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Abstract
Di Lollo et al. (2000) proposed the Computational Model of Object Substitution (CMOS) to explain their experimental results with sparse visual maskers. Supposedly, this model is based on reentrant hypotheses-testing in the visual system and the modeled experiments are believed to demonstrate these reentrant processes in human vision. In this study, I analyze the main assumptions of this model. I argue that CMOS is a version of the attentional gating model and that its relationship with reentrant processing is rather illusory. The fit of this model to the data indicates that reentrant hypotheses-testing is actually not necessary for the explanation of object substitution masking (OSM). Further, the original CMOS cannot predict some important aspects of the experimental data. I test two new models incorporating an unselective processing (divided attention) stage, which are more consistent with data from OSM experiments. My modeling shows that the apparent complexity of OSM can be reduced to a few simple and well-known mechanisms of perception and memory.
Keywords: visual masking, object substitution, attention, attentional gating, modeling.  

Object substitution masking (OSM) is an interesting phenomenon of visual perception where a briefly presented but clearly visible object can be turned invisible by presenting just a few dots at nearby locations. The phenomenon has attracted much attention not only because of an impressive demonstration of visual masking but also because of its theoretical interpretation. It has been proposed that OSM reveals a mechanism of interaction of top-down hypotheses and bottom-up stimulus signals in the visual system. The present study suggests some revisions to this interpretation.

Backward Masking

Object substitution masking is a variant of backward masking. Visual backward masking is the reduction of visibility of a briefly presented target object when it is followed by another (masking) object (e.g., Breitmeyer, 1984; Breitmeyer & Ögmen, 2000). Masking has been used in many psychological experiments as a means to limit the information processing of visual stimuli. However, it is also interesting by itself, and its regularities may reveal something about the mechanisms of visual processing. Typically, masking stimuli are patches of visual noise, patterns composed of jumbled features of potential target objects, or contours adjacent to the target contours. The latter case is referred to as metacontrast masking. There are two classical mechanisms that are used to explain visual masking phenomena: integration of target and masker stimuli into a single compound percept, and interruption of target processing by a masker that follows shortly after it (e.g., Kahneman, 1968; Turvey, 1973).

Object Substitution Masking

Object substitution masking was originally reported by Enns and Di Lollo (1997). These authors found that a visual target can be strongly masked by just four dots presented after the target. Spatially, the dots were located around the target, at some distance from it. A necessary precondition of this type of masking was unfocused attention, which was guaranteed by the presentation of distracting objects and position uncertainty. The authors called the effect ‘substitution masking,’ because the percept of the four masking dots seemed to substitute the percept of the target. 
Di Lollo, Enns, and Rensink (2000) demonstrated that a similar type of masking can be observed when using common-onset maskers. In those experiments, the masking dots were turned on simultaneously with the target. If they were turned off simultaneously as well, there was no or very little masking. However, when the masking dots remained visible for some time after the target termination, strong masking occurred. As in Enns and Di Lollo (1997), the effect was dependent on the presence (and number) of distracting objects.

Reentrant Processing Idea and Computational Model

Di Lollo et al. (2000) regarded this phenomenon as a challenge to traditional theories of visual masking. There are no overlapping or adjacent contours that are considered important for pattern or metacontrast masking and no appearance of new masking objects that is used to explain interruption masking. The dependence on attention suggests that this type of masking cannot be explained by simple low-level interactions. 
Di Lollo et al. (2000) proposed a brave new idea that substitution masking reflects a reentrant hypotheses-testing process in vision. According to this view, some higher-level mechanism perpetually generates hypotheses about the objects that are presented at the lowest picture-like input level. These hypotheses are fed back to the lower level for a comparison with the input. Only after a certain number of reentrant cycles, the input pattern is consciously perceived and can be reported. The masking occurs when an initial display (target + masker) is replaced by the mask alone before the required processing iterations have taken place. The idea appears to be in accordance with several others that have supposed some kind of top-down feedback that is necessary in visual processing (Mumford, 1992; McClelland & Rumelhart, 1981). In addition, it suggests a purpose for the abundance of top-down connections found in neuroanatomical studies (e.g., Felleman & Van Essen, 1991).
Di Lollo et al. (2000) presented a quantitative model (CMOS - Computational Model of Object Substitution) that should simulate this reentrant hypotheses-testing process. They compared the substitution masking data with the predictions generated by their model and found that the fit was good. The successful modeling added a lot of credibility to their claim that in order to explain substitution masking, a kind of reentrant hypotheses-testing mechanism is necessary.

Impact and Criticisms

Substitution masking has raised much interest and inspired a lot of research. Researchers have studied its spatial extent (Jiang & Chun, 2001a, b), the processing level where substitution masking might occur (Lleras & Moore, 2003; Moore & Lleras, 2005; Chen & Treisman, 2009), the effects of different ways of cueing attention (Neill, Hutchison & Graves, 2002; Tata & Giaschi, 2004; Luiga & Bachmann, 2007), and many other aspects of OSM.  

Several authors, however, have pointed out that arguments presented by Di Lollo et al. (2000) for the reentrant processing idea are not convincing. Francis and Hermens (2002) showed that typical substitution masking data can be generated by several traditional models of masking without any reentrant loops. However, the strength of these results was diminished by a problematic modeling of the role of attention (Di Lollo et al, 2002). More recently, Bridgeman (2006) presented a model for substitution masking, based on lateral inhibition and a more realistic mechanism of attention. Similarly, Neill et al. (2002) and Macknik and Martinez-Conde (2007) have argued for feed-forward or lateral inhibition accounts of substitution masking.
Still, it is widely believed that substitution masking is good evidence for reentrant (or feedback) processes in vision. Several researchers from different fields (visual perception, neurophysiology, consciousness studies) have used it as an indicator of reentrant processing in their studies (e.g., Weidner, Shah & Fink, 2006; Steelman-Allen, McCarley & Mounts, 2009; Bouvier & Treisman, 2010; Koivisto & Silvanto, 2011).
Contents of this Study

The goal of this study was to better understand what is important in order to explain OSM. I tried to separate necessary mechanisms from unnecessary propositions. I thought that Di Lollo et al’s (2000) CMOS is a good starting point, because this model is able to simulate the main regularities of experimental data. I evaluated the assumptions of the Di Lollo et al. (2000) model and its supposed relationship with reentrant processing. I identified several problems with this model and its usual interpretation, suggested its reinterpretation, and tested two new models for substitution masking data. 

There are three relatively independent parts in my study.

· In the first part, I evaluate the main assumptions of CMOS and suggest a reinterpretation of this model. 
· In the second part, I analyze the way of modeling of attention in CMOS and propose a new model incorporating a stage with divided attention. 

· In the third part, I consider the problem of modeling OSM experiments with brief maskers and variable SOA. I present a simple model with divided attention and limited short-term memory for that case.  

1. CMOS as an Attentional Gating Model
Although several researchers have suggested that substitution masking data might be accounted for by feed-forward or lateral inhibition models, nobody seems to have doubted that CMOS is a model that incorporates reentrant processing. My examination reveals that this is not necessarily so. I argue that CMOS is equivalent to an attentional gating model and there is no good reason to relate it with reentrant hypotheses-testing.
Attentional Gating
Attentional gating is a simple theory that is applicable to many topics of perception (Reeves & Sperling, 1986; Sperling & Weichselgartner, 1995; Smith & Ratcliff, 2009). It assumes that in order to perceive something, we need a signal from the stimulus and we must pay attention to it. In general, the signal from stimulus and the amount of attention devoted to it follow some smooth waveforms (Figure 1). It is supposed that the instantaneous flow of information from the stimulus to the observer is given by the product of these two functions (sensory response and attention). Observer’s performance is determined by the cumulative information
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where g(t) is attention gating function, and b(t) is stimulus response (Sperling & Weichselgartner, 1995).

It is difficult to estimate the exact waveforms g(t) and b(t) from experimental data. Sometimes, greatly simplified models are used that still capture important regularities of the reality. For example, Sperling and Weichselgartner (1995) modeled the dynamics of attention by gamma function, but used simply physical stimulus waveform instead of its sensory response time course. Attentional gating idea has been used in many studies to explain the results of precueing, backward masking, and attention switching experiments (Sperling & Weichselgartner, 1995; Smith & Wolfgang, 2004; Smith & Ratcliff, 2009).
Mathematics of CMOS

This model consists of three layers: input layer (I), working space (W), and pattern layer (P). There are two main equations that describe the transformation of signals from the target, masker, and noise across the three layers of CMOS:
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where Pj(k) is a vector representing signal j at iteration k at the highest (pattern) level, Wj(k) represents signal j at the intermediate (working space) level, Ij(k) represents signal j at the input level, and λ is a weighting constant. Three signals are used: the target signal (j=1), the mask signal (j=2), and internal noise (j=3).

Further, it is assumed that attention arrives at the target location with a delay that is proportional to the number of objects in a display (set size) 
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where S is a search rate and n is set size. 
Probability of correct recognition is determined by the target signal energy relative to the total signal energy at the moment of arrival of attention
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where K is a constant.
According to Di Lollo et al. (2000), the equations (2) and (3) implement the process of reentrant hypotheses-testing. 
A New Look at CMOS

The essence of this model becomes clearer after a small transformation. It is possible to substitute Wj(k-1) in equation (2) with equation (3). This simple operation transforms the main part of the model into a single equation 
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This equation shows that Pj(k) is just a linear combination of its own value at an earlier moment (k-2) and the input signal (at k-1). Thus, this part of the model plays a role of an integrating circuit (low-pass filter) with its output following the changes of the input signals with some inertia. (Normalization by 
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plays an important role too but does not compromise the function of temporal integration). Integrating circuits have been used in many models of visual perception (e.g., Busey & Loftus, 1994; Averbach & Sperling, 1961; Francis, 2000) based on the common assumption that the growth and decline of sensory responses take some time and the rapid onsets and offsets of stimuli are reproduced more gradually at a sensory level. This is a usual property of almost any realistic neural network and cannot be related to a particular (feedback or feed-forward) model. In CMOS, temporal integration is necessary in order to account for the masking of a briefly presented target by a masker that remains visible after the target termination. Because of temporal integration, the signal from a long masker becomes much stronger than the signal from a brief target at the pattern (P) layer of CMOS. Masking itself (suppression of the target signal) was realized through the normalization (e.g., Carandini & Heeger, 2012). When the signal of the masker is increased, the total signal energy increases too. Therefore, normalization (division by the total signal energy) leads to a decrease of the target signal.

Further, in CMOS, the integrated target signal at the pattern level at the moment tc is selected to determine performance. This is equivalent to the weighting the target signal waveform with a very simple function of attention – unit impulse at the moment tc. (The main temporal relationships are illustrated in Figure 2). Therefore, CMOS as implemented by Di Lollo et al. (2000) is a version of the attentional gating model (Sperling & Weichselgartner, 1995), where performance is determined by the combined dynamics of sensory responses and attentional gating function. This type of model does not assume anything like reentrant hypotheses-testing, and its ability to predict substitution masking data cannot provide evidence for the relationship between substitution masking and reentrant processing. Note that this model does not suppose that visual pattern recognition is necessarily feed-forward. Although a feed-forward neural network might be the simplest mechanism to accomplish the required temporal integration, different feedback mechanisms are not excluded. The exact nature of pattern recognition mechanism is not relevant for this model and for the explanation of OSM.

Transformation of CMOS: From Verbal Description to Simulation

Di Lollo et al. started their modeling section with a description of the supposed mechanism of reentrant hypotheses testing in vision. They explain how the patterns at the levels of input and working space are compared and how the iterative search for the best fit between top-down predictions and input image is accomplished. In the computational implementation, however, they make several gross simplifications. It appears that, unnoticeably, the preliminary assumptions about reentrant processes were simplified out. Thus, in the final implementation, only temporal integration, normalization, and attentional delay were left. Still, the model did its job and fit the data reasonably well. What can we conclude from this? Di Lollo et al. believed (and convinced others) that the simplified model is still an implementation of their original reentrant hypotheses-testing idea and its fit to the data supports this idea. I would suggest dropping this idea that turned out to be unnecessary for the modeling of the data and to formulate theory of OSM without the assumption of reentrant hypotheses-testing. 

Di Lollo et al. were right that traditional masking models, without some modification, cannot explain the regularities of common-onset masking data. They also found and implemented in CMOS the smart idea, that in order to explain OSM, we need to assume a temporal integration of the signals from target and masker and to weight the results by a delayed waveform of attention. However, in order to reach this relatively simple model, it was necessary to start with the complex idea of reentrant hypotheses-testing.
2. A Model with Divided Attention for Common-onset Experiments

Problems with Attention in CMOS

Although the fit of CMOS to the Di Lollo et al. (2000) data from experiments with the common-onset masker is fairly good, it is still far from perfect (R2=0.93 for their prototypical Experiment 3). More importantly, there are quite clear systematic discrepancies between the model and the data. 
An essential property of CMOS is a particular interaction of the delay of attentional focusing and mask duration. This model predicts fast drop in performance, while the mask duration is less than the time of the focusing of attention, and very little impairment afterwards. As the time of deployment of attention is supposedly proportional to the set size, the breakpoints of the masking curves should be shifted along the x-axis, in proportion to the set size. This property of CMOS predictions is shown in Figure 3. 
Experimental results exhibit very little evidence for this kind of interaction (e.g., Figures 4, 5). Rather, the empirical masking curves for different set sizes seem to have similar

dynamics and look like vertically shifted copies of each other when d’ is used as a dependent measure. This observation suggests that a model with independent effects of mask duration and set size might account for the data. Furthermore, Di Lollo et al.’s (2000) justification for the delay of the focusing of attention proportional to the set size is not very convincing. Note that attention was directed by the four-dot masker, which is a unique pattern that should pop out among other objects in a display. Therefore, the supposed analogy with either serial or limited capacity parallel search may be not valid. 

Rather, an assumption of efficient parallel search with very small or non-existent effect of set size might be more reasonable (e.g. Wolfe, 1998).

A New Model with Divided Attention Stage

In order to test the applicability of an alternative mechanism of attention, I built a simple model of OSM. Its main innovation is the inclusion of divided attention (parallel processing) stage. It is reasonable to assume that before focusing at the target location, attention should be distributed more or less uniformly across the whole display. Similar ideas of combining nonselective and selective processing have helped to explain several puzzling results in studies of vision and attention (e.g., Gegenfurtner & Sperling, 1993; Hoffman, 1980; Kröse & Julesz, 1989). 

I did not build a new model of masking mechanism. I suppose that the mechanism used in CMOS can well simulate the drop of performance with increasing duration of masker. Thus, I follow the assumption of CMOS that the target and mask produce some kind of sensory response (information persistence). With a trailing mask, its response continues to grow after the offset of the target and suppresses (or adds noise to) decaying response of the target. After some time, when attention is focused at the target location, the target information may be not accessible anymore.    

However, regardless of the duration of masker, some amount of target information can be acquired during the initial divided attention stage. With attention divided between all objects in a display, and with n objects displayed, 1/n of a total processing capacity is devoted to the target. The simple and well-known sample-size model (e.g., Lindsay, Taylor & Forbes, 1968; Shaw, 1984; Palmer, 1990) assumes that percepts are formed through the internal sampling of noisy input signals, the number of samples being proportional to the processing resources. Because sampling error is inversely proportional to the square root of the number of samples, the model predicts signal-to-noise ratio (SNR) inversely proportional to the square root of the set size.     

Thus, there are two attentional episodes (Sperling & Weichselgartner, 1995) in each trial that provide different amounts of target information, dependent on the duration of the masker and number of displayed objects. In the present model, I suppose that the observer combines information from both (unselective and selective) episodes optimally.

I assume that the SNR of the unselective (divided attention) stage d’u is independent of mask duration and depends on set size (n) according to the sample-size model (e.g., Lindsay, Taylor & Forbes, 1968)
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The SNR of the selective stage d’s is independent of the set size and decreases with increasing the duration of masker. I will simply estimate this curve from the data.

Total SNR (assuming optimal combination of information) is 
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(e.g., Macmillan & Creelman, 1991). This equation predicts that the effects of set size and mask duration should be additive in terms of d’ squared. When analyzed in terms of d’ or proportion correct, specific interactions appear.

From the value of d’, it is possible to find the respective proportion correct pc for a given number of response alternatives m (assuming Gaussian noise and an unbiased observer) (e.g., Hacker & Ratcliff, 1979)
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where ((x) is the probability density and ((x) is the cumulative distribution function of the standard normal distribution. 

Results of the Modeling 

I implemented this model in MS Excel and applied it to the Di Lollo et al. (2000) results of their Experiment 3 (Figure 4) and to Experiment 1 from Luiga and Bachmann (2008) (Figure 5). These experiments were chosen as prototypical OSM experiments with four-dot masker, common onset of the target and masker, and set-size varied over a broad range. Maximum likelihood fits were found using the Excel Solver add-in. The fit is very good (R2=0.99 for both observers from Di Lollo et al. (2000), and R2=0.98 for the average data of 11 observers (pooled across polarity conditions) from Luiga and Bachmann (2008)).
My model used 6 free parameters (5 values of d’s plus d’u(1)) to reproduce the data-sets with 25 degrees of freedom from Di Lollo et al. (2000). The number of free parameters used by Di Lollo et al. in CMOS was less, although the exact number is ambiguous (there were two parameters estimated directly from the data and three others selected in some informal way). However, the larger number of parameters cannot substantially explain the better fit of my model. I adjusted R2 for degrees of freedom (assuming two free parameters for CMOS) and found that this adjustment has very little effect on the results. Similarly, Akaike information criterion, which takes into account the difference in the number of parameters, strongly favors my new model. Also, it is important to note that d’s values follow very regular monotonically dropping curves although the only constraint used in the model was non-negativity of these parameters. The estimated d’ of selective processing drops from 0 to about 150 ms of mask duration, consistent with a fast suppression of the target trace by trailing masks. With longer maskers, performance is determined predominantly by the initial stage of divided attention that accounts nicely for the set size effects.     

The present modeling shows that the inclusion of parallel processing stage in substitution masking models can resolve some theoretical inconsistencies and results in a better fit as compared with the original CMOS. It also shows that the apparently complex regularities of OSM can be reduced to the two simple mechanisms: initial parallel processing with resources distributed across all the objects in a display, and backward masking that limits selective processing of the target. Like the implementation of CMOS, this model does not require the assumption of reentrant hypotheses-testing.
3. A Memory Model for Variable SOA Experiments
Problems with Interpretation of Enns (2004) Results 
Substitution masking is not necessarily limited to using common-onset maskers. In fact, Enns and Di Lollo (1997) used brief maskers and varied SOA. Enns (2004) combined this experimental paradigm with variations in set size. Besides the four-dot masker, he used other maskers and a single dot condition as a baseline supposedly without any masking. 10-12 observers participated in each condition. Interestingly, his four-dot masking curves with SOA on the x-axis look very similar to those reported in Di Lollo et al. (2000), with duration of mask on the x-axis. Does this mean that the same mechanisms are involved in these experiments? There are at least two observations that make this interpretation problematic. 
CMOS (and my improved model as well) explains the drop of performance with increasing mask duration by a prolonged time interval where integration of a signal from the mask takes place. With a short duration of mask and long SOA, CMOS predicts no masking at all (Francis & Cho, 2007). Therefore, the drop of performance as dependent on SOA needs another explanation. 

Like Di Lollo et al. (2000), Enns (2004) used the manipulation of set size as a means to delay the focusing of attention, assuming that this delay causes substitution masking. However, a strong set-size effect was observed even for SOA=600 ms when any masking is unlikely, and this effect is very similar in masking and non-masking (single-dot) conditions. These observations suggest that the drop of performance with increasing set size can hardly be a result of masking.

A Memory-based Model
It is not difficult to see that Experiment 1 from Enns (2004) is very similar to the experiments used to study iconic and visual short-term memory (Sperling, 1960; Averbach & Coriell, 1961), with the mask playing the role of a spatial probe that indicates the target location. When the probe arrives early, it is possible to select the target object from the iconic memory before it decays and performance is almost perfect. With late probes, the accuracy is determined by a limited number of objects encoded in a longer-lasting visual short-term memory before the arrival of the spatial probe. The probe may have masking (erasing) effect too. When using a probe with strong masking effect, the target trace is erased much faster than an autonomous decay of iconic memory and selective visual processing of the target becomes impossible. Similarly to Enns (2004), Averbach and Coriell (1961) used the masking and nonmasking probes (rings and bars, respectively). Averbach and Coriell (1961) also presented a simple probabilistic model that combines selective and unselective modes of processing.  
I adapted this model to the Enns (2004) experiment by adding a simple account of set-size effects. It follows an assumption that capacity of short-term memory is limited to a fixed number of objects (e.g., Pashler, 1988; Luck & Vogel, 1997). Hence, the set size effects are accounted for by a single parameter (capacity of short-term memory). I did not assume any specific model of masking. The only assumption was that both decay of iconic memory and any masking effects are independent of set-size. Thus, the quality of information at the target location as dependent on SOA can be represented by a single curve. 

The mathematical description is as follows. The probability that the target stimulus is effectively selected and recognized following the spatial cue is ps. It is a function of the quality of the target signal after the arrival of cue/masker. Probability ps as dependent on SOA was estimated from the data. With probability 1- ps, information from the target location cannot be acquired and the response is based on either visual short-term memory (with fixed capacity of k objects) or random guessing. The memory-based proportion correct can be calculated as pc1 = min(k/n,1), and correct random guessing pc2 = 1/m (n is number of objects in a display and m is number of response categories). Thus, the predicted proportion correct can be calculated as 

pc = ps + (1 – ps ) · min(k/n,1) + (1 – ps ) · (1-min(k/n,1))/m.



(10)

Results of the Modeling 

I applied the above model to the Enns (2004) results on four-dot masking and single-dot baseline. In both conditions, the fit was close to perfect (R2=0.99) (Figure 6A, B). This model uses 8 parameters to describe data sets with 21 degrees of freedom. Although the relatively large number of estimated parameters plays a role in good fit, the nearly perfect reproduction of 21 data points would be unlikely without capturing the main regularities in the data. It is also important that the estimated values of ps follow simple and easily interpretable curves as dependent on SOA.

The curves depicting the probability of selective recognition fall almost monotonically (Figure 6C). For the single-dot condition, this curve might be interpreted as the decay of iconic memory. However, very likely, it also reflects a latency of perception of the probe and focusing attention (e.g., Averbach & Sperling, 1961) and may be affected by a slight masking from the single-dot cue. The fast drop of selective recognition with the four-dot mask indicates an erasure of iconic memory by that masker (similarly to the ring masker in Averbach and Coriell (1961)). The fact that the masking effect appears only at SOAs larger than about 100 ms can be explained by the efficient masking idea (Francis, 2000). Perhaps, by that time, the trace of target has decayed enough to be effectively suppressed by the relatively weak four-dot masker. The set-size effects observed in this experiment were very well accounted for by fixed capacity of short-term memory. The best-fit k value was similar in both conditions (2.33 and 2.66 for single-dot and four-dot, respectively). Again, this modeling demonstrates that the results of substitution masking experiments can be easily explained by traditional mechanisms of visual perception and memory, and divided attention stage plays an important role in these experiments.

Discussion

This study concentrated on the modeling of object substitution masking. It revealed the hidden logic behind the original CMOS and proposed the reinterpretation of this model. Also, I found problems with prediction some aspects of the data by CMOS and tested two alternative models for substitution masking data. The reported findings may have some important theoretical and methodological implications. 
The Assumption of Reentrant Hypotheses-testing is not Relevant for the Modeling of OSM 
Contrary to the popular belief, CMOS can hardly be considered a model of reentrant processing in vision, because none of its important properties is definitely based on reentrant mechanisms. This model is just one of several ways to combine temporal integration of sensory signals and delay of attentional focusing. Of course, the integration of input signals may include reentrant processes too. However, the mere existence of temporal integration does not tell anything on this matter. Both CMOS as implemented by Di Lollo et al. (2000) and my new models indicate that we can explain the main regularities of substitution masking without making any assumptions about existence or nature of reentrant hypotheses-testing processes in vision.   

One may concern that I have possibly ignored some arguments not directly related to these data and modeling. Di Lollo et al. have referred to several empirical findings and theoretical ideas that they thought may support their reentrant hypotheses-testing account of OSM. Of course, the existence of feedback connections in the brain, different top-down effects in visual perception, and hypotheses-testing in some visual tasks look consistent with their idea. Still, these findings provide no direct evidence for an important role of reentrant hypotheses-testing mechanism in OSM.                                    

A More Accurate Mechanism of Attention

Although CMOS fits common-onset masking data reasonably well, systematic deviations from the data suggest that some of its assumptions should be revised. In this study, an alternative attentional gating model, with a more plausible mechanism of attention, was proposed. According to this model, asymptotic performance with long maskers is determined by an initial stage of parallel processing, with attention distributed across all objects in a display. The results of common-onset masking experiments that were originally fit by CMOS were fit even better by this new model. In addition, this model fits very well another set of common-onset masking data (Luiga & Bachmann, 2008). 

Differently from CMOS, my model assumes that the dynamics of focusing of attention to the target location is independent of set size. This is reasonable, because the four-dot masker is a salient object that should be localized by fast parallel processing. In addition to the data modeled in this study, the results from Tata (2002) exhibit mostly invariant dynamics of masking curves across different set sizes, indicating that the focusing of attention is not affected by the set size in this type of experiments. 

Set size effects were accounted for by an unselective (divided attention) stage when the amount of processing resources devoted to the target is inversely proportional to the set size (e.g., Lindsay, Taylor & Forbes, 1968; Shaw, 1984). Because Di Lollo et al. (2000) did not use divided attention stage in their model they had to account for the set size effects in some other way. They employed the set size dependent delay of focusing of attention for this purpose.

Role of Short-term Memory

It was shown that CMOS is not applicable to some datasets that are supposed to be examples of substitution masking (e.g., Enns, 2004). The results of a substitution masking experiment with a variable SOA were almost perfectly fit by a very simple iconic and short-term memory model, following Sperling’s (1960) and Averbach and Coriell’s (1961) ideas. In this model, the set size effect is accounted for by short-term memory limited by a fixed number of objects (e.g., Pashler, 1988; Luck & Vogel, 1997). This modeling suggests that it might be important to separate masking from other phenomena (e.g., memory) in some substitution masking experiments.
Two models: Different Limitations on Unselective Processing
The main purpose of my new models was to reveal a role of unselective processing stage that was ignored in both Di Lollo et al (2000) and Enns (2004). It was found that the inclusion of that stage accounted for set-size effects very well. Appropriate modeling of set-size effects considerably reduces the apparent complexity of OSM and suggests that masking per se in these experiments may be independent of set-size and accounted for by relatively simple models.

However, there are important differences between the common-onset (Di Lollo et al., 2000) and variable-SOA (Enns, 2004) experiments. Although both experiments exhibit strong set-size effects (and graphs of the results look quite similar), it appears that these effects cannot be fit by the same model. I used the sample-size model (Lindsay et al., 1968; Shaw, 1984) for common-onset experiments and the fixed slot memory model (Pashler, 1988; Luck & Vogel, 1997) for variable SOA experiments. Using these models the other way around, the fit would be much worse. I suggest that the two experiments require different models because of the dominant role of either perceptual or memory processes in determining the asymptotic performance.
In a common onset experiment, the parallel processing stage is interrupted by fast focusing of attention at the target location. The results of this stage are determined by capacity of visual processing during that brief period of divided attention. I suppose that these results are not separately perceived or stored in short-term memory. Still, the information acquired at this stage remains available for some time and can be combined with the results of subsequent selective processing.

With long SOA, however, parallel processing can be completed and the identities of a few objects are stored in a limited-capacity short-term memory, which determines the asymptotic performance.

The idea of two types of capacity limitations seems to be consistent with several studies that have used sample-size model for capacity limitations of perception (Shaw, 1984; Bonnel, Possamai & Schmitt, 1987; Põder, 1999) and fixed slot model for short-term memory (Luck & Vogel, 1997; Awh, Barton & Vogel, 2007; Rouder et al., 2008). Recently, Zhang & Luck (2011) proposed a similar idea based on their experimental results. They found that observers could flexibly trade-off the number and quality of object representations at early stages of visual processing, but could retain only a fixed number of objects, regardless of their precision, in visual working memory. However, there are different opinions too, and further research is needed for full understanding of the capacity limitations in both visual processing and memory.

In my models, the rules of combining results from unselective and selective stages were chosen as those that fit most naturally the used mechanisms of set-size effect (optimal information summation for sample size model, and probability summation for fixed slot memory model). According to my preliminary analysis, this choice is not critical for the fit of the models.
My Account of OSM

Although this study leaves many details open, it provides some intuition of what is (and what is not) important in order to explain object substitution masking. Let us see what might occur in a visual system when a typical common-onset stimulus is presented.    

Both the target and masker signals are processed through several levels of the visual system. Although the stimulus may be very brief, its sensory trace, even at the first processing level, starts with some latency and lasts much longer. Succeeding levels introduce further delays and longer persistence. Shortly after stimulus onset, the location of the four dots is determined and spatial attention starts to focus in that point. As a result, signals from that location will be amplified relative to other (distractor) locations.  If the masker is terminated simultaneously with the target, the both signals are roughly equal and remain so up to the object identification level. The masker adds some noise, or inhibits the target representation slightly, but the target remains well recognizable. If the masker remains visible after the target termination, its signals are available for a longer duration and a stronger representation is created at the higher levels of processing. It suppresses the much weaker target representation and OSM occurs. However, even with very long maskers, the performance does not drop to the level of random guessing and is strongly dependent on the number of distractors. I suppose that this is determined by a parallel processing stage before the focusing of attention at the target location. At the moment of stimulus presentation, attention is distributed (not necessarily equally) across the whole display and the signals from all objects propagate towards the object identification level. Due to limited processing resources, only a few of the objects can be identified. When the target location is identified (after the localization of the four dots), it may happen that the correct identity information already waits for the location cue at the highest level of processing.               

The present description is broadly consistent with the implementation of CMOS, except the different dynamics of attention and different explanation of the set size effect. Also, it is similar to the account proposed by Neill et al. (2002). Apparently, there is no need to compare the target with masker, or a hypothesized target with the real one, or for any other supposed function of reentrant hypotheses-testing.      

Di Lollo et al have argued that the models based on overwhelming the brief target signal by a more effective signal from a long masker should be rejected because masking never occurs if a long masker is switched on before the target. In fact, CMOS is based on the same kind of overwhelming of the target signal by the accumulated signal from masker. In CMOS, masking from a previewed masker was avoided simply by starting calculations at the target onset. As indicated by Neill et al. (2002), any model of substitution masking needs a mechanism to distinguish the relevant event of target presentation from preexisting context. Tata and Giaschi (2004) and Lim and Chua (2008) have studied some properties of this mechanism.

The present account of common-onset masking is very similar to Smith and Ratcliff’s (2009) theory of the combined effects of masking and attention. An apparent difference is in the effect of the masker. Smith and colleagues used backward pattern masks and assumed that the onset of the mask started a fast suppression of the target trace. In common-onset masking, the suppression must be more gradual and dependent on mask duration. However, in both cases, the suppression may be implemented as a divisive inhibition of the target trace by the trace of the masker.
It seems quite sure that neural interactions corresponding to substitution/interruption masking occur at some relatively high level of visual processing. Several studies using movement of the target and maskers indicate that substitution masking occurs at the level of object-like identities rather than between retinotopic low-level features (e.g., Lleras & Moore, 2003). However, the exact location is unknown. It is possible that several brain areas are involved in that.

Feedback and Feed-forward Mechanisms

Consistent with several earlier studies, this study showed that substitution masking can be explained without reentrant hypotheses-testing mechanism proposed by Di Lollo et al (2000). This finding should not be interpreted as an argument against the importance or existence of feedback/reentrant mechanisms in vision. It is well known that knowledge and expectations affect the way we perceive the world and this assumes some top-down effects on visual processing. Actually, retinal images are ambiguous and prior information is absolutely necessary for their interpretation. Many ideas have been proposed of how top-down and bottom-up signals may be combined in the brain (e.g. Tsotsos et al., 1995; Lee & Mumford, 2003; Hamker, 2006). However, the actual mechanisms are still largely unknown. We do not even know whether a comparison of input signals with the reentrant predictions from higher levels is needed for that purpose. Anyway, the present study casts serious doubt on the idea that substitution masking might be a special phenomenon that reveals this hypotheses-testing process in vision.
This study showed that the essence of object substitution masking can be captured by attentional gating models. Of course, the focusing of spatial attention can be considered a kind of feedback, too, and the attentional gating models are not purely feed-forward. However, this feedback is very different from the reentrant hypotheses-testing that was proposed by Di Lollo et al. (2000) as the main mechanism behind OSM. Note that Di Lollo et al. also used an attention focusing mechanism besides the reentrant processing mechanism. It seems that simple opposition of feedback vs. feed-forward models is not very useful here. Rather, we should ask more specific questions and reveal particular mechanisms that are really important for understanding experimental results. The present study argues that focusing of spatial attention is an important component in any theory of OSM, but iterative testing of top-down hypotheses has no role in explanation of OSM. 

What Other Studies on OSM Tell us?

A considerable number of publications on substitution masking may create a false impression that its relationship with reentrant hypotheses-testing (or at least with some top-down effects) has been well established. Actually, the majority of studies have not dealt with this problem. Many researchers take the relationship between substitution masking and reentrant processing for granted and use this assumption in their research (e.g., Steelman-Allen et al, 2009; Bouvier & Treisman, 2010). Others ask their own questions, more or less independent of the reentrant processing hypothesis (e.g., Jiang & Chun, 2001; Lleras & Moore, 2003; Tata & Giaschi, 2004; Chen & Treisman, 2009). I have met only one study that attempted to provide independent evidence for Di Lollo et al.’s (2000) reentrant processing hypothesis. Dux, Visser, Goodhew, and Lipp (2010) found that substitution masking was stronger in a dual task condition, where the identification of a target (masked by four dots) was combined with an arithmetical calculation task. They view this as evidence for the reentrant account of substitution masking, because the arithmetical task taps brain regions that are supposedly involved in reentrant processing. Obviously, this task may have many different effects besides the supposed impairment of reentrant processing (for example, taking away a part of the limited resources of attention). Of course, this study and many others confirm the important role of attention and involvement of higher levels of visual processing in OSM. However, these findings are not equivalent to the evidence for a key role of reentrant hypotheses-testing in OSM.
Conclusions

The regularities of OSM can be well explained by a simple attentional gating account – the combination of classical mechanisms of sensory persistence and attention. The assumption of reentrant hypotheses-testing is not necessary for the explanation of OSM. Therefore, it seems unlikely that substitution masking studies can reveal interesting facts about the hypotheses-testing processes in the visual system. Using OSM as an indicator of the involvement of reentrant processes in a particular visual task may be misleading.  

Different OSM experiments may involve different combinations of elementary mechanisms of visual processing. The present study revealed the importance of parallel processing (or divided attention) stage, and the role of short term memory, which have not been considered in previous studies. 
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Figure 1. Time diagram illustrating the operation of the attentional gating model. The physical stimulus is represented by its sensory response in the visual system. This response is weighted by attention. Performance is determined by the cumulative information (proportional to the gray area). 
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Figure 2. Illustrative time diagram of the main components of CMOS. Input signals from the target and masker are transformed into pattern-level responses through temporal integration and normalization. Performance is determined by the target response selected (weighted) by the unit impulse of attention. 
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Figure 3. Proportions correct as dependent on mask duration and set size predicted by CMOS (produced by the simulations available online, as described in Francis (2003)).
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Figure 4. (A, B) Results of a substitution masking experiment (Experiment 3 from Di Lollo et al., 2000) for two observers, fit with the divided attention model. Symbols represent the data; lines are fits of the model. (C) Estimated d’ of the selective stage, as dependent on mask duration.
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Figure 5. (A,) Results of a substitution masking experiment (Experiment 1 from Luiga & Bachmann, 2008), fit with the divided attention model. Symbols represent the data; lines are fits of the model. (B) Estimated d’ of the selective stage, as dependent on mask duration.
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Figure 6. Results of an experiment with a four-dot masker and variable SOA (A) and a single-dot baseline (B) from Enns (2004), fit with the short-term memory model. Symbols represent the data; lines are predictions of the model. (C) Estimated probabilities of selective target recognition, as dependent on SOA.
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