
Benchmarking DOUG on the Cloud

Oleg Batrashev, Satish Narayana Srirama, Eero Vainikko
Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
{olegus, srirama, eero}@ut.ee

Abstract—Large systems of linear equations with sparse
matrices arise often in scientific computing problems and
engineering tasks. For efficient solution of such problems
iterative techniques like preconditioned Krylov subspace
methods are used. Domain decomposition preconditioners
are good for reducing the number of iterative steps to-
gether efficient parallelisation of the problem. While cloud
computing infrastructure has become quite attractive also
for the HPC community, this paper gives an overview
of DOUG (Domain Decomposition on Unstructured Grids)
implementation with the focus of important parameters for
parallel performance on computer clusters as well as on the
SciCloud (Scientific Computing on the Cloud) environment.
We describe the used methods and perform a number of tests
for benchmarking the application on both environments.

Keywords-cloud computing; parallel scientific computing
problems; domain decomposition; Krylov subspace methods;

I. INTRODUCTION

Cloud computing [6] is a style of computing in which,
typically, resources scalable on demand are provided "as
a service (aaS)" over the Internet to users who need
not have knowledge of, expertise in, or control over the
cloud infrastructure that supports them. The provisioning
of cloud services can be at the Infrastructural level (IaaS),
Platform level (PaaS) or at the Software level (SaaS).
Cloud computing suits well in solving parallel scientific
computing problems, with its promise of provisioning
virtually infinite resources. Thus to take the benefits of the
cloud, we tried to move several of our parallel application
to the cloud. One such application is DOUG (Domain
decomposition On Unstructured Grids). DOUG is an open
source software package for parallel iterative solution of
very large sparse systems of linear equations with up to
several millions of unknowns.

While running the parallel applications on our private
cloud, SciCloud [11], it was realized that the transmission
delays in cloud environment to be the major problem for
adapting HPC problems on the cloud [10]. However, the
transmission delays were not so significant for DOUG
when compared to pure Conjugate Gradient (CG), as
DOUG has much better computation-communication ratio
than pure CG. Nevertheless, while porting DOUG to the
cloud, it was also observed that, changing some parameters
of DOUG may make it effective for the cloud. Considering
this hypothesis, we studied varying various parameters of
DOUG and conducted the benchmarking to see the effects.
The details are produced in the paper and it is organized
as follows.

Section II gives the description of DOUG package and
some preliminaries needed for describing the problem
of solving large systems of linear equations with sparse
matrices. In Section III we give an overview of two-level
preconditioner we are using. The next Section discusses
the partitioning and aggregation strategies for efficient
parallel implementation. Section V focuses on parallel
implementation of the given methods and is followed
by parallel performance tests on cluster and SciCloud in
Section VI. Section VII concludes the paper and describes
the future research directions in the field.

II. PARALLEL SCIENTIFIC APPLICATIONS

As already mentioned, cloud computing suits well
in solving parallel scientific computing problems, with
its promise of provisioning virtually infinite resources.
To verify this, along with several parallel applications,
like NAS PB (NASA Advanced Supercomputing Parallel
Benchmarks) CG, embarrassingly parallel applications, we
also tried to move our DOUG to the SciCloud. SciCloud
is a Eucalyptus based private cloud built on University of
Tartu, HPC cluster. With the SciCloud, students and re-
searchers can efficiently use the already existing resources
of university computer networks, in solving computa-
tionally intensive scientific, mathematical, and academic
problems. Traditionally, such computationally intensive
problems were targeted by batch-oriented models of the
GRID computing domain. The SciCloud project tries to
achieve this with more interactive and service oriented
models of cloud computing that fits a larger class of
applications. The analysis of moving scientific computing
application to the cloud had given us a chance to have
a clear look at the comparison of running the scientific
and mathematical problems in a cluster and on the cloud.
However, this paper address porting DOUG to SciCloud.

A. DOUG (Domain decomposition On Unstructured
Grids)

DOUG is a software package for parallel solution of
large sparse systems of linear equations typically aris-
ing from discretizations of partial differential equations
to be solved in 2D or 3D regions which may consist
of materials with high variations in physical properties.
DOUG is developed at the University of Tartu, Estonia
and the University of Bath, England since 1997. It was
first implemented in FORTRAN 77 but has been com-
pletely rewritten in Fortran 95. To achieve good paral-
lel performance, DOUG uses automatic load-balancing

and parallelization being implemented through MPI and
overlapping communication and calculations through non-
blocking communication whenever it is applicable.

Basically, DOUG uses an iterative Krylov subspace
method to solve linear systems in a form

Ax = b,

where the matrix A is sparse and the dimension of A is
very large. Due to large dimensions of A the convergence
rate is by far too slow. For that reason, a preconditioner
is used. A good preconditioner transforms the original
linear system into one with the same solution, but with the
transformed linear system the iterative solver needs much
smaller number of iterations [7]. DOUG implements the
Preconditioned Conjugate Gradient (PCG), the Stabilized
Bi-Conjugate Gradient (BiCGstab), the minimal resid-
ual (MINRES) and the 2-layered Flexible Preconditioned
Generalized Minimum Residual method (FPGMRES) with
left or right preconditioning.

The general algorithm used for creating the sub-
problems that can be assigned to separate CPUs is called
domain decomposition. The idea of domain decomposition
is to decompose the problem into n sub-problems, usually
with some overlap, each of which will be solved on one
CPU. In a way, it is similar to a divide and conquer scheme
but with domain decomposition there is communication
on the borders of the sub-problems (overlaps) involved.
Usually, communication is measured to be more costly
than CPU time and therefore the decomposition algorithm
tries to minimize the cross-sections between neighboring
subdomains.

In domain decomposition, instead of solving the global
system of equations, smaller problems are solved on each
sub-domain, solutions of which are combined together
to form an approximation to the original problem. The
common practice is to use domain decomposition as a
preconditioning step for Krylov subspace methods such
as the conjugate gradient method or the method of gen-
eralized minimum residual [2]. DOUG employs 2-level
preconditioning in which a coarse matrix is used which ap-
proximates the global matrix on a suitable chosen coarser
scale. This reduces the total work of a preconditioned
Krylov method (like PCG) to almost a constant number
of iterations independent of the matrix A size.

Recently, the development and research has been fo-
cused around aggregation based domain decomposition
methods. Major progress has been made in determining
an upper bound for the condition number of the pre-
conditioner in case of highly variable coefficients. This
allows a better estimate of the error and thus enables
the solver to finish in less iterations. This approach has
been implemented in DOUG and it has been shown
experimentally that it is of superior speed to comparable
methods. [8], [9]

ϕiû

T on Ω

Figure 1. Piecewise linear function û and node i basis function

i j

k

τ
aτk,j

Aτ =

 aτi,i aτi,j aτi,k
aτj,i aτj,j aτj,k
aτk,i aτk,j aτkk

Figure 2. Mesh element and corresponding element matrix

B. Preliminaries

The original boundary-value problem is described by
elliptic partial differential equation

−∇ · (α∇u) = f,

defined on the physical domain Ω, where u = u(x) and
x ∈ Ω. The system of linear equations Au = b to be
solved is usually generated using Finite Element method
(FEM). In FEM the domain Ω is discretized into finite
elements τ ∈ T (e.g. triangles for 2D) which comprise the
conforming mesh with nodes xi indexed with i ∈ I(Ω).
Instead of the actual solution u(x), FEM looks for its
approximation û(x), which is piecewise linear function
with respect to T (i.e. linear on each element τ). This
function is expressed through fine grid basis functions ϕi
(hat functions) as (see Figure 1)

û =
∑

uiϕi .

Each function ϕi equals to 1 at node xi, is 0 at all other
nodes and linearly fades to 0 in immediate neighbour
elements. Vector u values ui define the function û through
the basis functions {ϕi}.

Thus, each node in the mesh contains one unknown ui
and elements of the mesh describe the relations between
the unknowns with element matrices (see Figure 2). The
global stiffness matrix A is the composition of element
matrices, where Aij 6= 0 denotes a relation between the
unknowns ui and uj . This, among other implications,
causes to fetch zj value to calculate yi in parallel matrix
vector multiplication y = Az. Hence only unknowns of
the neighbouring nodes are being related, the matrix A is
sparse and reflects the connectivity of the mesh grid.

III. DOUG: TWO-LEVEL PRECONDITIONER

DOUG uses two-level preconditioner M−1 = M−1
AS +

M−1
C : Schwarz preconditioner on subdomains and coarse

grid preconditioner. The methods of both levels rely on
partitioning of the mesh grid. The partitioning process

Ω1 Ω2

Ω3

R1 =

1 0 0 · · · 0
0 0 1 0
...

. . .
...

0 0 0 · · · 1

Figure 3. Subdomains and subdomain Ω1 restriction matrix

W1 W2

Figure 4. Aggregates and coarse grid

details are described in Section IV. Here we describe how
preconditioners are constructed given the partitions.

A. Additive Schwarz preconditioner

Schwarz methods are based on the idea of decomposing
the domain of initial problem into subdomains Ωi, so
that sub-problems are solved independently and the result
is combined from the solutions on the subdomains (see
Figure 3). Define by I(Ωi) the index set of nodes in the
subdomain Ωi (i = 1, ..., nd), where nd is the number
of subdomains. Then for p ∈ I(Ωi) and q ∈ I(Ω) the
subdomain injection matrix Ri of shape |I(Ωi)| × |I(Ω)|
selects the values in the subdomain nodes

(Ri)pq = δpq =

{
1 if p = q

0 otherwise.

Local matrix Ai = RiAR
T
i is just a minor of A cor-

responding to rows and columns of indices from I(Ωi).
Non-overlapping Schwarz preconditioner with complete
local solves is defined with

M−1
AS =

s∑
i=1

RTi A
−1
i Ri.

In general case the subdomains may overlap, so that one
node belongs to several subdomains. With the Additive
Schwarz method we just add the solution values of the
overlapping nodes and the previous formula stays the same
for the overlapping case.

B. Coarse grid preconditioner

This method uses coarse grid which is constructed from
fine grid aggregates W = {Wi|i = 1, . . . , na}, where
nadenotes the number of aggregates. Each aggregate Wi

consists of several fine grid nodes xk and each coarse grid
node corresponds to one aggregate (see Figure 4). The

coarse space restriction matrix R0 of shape |W | × |I(Ω)|
maps fine grid values to the coarse grid

(R0)iq =

{
1 if xq ∈Wi

0 otherwise.

The meaning of the restriction matrix R0 is to specify
combinations of the fine grid basis functions ϕi to form
coarse space basis functions

Φi(x) =
∑

q∈I(Ω)

(R0)iqϕq(x) x ∈ Ω, i = 1, . . . , na.

The same approach of approximating u(x) with a piece-
wise linear function is transferred to the coarse level with
the new smaller basis. The nodes xq where Φi(xq) 6= 0
is called coarse space basis function Φi support and it
coincides with the aggregate Wi nodes.

Coarse matrix A0 = R0AR
T
0 defines the problem on

the coarse grid. Coarse grid method restricts the values to
the coarse grid, solves the problem and interpolates the
solution back to the fine grid

M−1
C = RT0 A

−1
0 R0. (1)

In general, aggregates may overlap, in which case∑
i,xq∈Wi

(R0)iq = 1 must still hold for each q. The
overlap for aggregates is achieved by smoothing process
described in Section IV-C.

Highly-variable coefficient: Overlap of the aggregates
significantly reduces the number of iterations. However, if
there is a jump in the coefficient on the boundary of two
aggregates

α(xp)� α(xq) , xp ∈Wi, xq ∈Wj , i 6= j, Apq 6= 0

the smoothing is much less efficient. The idea of “smart”
smoothing is to avoid overlap in such places.

IV. PARTITIONING AND AGGREGATION

This section describes DOUG partitions and their over-
laps as well as partitioning algorithm of smoothed aggre-
gation, implemented in DOUG.

A. Partitioning

Two-level preconditioner in DOUG requires two types
of partitions: subdomains for the Schwarz preconditioner
and coarse space basis function supports for the coarse
grid preconditioner. The latter are supposed to be smaller
and the former should be as large as server memory allows
but not too large, because matrix factorization time for
a subdomain increases non-linearly. In DOUG each MPI
process handles exactly one subdomain. Further, for par-
allel implementation it is convenient to have conforming
subdomain and support boundaries, so that (see Figure 5)

∀Wi ∃!Ωj Wi ⊂ {xk|k ∈ I(Ωj)}

Hence in DOUG 2-phase process generates both par-
tition types: first, small partitions on the fine mesh are
generated, then larger partitions are created by joining fine
mesh partitions. Both subprocesses may be accomplished

Ω1 Ω2

Ω3

a) coarse grid is defined by
the aggregates on the fine
grid,
b) subdomains Ωi are de-
fined by the aggregates on the
coarse grid

Figure 5. 2-phase partitioning in DOUG

by either any ready graph partitioning library, like Metis,
or DOUG aggregation algorithm. The following terms are
used for the partitions

1) fine aggregates Wi – partitions of the fine grid,
which serve as basis function supports in the coarse
grid preconditioner;

2) coarse aggregates Vi = {xk|k ∈ I(Ωi)} – partitions
of the coarse grid, which serve as subdomains in the
Schwarz preconditioner.

In fact, 3-phase partitioning process is implemented in
DOUG, because it involves distribution of values between
processes. The details are described in Section V-A.

B. Overlaps and process region

After aggregates are generated DOUG expands the
aggregates by adding several layers of neighbouring nodes
using matrix A values. The following grid regions are
formed (see Figure 6):
• Ṽi – nodes in the subdomains of the overlapping

Schwarz preconditioner with the overlap no,
• W̃i – nodes in coarse space basis function support

after ns smoothing steps.
On each process i all local regions are combined and
single process region is formed, which also comes in two
variations:
• interior Ui = Vi
• with overlap Ũi = Ṽi ∪

(⋃
j,Wj⊂Vi

W̃j

)
– If max(no, ns) = 0 then Ũi-s are extended by

one layer using A as an adjacency matrix. This is
needed for parallel matrix-vector multiplication.

The general assumption in DOUG is that the values in
the process region Ũi are supposed to be valid after each
parallel operation. This may require receiving data from
other processes if the values in the overlap are changed on
a remote process. Constructing and handling the overlaps
for all regions is essential part of DOUG code.

The overlaps for process i with process j are (see Fig-
ure 6): inner Ui∩Ũj , outer Ũi∩Uj , and total Ũi∩Ũj . Note
that total overlap may be larger than the union if inner
and outer overlaps by the overlap on third subdomains
(Ũi \ Ui) ∩ (Ũj \ Uj).

C. Smoothed aggregation

In the center of the coarse problem creation and parti-
tioning of the problem into the subdomains in a “smart”

Ṽ1 W̃2

U1 ∩ Ũ2 Ũ1 ∩ U2

(Ũ1 \ U1) ∩ (Ũ2 \ U2)

Figure 6. Expanded aggregates and process region overlaps

Algorithm 1 Smoothed Aggregation Setup

Input: Matrix A defined on nodes N , ε ∈ [0, 1], aggregate
size bounds amin, amax, aggregation radius r and
number of smoothing steps ns

Output: Set of (in case ns > 0 overlapping) aggregates
W = {Wj : j = 1, ..., na}, Restriction matrix
R0 : R|N| → Rna , Interpolation matrix RT

0 and coarse
matrix A0

1. Scale the matrix A := (diagA)−1/2A (diagA)−1/2

2. Filter out weak connections from matrix A for which
|Aij | < ε max

k 6=i
|Aik|;

3. Initialise C := ∅; F := N ; j = 0
repeat

4. j := j + 1; choose a seednode xj from C (or randomly
from set F if C == ∅)

5. Set layer L(0) := {xj}; F := F \ L(0) and Wj = L(0)
6. for i = 1 : 2r + 1

(a) Set layer L(i) :=
⋃

xk∈L(i−1)

({x` : Ak` 6= 0})

(b) If i ≤ r, add to L(i) all x ∈ F that are connected
through A to at least 2 nodes in L(i), set
F := F \ L(i) and set Wj := Wj ∪ L(i).

7. Find imax := argmax
i∈{r+1,...,2r+1}

|L(i)| (i.e. the largest layer)

and add to C all x ∈ L(imax) of shortest path length
from xj

until F == ∅
8. set na := j
9. Merge any aggregate Wj that is too small (i.e.

|Wj | < amin) with a connected neighbouring aggregate
Wk (subject to the requirement |Wj ∪Wk| ≤ amax; it
may be necessary to split up Wj to achieve this) and
shrink na accordingly.

10. Form the aggregate projector operator P : R|N| → Rna ,
where Pjk = {1 if xk ∈Wj or 0, otherwise}

11. Form the restriction operator R0 = PSns , with
S = (I − ωA) (applying ns times a damped Jacobi
smoother); aggregates grow by ns layers as well, forming
overlaps.

12. Form the coarse problem matrix A0 through sparse matrix
multiplication A0 = R0ART

0

way taking account the parameter jumps, is the Smoothed
Aggregation Setup (see Algorithm 1). On input there is
given a large sparse matrix A. The method is flexible in a
way that no discretizations grid coordinates are needed to
be given. The aggregation idea is somewhat similar to the
Algebraic Multigrid method coarsening strategies, where
the coarse problem is built on top of aggregated nodes.

Such nodes are close to each other on the fine level,
forming a set of nodes not further than 2r connections
away from each other through matrix A nonzero values,
where r is called the aggregation radius.

For the algorithm setup phase 1, the actual matrix A gets
temporarily scaled down for the diagonal entries to equal
one everywhere for faster filtration phase at step 2, depend-
ing on the constant ε ∈ [0, 1]. After the initializations only
the strongly connected values play role in the aggregation
phase (steps 4-9). The aggregation algorithm is built up
in a way that if the entries in the stiffness matrix A do
not show substantial jumps in coefficient, the aggregates
would look fairly regular in shape (e.g. rectangles in
2D case). This is achieved through special strategy for
choosing seed nodes in aggregation algorithm (step 7).
At the same time, weak connections are much more
likely to end up in different aggregates than the strong
ones. This has proved [8], [9] to improve substantially
the convergence speed of the two-level Additive Schwarz
method preconditioned with the aggregated coarse space
solver on top of the original fine grid solvers defined on
the subdomains.

For the coarse grid method to better reflect the underly-
ing properties of the actual problem, smoothing technique
can be used, as e.g. shown in [8], [9]. The smoother S
is given in the Algorithm 1 step 11, which together with
the restriction operator P forms the restriction operator
R. Step 12 in the algorithm shows, how the coarse level
matrix is formed through sparse matrix multiplication.

V. PARALLEL IMPLEMENTATION

Domain Decomposition method as a preconditioner to
some Krylov subspace method serves two goals: it helps
to reduce substantially the number of iterations needed for
the convergence of the iterative method and also is a mean
for parallelisation of actual computations. At the same
time, distribution of the work between different processors
helps to share the load but also introduces the need for
communication. The need for communication arises in
several different parts of the algorithm:

A. Parallel computation initialization
Crucial to the parallel implementation are the decisions

made on different choices closely related to Algorithm
1 different stages. Our implementation is based on the
master-slaves model. Distribution of matrix A is done in
3 phases:

1) Master preforms first a rough aggregation of the fine
grid, i.e. with omitting Algorithm 1 stages after step
6.

2) Sparse graph structure (preliminary coarse grid)
is built on top of the fine aggregates, which is
then split into np parts using graph partitioning
software METIS [5]. Computed coarse aggregates
define subdomains Ui = Vi. Then process domains
Ũi are computed by expanding the subdomains with
max(1, no, ns) layers.

3) Thereafter the submatrices of A, limited by Ũi, are
delivered to slave processes, which now perform

in parallel the whole Algorithm 1 but only using
submatrix values limited by Ui (locally computed
aggregates do not extend to the outer overlap). As
the result, smoothed fine aggregates W̃i are obtained
locally, then global numbering of the aggregates is
performed using processes ranks.

Subdomain injection matrices Ri i = 1 . . . nd are obtained
directly from Ṽi and do not require any other treatment,
except for re-indexing matrix A to prepare data for com-
plete local solve A−1

i in the Schwarz preconditioner. We
use the library UMFPACK [4] as a local solver.

Coarse space restriction matrix R0 is constructed by the
following steps:

1) Matrix R
(i)
0 :

(
R

(i)
0

)
jq

= (R0)jq Wj ⊂ Vi, is

constructed locally on each process i by smoothing
in step 3) above.

2) The values on the overlap
(
R

(i)
0

)
jq

: Wj ⊂

Vi, xq ∈ Ũi ∩ Ũk are delivered from process i to
process k. This is the preparation for the coarse
matrix A0 computation, described below.

For coarse problem the matrix A0 = R0AR
T
0 is created

by computing local parts and then delivering resulting
parts of A0 to each process in DOUG. Deciding which
parts to compute, so that there is no duplicates, is not
straightforward. Computing matrix A0 element

(A0)pq =
∑
k

∑
l

rpk · akl · rql

on process i by the index p (i.e. if Wp ⊂ Ui) is the most
obvious way, but it may require akl and rql values that
lie outside the process region xl /∈ Ũi. Another possibility
(implemented in DOUG) is to assign products rpk ·akl ·rql
by index k, so that process i computes only those with
xk ∈ Ui.

B. Dot products
In Krylov subspace methods there are one or several dot

products needed to be calculated on each iteration step.
Dot products are actually somewhat bad to the method
performance – although the calculations are done in paral-
lel, it is not possible to hide the communication needed for
gathering the distributed values together behind some other
useful calculation. With reducing the number of Krylov
subspace iterations also the number of synchronization
steps, needed in parallel program, reduces. Therefore, it is
crucial to use the best available coarse problem technique
to reduce the overall number of iterations and this is
why the second level problem solution technique plays
an important role.

C. Matrix-vector multiplication
While dot-products would be better to avoid as much

as possible in parallel program, communication needed
for synchronization of subdomain direct neighbour values
after each matrix-vector operation can be hidden in the
background while calculating the values not involved in
data transfer. Good implementation here is of extreme
importance to the resulting parallel performance.

D. Preconditioner application

As the preconditioner used is the two-level Additive
Schwarz method, there are two types of communication
patterns that occur here.

On fine level, neighbour communication is needed after
each fine grid problem solution, pretty similar to the
matrix-vector operation case:

1) Local solve on the subdomain Ṽi is performed.
2) The values of the nodes Ṽi∩Ũj need to be sent from

process i to process j.

On coarse level, information needs to be gathered from
all processes to the coarse problem solvers. The coarse
problem in DOUG is solved on all processes simulta-
neously and therefore no communication is needed for
interpolation of the coarse solution back to the fine grid.
However, current implementation in DOUG is different
and requires second communication if ns > 0, the overall
algorithm is the following:

1) local coarse vector y(i) = R
(i)
0 r(i) is computed on

each process i
2) all processes gather local coarse vectors into global

coarse vector y
3) each process solves the same coarse problem v =

A−1
0 y independently

4) coarse solution v is interpolated back to process
region Ũi but only vj , Wj ⊂ Vi values are
interpolated to z

5) final communication need to be done for the nodes
x ∈

(⋃
j,Wj⊂Vi

W̃j

)
∩ Ũk: corresponding z values

are sent from process i to process k.

On both levels, it is possible to combine the last step
and do the communication for process region overlaps,
so values Ũi ∩ Ũj are sent from process i to process j
(and vice versa). For efficiency, step 1 of the Schwarz
preconditioner is overlapped with step 2 of the coarse grid
preconditioner, where all-to-all communication happens in
the separate thread.

VI. PERFORMANCE TESTS

The size of the grid considered for the analysis is
1536 times 1536, which gives rise to the system of linear
equations with about 2.5 millions of unknowns. The matrix
of the system contains more than 10 million non-zero
elements. DOUG master node first reads data from disk
and distributes it to slave nodes, which together with
master node use Preconditioned CG algorithm to solve
the system.

For testing we had four machines with 2.83GHz quad-
core Intel Q9500 processors with 3MBytes of L2 cache,
connected with Fast Ethernet network. Cluster has Scien-
tific Linux with kernel 2.6.18 and SciCloud has Ubuntu
Linux with kernel 2.6.27. The tests were repeated 3 times
and average time was taken, though the run times were
very stable.

r = 2 r = 4 r = 4
ns = 1

r = 4
ns = 2

n = 2 70 94 79 68
n = 16 71 97 81 70

Table I
NUMBER OF PCG ITERATIONS FOR DIFFERENT CONFIGURATIONS OF

THE COARSE GRID PRECONDITIONER

2 4 6 8 10 12 14 16

20

40

60

80

100

120

140

MPI processes

tim
e

(s
ec

)

SEQ r = 2
RR r = 2
RR r = 4

RR r = 4; ns = 2

Figure 7. Sequential and round-robin scheduling

A. DOUG on cluster

On cluster we had a choice to schedule processes to
cores in sequential (SEQ) or round-robin (RR) order. Se-
quential order fills all cores of a machine and then switches
to another machine in the network while round-robin
always spreads processes evenly between the machines.
With SEQ the performance is worse, because DOUG
process creates additional thread for communication and
it requires more than one core. Another aspect is memory
bus, which is a critical part of sparse problems, hence
putting more processes to a machine degrades perfor-
mance. This is seen from Figure 7.

We tried different setups primarily changing aggregation
radius r and smoothing steps ns on different number of
processors n = 2, 4, 6, . . . , 16. Increasing radius gives
smaller coarse problem size, which reduces coarse grid
preconditioner communication and solve time, but in-
creases the number of iterations (see Table I). Adding
smoothing decreases number of iterations but adds addi-
tional communication.

The run times for different number of processes are
shown on Figure 7. The best time for 16 processes is
observed with the aggregation radius of 4 and 2 steps of
smoothing. With the larger number of processes coarse
vector distribution becomes more critical, especially if the
size of local problem is not large enough. Table II shows
that with 16 processes and radius of 2 these sizes are
already comparable. Without smoothing though the larger
number of iterations nullifies the effect, so smoothing
helps to reveal it.

nd 2 4 6 8 10 12 14 16
sub-

problem
1.18 0.59 0.39 0.29 0.23 0.2 0.17 0.15

r 2 4 8
coarse problem 0.097 0.03 0.0088

Table II
LOCAL AND COARSE PROBLEM SIZES IN MILLIONS OF UNKNOWNS

2 4 6 8 10 12 14 16

50

100

processes

tim
e

(s
ec

)

CG solve
factorisation

Figure 8. Solve and factorization times

Considerably larger times for 2 processes are because
local solves with UMFPACK do not scale linearly, so fac-
torization of the problem with 1.18 millions of unknowns
takes a lot of time, even more than the whole CG algorithm
(see Figure 8).

Finally, odd behavior with 16 processes, that reveals
sequential scheduling is better than round-robin, can be
explained by non-uniform communication costs on the
cluster, i.e. there are four 4-core machines. For testing
this hypothesis we saved coarse aggregate graph: ag-
gregate neighbours and overlaps (see Figure 9), which
also defines process communication pattern. Indeed, se-
quential scheduling eventually gives the best distribu-
tion of processes on the machines, while round-robin
scheduling places neighbouring aggregates to different
machines. The numbering is given by METIS routine and
is quite causal. In the future we have to take control over
distribution by passing this communication graph to the
MPI_Graph_create routine or by some other means.

B. DOUG on SciCloud

To run DOUG on SciCloud, machine images with
DOUG software have been prepared and the scripts that
helped us in preparing the MPI setup are extended for the
DOUG. The Cloud is situated on the cluster and uses the
same hardware, but different operating system. Our previ-
ous tests showed that cloud may introduce communication
overhead [11].

Running DOUG program with the given data takes more
than 1 GBytes of memory when running on less than 3
nodes, so it was not possible to run it on cloud with 1
GBytes of available memory per VM. The cloud has been
tested with 4 to 16 instances running on four 4-core nodes.

The scheduling of processes to the machines on the
Cloud is currently not under our control. The expected

1

2

1 0 6 7

4
9 8 0

3
7 1 0

2 3 4

9

5 9 8

1 0

6 8 5

6 1 9

7

1 1 9 8

5 7 6

1 6

6 5 1

2 4 2

8

7 0 4

5

6

9 8 07 6 5

6 1 3

4 2 7

1 4

7 4 5

1 0 5 3

5 5 9

2 6 9

8 7 2

1 1

1 4 3

1 2

8 4 4

4 9 9

8 8 2

7 9 5

1 5
5 6 0

5 4 7

1 3

9 1 4

1 0 6 8

2 2 0

5 0 1

8 4 6

Figure 9. Graph of 16 coarse aggregates and overlap sizes

2 4 6 8 10 12 14 16

20

40

60

80

100

120

140

MPI processes

tim
e

(s
ec

)
SEQ r=2
RR r=2

CLO r=2

Figure 10. DOUG run times in cluster and cloud cases

behavior is the middle between sequential and round-robin
scheduling. This is observed on Figure 10.

The graph shows that cloud does not introduce sub-
stantial extra communication overhead with 16 instances
and overall performance is the same. However, the overall
scaling is not very good for both cluster and cloud cases.
This may be due to the optimal DOUG requirement
to have 2 cores per processor. Our future research in
this domain will address this issue in detail and we are
interested in repeating the tests with 2 cores per instance.
Our best case also does not show large differences (see
Figure 11).

VII. CONCLUSIONS AND FUTURE RESEARCH

From this analysis it can be observed that parallel
scientific applications scale reasonable on cloud. However,
our experience of moving DOUG to SciCloud reveals
some problems with cloud. First, instances in cloud are run
on random nodes in the network. This may cause problems

2 4 6 8 10 12 14 16

20

40

60

80

100

MPI processes

tim
e

(s
ec

)

RR r = 4; ns = 2
CLO r = 4; ns = 2

Figure 11. DOUG run times in cluster and cloud cases

of establishing connection from one instance to another.
We circumvented the problem with our scripts, which
made them initiate on a single cluster or on a single node
of a cluster. Public clouds, especially Amazon EC2, also
provide such support for HPC, with their Cluster Compute
instances, which promise much lesser latency between
instances [1]. Second problem is that MPI configuration
needs to be created dynamically during run time, which
is done by our scripts. However, for others to move their
MPI applications to the cloud, additional tools are helpful.

In addition, we have observed that for parallel applica-
tions like DOUG on cluster, the process mapping strategies
(like round-robin or sequential scheduling above) play
substantial role for the parallel application performance.
In our future work we intend to develop the possibilities of
matching underlying cloud hardware with actual parallel
process communication topology graph like it has been
studied e.g. in [3] for computer clusters. We are also in-
terested in performing tests with larger than 16 processes.

ACKNOWLEDGMENTS

The research is supported by the European Social Fund
through Mobilitas program, the European Regional Devel-
opment Fund through the Estonian Centre of Excellence in
Computer Science and Estonian Science Foundation grant
No7566 and European Social Fund through the Estonian
Doctoral School in Information and Communication Tech-
nology.

REFERENCES

[1] Amazon Inc. High Performance Computing Using Ama-
zon EC2, http://aws.amazon.com/hpc-applications/. Online.
URL last visited on 5th Nov 2010.

[2] T. F. Chan and T. P. Mathew. Domain decomposition
algorithms. Acta Numerica, 3(-1):61–143, 1994.

[3] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn.
Mpipp: an automatic profile-guided parallel process place-
ment toolset for smp clusters and multiclusters. In Pro-
ceedings of the 20th annual international conference on
Supercomputing, ICS ’06, pages 353–360, New York, NY,
USA, 2006. ACM.

[4] T. A. Davis. Algorithm 832: Umfpack v4.3—an
unsymmetric-pattern multifrontal method. ACM Trans.
Math. Softw., 30:196–199, June 2004.

[5] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20:359–392, December 1998.

[6] M. Armbrust et al. Above the clouds, a berkeley view of
cloud computing. Technical report, University of Califor-
nia, Feb 2009.

[7] Y. Saad. Iterative methods for sparse linear systems. PWS,
1st edition, 1996.

[8] R. Scheichl and E. Vainikko. Additive schwarz and
Aggregation-Based coarsening for elliptic problems with
highly variable coefficients. Bath Institute For Complex
Systems Preprint 9/06, 2006.

[9] R. Scheichl and E. Vainikko. Robust Aggregation-Based
coarsening for additive schwarz in the case of highly
variable coefficients. In P. Wesseling, E. ONate, and J. Pe-
riaux, editors, Proceddings of the European Conference
on Computational Fluid Dynamics, ECCOMAS CFD 2006,
TU Delft, 2006.

[10] S. N. Srirama, O. Batrashev, P. Jakovits, and E. Vainikko.
Scalability of parallel scientific applications on the cloud.
Scientific Programming Journal, Special Issue on Science-
driven Cloud Computing, 2011. DOI:10.3233/SPR-2011-
0320, (In print).

[11] S. N. Srirama, O. Batrashev, and E. Vainikko. SciCloud:
Scientific Computing on the Cloud. In The 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting(CCGrid 2010), page 579, 2010.

