
UML Activity Diagrams
as a Workflow Specification Language

Marlon Dumas and Arthur H.M. ter Hofstede

Cooperative Information Systems Research Centre
Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{m.dumas, a.terhofstede}@qut.edu.au

Abstract. If UML activity diagrams are to succeed as a standard in
the area of organisational process modeling, they need to compare well
to alternative languages such as those provided by commercial Workflow
Management Systems. This paper examines the expressiveness and the
adequacy of activity diagrams for workflow specification, by systemati-
cally evaluating their ability to capture a collection of workflow patterns.
This analysis provides insights into the relative strengths and weaknesses
of activity diagrams. In particular, it is shown that, given an appropriate
clarification of their semantics, activity diagrams are able to capture situ-
ations arising in practice, which cannot be captured by most commercial
Workflow Management Systems. On the other hand, the study shows
that activity diagrams fail to capture some useful situations, thereby
suggesting directions for improvement.

1 Introduction

UML activity diagrams are intended to model both computational and organi-
sational processes (i.e. workflows) [14, 15]. However, if activity diagrams are to
succeed as a standard in the area of organisational process modeling, they should
compare favorably to the languages currently used for this purpose, that is, those
supported by existing Workflow Management Systems (WFMS).

In this paper, we investigate the expressiveness and adequacy of the activity
diagrams notation for workflow specification, by systematically confronting it
with a set of control-flow workflow patterns, i.e. abstracted forms of recurring
situations related to the ordering of activities in a workflow, and the flow of
execution between them. Many of these patterns are documented in [3, 4], and
a comparison of several WFMS based on these patterns is provided in [4].

Our evaluation demonstrates that activity diagrams support the majority of
the patterns considered, including some which are typically not supported by
commercial WFMS. This is essentially due to the fact that activity diagrams
integrate signal sending and processing at the conceptual level, whereas most
commercial WFMS only support them as a low-level implementation mechanism.

While activity diagrams compare well to existing WFMS in this respect, they
exhibit the major drawback that their syntax and semantics are not fully de-

dumas
In Proceedings of the UML'2001 Conference



fined in the standard’s documentation1. Indeed, while the features inherited from
Harel’s statecharts [9] have a formal operational semantics, the features specific
to activity diagrams are only partially formalised in the standard (through OCL
statements), and their description in natural language leaves room for some am-
biguities that we point out throughout the paper. We hope that some of these
ambiguities will be clarified in future releases of the standard.

The rest of the paper is structured as follows. Section 2 discusses some seman-
tical issues of the activity diagrams notation, focusing on control-flow aspects.
Sections 3, 4, and 5 evaluate the capabilities of activity diagrams against dif-
ferent families of workflow patterns. The patterns considered in sections 3 and
4 are extracted from [4], while those discussed in section 5 are variants of the
well-known producer-consumer pattern. Finally, section 6 points to related work,
and section 7 discusses directions for improving the activity diagrams notation.

2 Overview of activity diagrams

The aims of the following overview are (i) to discuss the semantics and prop-
erties of critical constructs used in the rest of the paper, (ii) to identify some
ambiguities in the standard, and (iii) to explain how this paper deals with these
ambiguities. It is not intended as an introductory overview. Readers not familiar
with activity diagrams may refer to e.g. [8].

2.1 States and transitions

UML activity diagrams are special cases of UML state diagrams, which in turn
are graphical representations of state machines. The state machine formalism as
defined in the UML, is a variant of Harel’s statecharts [9].

State machines are transition systems whose arcs are labeled by ECA (Event-
Condition-Action) rules. The occurrence of an event fires a transition if (i) the
machine is in the source state of the transition, (ii) the type of the event oc-
currence matches the event description of the transition, and (iii) the condition
of the transition holds. The event (also called trigger), condition (also called
guard), and action parts of a transition are all optional. A transition without
an event is said to be triggerless. Triggerless transitions are enabled when the
action or activity attached to their source state is completed.

A state can contain an entire state machine within it, leading to the con-
cept of compound state. Compound states come in two flavours: OR and AND.
An OR-state contains a single statechart, while an AND-state contains sev-
eral statecharts (separated by dashed lines) which are intended to be executed
concurrently. Each of these statecharts is called a concurrent region. When a
compound state is entered, its initial transition(s) are taken. The execution of
a compound state is considered to be complete when it reaches (all) its final
state(s). Initial states are denoted by filled circles, while final states are denoted
by two concentric circles: one filled and one unfilled (see figure 1).
1 When discussing the syntax and semantics of activity diagrams, we take as sole

reference the final draft delivered by the UML Revision Task Force 1.4 [14].

To appear in UML’2001. 2



A

B

C

*

D

e2
e1

[C1]

[C2]

E

Fig. 1. An example of an activity diagram.

Actions or sequences of actions can be attached to basic (i.e. non-compound)
states. In this respect, one can distinguish the following kinds of basic states:

– Wait state: no action or activity is performed. A state of this kind is exited
when one of its outgoing transitions fires due to an event occurrence. The
unlabeled state with a thick border in figure 1 is an example of a wait state.

– Action state: a single action is attached to a state. The execution of an
action is non-interruptible, so that the transitions emanating from such a
state cannot fire until the action is completed. The states labeled A through
E in figure 1 are examples of action states (their labels are action names).

– Activity-in-state: an activity (expressed as a sequence of actions) is attached
to the state. The execution of this activity can be aborted prior to its com-
pletion if one of the state’s outgoing transitions fires. We found no definition
of the term “activity abortion” in the standard, so it is not clear if an activity
abortion means that no more actions in the sequence are executed (interrup-
tion semantics), or if it means that the system’s state before the activity’s
commencement is restored (abortion semantics of ACID transactions).

A subactivity state is recursively defined as a compound state whose decom-
position contains exclusively action and subactivity states. In [14] page 3-161, it
is said that “an activity diagram is a special case of a state diagram in which all
(or at least most) of the states are either action or subactivity states, and all (or
at least most) of the transitions are [triggerless]”. Unfortunately, no definition of
“at least most” is given. Does it mean at least 50% of the states and transitions?
In this paper, we assume that there is no quota on the percentage of action,
subactivity states, and triggerless transitions, within an activity diagram. In-
deed, wait states, activity-in-states, and transitions with triggers, are extremely
useful features when it comes to model workflows, since they naturally capture
exception handling and inter-process communication as pointed out in [16, 1].

2.2 Forks and joins

AND-states provide a means to express that a number of activities are intended
to be executed concurrently. Still, activity diagrams also offer two other con-
structs for expressing concurrency, namely forks and joins. A fork (represented

To appear in UML’2001. 3



by a heavy bar as in figure 1) is a special transition with one source state and
several target states. When this transition fires, the target states are all simul-
taneously entered, resulting in an increase in the number of concurrent threads.
A join (represented by a heavy bar as well) is a transition with several source
states and one target state, which reduces the number of concurrent threads.

An activity diagram with forks and joins must fulfill some well-formedness
criteria. These criteria state that it must be possible to replace all forks and joins
with AND-states. In particular, for every fork there should be a corresponding
join, the delicate point being to define what is meant by “corresponding”.

The well-formedness of activity diagrams is partially defined as OCL and
natural language statements in the standard ([14] pp. 2-161 through 2-169).
This definition however does not take into account the case where choice and
junction vertices are used within the paths leading from a fork to a join, thereby
permitting deadlocking situations which would not occur if forks and joins were
replaced with AND-states. We argue that if activity diagrams are to be used as
a workflow specification language, a precise definition of their well-formedness
is crucial, as it prevents several kinds of deadlocks. In a different context than
activity diagrams, [10] provides a formalisation of these well-formedness rules.

In this paper, we avoid the use of forks and joins, and use AND-states instead.
Forks and joins are only used in conjunction with synch state as discussed below.

2.3 Synch states

A synch state is a synchronisation point between two threads. In its simplest
form, a synch state has one incoming transition emanating from a fork in one
thread, and one outgoing transition leading to a join in another thread. A fork
(join) connected to a synch state is called a synchronising fork (join).

Synch states differ from normal states in that they are not boolean. Using
Petri net terminology, this means that a synch state may hold several tokens
simultaneously. The number of tokens that a synch state can hold is constrained
to be lower than, or equal to a given bound (the special symbol * denotes that
there is no bound). Figure 1 shows an example of an unbounded synch state. In
this diagram, one instance of activity D is executed each time that one instance
of activity B and one instance of activity C are completed. This diagram shows
that the use of synch states may lead to deadlocks. Indeed, in the given example,
a deadlock occurs if B is performed only once, while C is performed twice.

2.4 Dynamic invocations

Within an activity diagram, it is possible to specify that multiple invocations of
an action or subactivity execute concurrently: a feature called dynamic invoca-
tion. The dynamic multiplicity of a state, is the maximum permitted number of
invocations of its action or subactivity. It is indicated as a string on its upper
right corner (a star indicates that there is no bound). At run time, the state re-
ceives a set of dynamic arguments, and performs one invocation of its action or
subactivity for each of these arguments, up to the limit fixed by its multiplicity.

To appear in UML’2001. 4



After a thorough search through [14], we found that there are no indications
as to how multiple invocations of an action or activity synchronise once their
execution is completed. Assuming that these invocations are not required to
synchronise upon completion, inconsistencies may arise when a “dynamic” state
is followed by a “non-dynamic” one. Consider for example the diagram in figure 2,
where an action state A with dynamic multiplicity 2 is followed by an action state
B with no dynamic multiplicity. Suppose that two invocations of A are made,
and that the first invocation finishes before the second. If the two invocations
are not required to synchronise, state B can be entered at this point. Now, what
will happen when the second invocation of A finishes? Will it trigger activity
B again (in which case two instances of B will run simultaneously)? Because of
this semantical conflict, we consider in this paper that a dynamic state can only
be exited when all its associated invocations are completed. In particular, if one
invocation is aborted due to some external event, all the other invocations are
aborted too. This is in line with the interpretation suggested in [8].

A 2 B

Fig. 2. An example of the use of dynamic invocation.

Another point regarding dynamic invocation which is left open by the stan-
dard, is whether each invocation runs in its own memory space, or if it shares
the same memory space as the others. If two subactivities run in the same space,
chances are that this could lead to write-write conflicts over shared variables.

3 Capturing synchronisation patterns

This and the following two sections, present a series of workflow patterns and
their description using UML activity diagrams. For each pattern we provide:

– A description of the context, scope and intent of the pattern.
– A concrete example illustrating this description.
– A paragraph indicating to what extent the pattern is supported by WFMS.
– A discussion on how the pattern can be captured using activity diagrams.

The patterns in this section correspond to situations where one or several
concurrent activities need to be completed before another activity is initiated.

3.1 The discriminator2

Description. The discriminator is a point in a workflow that waits for one of its
incoming branches to complete before activating the subsequent activity. From
2 The term discriminator here, refers to a special kind of synchronisation. It should not

be mistaken with the use of the term discriminator in UML class diagrams, where
it refers to a “dimension of specialisation within a class hierarchy”.

To appear in UML’2001. 5



that moment on, it waits for the other branches to complete and “ignores” them.
When the last incoming branch completes, the discriminator resets itself so that
it can be triggered again (in case it is embedded in a loop).
Example. To improve query response time, a complex search is sent to two
different databases over the Internet. As soon as the one of the databases comes
up with a result, the execution flow proceeds. The second result is ignored.
Degree of support offered by commercial WFMS. In all but a few WFMS,
the discriminator cannot be captured at the conceptual level [4]. A notable excep-
tion is Verve3, which offers a specific construct for this pattern. In the SAP R/3
Workflow4, for each AND-split/AND-join combination, it is possible to specify
for how many of the parallel branches started by the split, does the join need to
wait. One can be thus be tempted to capture the discriminator by specifying that
the AND-join only needs to wait for one of the branches started by the AND-
split. However, the branches that are still running when the first branch finishes,
will be marked as “logically deleted” by the SAP R/3 Workflow, whereas in the
discriminator pattern these branches should proceed normally.
A solution using UML activity diagrams Figure 3 shows how to express
the discriminator as a set of concurrent regions communicating through signals.
Specifically, the incoming branches of the discriminator, as well as the outgoing
branch, are placed in separate regions of a single subactivity state. When this
subactivity state is entered, the regions corresponding to the incoming branches
of the discriminator are executed, while the region corresponding to the outgoing
branch “sits” in a wait state. When one of the incoming branches terminates, it
produces a signal which causes the outgoing branch to start its execution.

C
/send e

B
/send e

e
D

A

Fig. 3. Activity diagram capturing the discriminator pattern with 2 incoming branches.

This solution has a limitation when the discriminator is part of a loop. Con-
sider for instance the situation depicted in figure 4(a), whose translation as an
activity diagram is given in figure 4(b). This activity diagram forces an undesired
synchronisation between activities B, C and D. Specifically, if B finishes before
C, D is started immediately. Now, if D subsequently finishes before C, and con-
3 http://www.verve.com or http://www.versata.com.
4 http://www.sap.com.

To appear in UML’2001. 6



dition cond holds, activity A cannot be started immediately: it has to wait for
the completion of C. This is not in line with the semantics of the discriminator,
which does not impose any synchronisation constraint besides the fact that one
of its incoming transitions has to fire before firing the outgoing transition.

This example puts forward a limitation of activity diagrams inherited from
statecharts. Unlike Petri nets whose places can hold several tokens, states in a
statechart are boolean, in the sense that a state cannot be active several times
simultaneously. In the example at hand, if A was started immediately after the
completion of D, and if subsequently A finished before C, then the state labeled
C would have to be entered (i.e. activated) again.

CB

D

[cond] [not cond]

...

A

discriminator

(a) Informal description

D

A

/send e/send e e

B C

[cond] [not cond]

...

(b) Expressed as an UML activity diagram

Fig. 4. A discriminator within a loop

3.2 N-out-of-M join

Description. The N-out-of-M Join is a point in a workflow where M parallel
branches converge into one. The outgoing branch should be started once N in-
coming branches have completed. Completion of all remaining branches should
be ignored. As with the discriminator, once all incoming branches have fired, the
join resets itself. In fact, the discriminator is a 1-out-of-M join. The N-out-of-M
join is identified in [6], where it is called partial join.
Example. A paper must be sent to three external reviewers. Upon receiving
two reviews the paper can be processed. The third review can be ignored.
Degree of support offered by commercial WFMS. See previous pattern.
A solution using activity diagrams. This pattern can be treated in a similar
way as the discriminator, except that a counter needs to be introduced, to keep

To appear in UML’2001. 7



track of the number of termination signals generated by the incoming branches
of the N-out-of-M join. The execution of the outgoing branch is started when a
new termination signal arrives while the value of the counter is N - 1.

B1 B2

/send e/send e

A

C

e[i = N − 1]

e[i < N − 1]/i := i+1
i := 0

Fig. 5. Activity diagram corresponding to the N-out-of-M pattern.

When the N-out-of-M join is part of a loop, the above solution has the same
limitation as the solution of the discriminator pattern presented in figure 4(b).

3.3 Multiple instances requiring synchronisation

Description. A point in a workflow where an activity A is enabled multiple
times. The number of instances of A that need to be enabled is known only
when the point is reached. After completing all the enabled instances of A, an
instance of an activity B has to be executed.
Example. The requisition of 100 computers results in a number of (concurrent)
deliveries. Once all deliveries are processed, the requisition has to be closed.
Degree of support offered by commercial WFMS. Many WFMS do not
support the concept of “multiple instances of an activity” [4]. Systems that
support multiple instances do not provide conceptual constructs to enforce the
synchronisation of these instances. Interestingly, in UML the opposite holds :
the synchronisation of multiple instances of an activity is imposed, so it is not
possible to express (for example) that the activity B can be started as soon as
one of the instances of A is completed (i.e. a discriminator-like synchronisation).
A solution using activity diagrams. Embed activity A within a subactivity
state, and attach an unbounded dynamic multiplicity to it. Then, introduce a
transition between this subactivity state and an action state labeled by B (as in
figure 2). At run-time, provide one dynamic argument per required instance of
activity A. Since UML does not provide a notation for passing dynamic argu-
ments to a subactivity state, this has to be expressed in a programming language.

To appear in UML’2001. 8



4 Capturing state-based patterns

In real workflows, where human and material resources are not always available,
activities are more often in a waiting state than in a processing one [4]. This
fact is central in the following two patterns, where a distinction is made between
the moment when an activity is enabled, and that when it starts running. In
the first pattern, the choice between two alternative enabled activities is delayed
until an event occurs. In the second pattern, several enabled activities have to
be processed, but at any point in time, at most one of them can be running.

4.1 Deferred choice

Description. A point in a workflow where one among several branches is chosen
based on some external information which is not necessarily available when this
point is reached. This differs from the “normal” choice, in that the choice is not
made explicitly (based on existing data) but several alternatives are offered to the
environment, and the choice between them is delayed until an external signal is
received. Using the WFMS terminology, this means that the alternative activities
are placed in the worklist, but as soon as one of them starts its execution, the
others are withdrawn. This pattern is called implicit XOR-split in [2].
Example. When a contract is finalised, it has to be signed either by the director,
or by both the deputy director and the secretary, whoever is/are available first.
Degree of support offered by commercial WFMS. Although all WFMS
provide a construct capturing the “normal” choice, few of them support the
deferred choice. A notable exception is COSA5. In some WFMS, the deferred
choice can be handled at the implementation level using cancellation messages
(i.e. both A and B are enabled and one of them is cancelled when the other
starts), but this solution will not always work due to concurrency problems.
A solution using activity diagrams. The deferred choice can be expressed
as a normal state which waits for an event from the environment, and chooses
one of its outgoing branches accordingly (see figure 6).

e1

e2 C

B

A

Fig. 6. Activity diagram corresponding to the deferred choice pattern.

4.2 Interleaved parallel routing

Description. A set of activities {A1, A2, . . . , An} need to be executed in an
arbitrary order. Each activity in the set is executed exactly once. The order
5 http://www.cosa.de and http://www.cosa.nl.

To appear in UML’2001. 9



between the activities is decided at run-time: it is not until one activity is com-
pleted that the decision on what to do next is taken. In any case, no two activities
among A1, . . . , An can be active at the same time.
Example. The army requires every applicant to take 3 tests: an optical, a med-
ical, and a mental. These tests can be conducted in any order but obviously not
at the same time. When an applicant completes a test, the decision of which test
to perform next is taken depending on the presence of the relevant doctors. If for
example the doctor responsible for the optical test is present, while the doctor
for the medical one is absent, the optical test is performed before the medical.
Degree of support offered by commercial WFMS. In many WFMS, this
pattern cannot be expressed at the conceptual level. At the implementation level,
it can be coded by introducing a resource shared by all activities A1, . . . , An.
This shared resource acts as a semaphore, forcing a serialization of the activities.

Since this pattern can be expressed in terms of the deferred choice pattern
(see below), it can be captured in those WFMS supporting the deferred choice [4].
Solutions using activity diagrams. This pattern can be expressed in terms
of the deferred choice as follows. First, a deferred choice is made between n
branches, such that the ith branch starts with activity Ai (1 ≤ i ≤ n). In the
branch that leads to activity A1, another deferred choice is made (after A1 is
executed) between n – 1 branches respectively starting with A2, . . . , An. A
similar nested deferred choice is also made in all the other branches of the first
deferred choice. This process of nesting deferred choices is recursively repeated,
until all the permutations of A1, ..., An are enumerated. Clearly, for a large
number of activities, this combinatorial explosion is undesirable.

A better alternative is to enforce the interleaving of activities by placing each
activity in a separate concurrent region, and blocking their execution through
synch states emanating from a single “blocking region” (this is the leftmost
region in figure 7). A token is inserted into the synch state blocking an activity
Ai, only after the processing of the event that enables the execution of Ai.
When Ai starts its execution, the blocking region enters a state which defers
the occurrences of events that may unblock the execution of other activities. For
instance, in figure 7 events s1, s2 and s3 are used to indicate that activities A1,
A2 and A3 respectively, can be executed. If one of these events occurs while one
of the activities is being executed, the processing of this occurrence is deferred
until the ongoing activity execution has completed.

5 Producer-consumer patterns

The patterns in this section are variants of the producer-consumer pattern found
in distributed systems design. They correspond to situations where several in-
stances of an activity A (the producer) are executed sequentially, and the termi-
nation of each of these instances triggers the execution of an instance of another
activity B (the consumer). The instances of A and B execute concurrently, but
some asymetric inter-dependencies link them (a “B” is caused by an “A”).

To appear in UML’2001. 10



done[i = 1]

s3

1

1

1

do
ne

[i 
>

 1
]/i

 :=
 i−

1 s1s2

s1/ defer
s2/ defer
s3/ defer

/send done

A1

/send done

A2

/send done

A3

i := 3

Fig. 7. Activity diagram for the interleaved parallel routing of 3 activities.

5.1 Producer-consumer pattern with termination activity

Description. This pattern involves three activities A, B and C. The process
starts with the execution of an instance of A. When this execution completes,
an instance of B is enabled. Concurrently, a second instance of A can be started.
When this second instance of A completes, a second instance of B is enabled and
a third instance of A can be started. This process continues in such a way that
at any point in time, the following conditions hold: (i) at most one instance of A
is running; (ii) the execution of the ith instance of B does not start before the ith

instance of A is completed. When all the instances of A are completed, the system
continues executing instances of B until the number of completed executions of
B is equal to that of A. Finally, a terminating activity C is executed.
Example. A customer is shopping in a virtual mall aggregating several vendors.
Every time that the customer orders an item, the system must trigger an activity
which contacts the corresponding vendor to check the item’s availability and
expected delivery time. Once the customer states that (s)he does not want any
other item, and once the availability of all the requested items is checked, a mail
is sent to the customer with the list of available products and their delivery time.
Degree of support offered by commercial WFMS. We notice that in this
pattern, an a priori unknown number of instances of B may run simultane-
ously, and these instances need to synchronise upon termination. Therefore, this
pattern is not supported by those WFMS which do not support the pattern
“Multiple instances with synchronisation”. Now, if we restrict the description of
the pattern to the case where at most one instance of B is executed at a time
(i.e. the instances of B are executed sequentially), then it becomes possible to
express this pattern using AND-splits, loops and counters. This is actually the
approach that we adopt below to capture this pattern in UML activity diagrams.

To appear in UML’2001. 11



Solution. The pattern is captured by the activity diagram shown in figure 8.
Essentially, instances of activity A and B run in two concurrent regions of a
compound state. Every time that an instance of activity A is completed, it puts
a token in a synch state, and it increments a counter i. Each of the tokens
generated by the completion of an instance of A, enables a transition leading to
the execution of one instance of activity B. When the execution of an instance of
activity B is completed, a token is put in a second synch state. Once all instances
of A are completed, the tokens of this second synch state are “consumed” one
after the other, and for each of these consumptions, the counter i is decremented.
When the value of the counter is zero, it means that B was executed as many
times as A was. The compound state is then exited and C is executed once.

*

[i > 0]/i := i − 1

*

[done]

[more]/i := i + 1

B

C

[i = 0]

A

i := 0

Fig. 8. Activity diagram for the producer-consumer pattern with termination activity.

This solution is such that at any point on time, at most one instance of B
is running. Although we do not have a proof, we believe that the version of this
pattern where multiple instances of B may run concurrently, cannot be expressed
as an activity diagram. Indeed, this would require a dynamic invocation operator
in which not all of the dynamic arguments are available at once, but rather arrive
one by one. Given such an operator, it would be possible to express that an
instance of B needs to be triggered each time that an instance of A terminates,
even if the previously generated instances of B have not yet completed.

5.2 Producer-consumer with bounded queue

Description. The description of this pattern is similar to that of section 5.1,
except that at any time, the difference between the number of times that activity

To appear in UML’2001. 12



A has been executed, and the number of times that activity B has been executed,
is bounded by an integer called the size of the queue.
Example. To obtain an ID card, an applicant has to complete a form and
present it to an officer for verification. Once the officer has checked the form,
the applicant is sent to a photographer’s room. However, the queue leading from
the officer’s counter to the photographer’s room cannot contain more than 5
persons. Should the queue contain 5 persons, the officer would stop accepting
applications until one of these persons enters the photographer’s room.
Degree of support offered by commercial WFMS. See previous pattern.
Solution. The idea is to modify the diagram of figure 8, in such a way that two
separate counters are kept: one counting the executions of A (na), and the other
counting the executions of B (nb). Every time that activity A is completed, if
the boolean variable “more” is true, a waiting state is entered, which is only
exited when the condition na− nb < s holds (where s is the size of the queue).

6 Related work

The suitability of statechart-based notations for workflow specification has been
recognised by many studies. For instance, [12] argues that statecharts are per-
ceived by practitioners as being more intuitive and easier to learn than alter-
native formal notations such as Petri nets (whose suitability for workflow spec-
ification is advocated in e.g. [2]), yet have an equally rigorous semantics. More
recently, [16] and [1] illustrate through selected case studies, the adequacy and
limitations of activity diagrams for business process modeling. None of these ref-
erences however undertakes a systematic evaluation of the capabilities of stat-
echarts/activity diagrams for workflow specification as in the present paper.
Interestingly, [16] agrees with us in saying that wait states and activity-in-states
are crucial for workflow modeling, thereby sustaining our position that no re-
strictions on their use should be imposed as currently suggested by the standard.

The issue of defining a precise semantics of UML is the subject of intensive
investigations, as evidenced by the number of projects, forums, and workshops in
this area (see [13] for a list of links). Unfortunately, within this stream of research,
activity diagrams have received relatively little attention, despite the fact that
they are “one of the most unexpected parts of the UML” [8]. Ongoing efforts
such as those reported in [5] and [7] are attempting to fill this gap. [5] defines an
algebraic semantics of the core constructs of activity diagrams. It does not deal
however with features such as synch states, dynamic invocation and deferred
events. In this regard, the formalisation given in [7] is more complete. Based on
the Statemate semantics of statecharts [9], this formalisation covers all activity
diagrams constructs (except synch states and swimlanes), and considers issues
such as data manipulation. The authors however do not formalise syntactical
constraints such as the well-formedness rules linking forks with joins, which are
essential to avoid some deadlocking situations. These syntactical constraints and
some of their expressive power implications are studied in [10].

To appear in UML’2001. 13



To summarise, we can state that the formalisation of the activity diagrams
notation, and the evaluation of its suitability for workflow specification, are still
open issues. It is expected that the ongoing OMG RFP “UML extensions for
workflow process definition” [17] will provide an occasion to address them.

7 Conclusion

This paper presented an evaluation of UML activity diagrams against a set of
workflow patterns involving control-flow aspects. Some of these patterns are ex-
tracted from [4], while others are variants of the producer-consumer pattern.
Actually, we have confronted activity diagrams against the 22 control-flow pat-
terns in [4], although for space reasons we have just presented some of them.

From this systematic evaluation, we conclude that in the context of workflow
specification, the strong points of activity diagrams with respect to alternative
languages provided by commercial WFMS are essentially the followings:

– They support signal sending and receiving at the conceptual level.
– They support both waiting states and processing states.
– They provide a seamless mechanism for decomposing an activity specification

into subactivities. The combination of this decomposition capability with
signal sending yields a powerful approach to handling activity interruptions.

However, activity diagrams exhibit the following drawbacks:

– Some of their constructs lack a precise syntax and semantics. For instance,
the well-formedness rules linking forks with joins are not fully defined, nor
are the concepts of dynamic invocation and deferred events, among others.

– They do not fully capture important kinds of synchronisation such as the
discriminator and the N-out-of-M join (see section 3). Similarly, to the best
of our knowledge, they do not fully support the producer-consumer pattern
with termination activity (see section 5.1).

We encourage the participants of the OMG RFP “UML extensions for work-
flow definition” [17], to consider these two points in their proposals. Actually,
[17] mentions the issue of capturing the N-out-of-N join, although it does not
discuss what is the expected behaviour of this pattern when embedded in a loop.

In this paper, we focused on the control-flow perspective. However, work-
flows can also be viewed from a data and from a resource perspective [11]. The
data perspective relates to the flow of information between activities, while the
resource perspective defines human and device roles responsible for handling
activities. The data and resource perspectives may be captured through object
flows and swimlanes respectively. Assessing the suitability of these constructs
against appropriate workflow patterns is a perspective to our work.

Another perspective is to study how the concepts and constructs of UML ac-
tivity diagrams compare to those of the Workflow Management Coalition’s Ref-
erence Model [18]. Such an effort could trace the road towards defining mappings
from activity diagrams into vendor-specific workflow specification languages.

To appear in UML’2001. 14



References

1. J.Ø. Aagedal and Z. Milosevic. ODP enterprise language: An UML perspective.
In Proc. of The 3rd International Conference on Enterprise Distributed Object
Computing, Mannheim, Germany, 1999. IEEE Press.

2. W.M.P. van der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.
Advanced workflow patterns. In Proc. of the 5th IFCIS Int. Conference on Coop-
erative Information Systems, Eilat, Israel, September 2000. Springer Verlag.

4. W.M.P. van der Aalst, A.H.M ter Hofstede, B. Kiepuszewski, and A. Barros. Work-
flow patterns. Technical Report WP 47, BETA Research Institute, 2000. Accessed
March 2001 from http://tmitwww.tm.tue.nl/research/patterns.

5. E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for UML activity
diagrams. In Proc. of the International Conference on Algebraic Methodology and
Software Technology (AMAST), Iowa City, IO, USA, May 2000. Springer Verlag.

6. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In
Proc. of the 14th International Object-Oriented and Entity-Relationship Modelling
Conference (OOER’95), pages 341–354. Springer Verlag, December 1995.

7. R. Eshuis and R. Wieringa. A formal semantics for UML activity diagrams –
Formalising workflow models. Technical Report CTIT-01-04, University of Twente,
Department of Computer Science, 2001.

8. M. Fowler and K. Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language (Second Edition). Addison Wesley, Readings MA, USA, 2000.

9. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology, 5(4):293–333, October 1996.

10. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Proc. of the Int. Conference on Advanced Information Systems En-
gineering (CAiSE), Stockholm, Sweden, June 2000. Springer Verlag.

11. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Pren-
tice Hall, Upper Saddle River, NJ, USA, 2000.

12. P. Muth, D. Wodtke, J. Weissenfels, A.K. Dittrich, and G. Weikum. From central-
ized workflow specification to distributed workflow execution. Journal of Intelligent
Information Systems, 10(2), March 1998.

13. The precise UML group. Home page. http://www.cs.york.ac.uk/puml/.
14. UML Revision Task Force. OMG Unified Modeling Language Specification, Version

1.4 (final draft). February 2001.
15. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-

ence Manual. Addison-Wesley, 1999.
16. M. Schader and A. Korthaus. Modeling business processes as part of the

BOOSTER approach to business object-oriented systems development based on
UML. In Proc. of The Second International Enterprise Distributed Object Com-
puting Workshop (EDOC). IEEE Press, 1998.

17. The Object Management Group. UML Extensions for Workflow Process Defi-
nition, RFP-bom/2000-12-11. Accessed on June 2001 from ftp://ftp.omg.org/

pub/docs/bom/00-12-11.pdf.
18. The Workflow Management Coalition. The Workflow Reference Model. http:

//www.aiim.org/wfmc/standards/docs/tc003v11.pdf, accessed on January 2001.

To appear in UML’2001. 15




