Discovering Automatable Routines
From User Interaction Logs

Antonio Bosco!2, Adriano Augusto'?, Marlon Dumas>, Marcello La Rosa', and
Giancarlo Fortino?

' University of Melbourne, Australia
{antonio.bosco,a.augusto,marcello.larosa} @unimelb.edu.au
2 University of Calabria, Italy
giancarlo.fortino@unical.it
3 University of Tartu, Estonia
marlon.dumas @ut.ee

Abstract. The complexity and rigidity of legacy applications in large organiza-
tions engender situations where workers need to perform repetitive routines to
transfer data from one application to another via their user interfaces, e.g. mov-
ing data from a spreadsheet to a Web application or vice-versa. Discovering and
automating such routines can help to eliminate tedious work, reduce cycle times,
and improve data quality. Advances in Robotic Process Automation (RPA) tech-
nology make it possible to automate such routines, but not to discover them in
the first place. This paper presents a method to analyse user interactions in order
to discover routines that are fully deterministic and thus amenable to automation.
The proposed method identifies sequences of actions that are always triggered
when a given activation condition holds and such that the parameters of each ac-
tion can be deterministically derived from data produced by previous actions. To
this end, the method combines a technique for compressing a set of sequences
into an acyclic automaton, with techniques for rule mining and for discovering
data transformations. An initial evaluation shows that the method can discover
automatable routines from user interaction logs with acceptable execution times,
particularly when there are one-to-one correspondences between parameters of an
action and those of previous actions, which is the case of copy-pasting routines.

1 Introduction

The complexity and rigidity of legacy application landscapes in large organizations
engender situations where workers need to perform repetitive routines to transfer data
from one application to another via their user interfaces, e.g. moving data from a spread-
sheet application to a Web application or vice-versa. Discovering and automating such
routines can not only lead to the elimination of tedious work, but it can also reduce
cycle times and improve data quality by ensuring that all data are transferred correctly.

Robotic Process Automation (RPA) tools [1] allow us to automate such routines by
recording scripts that encode sequences of interactions with Web and desktop applica-
tions, such as opening a file, selecting a field in a form or a cell in a spreadsheet, and
copy-pasting data across fields/cells. While these tools allow us to automate a range of
routines, they do not allow us to determine which routines to automate in the first place.

This paper presents a method to analyse User Interaction logs (UI logs) in order
to discover sequences of actions (herein called routines) that are fully deterministic are

hence automatable using RPA tools. In this context, we say that a routine is automatable
if its first action is always triggered when a condition is met (the routine’s activation
condition) and the value of each parameter of each action can be computed from the
values of parameters of previous actions (i.e. all actions are deterministic).

The proposed method takes as input a UI log consisting of a set of user interaction
sessions (herein called routine traces). Each routine trace consists of a sequence of
interactions (herein called actions for short). Each action has a type (e.g. select, copy,
paste, etc.) and a set of parameters (e.g. the identifier of the UI element upon which
the action is performed, and the inputs and outputs of the action). Given a UI log,
our method outputs a set of routine specifications. A routine specification is a tuple
consisting of an activation condition and a sequence of action specifications. An action
specification, in turn, is a tuple consisting of an action type and a set of functions to
compute the action’s parameters from the parameters of previous actions.

The method starts by compressing the UI log into a Deterministic Acyclic Finite
State Automaton (DAFSA). It then applies an algorithm to decompose biconnected
graphs (of which a DAFSA is an exemplar) into Single-Entry Single-Exit (SESE) re-
gions. Some of these regions correspond to sequences of actions. For each such se-
quence, the method checks if every action is deterministic. If so, it tries to discover an
activation condition using a rule mining technique. If, on the other hand, an action in
the middle of the sequence is not deterministic, the sequence is split into subsequences
for which the method tries to discover activation conditions separately. A routine speci-
fication is generated for each (sub)sequence for which an activation condition is found.

The paper reports on a synthetic evaluation aimed at testing if the method can extract
automatable routines with acceptable execution times.

The rest of the paper is structured as follows. Section 2 introduces a running ex-
ample. Next, Section 3 describes our proposed approach, while Section 4 discusses its
evaluation. Finally, Section 5 discusses related work while Section 6 summarizes the
contributions and outlines directions for future work.

2 Running Example

Below, we introduce a real-life scenario to illustrate our approach. The example is in-
spired by work performed by the Service Improvement Team at the University of Mel-
bourne, which applies RPA to automate various student-facing processes such as student
admission.We specifically consider the task of updating the student residential data,
manually performed by a university officer. Students’ data is stored both in a student
management system (accessible via Web interface) and on local Excel files for backup
purposes. We assume that the university’s student admission office is not interested in
recording on its backup files the residential address of international students.

Table 1 shows an extract of an UI log of this task in the format generated by a Ul
logger we have developed. * The extract in Table 1 captures the sequence of actions
performed by one employee to complete the task for a domestic student. The employee
is already logged into the student management system, and she starts the task by click-
ing on the students button on the Web interface. Then, she enters the student ID in the
ID student text field and presses the enter key to confirm. The Web interface displays a

4 Available at: https://github.com/apromore/RPA_UILogger

Action Action Parameters
Type Param-1 Param-2 Param-3 Param-4
1 Click button Target:Web |Label: STUDENTS
2 | Fill the text field |Target:Web |Label: ID Student Value: 010234
3 Press key Target:Web |Label: ENTER
4 |Click button in row | Target:Web |Label: Update ID Row: 010234
5| Fill the text field |Target:Web |Label: Address Value: 19 Parkville St,

Burnley VIC 3121

6 | Fill the text field |Target:Web |Label: Country Value: Australia

7 Open file Target:Excel | Name: 010234 Path: C:/Students/Australia/| Extension: .xls

8| Copy (Ctrl+C) |Target:Web |From: Address Value: 19 Parkville St

9 Paste (Ctrl+V) | Target:Excel|Row: 5 Column: A Value: 19 Parkville St

10| Save file (Ctrl+S) |Target:Excel

11 Click button Target:Web |Label: Confirm Backup

Table 1: Routine trace from the UIL, domestic student scenario.

list of students, including the one searched (see Fig. 1). Next to each student entry, two
options are available: update and open. The employee clicks on the update button, since
she intends to update the residential data of the student. A new window opens with the
student details, including the residential data, i.e. address and country. The employee
types the new address and the country and, in the case of a domestic student (i.e. country
is Australia), she opens the corresponding backup Excel file to copy part of the address
(the street only) from the Web interface to the Excel file. She then saves the file changes
and confirms the update on the Web interface by clicking button confirm backup.

In the case of an international student (Table 2), the update of the residential address
on the student management system follows the same sequence of actions, but no backup
is required. Thus, after the update on the Web interface, the employee clicks on the No
Backup button, a dialogue box pops up to double check the selection, she clicks on the
ok button, and finally clicks on the “Confirm” button to apply the update.

Action Action Parameters

Type Param-1 |Param-2 Param-3

Click button Target:Web | Label: STUDENTS

Fill the text field |Target:Web|Label: ID Student | Value: 010236

Press Key Target:Web | Label: ENTER
Click button in Row | Target:Web | Label: Update ID Row: 010236
Fill the text field |Target:Web|Label: Address Value: 106 Tantau Ave, Cupertino CA 95014

W

W

Fill the text field | Target:Web | Label: Country Value: USA

Click button Target:Web | Label: Ok
Click button Target:Web | Label: Confirm

6
7 Click button Target:Web | Label: No Backup
8
9

Table 2: Routine trace from the UIL, international student scenario.

Students Management System

m—(SERVICES }— SUPPLIERS —{ CONTACTS)
ID Student
<Q 010234)
Students =
ID Name Address Country
010234 Frank Ross 19 Parkville St, Burnley VIC 3121 Australia
010235 Terry Lee 182 Sydney Rd, Brunswick VIC 3056 Australia
010236 Jack Richards 106 Tantau Ave, Cupertino CA 95014 USA m

Fig. 1: Web interface of the student management system.

This example shows that a given task (e.g. updating the student residential data)
may be performed via different sequences of actions (routines). In this case, there is one
routine for the domestic students and another for international ones. The automation of
a task requires one to identify the boundaries of each routine from the Ul log, and within
these routines to determine which actions are deterministic and can thus be automated.

3 Approach

In this section, we give a detailed description of the three steps composing our approach
(see Fig. 2). Given as input a Ul log, as first step, we parse the Ul log into a DAFSA,
and we extract from this latter the flat-polygons (the candidate automatable routines),
which represent actions sequences of different length. In the second step, each of the
candidate automatable routines is analysed by checking whether each of its actions is
deterministic or not, i.e. the action could be executed in a systematic way by an RPA
script (e.g. a software bot). The output of the second step is a set of action specifica-
tions. An action specification is a tuple consisting of: an action; and a set of functions
to automatically determine all the action parameters values. Last, in the third step we
extract from the candidate automatable routines, the maximal sequences of determinis-
tic actions, and for each of them we discover the activation condition of the first action.
The final output of our approach is a set of routine specifications. Each routine specifi-
cation being a tuple consisting of: an activation condition to automate the routine; and
a sequence of action specifications.

3.1 Definitions

The proposed approach takes as input Ul logs that record multiple executions of a rou-
tine by one or several users. A Ul log consists of routine traces, each one corresponding
to the recording of one execution of the routine by a user. Each routine trace consists

Flat-Polygons Automatable Actions Routine Specifications Routine
uiL Detection Detection Detection Spec.

Fig.2: Approach overview.

of actions that a given user performs sequentially using one or more applications (e.g.
a browser and a spreadsheet application). These concepts are formalized below.

Definition 1. [Action] An action a is defined as a = (t,P,V,9), where: T is the action type (e.g.
click button, open file, press key, etc.); P is the set of action parameters (e.g. button name, file
name, key name, etc.); V is the set of the values assigned to the action parameters; ¢ : P —V is
the function matching each action parameter to its value. Given two actions a1 = (11, P, V1, 91)
and ay = (T2, P2, Va,$2), ay and ay are equal if and only if (iff) they are of the same type and have
the same set of parameters, i.e. ay = ay <= T| = Ty A P| = P». Note that, two actions having the
same set of parameters but with different assigned values are still considered equal.

Definition 2. [Routine Trace and User Interaction Log] A Routine Trace p is a sequence of

actions p = (ay,ay, . ..,an), we define the operator € for routine traces such that given an action
a, aep iff 3i €[1,n]|a =a. Also, we refer to a; € p = (ay,ay,...,an),0 < i < n as pli].
Given two routine traces py = (aj,ay,...,an) and py = (d1,4z,...,4,), p1 and py are equal iff

Vi € [1,n]a; = G;. An User Interaction Log (Ul log) £ is a multiset of routine traces.

In the proposed approach, we will sometimes reason in terms of fragments of a
routine, in particular prefixes and suffixes as defined below.

Definition 3. [Routine Trace Prefix and Suffix] Given a routine trace p = {aj,ay, ... ay)
we define its i'h prefix as p7' = (a1,a2,...,a;)) N1 < i < n; and its i'h suffix as p'~ =
(ai,aii1,...,an) N1 < i < n. Note that, prefixes and suffixes of routine traces (and sub-traces
of routine traces) are routine traces themselves.

Given a Ul log, the goal of our proposed approach is to discover automatable rou-
tines, i.e. sets of routine traces having the parameters’ values of each of their actions
derivable from previous actions parameters’ values.

Definition 4. [Deterministic Action] Given an action & = (t,P,V,0), a Ul log £, and the set
of the routine traces R = {p € . | p~[i] = a4V p/[1] = 4}, a is deterministic in .Z, iff Vp € P
one of the following holds: i) (p) is constant, ¥(p,ax) | p € RAax = (T,P,Vys, ¢x) EpAG=ax =
0:(P) = 0(p); ii) 9(p) depends on the parameters values of the actions preceding G in the routine
trace, formally, ¥Y(p,ax) | p € RAay = (T,P,Vy,0x) EpAdG=ax = ¢(p) = 0(V1,Va,...,Vi 1),
where V;,i € [1,x— 1] is the set of parameters values of the action pl[i]. Function ® is called a
dependency function, or dependency for short.

Definition 5. [Automatable Routine (Trace)] A Routine Trace p = {(ay,a,...,ay) is automat-
able iffVa; = (7, B, V;, §;),i € [1,n], a; is deterministic.

Beyond identifying automatable routine, we seek to produce specifications thereof
for their automation. Hence, we define an automatable routine specification as follows.

5 In general, @ can be any function.

Definition 6. [(Automatable) Routine Specification] A routine specification is a tuple
(C,(AS)) where C is an activation condition and (AS) is a sequence of action specifications.
An activation condition is a Boolean function over a set of actions, which can be evaluated at
any point in a routine of a Ul log, and such that when this condition is true, an instance of the
routine specification is observed. An action specification is a tuple (a,Q) such that a is an action
(7,P,V,0), and is a set of parameter mappings. A parameter mapping is a tuple (p,®) such
that p € P, and o is a dependency function which computes the value of p from the previous
actions parameters’ values.

3.2 Flat-Polygons Detection

The first step of our approach consists of detecting the flat-polygons, to do so, we exe-
cute Algorithm 1. Given as input a Ul log, first, we build its DAFSA (line 1).

The DAFSA of a Ul log is an acyclic automaton obtained by prefix-compressing
and suffix-compressing the routine traces in the UI log. In other words, if multiple
traces share the same prefix, this prefix is represented as one single sequence of states
in the DAFSA, and conversely, if multiple traces share the same suffix, this suffix is
represented as one single sequence of states. For details on how a DAFSA can be con-
structed from a set of routine traces, we refer to [13]. We observe that the DAFSA is a
lossless representation of the Ul log (it does not add nor remove any behavior), where
each path of the DAFSA captures a different routine trace of the Ul log, and each edge
of a path captures an action of the routine trace, meaning that the set of all the paths in
the DAFSA is exactly equal to the UI log. The prefix and suffix compression as well
as the lossless feature of the DAFSA are the reasons why we chose it to represent the
Ul log. Indeed, capturing the Ul log behavior in a lossless manner is necessary to de-
tect and analyse the deterministic behavior recorded in the Ul log. While the prefix and
suffix compression allow us to easily identify each routine trace variant and where the
variants start or end. Indeed, each decision point of the DAFSA (i.e. a DAFSA state
with multiple outgoing edges) matches a routine variant starting point.

Once we generate the DAFSA, we compute its RPST [12] (line 2).

The RPST of a DAFSA is a tree where: the nodes are the single-entry single-exit
(SESE) regions of the DAFSA; and the edges of the tree denote the containment re-
lations between the SESE regions. Specifically, the children of a SESE region in the
tree are the SESE regions that it directly contains. Regions at the same level of the tree
represent a sequence of SESE regions in the DAFSA. Each SESE region is represented
by a set of DAFSA edges, depending on how these edges are related, a SESE region can
be of one of four types. A trivial region consists of a single DAFSA edge (i.e. a routine
trace action). A polygon is a sequence of regions (e.g. a sequence of trivial regions).
A bond is a region where all the child regions share two common DAFSA states, one
being the entry state and the other being the exit state of the bond. Any other region is
arigid.

The RPST allows us to detect straightforward the flat-polygons. A flat-polygon is a
polygon region where all its children are trivial regions. It follows that a flat-polygon
represents a sequence of actions (DAFSA edges), these sequences are the candidate
automatable routines. © Therefore, for each bond b in the RPST we extract the trivials
that are direct children of b (see line 4), and we add each of these trivial children to the
set of flat-polygons. We do the same for each rigid r in the RPST (see line 5). Whilst,

% Note that, a single action (a single DAFSA edge) is the simplest candidate automatable routine.

Algorithm 1: Flat-Polygon Detection
input :UIL ¥

DAFSA D « generateDAFSA(.Y);
RPST R < generateRPST(D);
Set F < @;

for b € getBonds(R) do F < extractTrivialChildren(R, b);
for r € getRigids(R) do F < extractTrivialChildren(R, r);
for p € getPolygons(R) do F < extractFlatPolygons(b);

N AN A W

return F;

for each polygon (p, see line 6) in the RPST we extract the flat-polygons as follows.
If all the children of p are trivials, p is a single flat-polygon, otherwise, we split p
into sub-polygons that have either: only rigids and/or bonds children (i.e. sub-polygons
being sequences of rigids and/or bonds); or only trivial children (i.e. sub-polygons being
sequences of trivials), these latter are the flat-polygons. Figure 3 shows the output of

Click Fill the Text Press Click Button Fill the Text Fill the Text Click Click Click
Button Field Key in Row Field Field Button Button Button
O—0O0—0O"—0——0—0* OO0
Open Save
File File

Co Paste
O Py <)

Fig. 3: Flat-polygon detection in the working example.

Algorithm 1 when the input UI log contains recordings of the two routine variants
described in the running example. Note that we have multiple recordings of the two
variants (i.e. UI log does not contain only the two routine traces pictured in Tables 1
and 2). The graph captured in the figure is the DAFSA of the UI log, whilst in blue,
orange, green, and red the four flat-polygons detected and extracted.

3.3 Automatable Actions Detection

The second step of our approach focus on the discovery of the deterministic actions, i.e.
the actions that can be automated. To do so, we execute Algorithm 2. This latter receives
as input the DAFSA D and the set of flat-polygons detected in the previous step (F).
For each flat-polygon f in the set F, we analyse each of its actions (a = (7,P,V,9)), see
line 3 and 4. We retrieve all the values assigned to the parameters of the action a (for
all the instances of a), and we create a map II that associate to each parameter p € P
all the values that the parameter assume in all the different routine traces containing the
action a, (p, V) (see line 6). 7 We need to collect all the values that each parameter p can
assume because a is deterministic iff it is always possible to determine systematically its
parameters values, this means that we must be able to compute the parameters values
using constant or deterministic functions. The goal of Algorithm 2 is to identify, for
each action of each flat-polygon, one function per action’s parameter that allow us to
deterministically compute the parameter value. A constant function is a function that
assigns to a parameter always the same value, i.e. the parameter value is constant in all

7 Note that V is a list of values and not a set, i.e. it can contain duplicates.

the instances of a. Whilst, for deterministic function, we mean a function that assigns
the value to a parameter depending on the parameter values of actions executed before
a. In particular, the deterministic functions we can discover are either based on data
transformation or substitution mappings. We iterate on all the elements in IT, (p, V), to
identify these functions. First, we determine if the value of the parameter p is a constant
function (see line 9), by checking if all values in V are equal.

Every time we discover a function for determining a parameter values, we add it
to the list of the functions associated to the action (£2) and we eliminate the parameter
from IT (see lines 11- 12, 18- 19, 28- 29). Doing so, if after analyzing each parameter
of a, II is empty, it means that we found for each parameter at least one function that
computes its values deterministically, and therefore a is deterministic. In such case, we
add a and the set of the functions to determine its parameters’ values (i.e. the action
specification of a) to the map o, the output of Algorithm 2.

In our running example, an action with a constant parameter is Press Key (see Ta-
bles 1 and 2, action #3), where regardless of the routine trace the value of the parameter
Label is always ENTER. On the other hand, if the parameter p is not a constant, we

Algorithm 2: Automatable Actions Detection

input : DAFSA D, Flat-Polygons F

1 Map o + @;

2 SetR<+ @

3 for fecFdo

4 for a € f do

5 Boolean transformation <— TRUE;

6 Map IT <+ getParametersValues(a);

7 Set Q «+ @

8 for (p,V) €Il do

9 Function @ « identify AndGetConstantFunction(p,V);
10 if 7 # null then
11 I+ I\ (p,V);
12 Q<+~ QUo;
13 else
14 for p~' € getPrefixRoutines(a,D) do
15 R < discoverDataTransformationFunctions(p, v, p*i);
16 if R = @ then transformation<— FALSE;
17 if transformation then
18 IT+ 1T\ (p,V);
19 Q <« QUR;
20 else
21 Matrix X < @
22 for p~i € getPrefixRoutines(a, D) do
23 L add rows generateMatrixRows(getActions(p '), V) to X;
24 Set R « findJripRules(X, 1.0);
25 Decimal support < 0;
26 for r € R do support < support + getSupport(r);
27 if support = 1.0 then
28 I+ I\ (p,V);
29 Q <« QUR;
30 if IT = @ then
31 L o oU (a, Q);

32 return a;

check if each of its values in V is function of the previously executed actions’ parame-
ters’ values. To do this, we collect all the routine traces prefixes ending with the action
a (line 14). Each of these routine traces prefixes represents a routine trace variant that
led to the execution of the action a, for each of this variants we try to discover the data
transformation functions that allow us to compute the values of p. To discover these
functions (line 15), we rely on the following two methods: i) we look for simple value-
to-value dependencies (i.e. when the value of p always matches the value of a parameter
of a previously executed action); ii) we apply Foofah, a data transfomation-by-example
technique [10]; With the first method we can discover only value-to-value dependencies
(the most common dependencies in RPA), hence, the deterministic function assigning
a value to p would simply return the value of the matching action parameter. The sec-
ond method, instead, can be used when no value-to-value dependencies are found, since
Foofah can discover more complex data transformations. Foofah takes two series of data
values, one called input and one called output. The input data series is the array con-
taining all the values of one parameter of an action executed before a, whilst, the output
data series is V. Foofah tries to detect functions that can determine the output from the
input. Consequently, Foofah allow us to discover data transformations where: each ele-
ment in the output is equal to an element in the input; or equal to a sub-string thereof;
or equal to a concatenation of multiple elements in the input. Despite Foofah allow us
to discover more complex data transformation functions, and detect more deterministic
actions, its performance greatly affects the performance of our entire approach because:
i) it does not scale well for large input data series; and ii) we need to use Foofah for
each parameter of a and each parameter of each action executed before a (until we find
a data transformation function). To partially address Foofah scalability limitation, we
perform a random sampling on the input and output data series, and input these latter
to Foofah. Indeed, if Foofah cannot identify a data transformation over the subsets of
the complete input and output data series, it means that it could not identify any data
transformation also for the complete input and output data series.

As an example of the benefits brought by Foofah, in our running example, for the
routine in Tab. 1, the action #8 that copies only part of the student address to the Excel
file can be detected as deterministic only by using Foofah.

Finally, if no data transformation functions are found for the parameter p, we try to
discover functions based on substitution mappings (line 21 to 26). A function based on
substitution mappings is a function that maps a set of values to another (different) set of
values.For instance, a substitution mapping function can assign the value v, to p every
time that a parameter value of another action (executed before a) is equal to vy.

To find these substitution mapping functions we use JRipper [4], an implementation
of a propositional rule learner. JRipper takes as input a matrix where each row is an
array of data values and a label. In our case, the data values in each row corresponds
to all the values of all the parameters of all the actions executed before a in a given
routine trace, whilst the label in each row matches the value of p (in the given routine
trace). JRipper analyses the matrix and returns the set of rules, of which we retain
those having confidence 1.0 (set R, see line 24), since such rules are the only that can
be considered deterministic. Each of this rules allow us to deterministically assign a
value to the parameter p during a given routine execution (captured in one or more
rows of the matrix). Therefore, if all the rules with confidence 1.0 can cover all the
routine executions captured as the matrix rows, it means that we can use this set of

10

rules to deterministically assign a value to the parameter p in all the possible routine
executions. To verify that the the set of rules with confidence 1.0 cover all the routine
executions captured in the matrix rows, we check that the sum of the rules’ supports is
equal to 1.0 (see lines 26 and 27).

In our running example, a substitution mapping function is detected to determine the
value of the parameter Label in the last Click Button action (in both Table 1 and 2). In-
deed, every time the country value is equal to Australia the Label value of the last Click
Button action is confirm backup. Whilst, every time the country value is not Australia
the Label value of the last Click Button action is confirm.

3.4 Routine Specifications Detection

In the last step we identify, by applying Algorithm 3, the set of routine specifications.
The algorithm receives as input the DAFSA D, the set of flat-polygons F, and the map
containing the actions specifications that we discovered with Algorithm 2. First, we ex-
tract the automatable routines from the flat-polygons, line 2. Precisely, given each flat-
polygon, we check that each of its actions is deterministic (i.e. the action is in &), and we
extract all the sequences of deterministic actions not interrupted by non-deterministic
ones. This means that from a flat-polygon we can extract one or more automatable rou-
tines. Once detected the automatable routines (set S), we have to discover for each of
them the activation condition. An activation condition of an automatable routine in S is
the trigger that determines the start of the routine execution. It consists of: i) a trigger-
ing action, i.e. an action executed just before the first action of the automatable routine;
and ii) a boolean condition that must be valid at the completion of the triggering action.
The boolean condition can be: i) a function of parameter values of the actions executed
before the triggering action (this included); or ii) can be based only on the completion
of the triggering action, i.e. the boolean condition is the completion of the triggering
action. We call the first case a data-based activation condition, whilst the second case
a trivial activation condition.

We discover each automatable routine (p) activation condition as follows. First, we
collect all the routine traces prefixes ending with the action ay, being this latter the first
action of the automatable routine (line 5). Then, for each of these prefixes, we collect its
actions into the set B (excluding ay, see line 6), B will contain all the actions that can be
executed before a;. We note that the execution of any of these routine traces prefixes is
not a sufficient condition for the execution of a; (and the automatable routine thereof),
because any of these prefixes could also lead to the execution of an action different
than a; (i.e. a; is an outgoing edge of a decision point of the DAFSA). To analyse
for what prefixes actions’ parameters values a; is executed or not, we can use again
JRipper, similarly to Algorithm 2. In this case the JRipper input is a matrix X where:
each row is the array containing all the parameters values of all the actions executed
before a; in a given routine trace, plus a boolean label set to true if the automatable
routine was executed within the given routine trace, false otherwise. To build the matrix
X, we collect all the paths of the DAFSAS (see line 8) and, for each of them D), we
take the actions that are contained in B (see set O, line 9). If the set Q is not empty, we
add to the matrix X a row containing all the parameters values of all the actions in Q

8 We remind that a path of the DAFSA corresponds to a routine trace in the UI log.

11

Algorithm 3: Routine Specifications Detection
input : Map «, Flat-Polygons F, DAFSA D

1 Set® + g
2 Set S < extractAutomatableFlatPolygons(c, F);
3 for pcSdo
4 Set B+ ;
5 Action a; < p[1];
6 for p~ € getPrefixRoutines(a;,D) do B < BU getActions(p~"~');
7 Matrix X < &;
8 for p € getPaths(D) do
9 Set Q «+— getActions(p) NB;
10 if QO # & then
11 Boolean label <— p C p;
12 add rows generateMatrixRows(Q, label) to X;
13 Set R < findJripRules(X, 1.0);
14 Boolean activationConditionFound <— TRUE;
15 for 7 € getRowsWithLabel(X, TRUE) do
16 L if — existRule(R,) then activationConditionFound <— FALSE;
17 if activationConditionFound then
18 E <+ EU(p,R);
19
20 else
21 if hasTrivialCondition(p) then
22 R < generateTrivialCondition(p);
23 E+—EU(p,R);
24 else
25 if [p| > 1 then
26 R < generateTrivialCondition(p>~);
27 E+ EU(P*,R);

28 return Z;

and we set the boolean label in the row as true, if the automatable routine p is contained
in P, otherwise as false (see lines 11 and 12).

Once we built the matrix X, we input it to JRipper, which outputs the set of rules,
of which we retain those having confidence 1.0 (set R, see line 13) Each of these rules
tell us which parameters values of all the actions in B triggered the automatable routine.
Then, we filter the matrix X retaining only the rows having the boolean label frue and,
similarly to Algorithm 2, we check that the rules discovered with JRipper can cover all
the rows of this filtered matrix, line 16. To perform this check, we cannot rely on the
support of the rules, like in Algorithm 2, because we are not interested in covering all
the rows of the matrix X, but only those having the boolean label frue (i.e. we used the
full matrix to discover the rules, but we want the rules to cover only the cases when
the automatable routine p is executed). If the rules discovered by JRipper cover all
the rows of X capturing an execution of p (line 17), it means that we found a data-
based activation condition, which is represented by the set of rules discovered with
JRipper. * When we find an activation condition for an automatable routine, we create
the routine specification (the tuple: automatable routine and activation condition) and
we add it to the set of routine specifications X, see line 19. On the other hand, if
a data-based activation condition cannot be found with JRipper (line 22), we check if
exists a trivial activation condition, i.e. if p can be triggered by the completion of an

9 Note that, the set of rules take into account also the triggering action.

12

action preceding a;. If we find such a trivial activation condition, we use it to create
the routine specification for p (lines 22 and 23). Otherwise, if p is not a single-action
routine (line 25), we can always use a; to generate a trivial activation condition for the
subroutine p>~. Indeed being p a sequence of deterministic actions, it follows that after
the execution of its first action (a;), the successive actions will be executed as well.

4 Evaluation

We conducted an experiment to assess the ability of our approach to correctly discover
all the automatable (sub)routines recorded in a set of Ul logs. To this end, we gener-
ated nine artificial UI logs (from Coloured Petri Nets, CPNs), each log containing a
different number of automatable (sub)routines of varying complexity,'? and used the
characteristics of these routines (position and actions within) as a ground truth for our
experiment. These logs emulate a controlled recording environment where user tasks
are performed without noise (i.e. events that capture actions that are irrelevant to the
task are not present).

For testing purposes, we packaged the implementation of our method as a
Java command-line application, !' and executed it on a PC with Intel Core i7-
6600U@2.60GHz CPU with 12GB RAM, running Ubuntu 16.04 LTS (64-bit) with
8GB RAM and JVM 11 (4GB RAM). We conducted all tests using both methods to
discover data-transformation functions, i.e. with and without Foofah.

4.1 Test Case Generation

We generated nine artificial Ul logs by simulating nine CPNs designed with the CPN
Tool [9]. The first six CPNs are simple and represent common real-life scenarios, cap-
turing clear routines with a specific goal. CPN1 represents the following sequence of
actions: the user opens a random file, opens a specific webpage, logs in with his creden-
tials (assumed to be always the same and correct), awaits the response from the server,
and then begins to copy data from the Web page to the opened file. All these actions are
automatable, except the first one, since the input file is chosen randomly. CPN2 is a vari-
ant of CPN1 and it includes the handling of an error during the login action, i.e. the user
enters wrong credentials. CPN3 is a further extension of the task captured in CPN2,
where the user unsuccessfully repeats the login actions until they decide to quit the
procedure. CPN4 is derived from CPN1, but in this task we injected non-deterministic
actions among the automatable ones. We used these non-deterministic actions to per-
turb the fully automatable task in CPNI1. These are: random button clicks (i.e. non
data-driven clicks) and user data inputs (i.e. the login credentials are different in each
routine trace). The number of non-deterministic actions increases in CPNS5, where only
16% of the total actions is automatable, and no automatable routines are captured, i.e.

10 The CPNss and the logs used for our evaluation are available at https://doi.org/10.
6084/m9.figshare.7850918.v1l

I The software is available at http://apromore.org/platform/tools, Automatable
Routines Discoverer package. The source code can be found at https://github.com/
apromore/RPA_AutomatableRoutinesDiscoverer

13

there are no two consecutive automatable actions. CPNG6 is the running example pre-
sented in Section 2, which has a balanced number of automatable and non-automatable
actions.

The last three CPNs have the highest complexity and the routines they represent are
not easily interpretable (e.g. they do not follow a routine goal). We decided to include
these latter CPNs to evaluate the robustness of our approach in the case of complex
scenarios. CPN7 has only 25% of automatable actions, which are intertwined with the
non-automatable actions. CPN8 extends CPN7 by adding a long deterministic subrou-
tine to be executed when a specific condition is met. CPN9 is the most complex case; it
merges CPNS5 and CPNG6 and captures the situation in which a user first inputs several
data and then decides the sequence of actions to perform based on the input data. Using
this latter CPN we can assess our approach’s ability to discover activation rules based
on long-dependencies, i.e. dependencies between non sequential actions.

Table 3 reports the structural complexity of each CPN in terms of size, control flow
complexity, and structuredness, as well as the statistics of the UI logs simulated from
the CPNs. Precisely, we reported for each Ul log the number of routine variants, the
number of distinct routine traces, and the number of actions recorded.

CPN UI Logs

D Size CFC Struct. #Routines #Traces #Actions
1 15 0 1.00 1 100 1400
2 20 2 1.00 2 1000 14804
3 20 3 1.00 6 1000 14583
4 18 4 1.00 1 100 1400
5 18 11 1.00 12 1000 8775
6 16 2 1.00 2 1000 9998
7 24 10 0.29 7 1500 14950
8 39 11 0.56 8 1500 17582
9 65 24 0.83 18 2000 28358

Table 3: Characteristics of the CPNs and UI Logs.

4.2 Results

Table 4 shows the results of our experiment. For each log generated from the corre-
sponding CPN, we report the number of distinct automatable actions (AA) recorded,
their percentage on the total number of distinct actions, the length of the longest se-
quence of AA (i.e. longest autom. routine length, LRL), the number of distinct AA
discovered and the LRL discovered with our approach (both with and without Foofah).
We note that w/ Foofah, our approach could discover all the AA as well as the LRL, ex-
cept for log L3, which we discuss later. However, when disabling Foofah, we could not
detect some data transformations (i.e. the non value-to-value transformations), which
were necessary to identify some AA. Consequently, our approach w/o Foofah could not
identify all the AA (as per L3, L6, L8, and L9), and in some cases (see L4, L6 and
L9) the LRLs were shorter than those discovered w/ Foofah. Despite the Foofah variant
of our approach allow us to detect more complex data transformations, and therefore
discover more AA and longest autom. routines, Foofah brings an overhead in the ex-
ecution time. Indeed, when enabling Foofah, our approach becomes up to 50x slower
(see L9). This is due to how Foofah looks up for data transformations, its exhaustive

Recorded AA Discovered LRL Discovered Exec. Time (s)
UIL [AA(#) AA(%) LRL|(w/ Foofah) (w/o Foofah) |(w/ Foofah) (w/o Foofah)|(w/ Foofah) (w/o Foofah)
L1 13 92.9 13 13 13 13 13 3.0 2.8
L2 | 16 84.2 5 16 16 5 5 61.1 52
L3 | 17 944 7 15 15 6 6 224.8 7.6
L4 3 47.1 4 3 7 4 3 79.2 2.7
L5 2 16.7 1 2 2 1 1 49.6 9.4
L6 | 9 692 4 9 8 4 2 30.0 4.5
L7 4 25.0 2 4 4 2 2 279.7 8.2
L8 | 18 60.0 13 18 15 13 13 282.2 10.9
L9 | 24 68.6 5 24 22 4 3 935.2 19.3

Table 4: Experimental results on the artficially generated UI logs.

search tries all the possible combinations of data transformations before declaring that
no data transformation occurred.

The only log where the approach failed to discover two routines is log L3, which
contains loops. The reason for this limitation is that the approach takes a DAFSA (which
is acyclic) as a starting point and the DAFSA does not capture the notion of loop.
Repetition in a DAFSA shows up in the form of a polygon followed by a branching in
which one of the polygons is identical to the previous polygon (and this pattern can be
repeated multiple times). Our approach does detect that the polygon inside the body of
the loop is a routine and it discovers its activation condition, but it fails to discover the
activation condition of the task that follows the exit point of the loop, particularly when
this condition depends on the number of times the loop has been executed.

5 Related Work

There are resemblances between the discovery of automatable routines from UI logs
and Automated Process Discovery (APD) from event logs [3], stemming from the fact
that the inputs have similar structure. However, APD focuses on discovering control-
flow models, without data flow. Some approaches enhance discovered process models
with branching conditions [5], but we are not aware of any work on APD that discov-
ers data transformations. Moreover, APD approaches are not suitable for automable
routine discovery because they generalize the behavior in the log, i.e. they produce
models that generate traces not observed in the log. Most of these algorithms also
under-approximate the log’s behavior, i.e. they intentionally produce models that do
not perfectly fit the log. In contrast, we seek to discover only sequences of actions that
have been observed in a Ul log. Automating a sequence of actions that has never been
observed is risky, because the cost of letting a software bot do something that should
not be done is high (e.g. it may introduce spurious data into a system leading to costly
mistakes and time-consuming corrective actions). This is the reason why our approach
uses a lossless representation of event logs (DAFSAs) to discover candidate automat-
able routines, as opposed to an automatically discovered process model.

Recent related work in APD deals with the problem of discovering process models
from low-level event logs [8]. In this context, a low-level event log is one where each
event refers to a step of a task in a process, e.g. a task “Contact customer” is captured
via several events corresponding to steps ‘“Retrieve the customer’s contact details from
CRM system”, “call customer”, etc. The goal of [8] and related studies is to group
low-level events into coarser-grained ones in order to discover conceptual models, as
opposed to automatable routines as we do.

15

Another related family of techniques is sequence mining [2], where the goal is to
discover frequent patterns in collections of sequences. In contrast to sequence mining,
automatable routine discovery takes as input Ul logs consisting of actions with param-
eters, as opposed to sequences of symbols.

Automatable routine discovery is also related to Web usage mining and UI log min-
ing. Web usage mining seeks to discover and analyze sequential patterns in Web data,
such as Web server logs capturing user interactions with Web apps [16]. Analyzing
such data can help to optimize the functionality of Web apps, optimize their navigation
structure, and provide personalized content to users [11].

Research proposals in Ul log mining, such as TaskTracer and TaskPredictor, have
tackled the problem of analyzing UI logs generated by desktop applications to identify
the current task performed by a user and to detect switches between tasks [15, 14, 7].
These techniques do not deal with the problem of identifying routines. More closely
related is the work in [6], which proposes a technique to extract frequent sequences
of actions from noisy UI logs. However, this technique does not extract automatable
routines because it does not discover data transformations nor activation conditions.

6 Conclusion

We introduced an approach to discover automatable routines from Ul logs. Each such
automatable routine is characterized by an activation condition and a sequence of action
specifications, each associated with data transformations that compute an action’s pa-
rameters values from those of previously observed actions. An experimental evaluation
allowed us to validate that the approach can re-discover repetitive routines synthetically
injected in a Ul log. The evaluation also allowed us to compare two alternative methods
to discover data transformations: one based on an algorithm to discover one-to-one de-
pendencies and the other based on Foofah, which can discover complex (1-to-N, N-to-1,
and N-to-N) dependencies. The evaluation showed that the one-to-one dependency dis-
covery method scales up to relatively large logs, while putting into evidence scalability
limitations of the Foofah alternative.

The evaluation highlighted one of the limitations of the approach: its inability to
discover activation conditions of routines that immediately follow the exit point of a
loop, particularly when this condition depends on the number of executions of the loop.
This is due to the fact that DAFSAs do not capture loops. A possible approach to ad-
dress this limitation is to extend the DAFSA with explicit loops. This would require
us to detect those loops in the first place, for example using tandem repeat detection
algorithms. This extension should be such that it allows us to reason about the number
of occurrences of a loop in a routine trace, so that this information can be used when
discovering the activation condition (i.e. the condition under which the loop is exited).

Another limitation of the approach is its inability to deal with noise. The presence
of an event in a routine trace that is not related to the trace (e.g. an error) leads to
the polygon capturing that routine being broken down into two flat-polygons. As a
result, our approach will either discover only sub-routines of an otherwise automatable
routine, or not discover the routine at all. Some of the noise could be removed via
simplification rules that take advantage of the idempotence of some UI operations (e.g.
if a user mistakenly clicks twice the same cell consecutively, this can be reduced to a

16

single click). But more generally, it may require tailor-made noise filtering techniques.
Designing such techniques is an avenue for future work.

In the embodiment of the approach presented in this paper, we used RIPPER to dis-

cover activation conditions and Foofah to discover complex data transformations. Ex-
perimenting with alternative methods to discover activation conditions and data trans-
formations is another direction for future work.

Acknowledgements. This research is funded by the Australian Research Council
(DP180102839), the Estonian Research Council (IUT20-55), and the European Re-
search Council (project “PIX”).

References

1. W. M. P. van der Aalst, M. Bichler, and A. Heinzl. Robotic process automation. BISE, 60(4),
2018.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In /CDE. IEEE, 1995.

3. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. Maria Maggi, A. Marrella, M. Me-
cella, and A. Soo. Automated discovery of process models from event logs: Review and
benchmark. TKDE, 31(4), 2019.

4. W. W. Cohen. Fast effective rule induction. In /CML. Morgan Kaufmann, 1995.

5. M. de Leoni, M. Dumas, and L. Garcia-Bafiuelos. Discovering branching conditions from
business process execution logs. In Proceedings of FASE. Springer, 2013.

6. Himel Dev and Zhicheng Liu. Identifying frequent user tasks from application logs. In
Proceedings of IUI 2017, pages 263—-273. Springer, 2017.

7. A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. R. McLaughlin, L. Li, and J. L. Her-
locker. Tasktracer: a desktop environment to support multi-tasking knowledge workers. In
IUI. ACM, 2005.

8. B. Fazzinga, S. Flesca, F. Furfaro, and L. Pontieri. Process discovery from low-level event
logs. In CAiISE. Springer, 2018.

9. K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for modelling
and validation of concurrent systems. ST7T, 9(3-4), 2007.

10. Z.Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah: Transforming data by
example. In SIGMOD. ACM, 2017.

11. B. Liu. Web usage mining. In Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Springer, 2007.

12. A. Polyvyanyy, J. Vanhatalo, and H. Volzer. Simplified computation and generalization of
the refined process structure tree. In Web Services and Formal Methods. Springer, 2011.

13. D. ReiBner, R. Conforti, M. Dumas, M. La Rosa, and A. Armas-Cervantes. Scalable confor-
mance checking of business processes. In OTM Confederated International Conferences On
the Move to Meaningful Internet Systems”. Springer, 2017.

14. J. Shen, J. Irvine, X. Bao, M. Goodman, S. Kolibaba, A. Tran, E. Carl, B. Kirschner,
S. Stumpf, and T. G. Dietterich. Detecting and correcting user activity switches: algorithms
and interfaces. In /UI. ACM, 2009.

15. J. Shen, L. Li, and T. G. Dietterich. Real-time detection of task switches of desktop users.
In IJCAI, 2007.

16. J. Srivastava, R. Cooley, M. Deshpande, and P. Tan. Web usage mining: Discovery and

applications of usage patterns from web data. SIGKDD Explor. Newsl., 1(2), 2000.

