
1

Detecting Sudden and Gradual Drifts in
Business Processes from Execution Traces

Abderrahmane Maaradji, Marlon Dumas, Marcello La Rosa and Alireza Ostovar

Abstract—Business processes are prone to unexpected changes, as process workers may suddenly or gradually start executing a
process differently in order to adjust to changes in workload, season or other external factors. Early detection of business process
changes enables managers to identify and act upon changes that may otherwise affect process performance. Business process drift
detection refers to a family of methods to detect changes in a business process by analyzing event logs extracted from the systems
that support the execution of the process. Existing methods for business process drift detection are based on an explorative analysis of
a potentially large feature space and in some cases they require users to manually identify specific features that characterize the drift.
Depending on the explored feature space, these methods miss various types of changes. Moreover, they are either designed to detect
sudden drifts or gradual drifts but not both. This paper proposes an automated and statistically grounded method for detecting sudden
and gradual business process drifts under a unified framework. An empirical evaluation shows that the method detects typical change
patterns with significantly higher accuracy and lower detection delay than existing methods, while accurately distinguishing between
sudden and gradual drifts.

Index Terms—Business process management, process mining, change detection, concept drift.

F

1 INTRODUCTION

Business processes need to continuously change in response to
external factors, such as variations in demand, supply, customer
expectations and regulations, as well as seasonal factors. Some
changes are planned and documented, but others occur unexpect-
edly and may remain unnoticed. The latter may be the case for
example of changes initiated by individual workers in order to
adapt to variations in workload, changes brought about by re-
placement of human resources, changes in the frequency of certain
types of (problematic) cases, or exceptions that in some cases give
rise to new workarounds that over time solidify into norms. Such
undocumented changes may over time have a significant impact
on the performance of the business process.

In this setting, business process managers require methods and
tools that allow them to detect and pinpoint changes as early as
possible. Business process drift detection [1]–[3] is a family of
techniques to analyze event logs or event streams generated during
the execution of a business process in order to detect points in
time when the behavior of recent executions of the process (a.k.a.
cases) differs significantly from that of older one. The input of
such methods is a set of traces, each representing the sequence of
events generated by one case of the business process.

Given this input, existing methods for business process drift
detection extract patterns (a.k.a. features) characterizing each
trace. One possible feature is for example that task A occurs
before task B in the trace, or that B occurs more than once in the
trace. To achieve a suitable level of accuracy, existing techniques
either explore large feature spaces automatically or they require
the users themselves to identify a specific set of features that are

• A. Maaradji, M. La Rosa and A. Ostovar are with the Queensland
University of Technology, Australia
Email: {abderrahmane.maaradji,m.larosa,alireza.ostovar}@qut.edu.au

• M. Dumas is with the University of Tartu, Estonia.
Email: marlon.dumas@ut.ee

likely to characterize the drift – implying that the user already has
an a priori idea of the characteristics of drift. In all cases, these
methods will miss a change if it is not characterized by the features
employed during the analysis. Furthermore, the scalability of these
techniques is hindered by the need to extract and analyze a large
set of high-dimensional feature vectors.

Another limitation of existing methods is that they are de-
signed to detect either gradual drifts or sudden drifts, but not both.
In this context, a gradual drift is one that does not affect all cases at
once. Instead, it initially affects some cases but not others and then
gradually affects more cases until it becomes visible across the
board. For example, a new policy in an insurance company may
require claim handlers to perform a new check on each insurance
claim. The insurance company may decide to instantly apply the
check to all claims (sudden drift), or may first start by performing
the check on short-term and low-value claims and over time extend
it to long-term and high-value claims (gradual drift).

Discerning gradual drifts is more challenging than sudden
drifts as there is no time point such that cases completed after
this point totally differ from cases completed before it. In contrast
to a sudden drift where an abrupt change occurs at a time point,
a gradual drift is characterized by a transition time interval where
the prior process behavior fades-out whereas the posterior one
fades-in. While a specialized technique for gradual drift detection
has been proposed in [4], this latter is not integrated with the
sudden drift detection method, and very often sudden drifts are
mistakenly detected as gradual drifts. Thus, users need to check
for sudden and gradual drifts separately, and then decide which
drifts are relevant in a particular setting.

This article proposes an integrated and automated business
process drift detection method addressing the above limitations.
The core idea of the proposed method is to perform statistical tests
over the distributions of partially ordered runs observed in two
consecutive time windows, where a run represents a set of traces
that are equivalent to each other modulo a concurrency relation

2

between the event types (activities) in the process. By re-sizing
the window adaptively, the method strikes a trade-off between
accuracy and drift detection delay while scaling up.

The basic method presented in this article detects sudden drifts.
This method is then extended to detect gradual drifts based on the
assumption that a gradual drift is delimited by two consecutive
sudden drifts. To detect the location of gradual drifts, a post-
processing step is applied wherein a separate statistical test is
applied to the sets of runs observed between consecutive sudden
drifts in order to determine if these sudden drifts represent separate
changes, or if they define the start and end of a single gradual drift.
Thus, the detection of sudden and gradual drifts is integrated, so
that given an event log, the method returns a set of sudden drift
points and a set of gradual drift intervals.

The proposed drift detection methods have been implemented
and evaluated in terms of accuracy, detection delay and scalability,
and compared against existing methods using a battery of synthetic
and real-life event logs.

This article is an extended and revised version of a conference
paper [5]. With respect to the conference version, the exten-
sions include the definition, implementation and evaluation of the
gradual drift detection method, including its comparison with an
existing baseline; an extended evaluation for the basic method for
sudden drift detection; a discussion of threats to validity; as well
as a more extensive comparison with related work.

The article is structured as follows. Section 2 discusses related
work. Sections 3 and 4 introduce respectively the sudden and
gradual drift detection methods. Section 5 presents the implemen-
tation while Sections 6-8 present the experimental evaluations.
Finally, Section 9 discusses threats to validity, while Section 10
summarizes the contributions and discusses future work.

2 BACKGROUND AND RELATED WORK

The problem of business process drift detection is a variant of the
problem of concept drift detection in data mining [6]. A concept
drift refers to a change in the distribution of a variable. This change
may occur suddenly or gradually [7]. A drift is sudden if there is
a time point such that the data observations before and after this
point are generated by two different distributions, with no time
overlap between them. Otherwise, the drift is said to be gradual.

A large body of research work on concept drift in data mining
has investigated the problem of identifying the time point when a
drift occurs [6]. For example, Klinkenberg et al. [8] detects drift
by minimizing the error of a Support Vector Machine learner.
Baena-Garcia et al. [9] proposed a method for fast drift detection
based on monitoring the distance between classification errors.
Ienco et al. [10] introduced a technique for categorical data
stream which requires at least two predictor variables though.
In order to discard old data, different forgetting mechanisms has
been proposed such as adaptive window technique [11], [12], or
fading factor [13]. Generally speaking, we observe that methods
developed in this context deal with simple data structures (e.g.
numerical or categorical variables and vectors thereof), while in
business process drift detection we seek to detect changes in more
complex structures, specifically behavioral relations between tasks
(concurrency, conflict, loops). Thus, methods from the field of
concept drift detection in data mining cannot be readily transposed
to business process drift detection.

Existing methods for business process drift detection are based
on the idea of extracting patterns (a.k.a. features) from traces.

Bose et al. [1], [3] propose a method to detect process drifts based
on statistical testing over feature vectors. This method is however
not automated. Instead, the user is asked to identify the features
to be used for drift detection, implying that the user has some
apriori knowledge of the characteristics of the drift. If the user
is unaware of the type of drift present in the log, they have to
select all combinations of activities as the feature space, which
is extremely computing-intensive. Furthermore, given the types of
features supported, this method is unable to identify certain types
of drifts such as inserting a conditional branch or a conditional
move. Finally, this method requires the user to set a window size
for drift detection. Depending on how this parameter is set, some
drifts may be missed. This latter limitation is partially addressed in
a subsequent extension [4], which introduces a notion of adaptive
window. The idea is to increase the window size until it reaches
a maximum size or until a drift is detected. This latter method
requires that the user sets a minimum and a maximum window
size. If the minimum window size is too small, minor variations
(e.g. noise) may be misinterpreted as drifts. Conversely, if the
maximum window size is too large, the execution time is affected
and some drifts may go undetected.

In [4], Martjushev et al. additionally propose a method for
detecting gradual drifts. The idea is to apply their sudden drift
detection technique by introducing a gap between the two sliding
windows. This gap represents the gradual drift interval, whose
maximal size needs to be manually initialized by the user. This
design leads to a confusion between sudden and gradual drifts.
For example, when testing this method with logs containing only
sudden drifts, the method detected theses drifts as gradual ones.

Accorsi et al. [14] propose a drift detection method based on
trace clustering. Similar to Bose et al. [1], [3], this method heavily
depends on the choice of window size, such that a low window
size leads to false positives while a high window size leads to
false negatives (undetected drifts), as drifts happening inside the
window go undetected. In addition the method is not designed to
deal with loops, and may fail to detect types of changes that do not
significantly affect the distances between activity pairs in a trace,
e.g. changes involving an activity being always executed before
the drift, and sometimes skipped after the drift.

Carmona et al. [2] propose another drift detection method
based on an abstract representation of the process as a polyhedron.
This representation is computed for prefixes extracted from a
random sample of the earlier traces in the log. The method checks
the fitness of subsequent prefixes of traces against the constructed
polyhedron. If a large number of these prefixes do not lie in the
polyhedron, a drift is declared. To find a second drift after the first
one, the entire detection process has to be restarted, thus hindering
on the scalability of the method. In experiments we conducted
with the logs used in Sections 6 and 7, the implementation of this
method took hours to complete. Another drawback of this method
is its inability to pinpoint the exact moment of drift.

Burattin et al. [15] adapt an automated process discovery
method, namely the Heuristics Miner, to handle incremental up-
dates to the discovered process model as new events are observed.
Our proposal is complementary to the latter as it allows drifts to be
detected accurately and efficiently, and can be used as an oracle to
identify points in time when the process model should be updated.

In a subsequent work, Burattin et al. [16] present a method
for online discovery of process models captured as a set of
constraints between events. These constraints are formulated in
the DECLARE language based on Linear Temporal Logic (LTL).

3

The work explores different streaming techniques to update the
LTL constraints incrementally. In this setting, any change in the
extracted constraints over time may be considered as a drift.
However, no statistical support is provided to analyze the signifi-
cance of changes in order to discern transient changes from drifts.
Moreover, DECLARE lacks support for explicitly capturing the
concurrency relation, leading to some changes being potentially
missed. Finally, the exact position of the changes is not reported.

In a separate study [17], we addressed the problem of sudden
drift detection in business processes with high variability, i.e.
processes with a high proportion of distinct traces relative to
the total number of traces. Drift detection in such processes
requires specialized methods because the set of possible distinct
traces is so large that previously unobserved traces keep appearing
continuously, though this does not necessarily imply that the
process behavior has drifted. In [17], we tackle this issue by
performing statistical tests not over the distributions of runs, but
rather over the distributions of behavioral relations between pairs
of events. This method is designed to work with streams of events
in online settings. However, it only deals with sudden drifts, not
with gradual ones.

In a subsequent study [18], we extended the method in [17]
to characterize the identified drifts. Specifically, we perform a
statistical test to measure the statistical association between the
drift and the distributions of behavioral relations extracted from
the event stream before and after the drift. We then rank these
relations based on their relative frequency change, and match
them with a set of predefined process change templates. The
best-matching templates are then reported to the user via natural
language statements (e.g. “Before the drift, activity E preceded F,
while after the drift they are in parallel”).

This article is an extended and revised version of a conference
paper [5]. While the conference paper focuses on sudden drift
detection, this article extends the scope of the study to cover both
sudden and gradual drifts in an integrated manner.

3 SUDDEN DRIFT DETECTION METHOD

The problem of business process drift detection can be formulated
as follows: identify a time point when there is a statistically
significant difference between the observed behavior before and
after this point. To turn this statement into a decision procedure,
we first need to define what we mean by a difference in the
observed behavior. In other words, we need to define when
are two processes the same? [19]. A number of equivalence
notions have been proposed to address this question. One widely
accepted notion of process equivalence is trace equivalence: two
processes are the same if they have the same set of traces, thus
they are different if their set of traces exhibits a (statistically
significant) difference. This trace-based representation does not
capture concurrency. As a result, any significant variation in the
frequency of relative ordering of two activities that are anyways
in parallel will be treated as a drift. For example, if two activities
b and c are in parallel, any significant variation in the frequency
of occurrence of b followed by c vs. c followed by b gives rise to
a drift, even though the parallel relation between these activities
still holds. From this perspective, a more suitable approach is to
reason in terms of partially ordered runs (a.k.a. configurations) of
a process, where concurrency is explicitly captured. For example,
the two traces abcd and acbd characterize the process where a is
followed by the block b and c in parallel, and these are followed

by d. In a run-based representation, only one run is needed to
represent both traces: the run where a is followed by b and c
in parallel and these are followed by d. As business processes
typically contain concurrent activities, we opt for a run-based
representation of logs and thus a notion of run-equivalence, known
as configuration equivalence or pomset equivalence [20].

Given the above, we map the problem of process drift detection
to that of finding a time point such that the set of runs before
this point is statistically different from the set of runs after (for
a given observation window size). This formulation leads to
the two-staged approach outlined in Figure 1. In the first stage,
we divide the recently observed traces into two windows: the
detection window (most recent traces) and the reference window
(older traces). For each window, we discover a set of concurrency
relations between the event labels (activities) observed in the
window and then transform the set of traces that completed in
each time window into a set of runs. In the second stage, we apply
statistical testing to find significant differences between the sets of
runs of adjacent time windows. In a preprocessing step, we replay
completed traces of a given event log in their temporal order to
produce a stream of traces, that is used as input to our method.
The next two sub-sections discuss these two stages in turn, while
the third sub-section discusses how the window size is adapted
dynamically.

Reference window Detection window

𝜋𝑖+2𝑤𝜋𝑖+1 𝜋𝑖+𝑤 𝜋𝑖+𝑤+1Stream
of runs

Reference window Detection window

𝛔𝑖+2𝑤𝛔𝑖+1 𝛔𝑖+𝑤 𝛔𝑖+𝑤+1Stream
of traces

Discover concurrency in each window

Transform traces into partial order runs

Hypothesis test of
independence (Chi-square)

Report detected sudden drift

Fig. 1: Overview of sudden drift detection method

3.1 From event logs to partial order runs

An event log consists of a set of traces, each capturing the
sequence of events observed for a given case of the process,
ordered by timestamp. For example using an simplified notation,
L =

[
σ2

1 ,σ
3
2
]
, where σ1 = 〈a,b,c,d〉 and σ2 = 〈a,c,b,d〉, defines

a log containing 5 traces (two occurrences of σ1 and three of σ2)
and a total of 20 events. Formally:

Definition 1 (Event log, Trace). Let L be an event log over the set
of labels L , i.e. L ∈ B(L ∗). Let E be a set of event occurrences
and λ : E→L a labeling function. An event trace σ ∈ L is defined
in terms of an order i ∈ [0,n−1] and a set of events Eσ ⊆ E with
|Eσ |= n such that σ = 〈λ (e0),λ (e1), . . . ,λ (en−1)〉.

A trace defines a total order between a set of events. If
we know that some of these events are related via concurrency
relations, we can transform a trace into a partially ordered run
by “breaking” the total order between concurrent events in the
trace. For simplicity, in the following we use the notion of Alpha
concurrency defined in [21] to identify concurrent pairs of events.

4

Definition 2 (α concurrency). Let L be an event log over the
set of event labels L and σ ∈ L be a log trace. A pair of
tasks with labels A,B ∈ L are said to be in al pha-directly
precedes relation, denoted A ≺α(L) B, iff there exists a trace
σ = 〈λ (e0),λ (e1), . . . ,λ (en−1)〉 in L, such that A = λ (ei) and
B = λ (ei+1). We say that a pair of tasks A,B ∈ L are α-
concurrent, denoted A ‖α(L) B, iff A≺α(L) B∧B≺α(L) A.

Note that α-concurrency is a symmetric relation and that
it applies to event labels and not over event occurrences. For
instance, we can identify that b ≺α c from trace σ1 = 〈a,b,c,d〉,
and c ≺α b from trace σ2 = 〈a,c,b,d〉. Therefore, b and c are
considered to be parallel, noted b ‖α c.

It is possible to use more sophisticated concurrency relations
such as the α+ [22], α++ [23], or the one proposed in [24]. The
choice of concurrency relations does not fundamentally alter our
approach. To abstract away from any specific approach to extract
concurrency relations, we assume in the sequel that we are given
as input a function χ (herein called a concurrency oracle), which
given an event log L, returns a symmetric concurrency relation
‖χ(L) between event labels in the log. In particular, if we are given
the α concurrency oracle as input, then ‖χ(L) =‖α(L).

Given the above, Definition 3 describes how a trace is trans-
formed into a partially ordered run given a concurrency oracle.

Definition 3 (Transformation of a trace into a run). Let L be
an event log over the set of event labels L and ‖χ(L) be the
concurrency relation provided by an oracle χ applied to L. Let E
be a set of event occurrences, λ : E→L a labeling function. We
say that event ei directly precedes event ei+1, denoted ei l ei+1,
iff there exists a trace σ = 〈λ (e0), . . . ,λ (en−1)〉 in L with an order
i ∈ [0,n−1]. Therefore, the tuple π = 〈Eπ ,≤π ,λπ〉 is the partially
ordered run corresponding to trace σ , induced by the concurrency
relation ‖χ(L) and the directly precedes relation l, where:
• Eπ is the set of events occurring in σ ,
• ≤π is the causality relation defined as
≤π = E2

π ∩ (l+\ ‖χ(L))
∗, and

• λπ : Eπ →L is a labeling function, i.e. λπ = λ |Eπ
.

We write Πχ(L) to denote the set of all partially ordered runs
induced by ‖χ(L) over the set of traces in L.

a

b c

d

Fig. 2: Sample run (π1)

Let us consider event
log L and apply the def-
inition step-by-step. We
first compute the directly-
precedes relationship l by
representing the sequenc-
ing captured by the event
traces, resulting in set
{(aσ1 ,bσ1),(bσ1 ,cσ1),(cσ1 ,dσ1),(aσ2 ,cσ2),(cσ2 ,bσ2),(bσ2 ,dσ2)}.
Second, we compute the (irreflexive) transitive closure l+

by adding to the previous set the following new relations:
{(aσ1 ,cσ1),(bσ1 ,dσ1),(aσ1 ,dσ1),(aσ2 ,bσ2),(cσ2 ,dσ2),
(aσ2 ,dσ2)}. Third, we compute the concurrency relation ‖χ(L),
and obtain {(b,c)}. Fourth, we compute the causality relation
≤π1 for the run π1 corresponding to trace σ1 by computing set
l+\ ‖χ(L), which leads to removing relation (bσ1 ,cσ1). Similarly,
we remove (cσ2 ,bσ2) for ≤π2 for run π2 from σ2. Finally, we
remove the unnecessary transitive relations (aσ1 ,dσ1) for π1 and
(aσ2 ,dσ2) for π2.

Using only event labels as a simplified representation, the
result of this transformation applied on σ1 = 〈a,c,b,d〉 is

Reference window

Point of the
hypothesis test

Stream of runs

Detection window

𝜋𝑖+2𝑤𝜋𝑖+1 𝜋𝑖+𝑤𝜋𝑖+𝑤+1

Actual drift

d

Fig. 3: Statistical test over two sliding windows

the run π1 defined by the following causality relation ≤π=
{(a,b),(a,c),(b,d),(c,d)} implicitly inferring that b ‖χ(L) c (cf.
Figure 2). In the simplified notation, each trace in L is transformed
to the exact same run represented by π .In the remainder of the
paper, a run always refers to its simplified representation.

Armed with these concepts, we can transform a set of traces
into a set of runs by first calculating the alpha relationships,
and then transforming each trace into a run as outlined above.
Below, we show how sets of runs observed in two consecutive
time windows are analyzed in order to detect sudden drifts.

3.2 Statistical test and oscillation filter

In order to detect a drift in a stream of runs, we monitor any
statistically significant change in the distribution of the most
recent runs. This test is done on two populations of the same
size w built from the most recent runs in the stream. Basically
the most recent runs are divided into a reference (less recent)
and a detection (more recent) populations, forming together the
composite window. Then, we evaluate the statistical hypothesis
of whether the reference and detection populations of runs are
similar. Figure 3 depicts a reference and a detection window over
a stream of runs. For every new run in the stream, we slide both
windows to the right in order to read the new run and perform a
new statistical test. We keep iterating this process as long as there
are new runs observed in the stream.

Since there is no a-priori knowledge of the run distributions
(and their parameters) within the reference and detection windows
population, we apply a non-parametric hypothesis statistical test.
Moreover, given that an observation of the statistical variable is a
run, the statistical test has to be applicable to a categorical variable.
For these reasons, we selected the Chi-square test of independence
between two variables. The goal of a two-variable Chi-square
test is to determine whether the reference variable and detection
variable are similar. The reference variable (resp., the detection
variable) is represented by the observations from the reference
window (resp., the detection window). A contingency matrix is
built to report the frequencies of each distinct run in each window.
The Chi-square test is performed on this contingency matrix which
return the significance probability (the P-value). A drift is detected
when the P-value is less than the significance level (the threshold),
and localized at the point of juxtaposition of the reference and
detection windows. The value of the threshold is set to the typical
value of the Chi-square statistical test, which is 0.05 [25].

The delay d shown in Figure 3 is a notion from concept drift
in data mining [26]. It is not the distance between the actual drift
and the location where the drift is detected. Rather, it indicates
how long it takes for the statistical test to detect the drift after it
has occurred, and is measured as the number of runs between the
drift and the end of the detection window.

Since any statistical test is subject to sporadic stochastic oscil-
lations, we introduced an additional filter, namely the oscillation
filter, to discard abrupt stochastic oscillations in the P-value.

5

An abrupt stochastic oscillation is caused by the noise present
in the event log, e.g. in the form of infrequent events or data
gaps. Accordingly, we detect a drift only if a given number φ of
successive statistical tests have a P-value less the typical threshold
for the statistical test. In other words, a persistent P-value under
the threshold is much more reliable than a sparse value happening
abruptly. Tests that we carried out using the simple moving average
(SMA) smoothing technique on the P-value curve, led to similar
results. More sophisticated approaches to filter out stochastic
oscillations are however available, e.g. from the financial domain
[27], and could be used instead.

The only independent parameter in the proposed method is the
window size w. Below we discuss how to automatically adjust this
parameter as new runs are observed in the stream.

3.3 Adaptive window
As discussed in Section 2, the choice of window size is critical
in any drift detection method as a small window size may lead
to false positives while a large one may lead to false negatives as
well difficulty in locating the exact point of the drift. Our method
strikes this trade-off by adapting the window size in order to have
a more reliable statistical test. It is inspired by [12], where the
authors provide rigorous guarantees on the performance of the
adaptive window technique.

The underpinning observation of our method is that if the
variation within the composite window is high (resp. low), we
need more (resp. less) observations to assert that the distribution
of runs in the detection window is statistically different from the
distribution of runs in the reference window. Accordingly, we
increase the composite window size if we observe high variability,
and decrease it if we observe low variability.

The variability (a.k.a. variation) of a statistical variable is a
measure of the dispersion of a set of random observations of the
variable. In the case of a categorical variable with a large number
of possible values (e.g. the set of possible runs of a process), higher
dispersion entails a higher number of observed distinct values
relative to all observations. Accordingly, we measure variability
as the ratio between the number of distinct runs and the total
number of the runs in a composite window.

When we slide the composite window, the total number runs in
the new window and in the old window is initially the same. What
can vary between these two consecutive sliding windows is the
number of distinct runs. In order to keep the variability constant
between these two consecutive sliding windows, we adjust the size
of the new window proportionally to the change in the number of
distinct runs – if the number of distinct runs goes down (up), the
size of the window will decrease (increase). Formally, given two
consecutive composite windows T1 and T2, the evolution ratio
between T2 and T1 is defined as the ratio between the number
of distinct runs in T2 and the number of distinct runs in T1.
An evolution ratio of 1 means that there is no evolution in the
variability between T1 and T2. An evolution ratio less than 1
means that there is less variation in T2 relative to T1, whereas
an evolution ratio greater than 1 means the opposite.

The composite window size is adjusted based on the
evolution ratio every time that it is shifted forward to incor-
porate a new run in the stream, specifically: nextWindowSize =
currentWindowSize · evolutionRatio. To initialize the procedure,
we start with a user-defined window size. If the user does not
provide an initial window size, the method uses the minimum size
required by the statistical test. For instance, for the chi-square test,

no more than 5% of the frequencies in the contingency table are
allowed to be less than five.

The complete sudden drift detection algorithm and its time
complexity analysis can be found in the online Appendix.

4 GRADUAL DRIFT DETECTION METHOD

A gradual drift is intuitively defined as a change that happens
progressively from one underlying process behavior to another
one. In contrast to a sudden drift where an abrupt change occurs
at a time point, a gradual drift is characterized by a transition
time interval where both the prior and posterior process behaviors
overlap. Throughout this transition interval, the prior process
behavior fades-out whereas the posterior one fades-in.

The proposed gradual drift detection method relies on the
assumption that a gradual drift is delimited by two consecutive
sudden drifts discernible by the method described in Section 3,
such that the distribution of runs in the interval between these two
drifts is a mixture of the distributions of runs before the first drift
and after the second drift. The reasoning behind this assumption is
that there is a point in time where the new process behavior starts
to fade-in (leading to the first sudden drift), and a point in time
where the old process behavior fades-out completely (leading to
the second drift). By virtue of the definition of drift (i.e. a change
in the behavior of the process), the distribution of runs before
the start of the gradual drift (i.e. before the first sudden drift) is
different from the distribution of runs after the end of the gradual
drift (i.e. after the second sudden drift). In the interval between the
two sudden drifts (herein the transition interval), the old and the
new behavior co-exist. This leads us to assume that the distribution
of runs in the transition interval follows a statistical distribution
that is a mixture of the distribution before the first sudden drift
and of the distribution after the second sudden drift.

Accordingly, gradual drifts are detected by post-processing the
output of the sudden drift detection algorithm. Specifically, each
two consecutive sudden drifts are statistically analyzed in order to
determine whether the behavior in the interval between them is a
mixture of the behaviors before and after them.

4.1 Statistical testing for gradual drifts

We seek to test if the distribution of runs in-between two con-
secutive sudden drifts (the transition interval) is a mixture of the
distribution of runs before the first sudden drift and the distribution
of runs after the second sudden drift. We further assume that this
“mixture” is linear, meaning that the distribution in the interval
can be written as a linear combination of the distributions before
and after the interval. Hence, we seek to find weights (x0,y0),
such that the weighted addition of the distributions before and
after the transition interval fits the distribution observed during the
interval. The fitness between the linear mixture and the actually
observed distribution is asserted if we are able to confirm the null
hypothesis of the Chi-square goodness-of-fit statistical test. This
test is designed to determine if a set of observations is consistent
with a hypothesized distribution, in this case the linear mixture.

If no tuple (x0,y0) can be found for which the null hypothesis
is confirmed, we conclude that the distribution in the transition
interval is not consistent with any linear mixture of the distribu-
tions of the surrounding fragments (no gradual drift). On the other
hand, a gradual drift is declared if we can find at least one tuple
(x0,y0) for which the null hypothesis is confirmed.

6

Since we do not have the full statistical distribution of runs
over a given time interval, we use the histogram of runs as a
proxy. Histograms have been shown to be a fair approximation of
a categorical variable’s statistical distribution [28] and they have
already been used for drift detection in data mining [29].

For every two consecutive sudden drifts, the gradual drift
detection method maintains the histograms of populations of runs
corresponding to the following intervals: (i) directly before the
start of the first sudden drift, (ii) between the two drifts, and
(iii) directly after the second drift. We then apply a Chi-square
goodness-of-fit statistical test on these histograms to assert if the
process behavior within the interval is a mixture of the two process
behaviors before and after it, as formalized below.

Definition 4 (Gradual drift detection). Given:
• two consecutive sudden drifts Dk−1 and Dk, delimiting the

populations of runs Pk−1,Pk,Pk+1, and
• the histograms Hk−1, Hk , and Hk+1 representing the popula-

tion Pk−1, Pk, and Pk+1 respectively
A gradual drift delimited by Dk−1 and Dk has occurred if:
• ∃(x0,y0) ∈ R, and Ĥk a histogram where Ĥk = x0Hk−1 +

y0Hk+1, and
• the null hypothesis Ĥk ≈ Hk can not be rejected by the Chi-

square goodness-of-fit test.

The population Pk of runs within the candidate gradual drift
interval (i.e. the interval between two sudden drifts) is represented
by histogram Hk, whereas histograms Hk−1 and Hk+1 represent
run distributions before and after the candidate gradual drift as
depicted in Figure 4. If a mixture distribution of Hk−1 and Hk+1
is possible, represented here by Ĥk, and if this mixture Ĥk is
similar to Hk, we can state that Ĥk is likely to have generated
the observation Pk and thus Pk is likely to be a population of a
gradual drift interval.

According to Definition 4, we are looking for a tuple (x0,y0)
such that we can statistically validate the hypothesis that Ĥk is
a mixture of Hk−1 and Hk+1 with weights x0 and y0 respectively.
Based on the Chi-square goodness-of-fit test, this hypothesis is not
rejected with confidence level (1−TrChi) if:

d f+1

∑
i=1

(Hki− Ĥki)
2

Ĥki
< χ

2
d f (TrChi) (1)

where χ2
d f (TrChi) is the Chi-square critical value given as

the point where the complement of the chi-square cumulative
distribution function equals TrChi. The Chi-square critical value is
retrieved from the Chi-square table based on the significance level
(here TrChi) and the degrees of freedom of the test (here d f). The
degrees of freedom are equal to the number of categories (distinct
runs) minus one. Replacing Ĥk by xHk−1 + yHk+1 in Inequality 1
results in:

d f+1

∑
i=1

(Hki− (xHk−1i + yHk+1i))
2

xHk−1i + yHk+1i
< χ

2
d f (TrChi) (2)

We use a non-linear programming (NLP) solver to try to solve
Inequality 2. If the NLP solver returns a solution (x0,y0) satisfying
Inequality 2, then the null hypothesis is valid. The validity of the
null hypothesis confirms that Hk conforms to the distribution Ĥk.
This means that with a confidence level (1−TrChi), Pk has been
generated by Ĥk, itself a mixture of Hk−1 and Hk+1. Hence, a
gradual drift is declared. Note that the returned solution (x0,y0)
indicates that the relative weight of the histogram Hk−1 (resp.
Hk+1) in the gradual drift is x0/(x0 + y0) (resp. y0/(x0 + y0)).

𝐷𝑟𝑖𝑓𝑡𝑘

Stream
of runs 𝐷𝑟𝑖𝑓𝑡𝑘−1

Histogram 𝑯𝒌−𝟏 Histogram𝑯𝒌 Histogram 𝑯𝒌+𝟏

Report detected gradual drift

potential gradual
drift interval

Solve inequality

Fig. 4: Overview of gradual drift detection method

Figure 4 provides an overview of the gradual drift detection
approach. The detailed algorithm and its time complexity analysis
are given in the online Appendix.

4.2 Example

To illustrate the gradual drift detection method, let us assume
we have an event log of 2000 traces with a linear gradual drift
of 400 traces. In the first step, Algorithm 1 detects two sudden
drifts at the start and end of the gradual drift, say drift one
at trace index 820, and the second drift at trace index 1250.
Second, we extract the three histograms delimited with these
two consecutive drifts, namely H1,H2,H3 corresponding to the
trace ranges [0-819], [820-1249], and [1250-1999] respectively.
Third, let us assume the number of distinct runs in these three
histograms is 41. Consequently, the degrees of freedom of the
Chi-square statistical test is 40. The fourth step is to fetch the
Chi-square critical value, corresponding to the degrees of freedom
d f = 40 and a significance level TrChi = 0.05, which corresponds
to 55.758 (retrieved from the Chi-square test table). Finally, based
on the Chi-square critical value and the histograms, we populate
the inequality 2, which is then solved with the NLP solver. Let us
assume the solver returns the solution (x0,y0) = (0.5,0.5). Finding
a solution for the inequality actually means the null hypothesis
can not be rejected by the Chi-square test. Hence, the detected
two consecutive sudden drifts delimit a gradual drift. The solution
(x0,y0) = (0.5,0.5) means that the histogram H2 is an equally
balanced combination of H1 and H3. An a posteriori Chi-square
test of the null hypothesis that H2 conforms to 0.5H1 + 0.5H3
results in a significance probability (P-value) above 0.05.

5 IMPLEMENTATION

We implemented the two methods for drift detection in an open-
source software tool called ProDrift, available as a plugin of the
Apromore online platform,1 and a standalone Java command-line
tool.2 ProDrift relies on JOptimizer3 as the NLP solver. We used
JOptimizer because it is an efficient, open-source NLP solver
developed in Java.

When using the ProDrift plugin in Apromore, users can import
an event log in XES or MXML format. Each new trace is used to
dynamically update the alpha-relationships for each pair of events,
and then transformed to a partial order run, resulting in a stream
of runs. This stream of runs is then used as input for the statistical
test. The detected sudden and gradual drifts are reported on a plot
of the P-value curve, as well as in a list which includes the number
of traces and timestamps in the log where the drifts were found,

1. Available at http://apromore.org
2. Available at http://apromore.org/platform/tools
3. Available at http://www.joptimizer.com

7

as well as the mean delay expressed as the number of traces read
from the log. The user can then extract sublogs defined by each
two consecutive drifts, representing “stable” process behaviors.
These sublogs can be used for further analysis, e.g. for analyzing
the evolution of a business process over time [30] by relying on
other plugins available in Apromore.

6 EVALUATION OF SUDDEN DRIFT DETECTION ON
SYNTHETIC LOGS

In this section we report on the evaluation of our basic method
for detecting sudden drifts. First, we evaluate the impact of the
various parameters (oscillation filter size, window size, and use of
adaptive window) on the accuracy of the results. We do so by using
a synthetic dataset, in order to test the method against different
types of changes and inter-drift distances. To assess accuracy we
use two established measures in concept-drift detection in data
mining [26], namely the F-score, measured as the harmonic mean
of recall and precision, and the mean delay. The latter, computed
as the average number of log traces after which a drift is detected,
not only measures how late we detect the drift with regard to
where it actually happens, but it also indicates how far in the log
traces are read to be able to detect a drift.

Once we identify the best values for the parameters, we assess
the accuracy of our method for various types of sudden drifts, and
compare the results with the baseline method in [3]. Finally, we
report on time performance.

6.1 Dataset generation

We generated a benchmark of 72 event logs by taking a textbook
example of a business process for assessing loan applications [31]
as a “base” model and altering it as outlined below. This model,
illustrated in Figure 5, has 15 activities, one start event and three
end events, and exhibits different control-flow structures including
loops, parallel and alternative branches.

In order to assess the ability of our method to detect sudden
drifts determined by different types of control-flow changes, we
systematically altered the base model by applying in turn one out
of twelve simple change patterns described in [32].4 These pat-
terns, summarized in Table 1, capture different change operations
commonly identified in business process models, such as adding,
removing or looping a model fragment, swapping two fragments,
or parallelizing two sequential fragments.

Code Simple change pattern Category
re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronize two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branching frequency O

TABLE 1: Simple control-flow change patterns

To emulate more complex drifts, we organized the simple
changes into three categories: Insertion (“I”), Resequentialization

4. Subprocess extraction and inlining patterns were excluded as they do not
affect the process itself.

(“R”) and Optionalization (“O”) as shown in Table 1, so as to
give rise to six possible composite change patterns by randomly
applying one pattern from each category in a nested way (“IOR”,
“IRO”, “OIR”, “ORI”, “RIO”, “ROI”). For example, the compos-
ite pattern “IOR” was obtained by first adding a new activity (“I”),
then making this activity in parallel with an existing activity (“R”)
and finally by putting the parallel block in a loop structure (“O”).

Base model Altered model
(e.g. task removal)

Simulation

Merging

10,000-trace log with 9 concept drifts

1000 1000 1000 1000

Fig. 6: Event log generation with embedded process drifts

To vary the distance between sudden drifts in the log, we
generated four logs of 250, 500, 750 and 1,000 traces for the
“base” model as well as for each of the 18 “altered” models, using
the BIMP simulator,5 and combined each group of 5 base logs
with each group of 5 altered logs by alternating base and altered
logs, in order to obtain four logs of sizes 2,500, 5,000, 7,500 and
10,000 traces for each of the 18 change patterns, leading to a total
of 72 logs.6 Figure 6 depicts an application of this operation to
generate a log of 5,000 traces. Each log has nine sudden drifts
located at multiples of 10% of the log size, thus with an inter-drift
distance ranging from 250 to 1000 traces (1000 in the example).

6.2 Impact of oscillation filter size on accuracy
In the first experiment, we vary the oscillation filter size φ and
report its impact on the average F-score and mean delay, across
all 72 synthetic logs. The results are shown in Figure 7, where φ

decreases from a size of w to w/11 (on a nominal scale), with w
being the window size.

0

20

40

60

80

100

120

140

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w w/2 w/3 w/4 w/5 w/6 w/7 w/8 w/9 w/10 w/11

M
e

an
 d

e
la

y

FS
co

re

Phi Filter

F-Score
Mean delay

Fig. 7: Impact of the oscillation filter size on the accuracy of
sudden drift detection

We observe that when φ equals w, some sudden drifts are
considered as stochastic noise (false negatives) when the P-value
fails to remain under the threshold for at least w consecutive sta-
tistical tests. Decreasing the size of the oscillation filter increases
the sensitivity of our method which identifies more sudden drifts.
This results in a higher F-score and lower mean delay, reaching
the best values when φ is equal to w/3, with similar results until

5. Available at http://bimp.cs.ut.ee
6. The BPMN models used for simulation, the synthetic logs and the detailed

evaluation results are available with the software distribution

8
Loan_baseline

Check
application

form
completeness

Receive
updated

application

Return
application

back to
applicant

Check
credit

history
Assess

loan risk

Appraise
property

Assess
eligibility

Reject
application

Loan
application

rejected

Prepare
acceptanc

e pack

Check if
home

insurance
quote is

requested

Send
acceptance

pack

Send
acceptance
pack with
insurance

Verify
repayment
agreement

Cancel
application

Loan
application
canceled

Approve
application

Loan
application
approved

Loan
application

received

applicant
disagrees

applicant
agrees

applicant
not eligible

applicant
eligible

form
complete

form
incomplete

home
insurance

required

home
insurance

not required

Fig. 5: Base BPMN model of the loan application process

w/5. However, if we keep decreasing φ , the method becomes less
restrictive with respect to sporadic drops of the P-value, reporting
false positives, which lead to a progressive decline of the F-score.
In the remaining of this section, we use a φ value of w/3.

6.3 Impact of window size on accuracy
In the second experiment, we evaluate the impact of the window
size on accuracy. For this, we executed our method with different
fixed window sizes ranging from 25 to 150 traces in increments
of 25, against each of the 72 logs. Figure 8 reports the F-score
obtained with the four log sizes (2,500 to 10,000 traces), where
for each log the F-score was averaged over the logs produced
by the 18 change patterns. We also measured precision and
recall separately. The corresponding graphs, reported in the online
Appendix, are similar to the F-Score plotted in Figure 8 (the
method errs in both false positives and false negatives).

We observe that the F-score increases as the window size
grows and eventually plateaus at a window size of 150. As
expected, the more data points are included in the reference and
detection windows, the more likely it is for the statistical test to
converge. This results in detecting all sudden drifts (recall of 1),
with few or no false positives (precision of 0.9 or above). For a
window size of 25 traces, the F-score is low (around 0.45). This is
because the Chi-square test does not converge if more than 20%
of the data points have frequency below 5 [33], which is often
the case with a window size of 25 traces, where the distinct runs
might be as low as 5-10. The drop in F-score at a window size
of 150 for logs of 2,500 traces is not an inherent limitation of
our method, but is due to having set a drift every 10% of the log,
which equates to 250 traces for a log of 2,500 traces. Given that
with a window size of 150 traces reference and detection windows
aggregate 300 traces, in some cases two drifts are included within
this set of traces. Hence, the method treats the two drifts as one,
leading to a lower recall.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150

F-
sc

o
re

Window size

2.5k

5k

7.5k

10k

Log size

Fig. 8: F-score obtained with different fixed window sizes

Figure 9 plots the mean delay for different window sizes,
where the mean delay is averaged over the logs produced by the 18

0

20

40

60

80

100

120

140

160

25 50 75 100 125 150

M
e

an
 d

e
la

y

Window size

2.5k

5k

7.5k

10k

Log size

Fig. 9: Mean delay obtained with different fixed window sizes

change patterns, according to the four log sizes. Interestingly, after
an initial high mean delay, due to the unreliability of the statistical
test with low numbers of data points, the mean delay grows very
slowly as the window size increases. This shows that the method
is very resilient in terms of mean delay to increases in windows
size, having a relatively low delay of around 40 traces when the
window size is 50 or above. Similar to the results for F-score, we
observe a drop in the mean delay at a window size of 150, for logs
of 2,500 traces. This positive effect is due to the second drift in
the composite window of 300 traces being discovered before the
drift happened, with respect to the gold standard.

In summary, our method for sudden drift detection achieves
high levels of accuracy both in terms of F-score (above 0.9) and
mean delay (below 40 traces) in the presence of different types
of sudden drifts and for different log sizes. This happens when
employing a fixed window size that is at least 75 traces long, with
the best trade off between F-score and mean delay being achieved
with windows of 100 traces.

We also conducted the same experiments using the trace-based
representation of logs (instead of the run-based one). We observed
that the obtained accuracy with the trace-based representation
was consistently lower than the one with runs. This observation
confirms the intuition discussed in Section 3.

6.4 Impact of adaptive window on accuracy

Next, we assess the impact of using an adaptive window on F-
score and mean delay. For this, we compare the results obtained
with the fixed window size shown in Figures 8 and 9, averaged
over the three log sizes of 5,000, 7,500 and 10,000 traces, with
the results obtained using an adaptive window. For example, we
compare the results obtained with a fixed window size of 25, with
those obtained with an adaptive window initialized to 25 traces.
We did not use the log size of 2,500 traces to avoid the effects of
the interplay between window size and number of sudden drifts
observed in logs of this size in the previous tests.

9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150

F-
sc

o
re

Window size

FWIN

AWIN

Fig. 10: F-score obtained with different fixed window sizes
(FWIN) vs. adaptive window sizes (AWIN)

0

20

40

60

80

100

120

25 50 75 100 125 150

M
e

an
 d

e
la

y

Window size

FWIN

AWIN

Fig. 11: Mean delay obtained with different fixed window sizes
(FWIN) vs. adaptive window sizes (AWIN)

Figures 10 and 11 report the results of this comparison for F-
score and mean delay respectively. The use of an adaptive window
outperforms the use of a fixed window both in terms of F-score and
mean delay. Indeed, the ability to dynamically change the window
size based on the variation observed in the log (measured as the
ratio between number of distinct runs and total number of runs in
the combined window), allows us to obtain an adequate number of
runs (not too small, not too large) in the reference and detection
windows to perform the statistical test. This leads to a higher
F-score, since more data points are automatically added to the
window when the variation is high. At the same time, it leads to a
lower mean delay as the window size is shrank when the variation
is low, since in these cases a low number of runs is sufficient to
perform the statistical test. As an advantage, the adaptive window
method overcomes the low accuracy (both in terms of F-score and
mean delay) obtained when fixing the window size to values as low
as 25 traces (F-score of 0.85 instead of 0.45, and mean delay of 28
instead of 110). This enables the method to be employed in those
scenarios where the distance between drifts in the log is expected
to be very low (i.e. in the presence of very frequent drifts) and
thus keeping the mean delay as low as possible becomes essential
to identify as many drifts as possible.

6.5 Accuracy per change pattern

As a further test on accuracy, we evaluate the relative levels of
F-score and mean delay for each of the twelve simple change
patterns and the six composite change patterns. For this, we fixed
the window size to 100 traces, which proved to provide the best
trade off in terms of F-score and mean delay, and averaged the
results obtained with the fixed window, and with the adaptive
window initialized to 100 traces, over the three log sizes of 5,000,
7,500 and 10,000 traces.

Figures 12 and 13 shows the results. From these we can draw
the following observations. First, the use of an adaptive window
enhances F-score and mean delay for the majority of patterns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

F-
sc

o
re

Change patterns

FWIN

AWIN

Fig. 12: F-score per change pattern, obtained with fixed window
size of 100 (FWIN) vs. adaptive window size (AWIN)

0

10

20

30

40

50

60

70

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

M
e

an
 d

e
p

ay

Change patterns

FWIN

AWIN

Fig. 13: Mean delay per change pattern, obtained with fixed
window size of 100 (FWIN) vs. adaptive window size (AWIN)

(16 out of 18 for F-score and 12 out of 18 for mean delay),
with the F-score often being 1. Second, the method experiences
a sensibly lower F-score both for fixed and adaptive windows
for the frequency change pattern (“fr”). This pattern modifies
the frequency of certain event relations in the log. The low F-
score is due to a low precision (lots of false positives). This is
because our method is sensitive to frequency changes caused by
the stochastic interference present in an event log. For example,
even if the probabilities of taking two alternative branches in a
process are observed to be 50% each in the entire log, when
looking at an individual window, which is a small extract of the
log, these probabilities are likely to be slightly different (e.g. they
could be 40%-60% instead of 50%-50%). This interference tricks
the detection of a frequency-based drift, but can be resolved by
choosing a larger window size. For example, using a fixed window
of 200 traces, we obtain an F-score of 0.98 (1 if using the adaptive
window) for the “fr” pattern.

6.6 Comparison with baseline

Lastly, we compare our method for sudden drift detection using
an adaptive window, with the method of Bose et al. [3], since
this is the most mature method for process sudden drift detection
available at the time of writing. For this experiment we use the
synthetic logs previously generated for each of the 18 change
patterns, set the window size to 100 and average the results over
the three different log sizes of 5,000, 7,500 and 10,000 traces.

As discussed in Section 2, the method in [3] requires to
manually select the order relations between event labels to be used
as features to build the feature space which in turn is required to
detect the sudden drifts. Thus, knowing the specific changes made
in the altered models, we manually selected the most appropriate
features for each log.

10

Figure 14 and 15 show the results of the comparison. Our
method outperforms the method in [3] both in terms of F-score
and mean delay, achieving substantial F-score differences for ten
change patterns, including “lp” (make fragment loopable/non-
loopable), “cp” (duplicate fragment), “pm” (move fragment in-
to/out of parallel branch) and composite patterns such as “IOR”
and “RIO”. This is due to the large number of false positives
identified by the baseline. Further, this latter method fails to iden-
tify sudden drifts of the following changes: “cb” (make fragment
skippable/not skippable) and “cm” (move fragment into/out of
conditional branch), even if appropriate features are chosen.

As a final test, for each log, we selected all features in order to
simulate a fully-automated application of the baseline. However, in
this case the method fails to identify any drift due to a high level of
false negatives, and construction of the feature space becomes an
expensive task (over 15 minutes with window size of 100 traces).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

F-
sc

o
re

Change patterns

ProDrift

Bose

Fig. 14: F-score per change pattern: our adaptive window method
(ProDrift) vs. [3] with fixed window size of 100 (BOSE)

0

20

40

60

80

100

120

140

160

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

M
e

an
 d

e
la

y

Change patterns

ProDrift

Bose

Fig. 15: Mean delay per change pattern: our adaptive window
method (ProDrift) vs. [3] with fixed window size of 100 (BOSE)

6.7 Time performance
We conducted all tests on an Intel i7 2.20GHz with 16GB RAM
(64 bit), running Windows 7 and JVM 8 with standard heap space
of 512MB. The time required to update the alpha-relationships,
extract the runs, and perform the Chi-square test, ranges from a
minimum of 0.26 milliseconds to a maximum of 2.3 milliseconds
with an average of 0.5 milliseconds. These results show that the
method is scalable.

7 EVALUATION OF GRADUAL DRIFT DETECTION ON
SYNTHETIC LOGS

In this section we discuss the evaluation of our method for
detecting gradual drifts using synthetic logs. First, we describe
the dataset generation and the specific evaluation criteria we
employed to assess the accuracy of this method. As we will see,

these differ from those used for assessing the accuracy of the
method for detecting sudden drifts. Once we have defined how
to measure accuracy, we study the impact of the oscillation filter
size on accuracy, then evaluate the accuracy per change pattern
and compare the results with a baseline approach for gradual drift
detection. Finally, we report on time performance.

We did not study the impact of window size nor that of
using an adaptive window on accuracy, because the gradual drift
detection method post-processes the sudden drifts already detected
with the basic method. Hence, we carried out these experiments
using the best settings obtained in the previous experiments, i.e.
using an adaptive window initialized to 100 traces.

7.1 Dataset generation
We generated a dataset of 18 logs, one for each change pattern, by
following the same procedure as in Section 6.1, i.e. we combined
the base log with one of the 18 altered logs (resulting from the
injection of 12 simple patterns and 6 composite patterns) in an
interleaving manner.

However, in order to simulate gradual rather than sudden
changes, we combine the base log with an altered log in a different
manner. We start by sampling traces from the base log only. As the
number of traces increases, we reduce the probability of sampling
from the first log while increasing the probability of sampling from
the altered log, until we only sample traces from the altered log.
This operation, known as probabilistic gradual drift [7], results in
gradually decreasing the proportion of traces from the first log
and increasing the proportion of traces from the second log in
the gradual drift interval. We repeat this operation by inverting
the order of the base and altered log, so as to introduce and later
remove the same change, for a total of 10,000 traces per log.

To sample the behavior from the two logs, we use a linear
probability function as in [7], with a slope of 0.2%. In other terms,
from a probability starting at 1 (resp. 0) for the first (resp. second)
log, the probability of a trace to be selected from the first log (resp.
the second log) decreases (resp. increases) by 0.002 every time a
new trace is sampled, to reach 0 (resp. 1) after 500 traces. This
leads to a gradual drift interval of 500 traces. Moreover, having
the base and altered logs of 1,000 traces each, each gradual drift
interval includes 25% of the behavior of each log, so as to have a
significant portion of that behavior in each gradual drift. In these
settings, we choose an inter-drift distance of 500 traces, to avoid
any inference between two consecutive gradual drifts. This led to
the 18 logs being 10,000 traces each, with the first drift starting at
trace number 751, with a total of nine drifts per log.

7.2 Criteria for evaluating accuracy
To assess the accuracy of our gradual drift detection method we
also use F-Score and mean delay, but defined in a slightly different
way. To compute precision and recall for the F-Score, we say that
a detected drift is a true positive if its detected interval includes
the central point of the interval of the actual gradual drift, i.e. the
point that is halfway from each end of the actual gradual drift
interval, otherwise we consider it as a false positive. For instance,
if the actual gradual drift happened between trace numbers 751
and 1,250, the central point would be at trace number 1,000. In
this case, a gradual drift that it detected with any interval that
includes the trace number 1,000, e.g. [800-1,300], is considered
as a true positive. If the detected drift interval does not include the
trace number 1,000, e.g. [1,200-1,500], the gradual drift is treated
as a false negative.

11

Stream
of runs

Actual gradual drift
CenterStart End

1st sudden drift

Detected gradual drift

Gradual drift
delay

2nd sudden drift Delay of
2nd sudden drift

Fig. 16: A true positive gradual drift and its mean delay

The notion of a mean delay for gradual drifts is not defined
in the literature. Using the same intuition behind the delay of a
sudden drift, we therefore define the delay of a gradual drift as
the number of traces needed to detect the end point of the actual
gradual drift interval. This is equal to the delay required to identify
the second sudden drift plus the distance between this point and
the actual end point of the gradual drift, as shown in Figure 16.
Accordingly, the mean delay for detecting gradual drifts is the
arithmetic mean of all the calculated delays in each log.

7.3 Impact of oscillation filter size on accuracy
Similar to Section 6.2, we first measure the impact of the size of
the oscillation filter φ on F-score and mean delay. The results are
reported in Figure 17. We observe that a φ equaling to w leads to
very poor results, due to the fact that some drifts are considered
as stochastic noise when the P-value fails to remain under the
threshold for more than w consecutive statistical test, coupled with
the fact that missing out one sudden drift leads to missing out the
whole gradual drift. Moreover, due to the way true positives are
defined, some gradual drifts may be discarded because these are
detected too late, i.e. their interval does not include the central
point of the actual gradual drift interval.

0

100

200

300

400

500

600

700

800

900

1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

w w/2 w/3 w/4 w/5 w/6 w/7 w/8 w/9 w/10 w/11

M
e

an
 d

e
la

y

FS
co

re

Phi Filter

F-Score

Mean delay

Fig. 17: Impact of the oscillation filter size on the accuracy of
gradual drift detection

Decreasing the size of φ increases the sensitivity of our method
which misses out less sudden drifts. This leads to a higher F-score
and lower mean delay, with the best values obtained at φ = w/5.
Hence, we hereon set φ to w/5.

Similar to the trend observed for sudden drifts, if we keep
decreasing φ the method becomes less restrictive with respect to
sporadic drops of the P-value, reporting an increasing number
of false positives, which leads to a decline of the F-score. The
oscillations on the mean delay at w/4, w/6 and w/7 are due to
using a smaller set of logs (18) than the set used in the sudden
drift experiments (72 logs).

7.4 Accuracy per change pattern
Figures 18 and 19 report the F-score and mean delay of our method
(labeled as ProDrift) for each change pattern. The majority of

change patterns can be detected with a reasonably high accuracy
(F-score of about 0.8 and mean delay of about 100 traces). This
means on the one hand that most of actual gradual drifts where
correctly detected (recall). On the other hand, most of intervals
built with the two consecutive sudden drifts where the first sudden
drift is the end of a gradual drift and second sudden drift is the
start of the succeeding gradual drift are correctly classified as non
gradual drift intervals (precision).

However, compared to the results for sudden drift detection
(cf. Section 6.5), our method for gradual drift detection achieves
an F-score lower than 0.7, and a relatively high mean delay,
for three patterns: “lp” (make fragment loopable/non-loopable),
“cb” (make fragment skippable/not skippable) and “fr” (change
branching frequency). Gradual drifts are in fact less likely to be
detected than sudden drifts since missing the start or the end of the
gradual drift interval results in missing the gradual drift altogether.
For example, as we have already pointed out, if the gap between
two consecutive sudden drifts is shorter than the aggregate of the
reference and the detection windows size then one of the sudden
drifts might be missed out. If these two sudden drifts were actually
delimiting a gradual drift then the gradual drift would be missed
too. Moreover, the sudden drifts at the start or end of a gradual
drift are not as distinguishable as opposed to an abrupt sudden
drift since they happen progressively. These two reasons increase
the likelihood of missing any subsequent gradual drift.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

F-
sc

o
re

Change patterns

ProDrift

MB

450

Fig. 18: F-score per change pattern, obtained with our gradual drift
method (ProDrift) vs. MB [4] with default settings

Change patterns

0

50

100

150

200

250

300

350

400

450

re cf lp p
l

cb cm cp cd p
m rp sw fr

IO
R

IR
O

O
IR

O
R

I

R
IO

R
O

I

M
e

an
 d

e
la

y
(t

ra
ce

s)

Change patterns

ProDrift

MB

Fig. 19: Mean delay per change pattern, obtained with our gradual
drift method (ProDrift) vs. MB [4] with default settings

In particular, the lowest accuracy is obtained with the “fr”
pattern, which is in-line with the results for sudden drift detection.
Our method has difficulties to spot all the sudden drifts for this
pattern since the change in the frequencies of runs happens gradu-
ally and may be misclassified as sporadic stochastic oscillation,
leading to false negatives. In order to verify this explanation,
we reduced φ from w/5 to w/10, which led to an F-score of
0.66 (recall 0.83, precision 0.55). To a lesser extent, this same
phenomenon happens with the other two patterns (“lp” and “cb”).

12

For example, in the case of “cb”, a task that is skippable (old
behavior) gradually becomes non-skippable (new behavior) over
an interval of 500 traces. Here the method is tricked by the fact
that already in the old behavior, a skippable task is observed in
some runs but not in others. As a verification step, we also tested
our method for gradual drift detection with the 72 synthetic logs
used in Section 6.1, which contain sudden drifts only. However,
no gradual drifts were reported (precision = 1).

7.5 Comparison with baseline
We compared our method for gradual drift detection with that
by Martjushev et al. [4], which is the only work available in the
literature for detecting gradual process drifts. Unlike ours, this
method requires the user to specify the type of drift to be detected.
If gradual drift is selected, the user also needs to specify the
minimum and maximum size of the gradual drift interval referred
to as the gap in the tool.7

Figures 18 and 19 report the results of the comparison. In
terms of F-Score, the baseline method cannot detect eight of the
18 change patterns. In terms of mean delay, our method requires
an average of 100 traces to detect a gradual drift, except for the
patterns with low F-score where the mean delay reaches 400 traces
in the worst case. Yet, our method outperforms the baseline in 15
change patterns out of 18. Notably, Martjushev et al. achieve a
shorter mean delay for the loop change pattern (“lp”), but only
detects one of its nine injected drifts (F-Score of 0.2).

A closer look at these results showed that the baseline method
tends to detects two gradual drifts at the start and end of an
actual gradual drift. While one of these two drifts is considered
as a true positive, the other one is treated as a false positive,
which negatively impacts on accuracy. This issue is due to the
gap between the reference and the detection window, which is
introduced by design in order to identify gradual drifts.

7.6 Time performance
We conducted the above tests on the same machine as we used
for gradual drift detection (cf. Section 6.7). Using the JOptimizer
solver, it took on average 0.9 milliseconds across all 18 logs
to solve each inequality generated from every two consecutive
sudden drifts. These results show that the method for gradual drift
detection scales well to large logs.

8 EVALUATION ON REAL-LIFE LOGS

As a final step, we evaluated our methods for sudden and gradual
drift detection against two event logs originating from the claims
management system of a large Australian insurance company.

8.1 Sudden drift detection
The first log consists of 4,509 traces with 29,108 total events of
which 12 are distinct events. It records executions of a claims
handling process for motor insurance claims, that were performed
over a period of 13 months between 2011 and 2012.

We initialized the adaptive window to 100 traces. The method
took 4.51 seconds to check the whole log and returned three
sudden drifts at 1,769, 1,911 and 3,763 traces, as shown by the
results of the Chi-square test in Figure 20. In this plot we can also
see stochastic oscillations that were automatically filtered out by
our method. The techniques in [3] did not report any sudden drift.

7. We used the default settings for this method: use of adaptive window for
both population size and gradual drift gap, the latter varying between 50 and
500; step size of 10; use of the KS-test and the J-measure feature over all
activity pairs; P-value threshold of 0.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
0

0

2
2

9

3
5

0

4
8

4

6
1

8

7
5

1

8
9

1

1
0

1
0

1
1

5
1

1
2

6
4

1
4

0
3

1
5

3
8

1
6

4
0

1
8

2
6

1
9

5
9

2
0

8
3

2
2

0
2

2
3

2
7

2
4

6
9

2
6

1
0

2
7

4
5

2
8

7
0

2
9

9
9

3
1

3
0

3
2

5
5

3
3

7
6

3
4

8
5

3
6

2
4

3
7

5
3

3
8

7
6

4
0

0
3

4
1

4
3

4
2

6
7

P
-v

al
u

e

Completed traces

Drift 1 Drift 2 Drift 3

Fig. 20: Plot of the Chi-square test results

We then validated the results with a business analyst from the
insurance company, who confirmed that the three drifts correspond
to a new major release (Drift 1) and two minor releases (Drifts
2 and 3) of the claims management system. These releases led
to various changes in the claim handling process supported by
the system, e.g. the removal of a manual task for reviewing the
claim correspondence and the replacement of a manual task for
checking the invoice with an automated one, with the purpose of
reducing the total number of open claims. The effects of these
changes are confirmed by the distribution of the number of active
cases over the log timeline, shown in Figure 21, which we have
annotated with the position of the drifts identified by our method
and the delays in reporting these drifts. We can see that each drift
is associated with a drop in the number of active cases, confirming
the effectiveness of the new releases on process performance.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12 May-12

A
ct

iv
e

ca
se

s
p

er
 d

ay

Drift 3

Drift 2

Drift 1

Fig. 21: The position and delay of the three sudden drifts detected
by our method w.r.t. active cases over log timeline

The delay in detecting the first two drifts is longer than the
delay in detecting the last drift. This is due to a higher level of
variation in the first part of the log (due to the more manual nature
of the business process), which led our method to increase the size
of the adaptive window. This is confirmed by Figure 22, which
shows how the window size varies according to the number of
completed traces. Here we can see that the detection of Drift 1
and 2 is associated with a larger window size (131, resp. 143) than
the size required to detect Drift 3 (size 109).

8.2 Gradual drift detection
The second log also records motor insurance claims, but related to
a different insurance brand. This log goes over the same timeframe
as the first log, and consists of 2,577 traces and 17,474 events,
of which 14 are distinct events. Our method took 1.79 seconds
to complete the analysis, and reported one gradual drift between
trace numbers 1145 and 2253 and no sudden drifts. Figure 23 plots
the P-value, showing the position of the two sudden drifts that
delimit the interval of the detected gradual drift. We also applied
the baseline method in [4] on this log, which reported a gradual
drift between trace numbers 328 and 650.

13

0

20

40

60

80

100

120

140

160

1
0
0

2
2
9

3
5
0

4
8
4

6
1
8

7
5
1

8
9
1

1
0
1
0

1
1
5
1

1
2
6
4

1
4
0
3

1
5
3
8

1
6
4
0

1
8
2
6

1
9
5
9

2
0
8
3

2
2
0
2

2
3
2
7

2
4
6
9

2
6
1
0

2
7
4
5

2
8
7
0

2
9
9
9

3
1
3
0

3
2
5
5

3
3
7
6

3
4
8
5

3
6
2
4

3
7
5
3

3
8
7
6

4
0
0
3

4
1
4
3

4
2
6
7

W
in

d
o

w
 s

iz
e

Completed traces

Drift 3Drift 1 Drift 2

Fig. 22: Plot of the adaptive window size

We also presented these results to our contact at the insurance
company. The analyst confirmed that during the period identified
by the gradual drift interval, the insurance company trialled a
“preferred repairer” policy for this particular insurance brand,
which is a low-budget one. Essentially claimants were required to
get their motor vehicle damage fixed by the insurance company’s
preferred repairer, instead of choosing their own repairer. This
change was implemented progressively, starting with selected
claims only. The rationale was to increase the process efficiency
for the insurance company. This change proved to be effective,
since the number of active cases dropped significantly after the
drift (see Figure 24). This is also confirmed by the average process
cycle time, which decreased from 91 to 26 days after the drift.

The position of the gradual drift detected by the method in [4]
did not correspond to any business process change, according to
the business analyst.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3
0
0

3
6
7

4
3
4

5
0
1

5
6
8

6
3
5

7
0
2

7
6
9

8
3
6

9
0
3

9
7
0

1
0
3
7

1
1
0
4

1
1
7
1

1
2
3
8

1
3
0
5

1
3
7
2

1
4
3
9

1
5
0
6

1
5
7
3

1
6
4
0

1
7
0
7

1
7
7
4

1
8
4
1

1
9
0
8

1
9
7
5

2
0
4
2

2
1
0
9

2
1
7
6

2
2
4
3

2
3
1
0

2
3
7
7

2
4
4
4

2
5
1
1

P
-v

al
u

e

Completed traces

Sudden drift 1 Sudden drift 2

Gradual drift interval Before After

Fig. 23: Plot of the Chi-square test results

0

200

400

600

800

1000

1200

active case per month

0

100

200

300

400

500

600

700

800

May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12 May-12

A
ct

iv
e

ca
se

s
p

e
r

d
ay

Gradual drift

Fig. 24: The gradual drift interval w.r.t. active cases over time

9 THREATS TO VALIDITY

A potential threat to the validity of the evaluation is the reliance
of the proposed methods for sudden and gradual drift detection
on a window size. The latter can affect the obtained accuracy in
terms of F-score and detection delay. This limitation is to a large
extent addressed by the fact that the window size is automatically
adapted as the method progresses through the stream of traces.

Thus, any effects of the initial choice of window size are evened
out. We have also tested with different initial window sizes and
provided guidelines for initializing this parameter.

In order to filter out sporadic and non-statistically significant
changes in process behavior, we require that the P-value of at
least φ consecutive statistical tests lie under the threshold. The φ

parameter has been set empirically by striking the best trade-off
of accuracy and detection delay on a subset of the datasets used
for evaluation. We also tested an alternative technique – Simple
Moving Average (SMA) smoothing – and obtained similar results,
indicating that the reliance on φ is not a critical threat to validity.

Another possible threat to validity is that we evaluated our
method over only two real-life logs and the results over these logs
were validated by only one domain expert. To overcome this issue,
we carried out an extensive evaluation over synthetic datasets.
These datasets were generated using a systematic method aimed at
testing the proposed algorithms on the 12 simple change patterns
identified in [32] and nested compositions thereof. Finally, the
time performance measurements were averaged 9 times for each
event log, covering several event log sizes and drift distances.

10 CONCLUSION

This article outlined an automated method for detecting sudden
and gradual drifts in business processes from execution traces.
An evaluation over synthetic logs showed that the method accu-
rately discovers typical process changes and nested compositions
thereof, outperforming a state-of-the art baselines both for sudden
and gradual drifts. A separate evaluation on a large real-life log
demonstrated the method’s ability to detect drifts that correspond
to user-recognizable process changes, as well as its scalability.

The gradual drift detection method relies on the assumption
that a gradual drift is delimited by two consecutive sudden drifts,
such that the distribution of runs in-between these two drifts is a
linear mixture of the distributions of runs before the first drift and
after the second drift. The accuracy achieved by the method in the
experimental evaluation suggests that this assumption generally
holds in practice. However, the assumption can be violated in
some cases, for example when two gradual drifts overlap, in
which case there might not be only two, but more sudden drifts
observed during the two gradual drifts. The assumption is also
likely to break if a sudden drift occurs in the middle of a gradual
drift. Designing a more sophisticated method that would lift this
assumption is an avenue for future work.

In its present form, the proposed method assumes that the input
event log consists of a sequence of event labels, each representing
the execution of one activity. Oftentimes, each event carries a
payload containing data consumed or produced by the execution of
the activity, or data about the resource who performed the activity.
These payloads may help to better detect and characterize a
business process drift. An avenue for future work is to enhance the
proposed method by incorporating event payloads. The challenge
is to encode the data payloads in a way that enables reliable
statistical testing with a small number of runs per window.

Another avenue for future research is to enhance our method
by providing feedback that would help users understand the
process change underpinning a detected drift. A possible direction
to tackle this problem is to adapt our previous work on drift
characterization [18], which is based on measuring variations
in the frequency of the behavioral relations observed in the log
before and after the drift. A challenge in this context will be the
characterization of change in the context of gradual drifts.

14

ACKNOWLEDGMENTS

This research is funded by the Australian Research Council Dis-
covery Project DP150103356 and the Estonian Research Council.

REFERENCES

[1] R. J. C. Bose, W. M. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Handling concept drift in process mining,” in Proceedings of the
International Conference on Advanced Information Systems Engineering
(CAiSE). Springer, 2011, pp. 391–405.

[2] J. Carmona and R. Gavalda, “Online techniques for dealing with concept
drift in process mining,” in Proceedings of the International Symposium
on Intelligent Data Analysis (IDA). Springer, 2012, pp. 90–102.

[3] R. J. C. Bose, W. M. van der Aalst, I. Zliobaite, and M. Pechenizkiy,
“Dealing with concept drifts in process mining,” IEEE Transactions on
NNLS, vol. 25, no. 1, pp. 154–171, 2014.

[4] J. Martjushev, R. Bose, and W. P. van der Aalst, “Change Point Detection
and Dealing with Gradual and Multi-order Dynamics in Process Mining,”
in Proceedings of the International Conference on Business Informatics
Research (BIR). Springer, 2015, pp. 161–178.

[5] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Fast and accurate
business process drift detection,” in Proceedings of the International
Conference on Business Process Management (BPM). Springer, 2015,
pp. 406–422.

[6] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, 2014.

[7] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on online
ensemble learning in the presence of concept drift,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 5, pp. 730–742, 2010.

[8] R. Klinkenberg and T. Joachims, “Detecting concept drift with support
vector machines.” in ICML, 2000, pp. 487–494.

[9] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno, “Early drift detection method,” in 4th ECML
PKDD International Workshop on Knowledge Discovery from Data
Streams, 2006, pp. 77–86.

[10] D. Ienco, A. Bifet, B. Pfahringer, and P. Poncelet, “Change detection in
categorical evolving data streams,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing. ACM, 2014, pp. 792–797.

[11] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment, 2004, pp. 180–191.

[12] A. Bifet and R. Gavaldà, “Learning from time-changing data with adap-
tive windowing,” in Proceedings of the SIAM International Conference
on Data Mining (SDM). SIAM, 2007, pp. 443–448.

[13] J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of
stream learning algorithms,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2009, pp. 329–338.

[14] R. Accorsi and T. Stocker, “Discovering workflow changes with time-
based trace clustering,” in Proceedings of the International Symposium
on Data-Driven Process Discovery and Analysis (SIMPDA). Springer,
2012, pp. 154–168.

[15] A. Burattin, A. Sperduti, and W. M. van der Aalst, “Control-flow
discovery from event streams,” in Evolutionary Computation (CEC),
2014 IEEE Congress on. IEEE, 2014, pp. 2420–2427.

[16] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, “Online Discov-
ery of Declarative Process Models from Event Streams,” IEEE Trans. on
Services Computing, vol. 8, pp. 833–846, 2015.

[17] A. Ostovar, A. Maaradji, M. La Rosa, A. H. ter Hofstede, and B. F. van
Dongen, “Detecting drift from event streams of unpredictable business
processes,” in Conceptual Modeling: 35th International Conference, ER
2016, Gifu, Japan, November 14-17, 2016, Proceedings 35. Springer,
2016, pp. 330–346.

[18] A. Ostovar, A. Maaradji, M. La Rosa, and A. ter Hofstede, “Character-
izing drift from event streams of business processes,” in Proc. of CAiSE,
ser. LNCS. Spriner, 2017.

[19] J. Hidders, M. Dumas, W. M. van der Aalst, A. H. ter Hofstede, and
J. Verelst, “When are two workflows the same?” in Proceedings of
Computing: the Australian Theory Symposium (CATS). Australian
Computer Society, 2005, pp. 3–11.

[20] R. J. van Glabbeek and U. Goltz, “Equivalence notions for concurrent
systems and refinement of actions (extended abstract),” in Proceedings
of Mathematical Foundations of Computer Science. Springer, 1989, pp.
237–248.

[21] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[22] A. K. A. de Medeiros, W. M. van der Aalst, and A. Weijters, “Workflow
mining: Current status and future directions,” in On the move to mean-
ingful internet systems 2003: COOPIS, DOA, and ODBASE. Springer,
2003, pp. 389–406.

[23] L. Wen, W. M. van der Aalst, J. Wang, and J. Sun, “Mining process
models with non-free-choice constructs,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, 2007.

[24] J. E. Cook and A. L. Wolf, “Event-based detection of concurrency,”
in Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE). ACM, 1998, pp. 35–45.

[25] R. Nuzzo, “Statistical errors,” Nature, vol. 506, no. 13, pp. 150–152,
2014.

[26] S.-S. Ho, “A martingale framework for concept change detection in time-
varying data streams,” in Proc. of ICML. ACM, 2005, pp. 321–327.

[27] J. J. Murphy, Technical analysis of the financial markets: A comprehen-
sive guide to trading methods and applications. Penguin, 1999.

[28] S. Guha, N. Koudas, and K. Shim, “Approximation and streaming
algorithms for histogram construction problems,” ACM Transactions on
Database Systems, vol. 31, no. 1, pp. 396–438, 2006.

[29] R. Sebastião, J. Gama, and T. Mendonça, “Fading histograms in detecting
distribution and concept changes,” International Journal of Data Science
and Analytics, pp. 1–30, 2017.

[30] R. Conforti, M. Dumas, M. La Rosa, A. Maaradji, H. H. Nguyen,
A. Ostovar, and S. Raboczi, “Analysis of business process variants in
apromore,” in Proceedings of the Demonstration Session of the Business
Process Management Conference (BPM Demos). CEUR-WS.org, 2015.

[31] M. Dumas, M. La Rosa, J. Mendling, and H. Reijers, Fundamentals of
Business Process Management. Springer, 2013.

[32] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and change
support features–enhancing flexibility in process-aware information sys-
tems,” Data and Knowledge Engineering, vol. 66, no. 3, pp. 438–466,
2008.

[33] D. Yates, D. Moore, and D. S. Starnes, The practice of statistics: TI-83/89
Graphing Calculator Enhanced. Macmillan, 2007.

Abderrahmane Maaradji is a research fellow
at the Queensland University of Technology. He
obtained his PhD in computer science in 2011
at Universite Pierre and Marie Curie and Bell
Laboratories, France. His research interests are
in the area of process mining, with a focus on
concept drift.

Marlon Dumas is Professor of Software En-
gineering and University of Tartu, Estonia and
Adjunct Professor of Information Systems at
Queensland University of Technology, Australia.
His research focuses on combining data mining
and formal methods for analysis and monitoring
of business processes. He has published exten-
sively across the fields of software engineering
and information systems and has co-authored
two textbooks on business process manage-
ment.
Marcello La Rosa is Professor of Information
Systems at the Information Systems school of
the Queensland University of Technology, Bris-
bane, Australia. His research interests include
process consolidation, mining and automation,
in which he published over 100 papers. He is
co-author of the textbook Fundamentals of Busi-
ness Process Management (Springer, 2013).

Alireza Ostovar is a PhD student at the
Queensland University of Technology. His PhD
topic spans the fields of business process man-
agement and process mining, with a focus on
process drift detection and characterization.

15

APPENDIX

This Appendix provides a detailed description of both sudden
and gradual drift detection algorithms and discusses their time
complexity analysis. Moreover, it provides the separate plots of
the recall, precision and F-score obtained for Figure 8 of Section
6.3.

Sudden drift detection algorithm
Algorithm 1 formally captures the sudden drift detection method.
The algorithm has two parameters: (i) L: a stream of completed
traces produced by the process; (ii) initW: initial size of the
detection and reference windows; and (iii) maxBS: maximum
available memory for the trace buffer storing the incoming traces,
namely traceBuf .

Thus, each time a new trace σ arrives, we first check if the
buffer has reached its maximum size, and if so we shift the
trace in the buffer and discard the least recent trace (lines 11-
13). We then insert the new trace into the buffer (line 14). Only
when the number of traces in the buffer reaches 2×w then the
first statistical test can be performed (line 15). The reference and
detection windows are then extracted from the traceBuf based on
the windows size w (line 16). The α relations are extracted into the
matrices A ref and A det for the first time from the reference and
detection windows (re f Trace,detTrace) respectively, and then
incrementally updated (line 17). These relations are then used to
update the runs and store them in temporary variables newRefRuns
and newDetRuns (line 18). Next, as detailed in Section 3.3, we
adjust the window size based on the evolution ratio evolutionRatio
(line 19). We then perform the Chi-square test of independence
on the contingency matrix obtained from refRuns and detRuns
(lines 20-22). If the resulting P-value of the Chi square test is
below the threshold chiThresh then a drift is asserted provided
that the P-value remains under the threshold for φ consecutive
statistical tests (lines 23-30). This latter condition is intended
to avoid reporting incidental drops in P-value (oscillations) as
discussed in Section 3.2.

Time complexity analysis: As explained in previous section,
each time we handle a new trace from the stream, the algorithm
performs three steps: first it detects the concurrency relations in
each sliding window; second it updates the set of runs; and third
it performs the chi-square test. The complexity of the first step
depends on the applied concurrency oracle. In our case, we use the
α concurrency oracle that can be incrementally updated. Hence,
the α relations of each one of the two first sliding windows (cf.
A ref and A det in the algorithm) is computed. This operation
only needs to be done once when the drift detection procedure
is initialized. Subsequently, for each new trace read from the
stream, or dropped from the sliding windows, each matrix is
incrementally updated with direct access. Hence, the complexity
of the first step is then constant. In the second step, for each
partially ordered run of the w runs in the reference then detection
windows, the algorithm iterates over the partial order and updates
it based with direct access to the corresponding α relations matrix.
Consequently, in the worst case, the time complexity of the second
step is O(w ∗max trace length), where max trace length is the
length of the longest trace that bound the length of the longest run.
Regarding the third step, the complexity of the chi-square statis-
tical test is linear to the number of columns of the contingency
matrix which in the worst case is w. Thus, the complexity of the
third step is O(w). To sum up, for each new trace in the stream,

Algorithm 1: Detect Sudden Concept Drifts
Input: L: trace stream; initW: initial window size; maxBS:

maximum buffer size.
1 traceBuf ,refTrace,detTrace // Trace buffer, lists of traces

within detection and reference windows, respectively
2 w←− initW // Current window size
3 detRuns, refRuns // Lists of runs within detection and

reference windows, respectively
4 A det, A re f // Sets of Alpha-relationships within detection

and reference windows, respectively
5 chiThresh←− 0.05 // Typical threshold value of chi-square test
6 dTrace←− NIL // Current trace when P-value drops below

chiThresh
7 dW←−−1 // Value of w when P-value drops below chiThresh
8 dLen←− 0 // Number of consecutive tests that P-value

remains below chiThresh
9 φ ←− 1 // Noise filter size when P-value drops below

chiThresh

10 while canRead(L) do // While it is possible to read new trace
from the stream

11 σ ←− read(L) // Read a new trace σ

12 if size(traceBuf) = maxBS then
13 shi f t(traceBuf)

14 insert(traceBuf ,σ)
15 if length(traceBuf)≥ 2 ·w then
16 (refTrace,detTrace)←− extract(traceBuf ,w)
17 (A ref ,A det)←−

updateAl phaRelations(refTrace,detTrace,A ref ,A det)

18 (newRefRuns,newDetRuns)←−
updateRuns(refTrace,detTrace,refRuns,detRuns,A ref ,A det)

19 w←−
adWin(newRefRuns,newDetRuns,refRuns,detRuns,w)

20 (refRuns,detRuns)←− (newRefRuns,newDetRuns)
21 cMat←− contingencyMatrix(refRuns,detRuns)
22 pVal←− chiSquareTest(cMat)
23 if pVal < chiThresh then
24 dLen←− dLen+1
25 if dTrace = NIL then
26 dTrace←− σ

27 dW←− w
28 φ ←− dW/3

29 if dLen = φ then
30 reportDri f t(dTrace) // Drift detected and

reported

31 else
32 dTrace←− NIL
33 dW←−−1
34 dLen←− 0
35 Φ←− 1

the complexity of Algorithm 1 is the maximum complexity of its
three steps, i.e. O(w∗max trace length).

Gradual drift detection algorithm
Algorithm 2 formally captures the gradual drift detection method.
The algorithm has two parameters: SList: the list of detected
sudden drifts (i.e. their location in terms of time stamp or trace
index in the stream), HList: The list of histograms. When SList can
be directly obtained from the reported drifts of Algorithm 1, the
HList can be reported by Algorithm 1 with a minor modification.
A histogram can be built by incremental updates when a new

16

trace in the stream is transformed into a partially ordered run at
line 19 of Algorithm 1. It is worth mentioning that both sudden
and gradual drift detection algorithms can run in parallel and
communicate through a queue that stores no more than two sudden
drifts and the corresponding three histograms.

For every pair of consecutive sudden drifts, Algorithm 2 reads
the histograms before the first sudden drift, in-between the two
drifts, and the one after the second sudden drift and up to the
next drift or the end of the log (line 3-5). Then, it calculates the
degree of freedom d f which equals the number of distinct runs
(size of any of the histogram) minus one (line 6). Next, given d f
and TrChi = 0.05, it uses the Chi-square table to fetch the critical
value chiCriticalValue (line 7). Consequently, all required inputs
are ready to construct the inequality 2 (line 8) and pass it to the
solver (line 9). If the solver returns at least one solution (x0,y0),
then we declare a gradual drift between the two sudden drifts.

Algorithm 2: Detect Gradual Concept Drifts
Input: SList: Sudden drifts list; HList Histograms list

1 TrChi←− 0.05 // Typical threshold value of Chi-square test

2 for i = 0, ..,size(SList)−2 do
3 be f oreHis←− HList(i) // read the histogram before the

candidate gradual drift
4 inHis←− HList(i+1) // read the histogram of the

candidate gradual drift
5 a f terHis←− HList(i+2) // read the histogram after the

candidate gradual drift
6 d f ←− size(be f oreHis)−1 // the degree of freedom is the

size of any of the histograms
7 chiCriticalValue←− chiSquareTable(TrChi,d f)
8 ineq←−

inequality(be f oreHis, inHis,a f terHis,chiCriticalValue)
9 (x0,y0)←− solver(ineq)

10 if (x0,y0) not null then
11 reportDri f t(SList(i),SList(i+1)) // Drift detected

and reported

Time complexity analysis: In order to detect gradual drifts,
we first need to detect the sudden drifts and then assess the
likelihood of each two consecutive sudden drifts being the start
and the end of a gradual drift. The time complexity of the sudden
drift detection method over a stream of traces has already been
presented in Section A. In the following we will only discuss
the complexity of post-processing step for gradual drift detection.
In this step three histograms are maintained with the frequencies
of distinct runs before, within, and after the potential gradual
drift. These histograms are direct-access data structures, and thus
take constant time. These three histograms are then used to
construct a two-variable inequality as an input to a solver. The
time complexity of solving the inequality is determined by the
complexity of the two-variable inequality solver employed, which
in any case is independent of the size of the event log and of the
size of the event label set.

Impact of window size on the recall, precision and F-
score
In Section 6.3 we reported the accuracy of our sudden drift
detection method in terms of the F-score obtained when we vary
the size of the reference/detection window. While in Section 6.3
we broke down the results based on the different event logs sizes
in order to focus on the effect of window size on F-Score, in
Figure 25 we break down the F-Score into recall and precision
to highlight the effect of window size on each specific measure
(F-Score, recall and precision). In this figure, the value of each
measure at a given window size is averaged over the 72 event logs
used in our evaluation for sudden drift detection (cf. Section 6.1),
with a fixed window size ranging from 25 to 150 traces. From
this figure we observe that our sudden drift detection method errs
similarly in both false positives (precision) and false negatives
(recall). Unsurprisingly, as mentioned in Section 6.3, for a small
window size (25 traces), the statistical test hardly converges. This
results in a higher rate of missed drifts (lower recall).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150

Window size

F-score

Precision

Recall

Fig. 25: Recall, precision and F-score obtained with different
fixed window sizes, averaged over all 72 event logs described in
Section 6.1.

