 A 2 Albert Rauf Albert Rauf
4 2019-03-03T19:02:25 Select field (Web) https://unimelb.edu.au Full Name name “” – –
5 2019-03-03T19:02:26 Paste (Web) https://unimelb.edu.au Full Name name “” Albert Rauf –
6 2019-03-03T19:02:28 Edit field (Web) https://unimelb.edu.au Full Name name text Albert Rauf –
7 2019-03-03T19:02:30 Select cell (Excel) StudentRecords Sheet1 B 2 11/04/1986 –
8 2019-03-03T19:02:31 Copy cell (Excel) StudentRecords Sheet1 B 2 11/04/1986 11/04/1986
9 2019-03-03T19:02:34 Select field (Web) https://unimelb.edu.au Date date “” – –
10 2019-03-03T19:02:37 Paste (Web) https://unimelb.edu.au Date date “” 11/04/1986 –
11 2019-03-03T19:02:40 Edit field (Web) https://unimelb.edu.au Date date text 11-04-1986 –
12 2019-03-03T19:07:30 Select cell (Excel) StudentRecords Sheet1 C 2 +61 043 512 4834 –
13 2019-03-03T19:07:33 Copy cell (Excel) StudentRecords Sheet1 C 2 +61 043 512 4834 +61 043 512 4834
14 2019-03-03T19:07:40 Select field (Web) https://unimelb.edu.au Phone phone “” – –
15 2019-03-03T19:07:46 Paste (Web) https://unimelb.edu.au Phone phone “” +61 043 512 4834 –
16 2019-03-03T19:07:48 Edit field (Web) https://unimelb.edu.au Phone phone text 043-512-4834 –
17 2019-03-03T19:07:50 Select cell (Excel) StudentRecords Sheet1 D 2 Germany –
18 2019-03-03T19:07:52 Copy cell (Excel) StudentRecords Sheet1 D 2 Germany Germany
19 2019-03-03T19:07:55 Select field (Web) https://unimelb.edu.au Country of residence country “” – –
20 2019-03-03T19:07:57 Paste (Web) https://unimelb.edu.au Country of residence country “” Germany –
21 2019-03-03T19:07:59 Edit field (Web) https://unimelb.edu.au Country of residence country text Germany –
22 2019-03-03T19:08:02 Edit field (Web) https://unimelb.edu.au Student status status select Domestic –
23 2019-03-03T19:08:05 Edit field (Web) https://unimelb.edu.au Student status status select International –
24 2019-03-03T19:08:08 Click button (Web) https://unimelb.edu.au Submit submit submit – –
25 2019-03-03T19:08:12 Click button (Web) https://unimelb.edu.au New Record newRecord button – –
26 2019-03-03T19:08:15 Select cell (Excel) StudentRecords Sheet1 B 3 20/06/1987 –
27 2019-03-03T19:08:18 Copy cell (Excel) StudentRecords Sheet1 B 3 20/06/1987 20/06/1987
28 2019-03-03T19:08:21 Select field (Web) https://unimelb.edu.au Date date “” – –
29 2019-03-03T19:08:26 Paste (Web) https://unimelb.edu.au Date date “” 20/06/1987 –
30 2019-03-03T19:08:28 Edit field (Web) https://unimelb.edu.au Date date text 20-06-1987 –
31 2019-03-03T19:08:32 Select cell (Excel) StudentRecords Sheet1 C 3 +61 519 790 1066 –
32 2019-03-03T19:08:34 Copy cell (Excel) StudentRecords Sheet1 C 3 +61 519 790 1066 +61 519 790 1066
33 2019-03-03T19:08:36 Select field (Web) https://unimelb.edu.au Phone phone “” – –
34 2019-03-03T19:08:38 Paste (Web) https://unimelb.edu.au Phone phone “” +61 519 790 1066 –
35 2019-03-03T19:08:39 Edit field (Web) https://unimelb.edu.au Phone phone text 519-790-1066 –
36 2019-03-03T19:08:40 Select cell (Excel) StudentRecords Sheet1 A 3 Audrey Backer –
37 2019-03-03T19:08:41 Copy cell (Excel) StudentRecords Sheet1 A 3 Audrey Backer Audrey Backer
38 2019-03-03T19:08:42 Select field (Web) https://unimelb.edu.au Full Name name “” – –
39 2019-03-03T19:08:44 Paste (Web) https://unimelb.edu.au Full Name name “” Audrey Backer –
40 2019-03-03T19:08:46 Edit field (Web) https://unimelb.edu.au Full Name name text Audrey Backer –
41 2019-03-03T19:08:50 Select cell (Excel) StudentRecords Sheet1 D 2 Germany –
42 2019-03-03T19:08:52 Copy cell (Excel) StudentRecords Sheet1 D 2 Germany Germany
43 2019-03-03T19:08:58 Select cell (Excel) StudentRecords Sheet1 D 3 Australia –
44 2019-03-03T19:09:01 Copy cell (Excel) StudentRecords Sheet1 D 3 Australia Australia
45 2019-03-03T19:09:05 Select field (Web) https://unimelb.edu.au Country of residence country “” – –
46 2019-03-03T19:09:08 Paste (Web) https://unimelb.edu.au Country of residence country “” Australia –
47 2019-03-03T19:09:10 Edit field (Web) https://unimelb.edu.au Country of residence country text Australia –
48 2019-03-03T19:09:14 Edit field (Web) https://unimelb.edu.au Student status status select Domestic –
49 2019-03-03T19:09:20 Click button (Web) https://unimelb.edu.au Submit submit submit – –
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: Fragment of a user interaction log
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Our approach analyzes the log to identify and output a collection of executable
routine specifications. Each routine specification is a pair (c, Λ), where c is a se-
quence of UIs, or a candidate routine, and Λ is a set of data transformation steps.
Each data transformation step is a triplet that specifies: i) variables from which
the data was read, ii) variables to which the data was written, and iii) a function
capturing the data transformation (if any occurs). Such routine specifications can
be compiled into software bots that can be deployed on a tool like UiPath, 1 which
would be able to automatically replicate the routine.

In the following, we describe step-by-step how we generate a collection of
executable routine specifications from an input UI log.

3.1. Preprocessing and Normalization
Before diving into the details of this step, we formally define the concepts of

a user interaction and user interaction log, which we will refer to throughout this
and the following sections.

Definition 1 (User interaction (UI)). A user interaction (UI) is a tuple u =
(t,τ,Pτ ,Z,φ), where: t is a timestamp; τ is a UI type; Pτ is a set of parameters,
or payload; Z is a set of parameter values; and φ : Pτ → Z is a value assignment
function.

Table 2 shows UIs and their associated payloads recorded by the Action Log-
ger tool [10]. The UIs are logically grouped, based on their type, into three groups:
navigation; read; and write UIs. We assume that every UI is an instantiation of
one of the UI types from Table 2, with every parameter assigned with a specific
value.

Definition 2 (User interaction log). A user interaction log Σ is a sequence of
UIs Σ = 〈u1,u2, . . . ,un〉, ordered by their timestamps, i.e., ui|t < u j|t for any
i, jsuchthat1≤ i < j ≤ n.

Ideally, UIs recorded in a log should only relate to the execution of the task(s)
of interest. However, in practice, a log often also contains UIs that do not con-
tribute to completing the recorded task(s). We can consider such UIs to be noise.
Examples of noise UIs include a worker browsing the web (e.g., social network-
ing) while executing a task that does not require to do that, or a worker committing

1A commercial tool available at www.uipath.com
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UI UI Parameter Names
Group Type P1 P2 P3 P4 P5 P6

Navigation

Create New Tab (Web) ID
Select Tab (Web) URL ID Title
Close Tab (Web) URL ID Title

Navigate To (Web) URL
Add Worksheet (Excel) Workbook name Worksheet name

Select Worksheet (Excel) Workbook name Worksheet name
Select Cell (Excel) Workbook name Worksheet name Cell column Cell row Value

Select Range (Excel) Workbook name Worksheet name Range columns Range rows Value
Select Field (Web) URL Name ID Value

Read
Copy (Web) URL Name ID Value Copied content

Copy Cell (Excel) Workbook name Worksheet name Cell column Cell row Value Copied content
Copy Range (Excel) Workbook name Worksheet name Range columns Range rows Value Copied content

Write

Paste Into Cell (Excel) Workbook name Worksheet name Cell column Cell row Value Pasted content
Paste Into Range (Excel) Workbook name Worksheet name Range columns Range rows Value Pasted content

Paste (Web) URL Name ID Value Pasted content
Click Button (Web) URL Name ID Type
Click Link (Web) URL Inner text Href
Edit Field (Web) URL Name ID Type Value
Edit Cell (Excel) Workbook name Worksheet name Cell column Cell row Value

Edit Range (Excel) Workbook name Worksheet name Range columns Range rows Value

Table 2: User interaction types and their parameters

mistakes (e.g., filling a text field with an incorrect value or copying a wrong cell of
a spreadsheet). While we cannot detect the former kind of noise without a context-
aware noise filter, we can identify the latter type of noise. Given that noise in a
log may negatively affect the segmentation step, we attempt to remove it. Specif-
ically, the filter we implemented removes UIs whose effects are overwritten by
subsequent UIs, and certain navigation UIs that a software robot would not need
to replicate. To identify and remove such UIs, we rely on three search-and-replace
rules defined as regular expressions that operate as follows.

1. Remove UIs of type select cell, select range, select field (e.g., Table 1, rows
2, 4, 7);

2. Remove UIs of type copy that are not eventually followed by UI of type
paste before another UI of type copy occurs (e.g., Table 1, row 42);

3. Remove UIs of type edit cell, edit range, and edit field that are followed by
another UI of the same type that targets the same cell or field and overwrites
its content before a UI of type copy occurs (e.g., Table 1, row 22).

We note that, given an unsegmented log, it is impossible to apply the third rule
straightforward, as removing the first UI of type edit (considered redundant) may
be an error if the second UI of type edit belongs to a successive task execution.
Therefore, we postpone the application of the third rule after the segmentation
step. The filtering rules are applied recursively on the log until no more UIs are
removed and the log is assumed to be free of detectable noise. Devising and ap-
plying more sophisticated noise filtering algorithms would probably benefit the
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approach presented in this study. However, the design of such algorithms is out-
side the scope of this paper, and we leave it as possible future work.

After filtering the log, the vast majority of UIs are unique because they differ
by their unique payload. Note that even the UIs capturing the same action within
the same task execution (or different task executions) would appear different. To
discover each task execution recorded in the log, we need to detect all the UIs that
even having different payloads correspond to the same action within the same or
different task execution(s).

Given a UI, its payload can be divided into data parameters and context pa-
rameters. The former store the data values used during the execution of tasks, e.g.,
the value of text fields or copied content. Consequently, data parameters usually
have different values in different task executions. In contrast, the latter capture the
context in which UIs were performed, e.g., the application and the location within
the application. Therefore, context parameters of the same UI within a task are
likely to have the same values across different task executions. For example, the
payload of a UI of type copy cell has the following parameters (see also Table 2):
workbook name (the Excel file name); worksheet name (within the Excel file);
cell column (i.e., the column of the cell in the worksheet that was selected for the
UI); cell row (i.e., the row of the cell in the worksheet that was selected for the
UI); value (i.e., current value of the cell selected for the UI); copied content (the
content copied as the result of the UI). Here, workbook name, worksheet name,
cell column/row are context parameters, while copied content and value are data
parameters. Different context parameters characterize different UI types. For ex-
ample, a UI of type click button performed in a web browser has only these context
parameters: URL; name (i.e., the label of the button); ID (of the button, as an ele-
ment in the HTML page); and type. Often, context parameters are determined by
the type of UI. To reduce the chance of possible automated misinterpretations, we
allow the user to configure the context parameters of various UI types manually.

To segment an input UI log, we rely on the context parameters of the UIs. We
call a UI whose payload has been reduced to its context parameters a normalized
UI.

Definition 3 (Normalized UI). Given a UI u = (t,τ,Pτ ,Z,φ), the UI ū =
(t,τ, P̄τ , Z̄,φ) is its normalized version, where Z̄ contains only the values of the
parameters in P̄τ , where P̄τ is a set of context parameters.

Two normalized UIs u1 = (t1,τ, P̄τ , Z̄1,φ1) and u2 = (t2,τ, P̄τ , Z̄2,φ2) are equiva-
lent, denoted by u1 = u2 iff ∀p ∈ P̄τ ⇒ φ1(p) = φ2(p).
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A log in which all the UIs have been normalized is a normalized log, and we
refer to it with the notation Σ̄ = 〈ū1, ū2, . . . , ūn〉. Table 1 and Table 3 show, respec-
tively, a fragment of a log and its normalized version. Intuitively, in a normalized
log, the chances that two executions of the same task have the same sequence (or
set) of normalized UIs are high because they have only context parameters. We
leverage such a characteristic of the normalized log to identify its segments (i.e.,
start and end of each executed task), and then the routine(s) within the segments.

UI UI Payload
Row Timestamp Type P1 P2 P3 P4

1 2019-03-03T19:02:18 Click button (Web) http://www.unimelb.edu.au New Record newRecord button
2 2019-03-03T19:02:23 Copy cell (Excel) StudentRecords Sheet1 A –
3 2019-03-03T19:02:26 Paste (Web) http://www.unimelb.edu.au Full Name name –
4 2019-03-03T19:02:28 Edit field (Web) http://www.unimelb.edu.au Full Name name text
5 2019-03-03T19:02:31 Copy cell (Excel) StudentRecords Sheet1 B –
6 2019-03-03T19:02:37 Paste (Web) http://www.unimelb.edu.au Date date –
7 2019-03-03T19:02:40 Edit field (Web) http://www.unimelb.edu.au Date date text
8 2019-03-03T19:07:33 Copy cell (Excel) StudentRecords Sheet1 C –
9 2019-03-03T19:07:40 Paste (Web) http://www.unimelb.edu.au Phone phone –

10 2019-03-03T19:07:48 Edit field (Web) http://www.unimelb.edu.au Phone phone text
11 2019-03-03T19:07:50 Copy cell (Excel) StudentRecords Sheet1 D –
12 2019-03-03T19:07:55 Paste (Web) http://www.unimelb.edu.au Country of residence country –
13 2019-03-03T19:08:02 Edit field (Web) http://www.unimelb.edu.au Country of residence country text
14 2019-03-03T19:08:05 Edit field (Web) http://www.unimelb.edu.au Student status status select
15 2019-03-03T19:08:08 Click button (Web) http://www.unimelb.edu.au Submit submit submit
16 2019-03-03T19:08:12 Click button (Web) http://www.unimelb.edu.au New Record newRecord button
17 2019-03-03T19:08:17 Copy cell (Excel) StudentRecords Sheet1 B –
18 2019-03-03T19:08:21 Paste (Web) http://www.unimelb.edu.au Date date –
19 2019-03-03T19:08:28 Edit field (Web) http://www.unimelb.edu.au Date date text
20 2019-03-03T19:08:35 Copy cell (Excel) StudentRecords Sheet1 C –
21 2019-03-03T19:08:38 Paste (Web) http://www.unimelb.edu.au Phone phone –
22 2019-03-03T19:08:39 Edit field (Web) http://www.unimelb.edu.au Phone phone text
23 2019-03-03T19:08:40 Copy cell (Excel) StudentRecords Sheet1 A –
24 2019-03-03T19:08:42 Paste (Web) http://www.unimelb.edu.au Full Name name –
25 2019-03-03T19:08:43 Edit field (Web) http://www.unimelb.edu.au Full Name name text
26 2019-03-03T19:08:45 Copy cell (Excel) StudentRecords Sheet1 D –
27 2019-03-03T19:08:47 Paste (Web) http://www.unimelb.edu.au Country of residence country –
28 2019-03-03T19:08:49 Edit field (Web) http://www.unimelb.edu.au Country of residence country text
29 2019-03-03T19:08:52 Edit field (Web) http://www.unimelb.edu.au Student status status select
30 2019-03-03T19:08:53 Click button (Web) http://www.unimelb.edu.au Submit submit submit
. . . . . . . . . . . . . . . . . . . . .

Table 3: Normalized user interaction log after preprocessing

3.2. Segmentation
A log may capture long working sessions, where a worker performs multiple

instances of one or more tasks. The next step of our approach decomposes the
log into segments that identify the start and the end of each recorded task in the
log. Given a normalized log, we generate its control-flow graph (CFG). A CFG
is a graph where each vertex represents a different normalized UI, and each edge
captures a directly-follows relation between the two normalized UIs represented
by the source and the target vertices of the edge. A CFG has an explicit source
vertex representing the first normalized UI recorded in the log.

Given a log, the directly follows relation on UI is defined as follows.
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Definition 4 (Directly-follows relation). Let Σ̄= 〈ū1, ū2, . . . , ūn〉 be a normalized
log. Given two UIs, ūx, ūy ∈ Σ̄, we say that ūy directly-follows ūx, i.e., ūx ūy, iff
ūx|t < ūy|t ∧@ūz ∈ Σ̄ | ūx|t ≤ ūz|t ≤ ūy|t .

Definition 5 (Control-Flow Graph (CFG)). Given a normalized log, Σ̄ =
〈ū1, ū2, . . . , ūn〉, let Ā be the set of all the normalized UIs in Σ̄. A Control-Flow
Graph (CFG) is a tuple G=(V,E, v̂, ê), where: V is the set of vertices of the graph,
each vertex maps one UI in Ā; E ⊆ V ×V is the set of edges of the graph, and
each (vi,v j)∈ E represents a directly-follows relation between the UIs mapped by
vi and v j; v̂ is the graph entry vertex, such that ∀v ∈ V@(v, v̂) ∈ E ∧@(v̂,v) ∈ E;
while ê = (v̂,v0) is the graph entry edge, such that v0 maps ū1. We note that v̂ /∈V ,
and ê /∈ E, since they are artificial elements of the graph.

It is likely that a CFG is cyclic, since a loop represents the start of a new execution
of the task recorded in the log. Indeed, in an ideal scenario, once a task execution
ends with a certain UI (a vertex in the CFG), the next UI (i.e., the first UI of the
next task execution) should have already been mapped to a vertex of the CFG,
and a loop will be generated. In such a case, all the vertices in the loop represent
the UIs performed during the execution of the task. If several different tasks are
recorded in sequence in the same log, we would observe several disjoint loops in
the CFG, while if a task has repetitive subtasks, we would observe nested loops in
the CFG. Figure 3 shows the CFG generated from the log captured in Table 3, we
note that for simplicity we collapsed some vertices as shown in Figure 2.

Edit Field 
Full Name

Copy cell
A

Paste 
Full Name Edit Field

Full Name

[+]

(a) Before

Edit Field 
Full Name

Copy cell
A

Paste 
Full Name Edit Field

Full Name

[+]

(b) After

Figure 2: Collapsed vertices in Figure 3

Once the CFG is generated, we turn our attention to identifying its back-edges
(i.e., its loops). By identifying the CFG back-edges and their UIs, we extract the
start and end UIs of the repeated task. These UIs are used to mark the boundaries
between task executions. The back-edges of a CFG can be identified by analyzing
the CFG Strongly Connected Components (SCCs). Given a graph, an SCC is a
subgraph where for all its pairs of vertices, there exist a set of edges connecting
the pair of vertices such that all the sources and targets of these edges belong to
the subgraph.
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Figure 3: Example of a Control-Flow Graph

Definition 6 (CFG Path). Given a CFG G = (V,E, v̂, ê), a CFG path is a se-
quence of vertices pv1,vk = 〈v1, . . . ,vk〉 such that for each i ∈ [1,k− 1]⇒ vi ∈
V ∪{v̂}∧∃(vi,vi+1) ∈ E ∪{ê}.

Definition 7 (Strongly Connected Component (SCC)). Given a graph G =
(V,E, v̂, ê), a strongly connected component (SCC) of G is a pair δ = (V̄ , Ē),
where V̄ = {v1,v2, . . . ,vm} ⊆ V and Ē = {e1,e2, . . . ,ek} ⊆ E such that ∀vi,v j ∈
V̄∃pvi,v j | ∀v ∈ p⇒ v ∈ V̄ . Given an SCC δ = (V̄ , Ē), we say that δ is non-trivial
iff |V̄ |> 1. Given a graph G, ∆G denotes the set of all the non-trivial SCCs in G.

Algorithm 1 and Algorithm 2 describe how we identify the SCCs of the CFG.
Given a CFG G = (V,E, v̂, ê), we first build its dominator tree Θ (Algorithm 1,
line 2), which captures domination relations between the vertices of the CFG.
Figure 4 shows the dominator tree of the CFG in Figure 3. Then, we discover
the set of all non-trivial SCCs (∆G) by applying the Kosaraju’s algorithm [26] and
removing the trivial SCCs (Algorithm 1, line 3). For each δ = (V̄ , Ē) ∈ ∆G, we
discover its header using the dominator tree (Algorithm 2, line 1). The header of
a dominator tree δ is a special vertex ĥ∈ V̄ , such that ∀pv̂,v | v∈ V̄ ⇒ ĥ∈ pv̂,v, i.e.,
the header ĥ (a.k.a. the SCC entry) is the SCC vertex that dominates all the other
SCC vertices. Once we have ĥ, we can identify the back-edges as (v, ĥ) with v∈ V̄
(line 3). Finally, the identified back-edges are stored and removed (lines 4 and 5)
in order to look for nested SCCs and their back-edges by recursively executing
Algorithm 2 (line 11), until no more SCCs and back-edges are found. However,
if we detect an SCC that does not have a header vertex (formally, the SCC is
irreducible), we cannot identify the SCC back-edges. In such a case, we collect via
a depth-first search of the CFG the edges (vx,vy) ∈ Ē such that vy is topologically
deeper than vx - we call these edges loop-edges of the SCC (line 7). Then, out of
all the loop-edges, we store (and remove from the SCC) the one having target and
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Figure 4: Dominator tree

source connected by the longest simple path entirely contained within the SCC
(lines 8 to 9).

Given the CFG presented in Figure 3 and its corresponding dominator tree (see
Figure 4), we identify the SCC that consists of all the vertices except the entry ver-
tex. Then, by applying Algorithm 2, we identify: the SCC header – Click Button
[New Record]; and the only back-edge – (Click Button [Submit], Click Button
[New Record]), which we save and remove from the SCC. After the removal of
this back-edge, we identify the nested SCC that contains edits of Full Name, Date,
and Phone fields. Note that this second SCC does not have a header because it
is irreducible, due to its multiple entries (Edit Field [Full Name] and Edit Field
[Date]). However, by applying the depth-first search, we identify as candidate
loop-edge for removal: (Edit Field [Phone], Edit Field [Full Name]). After we
remove this edge from the CFG, no SCCs are left, so Algorithm 2 terminates.

At this point, we collected all the back-edges of the CFG. Next, we use them
to segment the log. We do so by applying Algorithm 3. First, we retrieve all the
targets and sources of all the back-edges in the CFG and collect their correspond-
ing UIs (lines 2 and 3). Each UI mapped onto a back-edge target is an eligible
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Algorithm 1: Back-edges detection
input : CFG G
output : Back-edges Set B

1 B←∅;
2 Dominator Tree Θ← computeDominatorTree(G);
3 Set ∆G← findSCCs(G);
4 foreach δ ∈ ∆G do AnalyseSCC(δ , Θ, B) ;

5 return B;

Algorithm 2: Analyse SCC
input : SCC δ = (V̄ , Ē), Dominator Tree Θ, Back-edges Set B

1 Header ĥ← findHeader(δ , Θ);
2 if ĥ 6= null then
3 Set I← getIncomingEdges(δ , ĥ);
4 B← B∪ I;
5 Ē← Ē \ I;
6 else
7 Set L← findLoopEdges(δ );
8 Edge e← getTheDeepestEdge(δ , L);
9 remove e from Ē;

10 Set ∆δ ← findSCCs(δ );
11 foreach γ ∈ ∆δ do AnalyseSCC(γ , Θ, B) ;

segment starting point (from now on, segment-start UI). A back-edge conceptu-
ally captures the end of a task execution, while its target represents the first UI
of the next task execution. By applying the same reasoning, each UI mapped
onto the source of a back-edge is an eligible segment ending point (hereinafter,
segment-end UI). Then, we sequentially scan all the UIs in the log (line 7). When
we encounter a segment-start UI (line 9), and we are not already within a segment
(see line 10), we create a new segment (s, a list of UIs), we append the segment-
start UI (ū), and we store it in order to match it with the correct segment-end
UI (line 11 to 14). Our strategy to detect segments in the log is driven by the
following underlying assumption: a specific segment-end UI will be followed by
the same segment-start UI so that we can match segment-end and segment-start
UIs exploiting back-edge’s sources and targets (respectively). If the UI is not a
segment-start (line 17), we check if we are within a segment (line 18) and, if not,
we discard the UI, assuming it is noise since it fell between the previous segment-
end UI and the next segment-start UI. Otherwise, we append the UI to the current
segment, and we check if this UI is a segment-end matching the current segment-
start UI (line 20). If that is the case, we reached the end of the segment, and we
add it to the set of segments (line 21); otherwise, we continue reading the segment.
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Algorithm 3: Segmentation
input : Normalized UI log Σ̄, Back-edges Set B
output : Segments List Ψ

1 Set Ψ←∅;
2 Set T ← getTargets(B);
3 Set S← getSources(B);
4 Boolean WithinSegment← false;
5 Normalized UI u0← null;
6 Queue s←∅;

7 for i← 1 to size
(
Σ̄
)

do
8 Normalized UI ū← getUI(Σ̄, i);
9 if ū ∈ T then

10 if WithinSegment = f alse then
11 s←∅;
12 append ū to s;
13 u0← ū;
14 WithinSegment← true;
15 else
16 append ū to s;

17 else
18 if WithinSegment = true then
19 append ū to s;
20 if ū ∈ S∧ (ū,u0) ∈ B then
21 Ψ←Ψ∪{s};
22 WithinSegment← f alse;

23 return Ψ;

Table 4 shows the segment-start and the segment-end UIs (highlighted in green
and red, respectively), which delimits two segments within the normalized UI log
of our running example (see also Table 3).

3.3. Candidates routines identification
Once the log has been segmented, we move to the identification of the can-

didate routines. The identification step is based on the CloFast sequence mining
algorithm [22]. To integrate CloFast in our approach, we have to define the struc-
ture of the sequential patterns we want to identify. In this paper, we define a
sequential pattern within a UI log as a sequence of normalized UIs always oc-
curring in the same order in different segments, yet allowing gaps between the
UIs belonging to the pattern. For example, if we consider the following three
segments: 〈u1,uy,u2,u3〉, 〈u1,u2,ux,u3〉, and 〈u1,ux,u2,u3〉; they all contain the
same sequential pattern that is 〈u1,u2,u3〉.

Furthermore, we define the support of a sequential pattern as the ratio of seg-
ments containing the pattern and the total number of segments. We refer to closed
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UI UI Payload
Row Timestamp Type P1 P2 P3 P4

1 2019-03-03T19:02:18 Click button (Web) http://www.unimelb.edu.au New Record newRecord button
2 2019-03-03T19:02:23 Copy cell (Excel) StudentRecords Sheet1 A –
3 2019-03-03T19:02:26 Paste (Web) http://www.unimelb.edu.au Full Name name –
4 2019-03-03T19:02:28 Edit field (Web) http://www.unimelb.edu.au Full Name name text
5 2019-03-03T19:02:31 Copy cell (Excel) StudentRecords Sheet1 B –
6 2019-03-03T19:02:37 Paste (Web) http://www.unimelb.edu.au Date date –
7 2019-03-03T19:02:40 Edit field (Web) http://www.unimelb.edu.au Date date text
8 2019-03-03T19:07:33 Copy cell (Excel) StudentRecords Sheet1 C –
9 2019-03-03T19:07:40 Paste (Web) http://www.unimelb.edu.au Phone phone –

10 2019-03-03T19:07:48 Edit field (Web) http://www.unimelb.edu.au Phone phone text
11 2019-03-03T19:07:50 Copy cell (Excel) StudentRecords Sheet1 D –
12 2019-03-03T19:07:55 Paste (Web) http://www.unimelb.edu.au Country of residence country –
13 2019-03-03T19:08:02 Edit field (Web) http://www.unimelb.edu.au Country of residence country text
14 2019-03-03T19:08:05 Edit field (Web) http://www.unimelb.edu.au Student status status select
15 2019-03-03T19:08:08 Click button (Web) http://www.unimelb.edu.au Submit submit submit
16 2019-03-03T19:08:12 Click button (Web) http://www.unimelb.edu.au New Record newRecord button
17 2019-03-03T19:08:17 Copy cell (Excel) StudentRecords Sheet1 B –
18 2019-03-03T19:08:21 Paste (Web) http://www.unimelb.edu.au Date date –
19 2019-03-03T19:08:28 Edit field (Web) http://www.unimelb.edu.au Date date text
20 2019-03-03T19:08:35 Copy cell (Excel) StudentRecords Sheet1 C –
21 2019-03-03T19:08:38 Paste (Web) http://www.unimelb.edu.au Phone phone –
22 2019-03-03T19:08:39 Edit field (Web) http://www.unimelb.edu.au Phone phone text
23 2019-03-03T19:08:40 Copy cell (Excel) StudentRecords Sheet1 A –
24 2019-03-03T19:08:42 Paste (Web) http://www.unimelb.edu.au Full Name name –
25 2019-03-03T19:08:43 Edit field (Web) http://www.unimelb.edu.au Full Name name text
26 2019-03-03T19:08:45 Copy cell (Excel) StudentRecords Sheet1 D –
27 2019-03-03T19:08:47 Paste (Web) http://www.unimelb.edu.au Country of residence country –
28 2019-03-03T19:08:49 Edit field (Web) http://www.unimelb.edu.au Country of residence country text
29 2019-03-03T19:08:52 Edit field (Web) http://www.unimelb.edu.au Student status status select
30 2019-03-03T19:08:53 Click button (Web) http://www.unimelb.edu.au Submit submit submit
. . . . . . . . . . . . . . . . . . . . .

Table 4: Segments identification

patterns and frequent patterns (relatively to an input threshold) as they are known
in the literature. Specifically, a frequent pattern is a pattern that appears in at
least a number of occurrences indicated by the threshold, while a closed pattern
is a pattern that is not included in another pattern having exactly the same sup-
port. By applying CloFast to the log segments, we discover all the frequent closed
sequential patterns.

Some of these patterns may be overlapping, which (in our context) means that
they share some UIs. An example of overlapping patterns is the following, given
three segments: 〈u1,uy,u2,u3,ux,u4〉, 〈u1,uy,u2,ux,u3,u4〉, and 〈u1,ux,u2,u3,u4〉;
〈u1,u2,u3,u4〉 and 〈u1,ux,u4〉 are sequential patterns, but they overlap due to the
shared UIs: u1 and u4. In practice, each UI belongs to only one routine, therefore,
we are interested in discovering only non-overlapping patterns. For this purpose,
we implemented an optimization that we use on top of CloFast. Given the set of
patterns discovered by CloFast, we rank them by a pattern quality criterion, and
we select the best pattern (i.e., the top one in the ranking). We integrated four
pattern quality criteria to select the candidate routines: pattern frequency, pattern
length, pattern coverage, and pattern cohesion score [17]. Pattern frequency con-
siders how many times the pattern was observed in different segments. Pattern
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length considers the length of the patterns. Pattern coverage considers the per-
centage of the log that is covered by all the pattern occurrences. Finally, pattern
cohesion score considers the level of adjacency of the elements inside a pattern. It
is calculated as the difference between the pattern length and the median number
of gaps between its elements. In other words, cohesion prioritizes the patterns
whose UIs appear consecutively without (or with few) gaps while taking into ac-
count also the pattern length.

For the candidate routine that we identified as the best pattern for a given
quality criterion, we collect and remove all its occurrences from the log. An
occurrence of a candidate routine is called a routine instance. Formally, a routine
instance is a sequence of (non-normalized) UIs, e.g., r = 〈u1,u2,u3,u4〉. After
the removal of all the instances of the best candidate routine from the log, we
repeat this identification step until no more candidate routines are identified. At
the completion of this step, we obtain a set of candidate routines, referred to as
CΣ, such that, for each candidate routine ci ∈ CΣ, we can retrieve the set of its
routine instances, referred to as Rci .

Considering our running example, with reference to Table 4, assuming that
the two routine instances that we identified in the previous step (by detecting their
segment-start and segment-end UIs) frequently occur in the original log (a snap-
shot of which is captured in Table 1), and choosing length as a selection criterion,
at the end of this step, we would discover two candidate routines, each consisting
of 15 normalized UIs (as shown in Table 4). An example of a routine instance
for each of the two candidate routines can be easily observed in the original log,
Table 1 rows 1 to 24 and 25 to 49 (excluding the UIs filtered in the first step of our
approach).

3.4. Automatability assessment
The candidate routines in CΣ (and their instances, Rci) that we identified in

the previous step represent behavior recorded in the log that frequently repeats
itself, thus it is the candidate for automation. However, the fact that a routine is
frequently observed in a log is not a sufficient condition to guarantee its automata-
bility. Let us consider the following example; a worker fills in and submits 100
times the same web-form, doing it always with the same sequence of actions but
inputting manually-generated data (e.g., received over a phone call or copied from
a hard-copy document). In such a scenario, although we would identify the filling
and submission of the web-form as a candidate routine, we would not be able to
automate it because we cannot automatically generate the data in input to the web-
forms. On the other hand, if the data in input to the web-forms was copied from
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another digital document, for example a spreadsheet, we could probably automate
the routine.

Considering such a context, the next step of our approach is to assess the
degree of automatability of the discovered candidate routines. To do so, given
a candidate routine ci ∈ CΣ, we check whether all its UIs are deterministic. We
consider a UI to be deterministic if a software robot can replicate its execution.
This is possible when: i) the input data of a UI can be determined automatically;
or ii) the input data of a UI can be provided as input by the user when deploying
the software robot. According to such constraints, we can provide the following
rules to check whether a UI is deterministic or not.

1. UIs belonging to the navigation group (see Table 2) are always deterministic
because they do not take in input any data; except the select cell, select field,
and select range UIs which are removed during the filtering of the log (as
described in Section 3.2);

2. UIs belonging to the read group are always deterministic because the only
input they require is the source of the copied content (e.g., row and column
of a cell), which is either constant or can be inputted by the user when
deploying the software robot in UiPath;

3. UIs belonging to the write group that are of type click are always deter-
ministic because they do not take in input any data, except the information
regarding the element to be clicked which is always constant for a given
candidate routine (by construction);

4. UIs belonging to the write group that are of type paste are always deter-
ministic because they always retrieve data from the same source (i.e., the
system clipboard).

5. UIs belonging to the write group that are of type edit are the only ones that
are not always deterministic. In fact, these UIs are deterministic only if it
is possible to determine the updated value of the edited elements (e.g., the
value of a cell in a spreadsheet or of a text field in the web browser after
the UI is executed). Furthermore, it has also to be possible to determine the
target of the editing, although this is usually constant (if a web element) or
can be inputted by the user when deploying the software robot in UiPath.

Algorithm 4 shows how we check these five rules given as input a candidate
routine ci and its routine instances Rci , and how we compose the corresponding
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Algorithm 4: Routine automatability assessment
input : Candidate Routine ci, Routine Instances Set Rci
output : Routine Specification (ci, Λ)

1 Set Λ←∅;
2 Set E←{ “edit cell”, “edit range”, “edit field” };
3 Queue D←∅;

4 foreach Normalized UI ū ∈ ci do
5 if getType(ū) /∈ E then
6 append ū to D;
7 else
8 k← checkUIofTypeEdit(ū, ci, Rci );
9 Boolean d← getDeterministic(k);

10 if d = true then
11 append ū to D;
12 Λ← Λ ∪ getTransformationStep(k);

13 return (ci, Λ)

routine specification of the input ci. The algorithm starts by initializing the set E
as a collection of edit UI types (edit cell, edit range, edit field). Then, it iterates
over all the normalized UIs in the input ci by checking their types. If the type of
a normalized UI ū is not in E (line 6), i.e., one of the rules 1 to 4 applies, we add
it to the queue D, which stores all the deterministic UIs we identified. Otherwise,
rule 5 applies. While rules 1 to 4 are simple checks on the UI types, the com-
plexity of rule 5 required us to operationalize it through a separate algorithm, i.e.,
Algorithm 5, which is called within Algorithm 4 (line 8). Algorithm 5 returns a
pair (d,λ ), where d is a boolean (true if the input normalized UI is deterministic),
and λ is a data transformation step required to automate ū and therefore available
only if ū is deterministic. Once all the normalized UIs in the input ci have been
checked, Algorithm 4 outputs the routine specification of ci, as the pair (ci, Λ),
where Λ is the set of all the data transformation steps we collected by executing
Algorithm 5 (line 8).

Before moving to the final step of our approach, we describe how Algorithm 5
verifies whether an input (normalized) UI of type edit (ū) is deterministic. In
essence, Algorithm 5 checks whether the value of the element edited by the ex-
ecution of ū can be deterministically computed from the UIs observed before ū
(in all the routine instances in Rci). To do so, the algorithm looks for a possible
data transformation function to compute the value of the edited element from the
payloads of the UIs observed before ū. If such a data transformation function ex-
ists, ū is considered to be deterministic, and the algorithm returns the identified
function in the form of a data transformation step (which also includes source(s)
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Algorithm 5: Check UI of Type Edit
input : Normalized UI ū, Candidate Routine ci, Routine Instances Set Rci
output : Boolean d, Transformation Step λ

1 Boolean d← false;
2 Set C←{ “copy cell”, “copy range”, “copy field” };
3 Set E←{ “edit cell”, “edit range”, “edit field” };
4 Set P←{ “paste into cell”, “paste into range”, “paste” };
5 Set T ←∅;
6 Set Π←∅;
7 Set K←∅;
8 Integer n← getPosition(ū, ci);

9 foreach r ∈Rci do
10 UI u1← get(r, n);
11 K← K∪{u1};
12 t1← getTargetElement(u1);
13 o← getParameterValue(u1, “Value”);
14 Queue S←∅;
15 Queue I←∅;
16 for i← n to 1 do
17 UI u2← get(r, i);
18 Π←Π∪{(r,u2)};
19 if getType(u2) ∈ P then
20 t2← getTargetElement(u2);
21 if t2 = t1 then
22 for j← i to 1 do
23 UI u3← get(r, j);
24 if getType(u3) ∈C then
25 s← getTargetElement(u3);
26 append s to S;
27 append getParameterValue(u3, “Value”) to I;
28 break

29 else
30 if getType(u2) ∈ E then
31 t2← getTargetElement(u2);
32 if t2 = t1 then
33 push t2 to S;
34 push getParameterValue(u2,“Value”) to I;
35 break

36 T ← T ∪{(I,o)};

37 Transformation χ ← discoverTransformation(T );
38 if χ 6= null then
39 d← true;
40 λ ← (S, target, χ);
41 else
42 Set D← discoverDependencies(K, Π);
43 if D 6=∅ then
44 d← true;
45 S← getSources(D);
46 χ ← extractTransformation(D);
47 λ ← (S, target, χ);

48 return (d,λ )
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and target of the data transformation function). In the following, we walk through
Algorithm 5.

We start by assuming that the UI in input is not deterministic, and we try to
prove the opposite. We initialize to false the boolean variable which we will output
at the end of the algorithm (line 1), and we create the necessary data structures
(line 2 to 7). Given the input candidate routine ci and the normalized UI ū, we
extract the index of ū within ci (line 8). Then, for each routine instance r ∈Rci ,
we do what follows.

We get the instance of the normalized UI ū2 by retrieving the UI of index n
from r (line 10), and we store this UI (u1) in the set K (line 11). We read the
payload of u1 to retrieve the target element (t1, line 12), t1 can be the ID of a
web browser element or the location of a cell in a spreadsheet. Also, we read
the payload of u1 to retrieve the value of the target element after the editing (o,
line 13). We initialize two queues, S (which stands for sources) and I (which
stands for inputs). Queue S stores the ID or location of the (source) element(s)
that produced the data used by the edit UI instance u1; while queue I stores the
data that was used by the edit UI instance u1.

After this initialization, we iterate over all the UI instances preceding u1 in r.
Such an iteration goes backward from u1 (position n in r) till the first UI instance
in r (position 1) – line 16 to 35, unless we identify another UI instance of type
edit performed on the same target element t1 (see lines 30 to 32). In the iteration
captured between line 16 to 35, we do the following.

We store all the preceding UI instances (u2) into the set Π, alongside the rou-
tine instance they belong to (i.e., we store a pair (r,u2) in Π). For each encountered
u2 of type paste, we check its target element and we compare it to the target ele-
ment of u1. If they are the same, we again traverse backward the routine instance
from the paste UI until we find a copy UI u3 (line 19 to 28).3. Then, we retrieve
the target element of u3 and we append it to queue S, and we add the copied value
of u3 to queue I (lines 26 and 27).

For each encountered u2 of type edit (line 30), we check its target element and
we compare it to the target element of u1. If they are the same (line 32), we push
the target element of u2 to the front of queue S, and we push the data content of
the target element after the editing performed by u2 to the front of the queue I

2We recall that a UI instance contains all the parameters, both context and data ones.
3Our filtering approach, described in Section 3.2 guarantees that there exists a u3 of type copy

preceding the paste UI
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(line 33 and 34). When we reach this point, we also stop the iteration over all the
UI instances preceding u1 because the value of the target element after performing
u1 is obtained from the last edit UI performed on the same target element and any
other UI (i.e., paste UIs) between u2 and u1.

Finally, before moving to the next routine instance (i.e., returning to line 9),
we store the input data and the output data observed in the current routine instance
for the normalized UI ū in the set T , which collects all the input and output data
observed for all the instances of ū (see line 36).

After performing all the above steps for each routine instance r ∈Rci , and col-
lecting all the required data to identify a possible data transformation function into
the sets T,K, and Π, we look for the data transformation function by leveraging
two state-of-the-art tools: Foofah [27] and TANE [28]. First, we try to identify the
data transformation function using Foofah, then – if Foofah fails – we use TANE.

Foofah requires in input two series of data values, one referred to as input and
one referred to as output. We generate the two series from the pairs (I,O) that
we collected in T , which capture examples of data transformations. From these
examples, Foofah tries to synthesize an optimal data transformation function to
convert input(s) to output.4 We note that we run Foofah under the assumption that
the output series is noise- and error-free, i.e., the analyzed data transformations
are supposed to be correct.

However, Foofah suffers from two limitations: it is inefficient when the size of
the input and output series is large; it cannot discover conditional data transforma-
tion functions (where different manipulations are applied depending on the input).
Hence Foofah cannot deal with heterogeneous data. To address these limitations,
we group the data transformation examples into equivalence classes, where each
class represents a different structural pattern of the input data. To create these
equivalence classes, for each data sample in the input data series, we discover its
symbolic representation describing its structural pattern by applying tokenization.
The tokenization that we apply replaces each maximal chained subsequence of
symbols of the same type (either digits or letters) with a special token character
(〈d〉+ or 〈a〉+, resp.), and leaves any other symbol unaltered. For each equiv-
alence class, we discover a data transformation function by providing to Foofah
one randomly selected data transformation example from the equivalence class.
The use of equivalence classes allows us to remove the heterogeneity of the input
data and to facilitate the application of Foofah, which will operate only on a single

4For more details about Foofah refer to [27].
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data transformation example.
If Foofah cannot identify a data transformation function (line 41), we turn to

TANE, which can discover semantical data transformation functions (also known
as functional dependencies [28]). TANE requires in input a table where each row
contains n− 1 input data values and an output data value in column n (this is
conceptually similar to the input and output series required by Foofah). TANE
analyzes each row of such a table to check if there exists any dependency between
the values in the first n− 1 columns and the value in column n.5 An example of
a semantical data transformation function discovered by TANE would be: if the
value of column i is X, then the value of column n is always Y.

In our context, the input table for TANE is a table where each row represents
the output data observed in all the UIs preceding ū in a routine instance, and the
last element of the row is the output data of the ū instance in that routine (i.e., the
value of the element edited by the execution of ū in that routine instance). To build
such a table, we require in input all the instances of ū (which we stored in the set
K) as well as all the instances of any UI preceding ū (which we stored in the set Π).
If TANE identifies a semantical data transformation function (line 43), we set ū
as deterministic (through the boolean d), and we compose the data transformation
step using the output of TANE (see lines 44 to 47).

Table 5 shows an example of the dependency table that we would build from
the log captured in Table 1 (assuming that the full-length UIs log contains nine
instances of the routine showed in rows 1 to 24). Giving Table 5 in input to
TANE, it would identify that the value of the last column (i.e., the type of student,
domestic or international) can be deterministically generated by observing the
value of column four (i.e., country of residence).

Full name Date Phone Country of residence Target
Albert Rauf 11-04-1986 043-512-4834 Germany International
John Doe 11-03-1986 024-706-5621 Australia Domestic

Steven Richards 18-06-1986 088-266-0827 Australia Domestic
Hilda Diggle 31-07-1993 073-672-5593 New Zealand International
Luca Bianchi 19-10-1998 029-211-4904 Italy International

Igor 13-08-1993 040-656-3417 Ukraine International
Ben Stanley 03-12-1991 244-557-2104 Australia Domestic

Olga Mykolenchuk 11-04-2000 956-045-0703 Ukraine International
Daniel Brown 06-04-1994 032-660-0403 New Zealand International

Table 5: Example of a dependency table.

5For more details about TANE refer to [28].
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If also TANE does not discover any data transformation function, it means that
we are not able to automatically determine the value of the element edited by the
execution of ū, consequently we assume that ū is not deterministic. Otherwise, we
output the data transformation step discovered.

χ1(I) =    

O = I 

χ2(I) =  

For pattern <d>+.<d>+.<d>+:  

t = f_split(I, 0, ʿ.ʾ) 

t = f_join_char(t,1, ʿ-ʾ) 

O = f_join_char(t, 0, ʿ-ʾ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For pattern <d>+/<d>+/<d>+:  

t = f_split(I, 0, ʿ/ʾ) 

t = f_join_char(t,1, ʿ-ʾ) 

O = f_join_char(t, 0, ʿ-ʾ) 

χ3(I) =   

t = f_split_first(I, 0, ʿ ʾ) 

t = f_drop(t, 0) 

t = f_split_w(t, 0) 

t = f_join_char(t, 1, ʿ-ʾ) 

O = f_join_char(t, 0, ʿ-ʾ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ4(I) =  

O = I 

 χ5(I) =  

I → O: 

[“Germany”] → “International” 

[“Australia”] → “Domestic” 

[“New Zealand”] → “International” 

[“Italy”] → “International” 

[“Ukraine”] → “International”

Figure 5: Transformation functions discovered from the running example

Transformation step Sources Target Transformation function
λ1 Cell A Full Name χ1
λ2 Cell B Date χ2
λ3 Cell C Phone χ3
λ4 Cell D Country χ4
λ5 Country Status χ5

Table 6: Transformation steps

Considering our running example, Figure 5 shows the data transformations
functions discovered by Foofah (t1 to t4) and by TANE (t5) when running Algo-
rithm 5 on an hypothetical extended version of the UI log in Table 1 and giving
as input the routine shown in rows 1 to 24 (Table 1) along all its instances, and
the edit UIs at rows 6, 11, 16, 21, 23 (respectively, for identifying the data trans-
formation functions from t1 to t5). Each data transformation function shows how
input data is turned into output data. Although some rules are intuitive to interpret
(e.g., t1 and t5), others may appear slightly cryptic. We refer to Foofah [27] and
TANE [28] original studies for an extensive description of the set of rules that the
two tools are capable to discover.

Finally, the data transformation functions are integrated into the data transfor-
mation steps, which also include the instantiation of the input and the output of
the function, as shown in Table 6.

3.5. Routines aggregation
When a routine can be performed by executing a set of UIs without following a

strict order, we may observe multiple execution variants of the same routine in the
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log. For example, if a worker needs to copy the first name, the family name, and
the phone number of a set of customers from a spreadsheet to different web-forms,
she may choose to copy the data of each customer in any order (e.g., first name,
phone number, and family name, or family name, phone number, first name). In
such a scenario, the UI log would record several different execution variants of the
same routine. Routine execution variants do not bring any additional value, rather
they just generate redundancy within the log leading to the discovery of different
routine specifications that would actually execute (once deployed as software bots)
the same routine. Considering these routine specification as duplicates, this final
step focuses on their removal.

To identify duplicate routine specifications, we start by generating for each
routine discovered in the previous step its data transformation graph.

Definition 8 (Data Transformation Graph). Given a routine specification (ci,
Λ), its data transformation graph is a graph GΛ = (DΛ,LΛ), where: DΛ is the
set of vertices of the graph, and each vertex d ∈ DΛ maps one data transforma-
tion step λ ∈ Λ; LΛ ⊆ DΛ×DΛ is the set of edges of the graph, and each edge
(di,d j)∈ LΛ represents a dependency between two data transformation steps cap-
turing the fact that the target of the data transformation step mapped by di is (one
of) the source(s) of the data transformation step mapped by d j.

Figure 6 shows the data transformation graph of the routine we discovered in the
previous step in our running example.

Data transformation graphs can be used to check whether two routine speci-
fications are equivalent, in fact, two routine specifications, (ci, Λ1) and (c j, Λ2),
are equivalent if and only if the following two relations hold: i) their data trans-
formation graphs are the same, i.e., DΛ1 = DΛ2 and LΛ1 = LΛ2; ii) their candidate
routines ci and c j contain the same set of UIs, and all the UIs of type click button
appear in the same order in both ci and c j.

({Cell A}, Full Name, χ1) ({Cell B}, Date, χ2) ({Cell C}, Phone, χ3)

({Cell D}, Country, χ4) ({Country}, Status, χ5)

Figure 6: Data transformation graph example
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By comparing each pair of routine specifications, we first create sets of equiv-
alent routine specifications, and, for each set, we discard all the routine specifica-
tions but one. Ideally, we would like to retain the best routine specification of each
set, however, we need to define what it means to be the best one. We can select
the best routine specification by relying on different quantitative metrics, such as
frequency, length, or duration of the candidate routine of a routine specification.
For example, we can choose frequency as a selection criterion and retain from
each set the routine specification whose candidate routine is the most frequent in
the UI log.

Intuitively, the most frequent candidate routine represents the common routine
execution, so that one may be tempted to use that criterion by default. However,
the most frequent routine execution is not necessarily the optimal execution. For
example, length or duration could represent better selection criteria. Length pri-
oritizes short candidate routines over long ones, assuming that a candidate routine
should comprise as few steps as possible. Duration prioritizes execution times
over the number of steps. The duration of a candidate routine can be estimated as
the average execution time of each routine instance of the candidate routine that
is recorded in the UI log. Note, however, that the duration could be not always re-
liable since during the routine execution, the worker might perform activities that
do not appear in the log or that are not relevant for the routine execution, thus in-
voluntarily increasing the observed execution time of the routine. For this reason,
we implemented a combination of length and frequency to select the best routine
specification from each set. Precisely, we use length first and then compare the
frequencies of the candidate routines having the same length.

4. Evaluation

We implemented our approach as an open-source Java command-line appli-
cation6 and also embedded this in the open-source tool Robidium [7]. Using the
command-line application, we conducted a series of experiments to analyze the
applicability of our approach in real-life settings. Specifically, we assessed to
what extent our approach can rediscover routines that are known to be recorded in
the input UI logs, and analyzed whether our approach is able to correctly identify
automatable and not automatable user interactions within such routines.

Accordingly, we define the following research questions:

6Available at https://github.com/volodymyrLeno/RPM_Miner
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• RQ1. Does the approach discover candidate routines that are known to exist
in a UI log?

• RQ2. Does the approach discover automatable routines that are known to
be present in a UI log?

4.1. Datasets
To answer our research questions, we rely on a dataset of 13 logs. These logs

can be divided into three subgroups: artificial logs, real-life logs recorded in a
supervised environment, and real-life logs recorded in an unsupervised environ-
ment.7 Table 7 shows the logs characteristics.

UI Log # Routine # Task # Actions # Actions per
Variants Traces trace (Avg.)

CPN1 1 100 1400 14.000
CPN2 3 1000 14804 14.804
CPN3 7 1000 14583 14.583
CPN4 4 100 1400 14.000
CPN5 36 1000 8775 8.775
CPN6 2 1000 9998 9.998
CPN7 14 1500 14950 9.967
CPN8 15 1500 17582 11.721
CPN9 38 2000 28358 14.179
Student Records (SR) 2 50 1539 30.780
Reimbursement (RT) 1 50 3114 62.280
Scholarships 1 (S1) - 693
Scholarships 2 (S2) - 509

Table 7: UI logs characteristics.

The artificial logs (CPN1–CPN9) were generated from Colored Petri Nets
(CPNs) in [3]. The CPNs used have increasing complexity, from low (the net used
to generate CPN1) to high (the net used for CPN9). The underlying routines are
characterized by a varying amount of non-deterministic user interactions injected.
They involve simple data transformations, mostly in the form of copy-pasting.
The logs generated were originally noise-free and segmented. We removed the
segment identifiers to produce unsegmented logs.

7The real-life logs were recorded with the Action Logger tool [10]. All the logs are available
at https://doi.org/10.6084/m9.figshare.12543587
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The Student Records (SR) and Reimbursement (RT) logs record the simulation
of real-life scenarios. The SR log simulates the task of transferring students’
data from a spreadsheet to a Web form. The RT log simulates the task of filling
reimbursement requests with data provided by a claimant. Each log contains fifty
recordings of the corresponding task executed by one of the authors, who followed
strict guidelines on how to perform the task. These logs contain little noise, which
only accounts for user mistakes, such as filling the form with an incorrect value
and performing additional actions to fix the mistake. For both logs, we know
how the underlying task was executed, and we treat such information as ground
truth when evaluating our approach. While the routines captured in the logs are
fully automatable, they include complex transformations to test the automatability
assessment step of the approach.

Finally, the Scholarships logs (S1 and S2) were recorded by two employees
of the University of Melbourne who performed the same task. It is the task of
processing scholarship applications for international and domestic students. This
task mainly consists of students’ data manipulation with transfers between spread-
sheets and Web pages. Compared to the other logs used in our experiences, we
have no a-priori knowledge of how to perform the task at hand (no ground truth).
Also, when recording the logs, the University employees were not instructed to
perform their task in a specific manner, i.e., they were left free to perform this task
as they would normally do when unrecorded.

4.2. Setup
To measure the quality of the discovered candidate routines, we use the Jac-

card Coefficient (JC), which captures the level of similarity between discovered
and ground truth routines. JC does not penalize the order of the interactions in
a routine, which follows from the assumption that a routine could be executed
by performing some actions in a different order. The JC between two routines
is the ratio n

m , where n is the number of user interactions that are contained in
both routines, while m is the total number of user interactions present in the two
routines.

Given the set of discovered routines and the set of ground truth routines, for
each discovered routine, we compute its JC with all the ground truth routines and
assign the maximum JC to the discovered routine as its quality score. Finally, we
assess the overall quality of the discovered routines as the average of the JC of
each discovered routine. As the ground truth, we use the segments of the artificial
logs and the guidelines given to the author who performed the tasks in SR and
RT.
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The JC alone is not enough to assess the quality of the discovered routines, as
this measure does not consider the routines we may have missed in the discovery.
Thus, we also measure the total coverage to quantify how much log behavior is
captured by the discovered routines. We would like to reach high coverage with
as few routines as possible. Thus, we prioritize long routines over short ones by
measuring the average routine length alongside its coverage.

We assess the quality of the automatable routines discovery by measuring
precision, recall and F-score. For each discovered routine, we compute the cor-
responding confusion matrix, where true positives (TP) are correctly identified
automatable user interactions, true negatives (TN) are correctly identified non-
automatable user interactions, false positives (FP) are the user interactions that
were wrongly marked as automatable, and false negatives (FN) are the user in-
teractions that were wrongly marked as non-automatable. From the constructed
confusion matrix, we calculate precision, recall and F-score as follows:

Precision =
T P

T P+FP
, (1)

Recall =
T P

T P+FN
, (2)

F-score = 2 · Precision ·Recall
Precision+Recall

. (3)

We report the averages of these metrics for all the discovered routines in the
log. We also report the average ratio of automatable user interactions for the
routines in the log.

The results for the S1 and S2 logs were qualitatively assessed with the help of
the University of Melbourne employees who performed the task. Specifically, we
asked them to compare the rediscovered routines with the actions they performed
while recording.

All experiments were conducted on a Windows 10 laptop with an Intel Core
i5-5200U CPU 2.20 GHz and 16GB RAM, using cohesion as a routine selection
criterion with the minimum support threshold set to 0.1 and the minimum cover-
age threshold equal to 0.05.

4.3. Results
Table 8 shows the quality of the discovered routine candidates. Although

the synthetic logs only contain the user interactions that belong to routines, we
achieved perfect coverage for three logs only, namely CPN1, CPN4 and CPN6.
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This is because some execution patterns were observed very rarely. Since the
SR and RT logs contain noise, the coverage cannot be 1 in these two cases. For
six logs out of eleven logs, the discovered routines match with the ground truth.
Overall, the JC is very high, above 0.95 for all the logs except CPN5. The underly-
ing model of the CPN5 log consists of multiple branches, generating 36 different
executions. Considering the fact that some execution patterns are not frequent
enough, we discovered only partial routines. As can be seen clearly, for this log
we also achieved the lowest coverage (0.84). For the RT log we found two rou-
tines consisting of an identical set of actions. These routines were not merged
though, because they are characterized by different transformation functions.

UI Log # Routines Length Length Total JC
discovered (Max) (Avg.) coverage

CPN1 1 14 14.00 1.00 1.000
CPN2 2 15 14.50 0.95 1.000
CPN3 3 19 14.33 0.93 1.000
CPN4 4 14 14.00 1.00 1.000
CPN5 8 8 7.38 0.84 0.880
CPN6 2 11 10.00 1.00 1.000
CPN7 7 10 9.43 0.93 0.971
CPN8 6 18 10.67 0.91 0.967
CPN9 6 18 14.67 0.95 1.000
SR 2 31 30.00 0.917 0.967
RT 2 61 61.00 0.903 0.967

Table 8: Candidates identification

Table 9 shows the quality of the automatable routines discovery. We correctly
identified all the automatable and not automatable user interactions for the CPN3,
CPN6 and SR logs. The routines recorded in the CPN3 and SR logs are fully au-
tomatable. Although the RT log contains automatable routines only, our approach
failed to discover some of the underlying transformations, and, therefore, incor-
rectly marked some interactions as not automatable. Some of the user interactions
of the synthetic logs were wrongly identified as automatable. Although the data
values of such interactions can be deterministically computed, the locations of the
edited elements were completely random as it was intended in the corresponding
models. Thus, in practice, such interactions are not automatable. The routines
discovered from the CPN5 log are characterized by the lowest number of au-
tomatable user interactions, and we achieved the lowest recall for this log (0.805).
Overall, F-score is high, above 0.85 for all the logs, except CPN7 and CPN8. For
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these logs we also achieved the lowest recall, meaning that some interactions of
the corresponding routines were wrongly identified as not automatable. Although
in the CPN models used to generate the artificial logs, some of the interactions are
not deterministic, they are automatable in the context of the discovered routines.
For example, for the CPN9 log we discovered six routines that correspond to the
different branches within the model. For all the executions of a branch we use the
same data values, and hence, the corresponding user interactions are automatable.

UI Log RAI Precision Recall F-score
(Avg.) (Avg.) (Avg.) (Avg.)

CPN1 1.000 0.928 1.000 0.963
CPN2 0.931 0.926 1.000 0.961
CPN3 1.000 1.000 1.000 1.000
CPN4 0.786 1.000 0.846 0.917
CPN5 0.728 0.812 1.000 0.896
CPN6 0.742 1.000 1.000 1.000
CPN7 0.546 0.907 0.805 0.841
CPN8 0.612 0.897 0.823 0.845
CPN9 0.741 0.951 0.886 0.916
SR 1.000 1.000 1.000 1.000
RT 0.967 1.000 0.967 0.983

Table 9: Automatable routines discovery

From the S1 log we discovered five fully automatable routines. The first rou-
tine consists in manually adding graduate research student applications to the stu-
dent record in the university’s student management system. The application is
then assessed, and the student is notified of the outcome. The second routine con-
sists in lodging a ticket to verify possible duplicate applications. When a new ap-
plication is entered in the system and its data matches an existing application, the
new application is temporarily put on hold, and the employee fills in and lodges a
ticket to investigate the duplicate. The remaining three routines represent excep-
tional cases, where the employee either executed the first or the second routine in
a different manner (i.e., by altering the order of the actions or overlapping rou-
tines executions). These routines were not identified as duplicate because they are
characterized by different sequences of button clicks.

To assess the results, we showed the discovered routines to the employee of
the University of Melbourne who recorded the S1 log, and they confirmed that the
discovered routines correctly capture their task executions. Also, they confirmed
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that the last three routines are alternative executions of the first routine.8

While the results from the S1 log were positive, our approach could not dis-
cover any correct routine from the S2 log. By analyzing the results, we found out
that the employee worked with multiple worksheets at the same time, frequently
switching between them for visualization purposes. Such behavior recorded in
the log negatively affects the construction of the CFG and its domination tree,
ultimately leading to the discovery of incorrect segments and routines.

Table 10 shows the execution time for each step of the approach. As we can
see, the most computationally heavy step is the automatability assessment. For
all the logs, this step took the largest amount of time, except for the CPN5, S1,
and S2 logs. While the execution time is still reasonably low for all the artificial
logs, it substantially increases for the SR and RT logs. In these two logs, the
automatability assessment took 99 percent of the total computation time. This is
caused by the fact that the underlying transformations in these two logs were very
complex, often involving regular expressions or long sequences of manipulations.
In contrast, all the transformations in the CPN1-CPN9 logs were simple copy-
paste operations. Overall, for the synthetic logs, the approach took no more than
42 seconds. The aggregation step required the smallest amount of time. For the
CPN1 log, we discovered only one routine, and, therefore, we did not have to
apply any aggregation. For the S1 and S2logs, the most time taking step was the
segmentation. The CFGs constructed for these logs were very complex, with a
high number of loops. This significantly increased the time to identify back-edges
in such CFGs and, therefore, the total time of segmentation.

4.4. Threats to validity
The reported evaluation has a number of threats to validity. First, a potential

threat to internal validity is the fact that the context parameters (i.e. the attributes
in the log that capture the notion of “user interaction”) were manually selected.
These context parameters are required as one of the inputs of the proposed method
(in addition to the UI log). To mitigate this threat, the parameters were first se-
lected by each of the two authors of the paper independently, then cross-checked
to reach a mutual agreement, and then validated by the other authors based on
their understanding of the event logs in question.

Another possible threat to internal validity is the limited use of parameter val-
ues to configure the approach at hand. To ensure we do not miss any significantly

8Detailed results at https://doi.org/10.6084/m9.figshare.12543587
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Execution time (sec)
UI Log Segmentation Candidates Automatability Aggregation Total

identification assessment
CPN1 0.337 2.766 7.148 – 10.251
CPN2 2.521 4.482 17.408 0.010 24.421
CPN3 1.570 9.781 15.545 0.010 26.906
CPN4 0.637 5.013 18.409 0.009 24.068
CPN5 1.169 20.223 19.761 0.008 41.161
CPN6 1.376 3.811 6.102 0.010 11.299
CPN7 2.497 15.196 17.594 0.010 35.297
CPN8 2.469 14.605 17.399 0.010 34.483
CPN9 2.877 12.272 18.798 0.013 33.960
SR 0.801 8.077 845.255 0.013 854.146
RT 2.022 8.657 1066.041 0.011 1076.731
S1 29.052 14.066 21.400 0.011 64.529
S2 403.903 152.474 – – 556.377

Table 10: Execution time

important behavior in the logs, we used very low support and coverage, equal to
0.1 and 0.05, respectively.

A potential threat to external validity is given by the use of a limited number
of real-life logs (four). These logs focus on one type of task that can be auto-
mated via RPA, namely data transferring. These logs, however, exhibit different
characteristics in terms of the complexity of the captured processes and log size.
To mitigate this threat, we additionally performed a more extensive evaluation on
a battery of artificial logs. For two real-life logs, we had no information about
the underlying processes. Therefore we evaluated the results qualitatively with
the workers responsible for their execution. To ensure the full reproducibility of
the results, we have released all the logs, both real-life and artificial, used in our
experiments. The only exceptions are the S1 and S2 logs as they contain sensitive
information.

5. Conclusion

This paper presented an approach to discover automatable routines from UI
logs. The approach starts by decomposing the UI log into segments correspond-
ing to paths within the connected components of a control-flow graph derived
from the log. These paths represent sequences of actions that are repeated mul-
tiple times within the event log, possibly with some variations. Once the log is
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segmented, a noise-resilient sequential pattern mining technique is used to extract
frequent patterns that corresponds to the candidate routines. Next, the candidate
routines are assessed for their amenability to automation. For each routine, a cor-
responding executable specification is synthesized, which can be compiled into
an RPA script. Finally, the approach identifies semantically equivalent routines in
order to produce a non-redundant set of automatable routines.

The approach has been implemented as an open-source tool, namely Robid-
ium. This article reported on an evaluation of the fit-for-purpose and computa-
tional efficiency of the proposed approach. The evaluation shows that the ap-
proach can rediscover routines injected into synthetic logs, and that it discovers
relevant routines in real-life logs. For most logs, the execution time does not
exceed one minute. The only exceptions related to logs where we deliberately
injected complex data transformations or where the routine instances overlap in
the UI log.

The proposed approach makes a number of limiting assumptions. First, the
effectiveness of the approach is sensitive to noise, e.g. clicks that are not related
to the routine itself or clicks resulting from user mistakes. In our evaluation, we
observed this phenomenon to varying degrees when dealing with real-life logs.
In practice, the approach can identify correct routines only if they are frequently
observed in the log. Recurring noise affects the accuracy of the results. To ad-
dress this limitation, we will investigate the use of alternative segmentation and
sequential pattern discovery techniques that incorporate noise tolerance mecha-
nisms. Another avenue is to discover sequential patterns using the approach out-
lined in this article and then to filter out patterns that are chaotic in the sense that
their occurrence does not affect the probability of other patterns occurring sub-
sequently nor vice-versa. This latter approach has been studied in the context of
event log filtering for process mining in [29].

Second, the approach is designed for logs that capture consecutive routine
executions. In practice, routine instances may sometimes overlap (cf. the S2 real-
life log in the evaluation). A possible avenue to address this limitation is to search
for overlapping frequent patterns directly in the unsegmented log, instead of first
segmenting it and then finding patterns in the segmented log. This approach has
been previously investigated in the context of so-called Local Process Mining
(LPM), where the goal is to discover process models capturing frequently repeated
(and possibly overlapping) behavior in an unsegmented sequence of events [30].

When assessing the automatability of a routine, the propsoed approach as-
sumes that the values of the edited fields are entirely derived from the (input)
fields that are explicitly accessed (e.g., via copy operations) during the routine’s
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execution. Hence, it will fail to identify automatable user interactions in the case
where a worker visually reads from a field (without performing a copy operation
on it) and writes what they see into another field. An avenue for addressing this
limitation is to complement the proposed method with optical character recogni-
tion techniques over screenshots taken during the UI log recording, so as to be
able to detect that some of the outputs of a routine come from fields that have not
been explicitly accessed via a copy-to-clipboard operation.

Furthermore, the proposed approach is unable to discover conditional behav-
ior, where the transformation function for the target field depends on the value
of another field. Consider, for example, a routine that involves copying deliv-
ery data. If the delivery country is USA, then the month comes before the day
(MM/DD/YYYY), otherwise the day comes before the month. Here, the trans-
formation function depends on a condition of the form “country = USA”, which
the proposed approach is unable to discover. In a similar vein, the proposed ap-
proach is able to discover transformations that depend on the structural pattern
of the value of the input field(s), but it fails to distinguish the patterns that, al-
though having the same syntactical structure, have different semantics. Following
the example above, our approach will put both date types into the same equiv-
alence class. Addressing this limitation would require the development of more
sophisticated data transformation discovery techniques, beyond the capabilities of
Foofah.

Finally, the method to detect if two routines are semantically equivalent as-
sumes that all button clicks in a UI are effectful, meaning that their presence and
the order in which they occur affect the outcome of the routine. In practice, some
clicks may have no effect on the routine’s outcome. For example, some clicks
may simply serve to pop up a help box, while others may just serve to move from
one page to another in a listing. To address this limitation, we foresee extensions
of the proposed method where the alphabet of the UI log is extended with a richer
array of actions, and where the routine discovery approach can be configured via
a language for the specification of action effects.
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