
Natural language – no infinity and probably no recursion

Erkki Luuk (erkkil@gmail.com)
Institute of Computer Science, University of Tartu, Liivi 2

50409 Tartu, Estonia

Hendrik Luuk (hendrik.luuk@gmail.com)
Department of Physiology, University of Tartu, Ravila 19

Tartu 50411, Estonia

Abstract1

We question the need for recursion in human cognitive
processing by arguing that a generally simpler and less
resource demanding process – iteration – is sufficient to
account for human natural language and arithmetic
performance. We claim that the only motivation for recursion,
the infinity in natural language and arithmetic competence, is
equally approachable by iteration and recursion. Second, we
submit that the infinity in natural language and arithmetic
competence reduces to imagining infinite embedding or
concatenation, which is completely independent from the
ability to implement infinite computation, and thus,
independent from both recursion and iteration. Furthermore,
we show that natural language is a finite rather than infinite
set.

Keywords: recursion; iteration; language; brain; infinity;
embedding; arithmetic.

Recursion and embedding
An influential line of thought claims that a hallmark of
human cognitive processing is recursion (e.g. Fitch, Hauser,
& Chomsky, 2005; Hauser, Chomsky, & Fitch, 2002;
Premack, 2007). Hauser et al. (2002) drew a distinction
between the whole language faculty, including the aspects
shared with other species or faculties (the faculty of
language in the broad sense) and the unique aspects of the
language faculty (the faculty of language in the narrow
sense). They hypothesized that the unique aspects of the
language faculty comprise "only the core computational
mechanisms of recursion as they appear in narrow syntax
and the mappings to the Sensory-Motor and Conceptual-
Intentional interfaces" (Hauser et al., 2002, p. 1573). Lately,
this hypothesis has been vigorously challenged (e.g.
(Jackendoff & Pinker, 2005; Pinker & Jackendoff, 2005).
Interestingly, none of the challenges question the infinity in
natural language, and recursion is contested only in
Lieberman (2008) and Bickerton (2009) from a
neuroscientific and linguistic perspective, respectively.

1 An earlier version of this paper "The redundancy of recursion

and infinity for natural language" appeared in Cognitive
Processing (2011, 12 (1)). As compared to the earlier version,
some inaccuracies have been corrected, loosely relevant parts
omitted and new arguments added to the present paper.

Recursion
Defining recursion Rogers Jr. (1987, pp. 5-6) gives the
following description of a Gödelian recursive definition: "A
recursive definition for a function is, roughly speaking, a
definition wherein values of the function for given
arguments are directly related to values of the same function
for "simpler" arguments or to values of "simpler"
functions." For example, in the recursive function for
defining Fibonacci numbers (for integers n>1), Fib(n) is
directly related to Fib(n-1) and Fib(n-2): Fib(n) = Fib(n-1) +
Fib(n-2). For the present discussion, the most imporant
aspect of recursion lies in its ability to describe an infinity of
(input,output) pairs by a finitely definable set of operations
in an effectively computable manner (see Odifreddi, 1992,
pp. 34-36, for details).

Recursion differs from iteration (another form of
repetition) in two essential respects. First, definitions
employing iteration do not involve self-reference. Second,
without self-reference, every (input,output) pair needs to be
defined explicitly, rendering it impossible to define infinite
sets by finite means other than by a control flow loop.
Computationally, there is a clear difference between a
procedure that invokes another instance of itself (recursion)
and a procedure that repeats itself either mechanically or
with a control flow loop (iteration). Recursion and iteration
are the only computational solutions for handling repetition.

As a rule, implementations of recursive functions are
slower than those of iterative because recursive functions
must allocate memory for their multiple instances. In
Abelson et al. (1996), the difference between recursive and
iterative processes is captured as follows. Recursive
processes are characterized by a chain of deferred
operations and require that the interpreter keep track of the
operations to be performed later on. An iterative process is
one whose state can be summarized by a fixed number of
state variables, together with a fixed rule that describes how
the state variables should be updated as the process moves
from state to state. All this being said, recursive procedures
(or definitions) tend to be formally and notationally more
elegant than iterative ones. The difference between process
and procedure is explained below.

The influential paper by Hauser et al. (2002) was the first
to explicitly formulate the view that recursion is a
component of the language faculty (regrettably, no
definition of recursion was given in the article). After

1942

reviewing all statements about recursion in the paper the
following definition emerges (numbers in brackets refer to
the pages in Hauser et al. (2002)): recursion is a neurally
implemented (p. 1574) computational mechanism (p. 1573)
that yields a potentially infinite array of discrete expressions
(pp. 1570, 1571, 1574) from a finite set of elements (p.
1571). Crucially, a computational mechanism with finite
input and potentially infinite output, described here, does
not imply recursion, as it is possible to generate a
potentially infinite output from a finite set of elements
without recursive operation by implementing n→∞
operations iteratively. Hence, it is not clear whether the
mechanism described by Hauser et al. (2002) is recursive or
iterative. While it is plausible that the notion of recursion as
applied by Hauser et al. (2002) refers to the 'recursion' in the
Minimalist Program (Chomsky, 1995), the latter allows for
a range of interpretations. Tomalin (2011, p. 308) has,
usefully, distinguished between nine different
interpretations of 'recursion' in formal sciences, with
'inductive definition' as the most broad one (and thus the
safest for syntactic theory). Tomalin's (2011) theoretic
variants and computational equivalents of recursion (λ-
definability, Turing computability et al.) are more or less on
the same level of abstraction but recursion can also be
defined in five different levels (in the order of decreasing
abstractness):

Table 1. 'Recursion' in five different levels.

1. Inductive (or recursive) definition: A definition

with a base rule, specifying that certain "simple"
objects are in the class, and an inductive (recursive)
rule, stating that if certain objects are in the class,
then so are certain other objects formed or derived
from them (Minsky, 1972).

2. Recursive definition for a function: A definition
wherein values of the function for given arguments
are directly related to values of the same function
for "simpler" arguments or to values of "simpler"
functions (Rogers Jr., 1987).

3. Recursive function: A function that is defined
recursively (see 2).

4. Recursive procedure: A procedure that, when
executed, invokes another instance of itself
(Abelson, Sussman, & Sussman, 1996).

5. Recursive process: An execution of a recursive
procedure (see 4).

We suggest that, for cognitive and neural modelling, the
procedural level (4) is of central importance. For the
following discussion, it is crucial that the recursion we are
looking for is implemented in the brain (Hauser et al., p.
1574), i.e. it is not something that is posited at the level of
computational theory only (Marr's (1982) level 1 of his
three levels of information processing). However, the
situation is still very confusing, as it is possible to have
neurally implemented recursion of level 1 that is

implemented non-recursively (i.e. by iteration) at levels 4-5!
In the next section we will give an example of this. It is also
important to note that level 1 in Tab. 1 corresponds to
Marr's level 1 (computational theory) and levels 4 and 5 in
Tab. 1 correspond to Marr's level 2 (algorithm and
input/output representation) of information processing. The
following section examines whether and how any of the
levels in Tab. 1 can be connected to Marr's level 3
(hardware implementation) in the brain.

Recursion, iteration, and inductive definition All open-
ended sets (e.g. language expressions, N) can be defined
inductively, i.e. recursively in the broadest sense. For
example, one can have the following inductive definition of
'bear': (a) Ted is a bear; (b) All entities that share at least
98% of Ted's genome are bears. Observe that, although the
set of potential 'bears' is open-ended and inductively
defined, no recursion is computationally necessary to
determine its contents. An iterative process that compares
Ted's genome to that of potential 'bears' would do the job.
Importantly, the difference between iteration and recursion
pertains to levels 4-5 only. Thus, even if recursion were
used in levels 1-3, the involvement of a recursive process or
procedure would not be implied, as it can be implemented
with a purely iterative computational process (e.g. on a
Turing machine).

Below is a strip of iterative pseudocode (1) that defines
the infinite set of finite strings ...[X[X[X[XY]]]] that is also
defined by the recursive strip (2):

(1) Y → XY (iteration) :
s=Y //assign Y to s
while true: //infinite loop:
rw(Y,XY,s) //rewrite Y as XY in s

(2) Y → XY (recursion) :
s=Y //assign Y to s
rec(s) //declare function rec(s)
{ //start definition of rec(s)
rw(Y,XY,s) //rewrite Y as XY in s
rec(s) //call function rec(s)
} //end definition of rec(s)

As one may observe, (1) and (2) are computationally
equivalent – at the level of computational theory, both are
described by the rewrite rule Y → XY. Incidentally, this
also means that rewrite rules can be "recursive" only in the
sense of "recursive definition" (level 1 in Tab 1., which
corresponds to Marr's level 1).

From the viewpoint of effective calculability, general
recursion and Turing computability are equivalent (Kleene
1952, p. 300), and a universal Turing machine can
enumerate any recursively enumerable formal language (an
infinite set of finite strings) as can general recursion (Sipser,
1997). Turing machine is based on iteration, whereas
general recursion is based only on recursion. Over finite

1943

outputs, recursion and infinite iteration are computationally
equivalent (Turing-equivalent).

Crucially, as there is no neural model of recursion (of
whatever level), one is unable to identify it in the brain and,
accordingly, unable to verify its existence. On the other
hand, Lieberman (2008, p. 527) has recently suggested that
"neural circuits linking local operations in the cortex and the
basal ganglia confer reiterative capacities, expressed in
seemingly unrelated human traits such as speech, syntax,
adaptive actions to changing circumstances, dancing, and
music", thus obviating the need for a neurally implemented
recursion. Of course, the distinction between neurally
implemented recursive and iterative processes is rather
opaque for present-day methods, i.e. the possibility of a
neurally implemented recursion cannot be ruled out. We
argue for iteration only as a simpler and equipotent
computational alternative to recursion.

In sum, there would be no sense in (and no obvious way
of) implementing level 1 (in Tab. 1) in the brain separately
from levels 4 and 5. As for levels 2 and 3, it would be
outlandish to assume that the brain somehow (and
apparently redundantly) implements equations of the
processes it carries out. Thus, implementations of these
levels can be ruled out as well. We have also argued that
implementations of levels 4 and 5 would be impossible to
identify in the brain with present-day knowledge and
methods.

Recursion, induction and self-embedding: a confusion In
computer science, on the procedural level, recursion denotes
the syntactic property that a procedure definition refers to
the procedure itself (Abelson et al., 1996). In Chomsky's
(1956, 1971 [1957]) phrase structure grammar, recursion is
a property of rewrite rules (all that is on the left side of the
rewrite arrow repeats on the right side of the arrow, e.g. A
→ AB) (Chomsky, 1956, 1971 [1957]). Essentially, this
notion of recursion reduces to inductive definition. For
some other theorists, recursion is a structural property: a
situation where an instance of an item is embedded in
another instance of the same item (e.g. Heine & Kuteva,
2007; Jackendoff & Pinker, 2005). For clarity, let us call the
three recursion, induction and self-embedding, respectively.
Recursion and self-embedding are logically independent for
the following reasons. First, a self-embedded structure (an
NP within an NP, a box within a box etc.) does not have to
be recursively generated. Jackendoff and Pinker (2005)
submit a picture of a rectangular form within another
rectangular form as an example of 'recursion in visual
grouping'. Obviously, this has no bearing whatever on
recursion. It would be outlandish to assume that recursion is
necessary to put a box in a box, or for understanding that a
box is in a box. Yet, for conspicuous (but nonetheless
insufficient) reasons, this assumption is held with syntactic
categories like sentence and NP. The reasons are, of course,
the inductive rewrite rules of generative grammar (e.g. NP
→ A NP), and they are insufficient as the type of induction
can be generated iteratively as well (cf. (1)). Furthermore,

iteration is defined as the repeated application of a
transformation (Weisstein, 2003), which is something that
Chomsky's (1956, p. 113) description of his early
transformational version of generative grammar explicitly
incoporates: "/---/ phrase structure is limited to a kernel of
simple sentences from which all other sentences are
constructed by repeated transformations". The confusion
with recursion can be traced back to Chomsky (1971 [1957],
p. 24; 1956, p. 115), who refers to loops as 'recursive
devices'. The source that the formalism is taken from refers
to the loops as 'circuits' ("a closed series of lines in the
graph with all arrows on the lines pointing in the same
orientation" – Shannon & Weaver, 1964 [1949], p. 47). The
circuits pertain to a graphic representation of finite-state
Markov chains, and to call them 'recursive' is jumping to the
conclusion, as Markov chains do not prescribe an
algorithmic realization for the circuits – Markov chains are
confined to Marr's level 1 just like inductive definitions. In
Chomsky (1959, p. 143), 'recursive function' is used as a
synonym for 'Turing computable function'. Again, this is
confusing, as computational equivalence does not imply
algorithmic equivalence (which is absent in this case). In
sum, the Chomskian notion of "recursion" is a case of
confusing Marr's levels of information processing (1 and 2).

Fitch (2010) claims that iterative functions are inadequate
for generating center- and/or self-embedding. As an
example of the superiority of recursion over iteration, he
presents a recursive center-embedding program generating
AnBn. Below is an iterative pseudocode that does the same:

C = "" //evaluate C to the empty string ""
for i = 0 to n do: //loop n times
C = concatenate("A",C,"B") //concatenate "A", C and

//"B", and assign the result to C

The program embeds C between "A" and "B" n times, with i
indicating the depth of embedding in each cycle of the loop.
It is true that "recursive functions take their own past output
as their next input" (Fitch 2010, p. 75) but this feature is not
unique to recursion – in our above examples, concatenate()
coupled with iteration does the same.

As for confusing recursion with self-embedding
(characteristic to most linguists but not to Chomsky), the
two are already in principle very different. Recursion
pertains to a process or procedure, self-embedding pertains
to a structure. A recursive process or procedure is something
that, more often than not, cannot be directly observed. Self-
embedding, on the other hand, is usually salient and a
subcase of a cognitive phenomenon we term 'hierarchical
interpretation'. A defining difference between hierarchical
and non-hierarchical interpretation is that only the former
allows the same unit to be interpreted simultaneously as a
type (i.e. category) and as a token (i.e. instance), hence
implying additional interpretative correlates not present in
the input. The type/token distinction is a precondition for
self-embedding, where tokens are embedded under the same
type (e.g. NP or clause). An example of hierarchical

1944

interpretation is natural language. Linguistic interpretation
is compounding, merging smaller units that are per se
meaningful in the code (Chomsky, 1995; Hauser et al.,
2002). As far as we know, linguistic code is unique among
natural communication systems in stipulating semantic
compositionality, whereby meaningful units are combined
into diversely meaningful higher-order units (e.g., words
into phrases, sentences and compound words, phrases into
sentences and higher-order phrases, etc.).

As an illustration that self-embedding is possible in
hierarchical interpretation only, consider the following
example: the inductive center-embedding rule AB→AABB
generates the strings AABB, AAABBB etc. It is impossible
to tell by looking at these strings whether their generation
procedure (or process) was recursion, iteration or neither
(cf. Fitch, 2010, and the example above). Furthermore, it is
impossible to tell whether the strings exhibit self-
embedding. Without any a priori assumptions about the
generative mechanism (e.g. stipulation of a certain phrase
structure grammar), it is undecidable whether a string
…AABB... is embedded, concatenated, or elementary
(assuming that different generative mechanisms may allow
for different elementary strings).

Embedding
Embedding is a situation where an item is embedded in any
item (with infinity not implied). Embedding is logically
independent from recursion (i.e. there can be one without
the other). First, embedding does not have to be generated
by a recursive rule. It can be created iteratively or by any
other function with relevant output. Second, a recursive
process or procedure does not have to yield (relevant)
output. Assuming that we cannot witness a recursive
process or procedure in situ (e.g. in the brain), two
conditions must be met for attesting it: (1) it must generate
output, and (2) there must be a one-to-one correspondence
between the values of the recursive procedure and its output.
Logically, self-embedding is a situation where an instance
of an item is embedded in another instance of the same item
(with infinity not implied); thus, self-embedding is a proper
subset of embedding. The fact that embedding is
hierarchical has frequently raised speculations about a
putative underlying recursive process or procedure (or more
unfortunately, resulted in confusing embedding with
recursion). As explained above, a hierarchical or embedded
structure is insufficient to decide on its generative
mechanism.

Infinity in natural language and arithmetic
competence

The central claim of Hauser et al. (2002) and Chomsky
(2010) is that a neurally implemented recursive process
introduces infinity to natural language and arithmetic. An
example of (potential) infinity in natural language and
arithmetic competence is the knowledge that one can add 1
to n, append a natural language expression to text or embed
clauses indefinitely. Of course, we are incapable of

performing infinitely in any of these tasks (hence the
famous competence/performance distinction – Chomsky,
1995).

Chomsky's derivation of neurally implemented recursion
for operating on N is as follows. A) Any formal definition
of the set of natural numbers N incorporates recursion by
means of the successor function, where 1 = S(0); 2 = S(S(0))
etc. B) We have knowledge of the properties of N (i.e.,
given enough time and space, we can compute the sum of
two numbers, and distinguish the right from the wrong
answer). From premises A and B he conjectures that
neurally implemented recursion is required for operating on
N (e.g. for adding 4555 to 7884). Thus, we have the
following: (a) infinity in natural language and arithmetic
competence (to motivate neurally implemented recursive
process in the first place), (b) neurally implemented
recursion is required to operate on N, and (c) N is an
offshoot of the language faculty. From these premises, it
follows that (d) neurally implemented recursion underlies
both N and natural language.

On the face of it, the above argument for neurally
implemented recursion is consistent and logically sound.
However, premises (a)-(b) are false, and in section
"Arithmetic performance" we argue in more detail that
neurally implemented recursion is not necessary to operate
on N. As explained below, infinity in natural language and
arithmetic competence reduces to imagining infinite
embedding or concatenation, and thus does not qualify as an
output of a recursive process or procedure (as there is no
reason to assume that conceptualizing infinity requires
recursion). The concept of neurally implemented recursion
is largely motivated by the 'discrete infinity' property of
natural language (Chomsky, 1995; Hauser et al., 2002). In
fact, the whole distinction between the broad and the narrow
language faculties, as originally proposed by Hauser et al.
(2002), can be derived from this property. Importantly, the
infinity of natural language has been always taken as
axiomatic and never proven. The last instance that Chomsky
appeals to in this question is Wilhelm von Humboldt (1999
[1836]) who simply states the infinity of natural language as
a fact.

One might start from the observation that the maximum
possible natural language "corpus" – everything that has
ever been and will be processed – is not infinite but a finite,
just physically uncountable set. We propose that this is
precisely the nature of language as it should be accounted
for. In fact, the very spacetime that can support physical
computational systems is finite (Krauss & Starkman, 2000).
This substantial correction (physically uncountable finity
instead of infinity) is suggested for the sake of unambiguity
and exactitude. Physically uncountable sets can be finite or
infinite. Set-theoretically, potential and actual infinity
(Moore, 1990) are proper subsets of physical uncountability.
The evidence that Hauser et al. (2002, p. 1571) submit for
discrete infinity covers also physically uncountable finity:
"There is no longest sentence (any candidate sentence can
be trumped by /---/ embedding it in "Mary thinks that ...)". It

1945

would be a contradiction to assume that the size of a finite,
physically uncountable array can be compared to the size of
all others, or that such array can be embedded (the mere fact
that we can imagine embedding such an array does not
account for its capacity of being embedded). "There is no
non-arbitrary upper bound to sentence length." This is as
true for an infinite as it is for a finite, physically
uncountable array.

The finity of natural language can be also derived
logically, without invoking physically instantiated
computation:

1. Natural language has a limit which is either infinite or
finite.
2. Natural language computation takes time.
3. From 1 and 2 it follows that, for any given moment in
time, there is an infinite number of finite limits that are
never reached.
4. Assuming that the cardinalities of natural language and
N are equal2, there is only one infinite limit that is never
reached.
5. For any finite limit that is never reached, the
probability of natural language having it is > 0.
6. From 3-5 it follows that the probability of natural
language having the infinite limit is 0.

Arithmetic performance
If recursion were involved in conceptualizing numbers, our
brain would execute something like a successor function
…S(S(S(S(0))))… for natural numbers and maybe also
n*n*n*n… for base-n integer exponents (since we normally
use base-10 numeral system, n would normally equal 10).
While n*n*n*n… can be coded and implemented
recursively as well as iteratively, it is unlikely that anything
approximating …S(S(S(S(0))))… or n*n*n*n… would be
run in our brains for conceptualizing numbers and
performing arithmetic on them. If it were, our arithmetic
performance should be significantly better than it tends to
be. If, on the other hand, our inferior arithmetic skills are
down to general performance limitations and/or penalties
for (other) arithmetic operations, there would be no apparent
use for running these procedures for our mathematical
capacity. The only remaining justification for
…S(S(S(S(0))))… and n*n*n*n… would be recursion in the
language faculty. However, for this concession to make
sense, there would first have to be some evidence for
recursion in the language faculty. As we have argued at
length above, at present we have merely conjectures built on
invalid premises (see section "Infinity…").

It is easy to demonstrate that conceptualizing a principle
(recursion) for producing a pattern of output (N or self-

2 Since we are interested in an upper bound of

computation/processing time, ℵ0 is sufficient. It is difficult to
develop the argument here but the very fact that time intervals
seem to exist suggests that time is not infinitely divisible (ℵ1 and
beyond). Other indications of this are e.g. Achilles and the tortoise
paradox and Planck time.

embedding) does not entail (1) that the principle is
necessary for producing the pattern (as N or self-embedding
can be also produced iteratively), and (2) that the principle
itself must be neurally implemented for us to be able to
conceptualize it. For example, we can conceive that all
natural numbers are derived from the number 20098 by +/-1
operations, i.e. each time we conceptualize a natural number
x that is less than 20098, we subtract 1 from 20098 until we
get x and each time we conceptualize a natural number y
that is greater than 20098, we add 1 from 20098 until we get
y. We can conceive this principle. Does it follow that the
"20098 +/-1" principle must be neurally implemented for us
to be able to conceive it in the first place? Surely not.
Observe that the situation with the "20098 +/-1" principle is
similar to the recursive one: we can conceptualize the
principles but both are at odds with human arithmetic
performance. To circumvent the latter problem in the
neurally implemented recursion hypothesis, the
competence/performance distinction has been called into
effect. However, a competence/performance distinction
could be also invoked for explaining why our performance
is at odds with the "20098 +/-1" principle. Besides, the
distinction raises a non-parsimonious psychological duality
as to the conceptualization of relevant syntactic and
arithmetic properties – we can conceptualize that the
properties are given to us by a recursive principle, but we do
not seem to follow the principle neither in linguistic nor
arithmetic processing/performance. Furthermore, it seems
inconsistent to explain the apparent discontinuity between
competence and performance in arithmetic and language by
e.g. limitations in primary memory – what potential
advantage could a neurally implemented recursive principle
bestow if its effects are subject to so severe constraints?

Conclusion
We conclude with the following points. First, both recursion
and iteration allow for finite definitions of infinite sets.
Moreover, iterative solutions are frequently less resource
demanding than recursive ones (cf. section "Defining
recursion"). Second, three logically independent notions of
"recursion" are being conflated and confused in linguistics
(e.g. Chomsky, 1956, 1971 [1957]; Heine & Kuteva, 2007;
Jackendoff & Pinker, 2005): (A) recursive algorithm (Marr's
level 2), (B) recursive (or better, inductive) definition
(Marr's level 1), and (C) an instance of an item embedded in
another instance of the same item. We suggest a
terminological way out of the confusion, by reserving
'recursion' for (A) for which there are no alternative terms,
and designating (B) and (C) 'induction' and 'self-
embedding', respectively. Third, the technical preciseness of
the notion of recursion makes it next to impossible to find
evidence for it in the brain with the present-day methods,
and there is no reason to assume neurally implemented
recursion by default (see below). Fourth, contrary to
Chomsky (Chomsky, 1995; Hauser et al., 2002) and many
others, we argue that a property of natural language is not
discrete infinity but physically uncountable finity. Fifth, we

1946

reject the received opinion, articulated by Chomsky et al.
(Chomsky, 2010; Fitch et al., 2005; Hauser et al., 2002),
that neurally implemented recursion is necessary to explain
natural language and arithmetic competence and
performance. The only motivation for neurally implemented
recursion is infinity in natural language and arithmetic
competence (e.g. the knowledge that one can add 1 to n,
append a natural language expression to text or embed
clauses indefinitely). We claim that infinity in natural
language and arithmetic competence reduces to imagining
infinite embedding or concatenation, which is completely
independent from an algorithmic capacity for infinite
computation, and hence, completely independent from
neurally implemented recursion or iteration. In sum, there is
no infinity in natural language and arithmetic processing,
but even if there were, iteration would be sufficient for
generating it.

Acknowledgments
We thank Noam Chomsky and Margus Niitsoo for
extremely helpful, thorough and critical discussions, and
Märt Muts, Lameen Souag, Lutz Marten, Tania Kuteva,
Michael Corballis, Panu Raatikainen, Tim Gentner,
Geoffrey Pullum and the anonymous reviewers for their
comments and suggestions. All remaining mistakes are our
own. Erkki Luuk was supported by the target-financed
theme No. 0180078s08, the National Programme for
Estonian Language Technology project "Semantic analysis
of simple sentences 2", the Alexander von Humboldt
Foundation, and the European Regional Development Fund
through the Estonian Center of Excellence in Computer
Science, EXCS.

References
Abelson, H., Sussman, G. J., & Sussman, J. (1996).

Structure and Interpretation of Computer Programs (2nd
ed.). Cambridge, MA: MIT Press.

Bickerton, D. (2009). Recursion: core of complexity or
artifact of analysis? In T. Givón, & M. Shibatani (Eds.),
Syntactic Complexity: Diachrony, Acquisition, Neuro-
cognition, Evolution. Amsterdam: John Benjamins.

Chomsky, N. (1956). Three models for the description of
language. IRE Transactions on Information Theory, 2,
113-124.

Chomsky, N. (1959). On certain formal properties of
grammars. Information and Control, 2, 137-167.

Chomsky, N. (1971 [1957]). Syntactic Structures. The
Hague: Mouton.

Chomsky, N. (1995). The Minimalist Program. Cambridge,
MA: MIT Press.

Chomsky, N. (2010). Some simple evo-devo theses: how
true might they be for language? In R. K. Larson, H.
Yamakido, & V. Deprez (Eds.), Evolution of Human
Language: Biolinguistic Perspectives. Cambridge:
Cambridge University Press.

Fitch, W. T. (2010). Three meanings of "recursion": key
distinctions for biolinguistics. In R. K. Larson, V.

Deprez, & H. Yamakido (Eds.), The Evolution of Human
Language: Biolinguistic Perspectives. Cambridge:
Cambridge University Press.

Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The
evolution of the language faculty: clarifications and
implications. Cognition, 97(2), 179-210; Discussion 211-
125.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The
faculty of language: what is it, who has it, and how did it
evolve? Science, 298(5598), 1569-1579.

Heine, B., & Kuteva, T. (2007). The genesis of grammar: a
reconstruction. New York: Oxford University Press.

Jackendoff, R., & Pinker, S. (2005). The nature of the
language faculty and its implications for evolution of
language (Reply to Fitch, Hauser, and Chomsky).
Cognition, 97(2), 211-225.

Krauss, L. M., & Starkman, G. D. (2000). Life, the universe,
and nothing: Life and death in an ever-expanding
universe. The Astrophysical Journal, 531, 22-30.

Lieberman, P. (2008). Cortico-striatal-cortical neural
circuits, reiteration, and the "narrow language faculty".
Behavioral and Brain Sciences, 31, 527-528.

Marr, D. (1982). Vision: A Computational Investigation into
the Human Representation and Processing of Visual
Information. San Fransisco: W. H. Freeman and
Company.

Minsky, M. (1972). Computation: Finite and Infinite
Machines. London: Prentice-Hall International.

Moore, A. W. (1990). The Infinite. London: Routledge.
Odifreddi, P. (1992). Classical Recursion Theory: The

Theory of Functions and Sets of Natural Numbers (Vol.
125). Amsterdam: Elsevier.

Pinker, S., & Jackendoff, R. (2005). The faculty of
language: what's special about it? Cognition, 95(2), 201-
236.

Premack, D. (2007). Human and animal cognition:
Continuity and discontinuity. Proceedings of the
National Academy of Sciences of the United States of
America, 104(35), 13861–13867.

Rogers Jr., H. (1987). The Theory of Recursive Functions
and Effective Computability. Cambridge, MA: MIT
Press.

Shannon, C. E., & Weaver, W. (1964 [1949]). The
Mathematical Theory of Communication. Urbana: The
University of Illinois Press.

Sipser, M. (1997). Introduction to the Theory of
Computation. Boston, MA: PWS Publishing Company.

Tomalin, M. (2011). Syntactic structures and recursive
devices: a legacy of imprecision. Journal of Logic,
Language and Information, 20(3), 297-315.

Weisstein, E. W. (2003). CRC Concise Encyclopedia of
Mathematics (2nd ed.). Boca Raton: Chapman &
Hall/CRC.

von Humboldt, W. (1999 [1836]). The diversity of human
language-structure and its influence on the mental
development of mankind, Wilhelm von Humboldt: On
Language. Cambridge: Cambridge University Press.

1947

