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Introduction

At the end of several decades of a successful search for the constituents of matter a suc-
cessful picture describing the smallest structures of nature has emerged. This picture is
better known as the Standard Model of Elementary Particle Physics. The Higgs boson is
the last missing particle of the Standard Model but there are hopes that it can be found
in this decade. At this point, proposals for so-called “new physics” are of interest. How-
ever, before taking a step into the direction of “new physics”, it is worthwhile to prove
the solidness of the foundation of the Standard Model. The theory of Quantumchromo-
dynamics (QCD) was developed as quantum field theory in the 70’s in close analogy to
Quantumelectrodynamics (QED) to describe the strong interaction of particles. QCD is
one important ingredient of the Standard Model.

While perturbation theory has proven its usefulness in many applications, the ramifi-
cations of QCD are not fully known. At present there is no closed form solution of QCD
available which is valid for all regions of phase space. Instead, perturbative descriptions,
for instance at low and at high energy regions have to be interpolated into regions where
perturbation theory is not applicable and have to be adjusted to nonperturbative param-
eters and models. The present thesis cannot completely fill this gap. But by considering
various effective theories derived from QCD one has the appropiate tools at hand to make
QCD applicable in different phase space regions. In this way at least a silhouette of full
QCD becomes visible.

What characterizes effective theories?

Besides rather well-known effective theories such as Chiral Perturbation Theory (ChPT)
for light particles or the Heavy Quark Effective Theory (HQET) for very massive particles,
there are a countless number of (not explicitly named) other effective theories available
for other applications. In this thesis, therefore, the author does not only deal with the
well-known effective theories but also with effective theories which contain elements such
as effective scales and effective parameters. In this sense, improvement techniques for the
parametrization of QCD on the lattice are included as well as resummation techniques.

The main characteristic of effective theories become obvious in resummation tech-
niques. In resumming perturbation theory, a part of the perturbation theory calculation
is done before-hand, either to finite or infinite order, to give rise to effective couplings,
masses and scales which are used instead of the original (not resummed) ones. With this
technique, one obtains a faster convergence of the perturbation theory series. In the same
manner, radiative QCD corrections are subsumed in the effective vertices of HQET as
well as in Symanzik improved quark and gluon actions within lattice QCD. Therefore, it
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makes sense to present several effective theories in a common thesis. Parallel concepts in
the different approaches become obvious, and a technique used in one approach can be
used to improve techniques used in other approaches.

How is the thesis organized?

The thesis presented here covers work done by the author and his collaborators during
the last five years. The author hopes to be able to give the reader an insight into a
variety of questions dealt with during this time. Most of the material presented here
constitutes that part of the work which the author has contributed to the collaborative
projects and which have been published in over thirty articles in a variety of journals. In
addition to details which can also be found in the articles cited in the text, the author
provides further insights into the underlying ideas and techniques. Calculations which are
of technical nature are left to the appendices. In doing so, the author was able to arrange
the projects in a somewhat continuous manner, such that this thesis may be of help as a
handbook for future research.

The thesis is organized as follows: In Chap. 1, the author starts by considering heavy
quarks and extends previous calculations of first-order radiative corrections for polariza-
tion and correlation observables. Necessary ingredients such as the elements of the elec-
troweak coupling matrix and the decay rate terms are found in Appendices A to C. While
running coupling and masses are already used in this chapter, in Chap. 2 the emphasis
is directed to renormalization and resummation techniques which give rise to quantities
that “run” because of the necessary renormalization of perturbation theory. Different
types of effective couplings are introduced. Using moments, the spectral density of e+e−

annihilation and τ decay processes are analyzed using perturbation theory methods.

The two-point function and its spectral density are main ingredients of the QCD sum
rule analysis. For a special topology of two-point diagrams, the sunrise-type diagrams,
it is possible to obtain results in case of arbitrary mass parameters and an arbitrary
number of propagators for general space-time dimensions. The calculations described
in Chap. 3 are done within configuration space. The properties of Bessel functions of
different types used in this chapter are collected in Appendix D, together with other
functions which are needed in the following. In Appendix E, polylogarithms are dealt
with, and in Appendix F shuffle methods for solving nested integrals are introduced as a
technical tool for the calculation of the complex class of nested integrals.

The correlator of finite mass baryon currents is the subject of Chap. 4. Because of
their complexity, correlators of baryonic currents have not been treated widely in the
literature. The work presented in this chapter fills the gap and provides results which
can be used for a QCD sum rule analysis. While the results in Chap. 4 are obtained for
the finite mass case, Chap. 5 deals with the heavy quark mass limit of HQET. Vertices
are matched, a threshold mass is defined, and first steps for the calculations of radiative
corrections for the Isgur–Wise function are taken. Older calculations which are of help in
other respects are collected in Appendices G and H. Further details of calculations of this
chapter are found in Appendices I and J.

Chap. 6 is related to a subject which at first sight seems to be totally disjunct to
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the previous subject, because lattice QCD does not appear to be an effective theory
at first sight. However, the Symanzik improvement of anisotropic quark actions leads
again to effective vertices and propagators, according to the same principles as in HQET.
Pole masses and wave function renormalization constants can be determined, as well as
a special feature of anisotropic lattices, the so-called “speed-of-light coefficient”. The
improvement is done for Wilson quarks and for staggered quarks. The values obtained by
numerical integration are of importance for simulations on the lattice.

While the representation of QCD on a lattice is one of the most promising attempts to
approach QCD nonperturbatively, QCD sum rules are another approach in this direction.
Following a first QCD sum rule analysis for the determination of the electromagnetic
coupling at the Z-pole in Chap. 7, ideas about the relation between perturbative and
nonperturbative contributions are discussed. This is done by using different moments
as well as considerations about the consequence of low-energy contributions. The charm
quark mass is determined by means of finite energy sum rules. Details of the calculations
are found in Appendix K.

In some parts, the work presented here is not yet finished. Like a tree in spring, there
are not only blooms but also buds to be developed in the future. Writing this thesis,
therefore, was a step of leaning back for a moment in the different projects, getting an
overview and collecting material worked out up to this point, in order to become prepared
for further steps. In this sense, the thesis can also be seen as a project description for
possible extensions and completions.
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Chapter 1

Polarization and heavy quarks

The present thesis mainly deals with heavy quarks and hadrons, especially baryons which
contain a heavy quark. Quark mass effects, therefore, are one of the main concerns in
this and the following chapters. Recently there has been renewed interest in the role of
quark mass effects in the production of quarks and gluons in e+e− annihilations. Jet
definition schemes, event shape variables, heavy flavour momentum correlations and the
polarization of the gluon [1, 2] are affected by the presence of quark masses for charm and
botton quarks even when they are produced at the scale of the Z-mass [3, 4, 5]. A careful
investigation of quark mass effects in e+e− annihilations may even lead to a alternative
determination of the quark mass values [3, 4, 5, 6].

Consequently, in this chapter the considerations are started with the heaviest quark
which have been found up to now and which according to the Standard Model (SM)
of elementary particle physics is the heaviest fermion that occurs. The top quark was
discovered in 1995 at the Tevatron. The planned high energy linear e+e− colliders are
copious sources of top quark pairs in the future. Therefore, many different aspects of
top quarks are of interest, for instance polarization observables like the longitudinal and
transverse polarization of the heavy quarks and their decay products and the correlation
of spins which are considered in this chapter. Quark mass effects are important in the
m→ 0 calculation of radiative corrections to quark polarization variables because residual
mass effects change the naive no-flip pattern of the m = 0 polarization results [7, 8, 9, 10].
If the linear colliders planned at SLAC and DESY come into operation, it is necessary
to have detailed radiative corrections to the production and decay of top quark pairs
available, taking into account the aforementioned special aspects of polarization.

As concerns the production of heavy quarks, there are a number of unpolarized and
single spin polarized structure functions that describe the e+e− production process of
massive top quark pairs. In the unpolarized case one has the three structure functions
HU (transverse), HL (longitudinal) andHF (forward-backward) which determine the polar
angle orientation of the top pair relative to the beam axis. Partial results on the full O(αs)
radiative corrections to the unpolarized structure functions HU , HL and HF have been
written down in Refs. [6, 11] starting with the early work on the O(α) QED radiative
corrections to the vector current γe+e− vertex function [12]. Complete results on the
O(αs) unpolarized structure functions have been first given in Ref. [13].

All of the unpolarized O(αs) structure functions were recalculated in the course of
computing the top quark’s O(αs) polarization asymmetries where the unpolarized struc-
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1.1. GLUON CUT FOR TOP QUARK PAIR PRODUCTION 15

ture functions were needed to normalize the polarization asymmetries [7, 8, 14, 15, 16].
The numerators of the polarization asymmetries are expressed in terms of polarized struc-
ture functions. In the case of the longitudinal polarization of the top one has the three
structure functions Hℓ

U , Hℓ
L and Hℓ

F for which the full O(αs) radiative corrections were
given in Refs. [7, 8, 15]. In the case of a top quark polarized transverse or normal to the
event plane, one has two structure functions in each case, H⊥I and H⊥A resp. HN

I and HN
A

(see Ref. [16]).

When doing the full O(αs) radiative corrections one integrates over the full (hard and
soft) gluon phase space. For some applications it is also interesting to consider radiative
corrections where one integrates over the gluon phase space up to a given gluon energy cut
Ec. Such radiative corrections may be dictated by experimental considerations when soft
gluons accompanying the top quark pair cannot be resolved by the detector. Alternatively
one could attempt to measure the cross section for top–antitop–gluon production with a
given gluon energy cut Ec and compare the energy cut dependence of the cross section
with the predictions of QCD. The results for this analysis are given in this chapter.
Finally, the correlation between the longitudinal and transverse top and antitop spins are
worthwile to be considered. The longitudinal spin correlation has been considered already
in Refs. [17, 18] without taking into account the polar angle dependence. The results with
polar angle dependence will be given in this chapter as well.

The decay of the top quark can be described by structure functions HU , HL and HF

similar to the case of top quark pair production. When the top quark decays into the
W+ boson and the b quark, the polarization of the top quark is transferred to the boson.
Therefore, a further analysis is in order here, namely the decay of polarized top quarks
into W+ and b where the W+ polarization is considered. The CDF collaboration has
already presented some results on the measurement of the longitudinal component of the
W+ based on the limited RUN I data [19]. The measurement has confirmed the expected
dominance of the longitudinal mode. Theory results for one-loop radiative corrections
with polar angle dependence are presented in the third main part of this chapter.

1.1 Gluon cut for top quark pair production

In this section analytical results for the O(αs) radiative corrections to the three unpo-
larized structure functions HU , HL and HF as well as for the seven polarized structure
functions Hℓ

U , Hℓ
L, H

ℓ
F , H⊥,NI and H⊥,NA for polarized top quarks are provided where the

integration runs over the gluon energy phase space up to a given energy cut Ec. Partial
results on radiative corrections with an energy cut have been obtained before in the unpo-
larized case [20, 21]. A practical tool for the calculation of tree graph contributions up to
a given gluon energy cut is the soft gluon approximation. The soft gluon approximation
consists in the factorization of the tree graph contribution into the Born term contribu-
tion and a universal soft gluon piece which can be easily integrated. An O(αs) calculation
of polarized top pair production using the soft gluon approximation has been done in
Refs. [8, 22]. One of the aims of the present investigation is to find out to which extent
new coupling structure is generated in O(αs) top pair production by an exact treatment
of the gluon emission. This is done by comparing the results of an exact calculation with
the results of the soft gluon approximation for some given small gluon energy cuts [23].
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1.1.1 Polarized and unpolarized structure functions

In order to get acquainted with the notation, this section is used to outline the main
structure of the cross section calculation and to indicate the point where the structure
functions come into play. To start with, for the three body process (γV , Z) → q(p1) +
q̄(p2) +G(p3) one defines a polarized hadron tensor according to

Hµν(q, p1, p2, s) =
∑

q̄,G spins

〈q̄qG|jµ|0〉〈0|j†ν|q̄qG〉 (1.1)

where p1, p2 and p3 are the four-momenta of the quark, antiquark and gluon, resp. and
q = p1 + p2 + p3 is the four-momentum of the boson. s is the spin vector of the quark.
This definition also includes the Born case in which the gluon is left out. Note though
that in this case the normalization is different while the same normalization is obtained
if one integrates the three particle contribution over the (full or partial) phase space.
The hadron tensor defined in Eq. (1.1) depends on the vector (V : γµ) and axial-vector
(A: γµγ5) composition of the currents jµ and jν . One therefore has four independent
components H i

µν (i = 1, 2, 3, 4) which are defined according to

H1
µν =

1

2
(HV V

µν +HAA
µν ), H2

µν =
1

2
(HV V

µν −HAA
µν ),

H3
µν =

i

2
(HV A

µν −HAV
µν ), H4

µν =
1

2
(HV A

µν +HAV
µν ). (1.2)

In this notation the arguments for the hadron tensor components are avoided altogether.
In the following arguments of the functions are used only when they are necessary, like
the spin vector argument as one defines unpolarized and polarized structure functions
H i
µν and H im

µν (i = 1, 2, 3, 4, m = ℓ,⊥, N) according to

H i
µν = H i

µν(s
m) +H i

µν(−sm), H im
µν = H i

µν(s
m) −H i

µν(−sm) (1.3)

where sm is the spin vector corresponding to longitudinal (m = ℓ), transversal (m = ⊥),
or normal polarization of the top quark (m = N). The explicit representation of the spin
vectors will be given later. For the hadron tensor components one introduces the compact
notation H i{m}

µν where the curly braces indicate that in the unpolarized case the index m
is suppressed. This compact notation is used to show the general features common for
the unpolarized part as well as the polarized parts.

If one looks at the process e+e− → q̄q(G), the cross section is given by a modular
structure consisting of the hadron tensor, the lepton tensor which is constructed accord-
ing to the same principles, coefficients gij connecting both parts and known as coupling
coefficients of the electroweak theory (they are listed in Appendix A), and a phase space
factor dPS,

dσ{m} = 2π
e4

q4

4
∑

i,j=1

gijL
i µνHj{m}

µν dPS (1.4)

where the contraction of the indices µ and ν is understood. The process e+e− → q̄q(G)
looked at can be described in two equivalent frames, each spanned by three linearly
dependent vectors, namely the lepton or beam plane spanned by the electron and positron
beam and the outgoing quark and the hadron or event plane spanned again by the quark,
the antiquark and the gluon. In the Born case where no gluon is emitted, both planes
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coincide by convention. The relative angle between the quark momentum and the electron
momentum is the polar angle θ, and the event plane is turned against the beam plane
about this common axis by the azimuthal angle χ.

The natural frame for describing the hadron tensor is the event plane. In this plane
obviously no angle relative to the beam axis occurs, except for the transverse and normal
spin vectors which are represented in the beam plane because this is the laboratory system
where the polarizations are to be measured. The beam particles are described most
naturally in the beam plane. While L3µν vanishes identically and L2µν vanishes if the
lepton mass is set to zero, the other two components have the simple form

L1 =
q2

2











0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0











, L4 =
q2

2











0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0











. (1.5)

In order to calculate the contraction of lepton tensor and hadron tensor, one has to turn
the lepton tensor into the even plane. In doing so a variety of angular dependences occurs.
Actually one can decompose the lepton tensors according to

L1 =
q2

2

{

1

2
(1 + cos2 θ)ΠU + sin2 θ ΠL + sin θ cos θ ΠI

}

,

L4 =
q2

2
{cos θΠF + sin θ ΠA} . (1.6)

Note that ΠI and ΠA depend linearly on sinχ and cosχ. The matrices ΠU , ΠL, ΠI , ΠF

and ΠA are called projectors because in contracting the lepton tensor with the hadron
tensor they project out the contribution of the hadron tensor to the different angle de-
pendences. The decomposition in Eq. (1.6) covers all possible angle dependences which
occur in the process with a single polarized quark. This decomposition gives rise to the
decomposition of the differential cross section according to

dσ{m}

d cos θ
=

3

8
(1+ cos2 θ)σ

{m}
U +

3

4
sin2 θ σ

{m}
L +

3

4
cos θ σ

{m}
F +

3

4
sin θ cos θ σ

{m}
I +

3

4
sin θ σ

{m}
A

(1.7)
where

σ{m}a =
(4πα)2

3q4

4
∑

j=1

g1j

∫

Hj{m}
a

dPS

d cos θ
, Hj{m}

a = Πµν
a Hj{m}

µν for a = U,L, I

σ{m}a =
(4πα)2

3q4

4
∑

j=1

g4j

∫

Hj{m}
a

dPS

d cos θ
, Hj{m}

a = Πµν
a Hj{m}

µν for a = F,A. (1.8)

The integration sign in Eqs. (1.8) means that one has to integrate over the measure
which remain after division by d cos θ. For the Born contribution as well as for the loop
contribution with the two particle final state the phase space

dPS2 =
v

8(2π)2
d cos θ dχ→ v

16π
d cos θ (1.9)

is obtained where v =
√

1 − 4m2/q2 is the velocity of the outgoing quark. The transition

to the last expression in Eq. (1.9) stands for the fact that the azimuthal integration (over
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χ) is always implied here. If one performs the integration over the azimuth angle χ, the
transverse and normal spin dependence in the components Hj

a drop out for a = U,L, F
while they are retained for a = I, A. Just the opposite happens to the spin independent
parts. Therefore, not all structure functions are populated. It turns out that they are
alternatively populated by either spin dependent or spin independent parts. For the two
particle final state there is no integration measure left, therefore one obtains

σ{m}a (Born, loop) =
πα2v

3q4

4
∑

j=1

g1jH
j{m}
a (Born, loop) for a = U,L, I

σ{m}a (Born, loop) =
πα2v

3q4

4
∑

j=1

g4jH
j{m}
a (Born, loop) for a = F,A. (1.10)

For the three particle final state the phase space

dPS3 =
v

8(2π)2
d cos θ dχ

q2

16π2v
dy dz → v

16π
d cos θ

q2

16π2v
dy dz (1.11)

is obtained where the phase space variables y = 1 − 2p1 · q/q2 and z = 1 − 2p2 · q/q2 are
introduced. The O(αs) tree contributions to σ{m}a are therefore given by

σ{m}a (tree) =
πα2v

3q4





q2

16π2v

4
∑

j=1

g1j

∫

Hj{m}
a (y, z)dy dz



 for a = U,L, I

σ{m}a (tree) =
πα2v

3q4





q2

16π2v

4
∑

j=1

g4j

∫

Hj{m}
a (y, z)dy dz



 for a = F,A. (1.12)

Hj{m}
a (Born) and Hj{m}

a (αs) = Hj{m}
a (tree) +Hj{m}

a (loop) with

Hj{m}
a (tree) =

q2

16π2v

∫

Hj{m}
a (y, z)dy dz (1.13)

are called the polarized and unpolarized structure functions to leading and next-to-leading
order, respecticely, of which results for the case of an explicit gluon energy cut will be
presented.

1.1.2 Covariant expressions for the projectors

The projectors Πa can be represented in a covariant way, as will be seen in the following.
As a consequence of this they do not depend explicitly on y and z and can therefore be
taken out of the integral. For the derivation one first goes to the rest frame of the boson
with q = (

√
q2; 0, 0, 0) and takes the z-axis to be the quark momentum direction. Starting

with the quark momentum in this frame,

p1 =
1

2

√

q2

(

1 − y; 0, 0,
√

(1 − y)2 − ξ
)

(1.14)

(y = 0 for the two-body decay) with ξ = 1−v2 = 4m2/q2, one constructs a four-transversal
quark momentum and a four-transverse metric tensor,

ĝµν = gµν −
qµqν
q2

, p̂1µ = ĝµνp
ν
1 = p1µ −

p1 · q
q2

qµ (1.15)
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and uses q and p̂1 to build up two elements of a coordinate basis,

e0 = (eµ0) =
(

qµ/
√

q2

)

= (1; 0, 0, 0),

e3 = (eµ3) =
(

p̂µ1/
√

(p1 · q)2/q2 − p2
1

)

= (0; 0, 0, 1). (1.16)

In the case of longitudinal polarization of the quark the spin vector

sℓ =
1√
ξ

(

√

(1 − y)2 − ξ; 0, 0, 1− y
)

(1.17)

is the third possible quantity for the construction. However, it is a linear combination of
e0 and e3 and therefore of no help for the construction. The projectors one can construct
with e0 and e3 are therefore limited to

Πµν
U = −ĝµν − eµ3e

µ
3 ,

Πµν
L = eµ3e

ν
3 ,

Πµν
F = iεµνρσe

ρ
3e
σ
0 (1.18)

where εµνρσ is the total antisymmetric tensor. For the transverse and normal polarizations
as measured in the beam plane, the spin vectors expressed in the event plane are given
by

s⊥ = (0; cosχ,− sinχ, 0), sN = (0; sinχ, cosχ, 0). (1.19)

These two vectors, therefore, can help to span the beam plane, respectively, a plane
perpendicular to it in the event system. With these new elements the construction of
additional projectors is possible,

Πµν
I (s) = sµeν3 + eµ3s

ν , Πµν′
I (s) = − (εµρστe

ν
3 + ενρστe

µ
3 ) eρ0e

σ
3s

τ ,

Πµν
A (s) = iεµνρσe

ρ
0s
σ, Πµν′

A (s) = i(sµeν3 − eµ3s
ν). (1.20)

Note that ΠI(s
N) = Π ′I(s

⊥), ΠI(s
⊥) = Π ′I(s

N ), ΠA(sN) = Π ′A(s⊥), ΠA(s⊥) = Π ′A(sN),
therefore the primed projectors are redundant. One now can use this set of covariant and
unique projectors to calculate the different contributions of the hadron tensor.

In the following the Born term and loop contributions calculated in Refs. [8, 15, 16]
are presented. The non-vanishing unpolarized Born term contributions are given by

H1
U(Born) = 2Ncq

2(1 + v2), H1
L(Born) = Ncq

2(1 − v2) = H2
L(Born),

H2
U(Born) = 2Ncq

2(1 − v2), H4
F (Born) = 4Ncq

2v. (1.21)

The longitudinally polarized contributions read

H4ℓ
U (Born) = 4Ncq

2v, H1ℓ
F (Born) = 2Ncq

2(1 + v2),

H4ℓ
L (Born) = 0, H2ℓ

F (Born) = 2Ncq
2(1 − v2). (1.22)

For the transverse and normal polarization one finally obtains

H4⊥
I (Born) = −2Ncq

2v
√

ξ, H1⊥
A (Born) = −2Ncq

2
√

ξ = H2⊥
A (Born),

H3N
A (Born) = 2Ncq

2
√

ξ. (1.23)
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The non-vanishing loop contributions are given by

H1
U(loop) = 4Ncq

2
(

(1 + v2) ReA− 2v2 ReB
)

,

H2
U(loop) = 4Ncq

2
(

(1 − v2) ReA+ 2v2 ReB
)

,

H1
L(loop) = 2Ncq

2
(

(1 − v2) ReA+ v2 ReB
)

= H2
L(loop),

H4
F (loop) = 8Ncq

2v (ReA− ReB) ,

H4ℓ
U (loop) = 8Ncq

2v (ReA− ReB) ,

H4ℓ
L (loop) = 0,

H1ℓ
F (loop) = 4Ncq

2
(

(1 + v2) ReA− 2v2 ReB
)

,

H2ℓ
F (loop) = 4Ncq

2
(

(1 − v2) ReA+ 2v2 ReB
)

,

H3⊥
I (loop) = −2Ncq

2v
√

ξ(1 + ξ) ImB/ξ,

H4⊥
I (loop) = −2Ncq

2v
√

ξ (2 ReA+ (1 − 3ξ) ReB/ξ) ,

H1⊥
A (loop) = −2Ncq

2
√

ξ
(

ReA− v2 ReB/ξ
)

= H2⊥
A (loop),

H1N
I (loop) = −2Ncq

2v
√

ξ(1 − ξ) ImB/ξ = H2N
I (loop),

H3N
A (loop) = 2Ncq

2v
√

ξ (2 ReA+ (1 − 3ξ) ReB/ξ) ,

H4N
A (loop) = 2Ncq

2v
√

ξ(1 + ξ) ImB/ξ. (1.24)

in terms of the vector form factors A and B of the vertex correction with

ReA = −αsCF
4π

{(

2 +
1 + v2

v
ln
(

1 − v

1 + v

)

)

ln

(

Λq2

m2

)

+ 3v ln
(

1 − v

1 + v

)

+ 4

+
1 + v2

v

(

Li2

(

2v

1 + v

)

+
1

4
ln2

(

1 − v

1 + v

)

− π2

2

)}

,

ReB =
αsCF
4π

1 − v2

v
ln
(

1 − v

1 + v

)

, ImB =
αsCF
4π

1 − v2

v
π (1.25)

were the axial-vector form factor C is expressed by A according to C = A − 2B, while
the second axial-vector form factor D does not occur. m2

G = Λq2 is the squared mass
of the gluon which is used for the regularization of the first order tree contributions. A
connection to the parameter ε = (4 −D)/2 of the dimensional regularization is given by
the correspondence 1/ε− γE + ln(4πµ2/m2) → ln(Λq2/m2).

In order to be able to compare with these results afterwards, the total O(αs) results
Hj{m}
a (αs) = Hj{m}

a (tree) +Hj{m}
a (loop) are listed here (see e.g. Refs. [8, 15, 16]) in terms

of the decay rate terms t1 to t12 (see Appendix B),

H1
U(αs) = N

{

2(2 + 7ξ)v + (48 − 48ξ + 7ξ2)t3 + 2
√

ξ
(

2 − 7ξ +
√

ξ(2 + 3ξ)
)

t4 +

−2ξ(2 + 3ξ)t5 − 4(2 − ξ) ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H2
U(αs) = ξN

{

12v + 2(6 − ξ)t3 + 2
√

ξ(1 −
√

ξ)t4 +
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+2ξt5 − 4 ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H1
L(αs) = N

{1

2
(16 − 46ξ + 3ξ2)v +

ξ

4
(88 − 32ξ + 3ξ2)t3 +

−2
√

ξ
(

2 − 7ξ +
√

ξ(2 + 3ξ)
)

t4 + 2ξ(2 + 3ξ)t5 +

−2ξ ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H2
L(αs) = ξN

{3

2
(10 − ξ)v +

1

4
(24 − 16ξ − 3ξ2)t3 +

−2
√

ξ(1 −
√

ξ)t4 − 2ξt5 − 2 ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H3
F (αs) = −8ξNvπ,

H4
F (αs) = N

{

− 16
√

ξ(1 −
√

ξ) − 16(t1 − t2) + 8(2 − 3ξ)vt3 +

−4(4 − 5ξ)t6 − 8v ((2 − ξ)(t8 − t7) + 2v(t10 + t11))
}

, (1.26)

H3ℓ
U (αs) = −8ξNvπ,

H4ℓ
U (αs) = N

{

− 2(2 + 35ξ) + 2
√

ξ(8 + 29ξ) − 1

2
(32 − 60ξ + 17ξ2)(t1 − t2) +

+4(4 + 9ξ)vt3 − 2(8 + 2ξ + 3ξ2)t6 − 8v ((2 − ξ)(t8 − t7) + 2v(t10 + t11))
}

,

H3ℓ
L (αs) = 0,

H4ℓ
L (αs) = N

{

4(2 + 19ξ) − 4
√

ξ(8 + 13ξ) − ξ(24 − 7ξ)(t1 − t2) +

−52ξvt3 + 2ξ(10 + 3ξ)t6
}

,

H1ℓ
F (αs) = N

{

− 4(2 + 3ξ)v + 2(24 − 12ξ + ξ2)t3 + 2
√

ξ
(

8 + ξ −
√

ξ(10 − ξ)
)

t4 +

+2ξ(10 − ξ)t5 − 4(2 − ξ) ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H2ℓ
F (αs) = ξN

{

12v + 2(6 − ξ)t3 + 2
√

ξ(1 −
√

ξ)t4 +

+2ξt5 − 4(2 − ξ) ((t8 − t9) + 2v(t10 + 2t12))
}

, (1.27)

H3⊥
I (αs) = −2

√

ξN(1 + ξ)vπ,

H4⊥
I (αs) =

√

ξN
{

48 + 17ξ −
√

ξ(62 + 3ξ) − 1

4
(4 − ξ)(10 + 3ξ)(t1 − t2) +

−2(21 + 2ξ)vt3 + (16 + 7ξ)t6 + 4v ((2 − ξ)(t8 − t7) + 2v(t10 + t11))
}

,

H1⊥
A (αs) =

√

ξN
{

(8 − 3ξ)v − 1

2
(72 − 38ξ + 3ξ2)t3 +

(

8 + ξ −
√

ξ(10 − ξ)
)

t4 +

−(8 + ξ)t5 + 4 ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

,

H2⊥
A (αs) =

√

ξN
{

− (20 − 3ξ)v − 1

2
(32 − 14ξ − 3ξ2)t3 + ξ(1 −

√

ξ)t4 +

−ξt5 + 4 ((2 − ξ)(t8 − t9) + 2v(t10 + 2t12))
}

, (1.28)

H1N
I (αs) = −2

√

ξNv2π = H2N
I (αs),



22 CHAPTER 1. POLARIZATION AND HEAVY QUARKS

H3N
A (αs) =

√

ξN
{

20 + 9ξ −
√

ξ(26 + 3ξ) − 1

4
(24 − 2ξ − 3ξ2)(t1 − t2) +

+2(1 − 6ξ)vt3 − (8 − 13ξ)t6 − 4v ((2 − ξ)(t8 − t7) + 2v(t10 + t11))
}

,

H4N
A (αs) = 2

√

ξN(1 + ξ)vπ (1.29)

where N = αsNcCF q
2/4πv. The results in this section are given in terms of the projections

HU , HL, HF , HI , and HA. Because of practical reasons the new results depending on the
exact gluon energy cut shown in the following section are presented not for HU but for

HU+L = HU +HL. (1.30)

It is left to the reader or the program which uses these expressions to calculate the
difference HU+L −HL.

1.1.3 Exact calculation up to the gluon energy cut

Starting with this section, the cal-
culations for the O(αs) correction
with an exact gluon energy cut
are presented [23]. The gluon en-
ergy cut is given by the constraint
EG/

√
q2 = p3 · q/q2 ≤ λ which

reads y + z ≤ 2λ in terms of the
phase space variables y and z in-
troduced earlier. The phase space
looked at is shown in Fig. 1.1
for the parameters ξ = 0.1 and
λ = 0.3. The cut is shown
as off-diagonal straight line which
cuts the boundary of the phase
space at the two symmetric points
(y, z) = (y1, y2) and (y2, y1). The
boundary curves of the full phase
space are given by Figure 1.1: Phase space plot with gluon cut

z± =
2y − 2y2 − ξy ± 2y

√

(1 − y)2 − ξ

4y + ξ
=

A± B
C . (1.31)

One obtains

y1 = λ



1 −
√

1 − 2λ− ξ

1 − 2λ



 , y2 = λ



1 +

√

1 − 2λ− ξ

1 − 2λ



 . (1.32)

The integrals that have to be calculated (see Refs. [7, 8, 15, 16]) are given by

Ĩ(l,m) =
∫ ∫

ylzmdy dz, S̃(l,m) =
∫ ∫

ylzmdy dz
√

(1 − y)2 − ξ
,

J̃(l,m) =
∫ ∫ ylzmdy dz

(1 − y)2 − ξ
, T̃ (l,m) =

∫ ∫ ylzmdy dz

((1 − y)2 − ξ)3/2
. (1.33)
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For simplicity the principles of the new calculations should be presented only in case of
the integration class Ĩ where intermediate steps lead to a mixture with the class S̃. It is
left to the skills of the reader to translate the present results to the other integral classes.

One can see that the integration can be done by dividing the integration range into
two parts, a part from y = 0 to y = y1 and a part from y = y1 to y = y2,

Ĩ(l,m) =
∫ y1

0

∫ z+

z−
ylzmdy dz +

∫ y2

y1

∫ 2λ−y

z−
ylzmdy dz. (1.34)

Note, though, that this only holds as long as y2 has not reached its upper limit at y =
1−√

ξ. This point is irrelevant at the moment but will be discussed later, the calculation
of these diagrams is explained in Appendix C.1.

1.1.4 The gluon cut results

The results using the exact gluon energy cut read (again with N = αsNcCF q
2/4πv)

H1
U+L = N

{

(4 − ξ)(2 − ξ)(t0− − t0+ − t1− + t1+) − 1

4
(4 − ξ)(2 + 3ξ)v+

+(4 − ξ)ℓ4+ − 1

16
(32 + 40ξ − 12ξ2 + 3ξ3)ℓ6+ +

+
1

2
(32λ− 16λ2 − 4ξ − 8λξ − 4λ2ξ + ξ2)(ℓ7+ − ℓ8+) +

+
(

2(4 − ξ)y1 −
1

2
(4 + ξ)y2

1

)

ℓ1 −
(

2(4 − ξ)y2 −
1

2
(4 + ξ)y2

2

)

ℓ2 +

− 1

16
(128 − 52ξ + 5ξ2 − 8ξy1)v1 + (4 + ξ)

bξ
√
ξ

8(b− aw1)
+

− 1

16
(224 − 192λ− 52ξ + 16λξ + 5ξ2)y1 +

1

2
ξy2

1 +

− 1

16
(128 − 52ξ + 5ξ2 − 8ξy2)v2 − (4 + ξ)

bξ
√
ξ

8(b+ aw2)
+

+
1

16
(224 − 192λ− 52ξ + 16λξ + 5ξ2)y2 −

1

2
ξy2

2

}

(1.35)

H2
U+L = ξN

{

3(2 − ξ)(t0− − t0+ − t1− + t1+) +
3

4
(10 − ξ)v +

1

16
(8 − 32ξ + 3ξ2)ℓ6+ +

+3ℓ4+ +
1

2
(24λ+ 4λ2 − 3ξ)(ℓ7+ − ℓ8+) +

(

6y1 +
1

2
y2

1

)

ℓ1 −
(

6y2 +
1

2
y2

2

)

ℓ2 +

− 1

16
(152 − 5ξ + 8y1)v1 −

bξ
√
ξ

8(b− aw1)
− 1

16
(152 − 16λ− 5ξ)y1 −

1

2
y2

1 +

− 1

16
(152 − 5ξ + 8y2)v2 +

bξ
√
ξ

8(b+ aw2)
+

1

16
(152 − 16λ− 5ξ)y2 +

1

2
y2

2

}

(1.36)

H4ℓ
U+L = N

{

4v ((2 − ξ)(t0− + t0+) − 2v(t1− + t1+)) − 1

2
(1 +

√

ξ)(2 −
√

ξ)2 + 4vℓ4−+
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−2(3 − ξ)vℓ5− − ξ

4
(20 + 3ξ)ℓ6− − 2

vλ
(3 − 14λ+ 20λ2 − 8λ3 − 3ξ + 4λξ)ℓ7− +

+
2

v
(3 − 8λ+ 4λ2 − 3ξ + 8λξ − 2λ2ξ)ℓ8− − 2(3 − y1 − ξ)v1ℓ1 + 2(3 − y2 − ξ)v2ℓ2 +

+
1

4
(48 − 48λ− 5ξ − 8y1)v1 −

4λξv1

y1

+
bξ
√
ξ

2(b− aw1)
+

1

4
(32 − 5ξ)y1 − 2y2

1 +

−1

4
(48 − 48λ− 5ξ − 8y2)v2 +

4λξv2

y2
+

bξ
√
ξ

2(b+ aw2)
+

1

4
(32 − 5ξ)y2 − 2y2

2

}

(1.37)

H1
L = N

{

ξ(2 − ξ)(t0− − t0+) − 2ξ(2 + ξ)(t1− − t1+) −
√

ξ(1 −
√

ξ)(2 + 4
√

ξ − 3ξ)tw +

+
1

4
(16 − 54ξ + 3ξ2)v + ξℓ4+ + 16ξℓ5+ +

ξ

16
(8 + 8ξ − 3ξ2)ℓ6+ +

− ξ

2v2
λ

(8λ− 28λ2 + 16λ3 + 16λ4 + ξ − 12λξ − 8λ2ξ − ξ2)ℓ7+ +

− ξ

2v2
(8λ+ 4λ2 − ξ − 8λξ + ξ2)ℓ8+ − ξ

(

2y1 +
1

2
y2

1

)

ℓ1 + ξ
(

2y2 +
1

2
y2

2

)

ℓ2 +

+
2(1 − 2λ− (1 − λ)

√
ξ)

(1 − 2λ−√
ξ)(1 −√

ξ)
√
ξ
(2 − 8λ+ 8λ2 − ξ + 2λξ − 4λ2ξ + 7ξ2 − 3λξ2 +

−(2 − 6λ+ 4λ2 + 3ξ − 3λξ − 2λ2ξ + 3ξ2)
√

ξ)ℓ3 +

− 1

16
(32 − 72ξ + 5ξ2 − 8ξy1)v1 +

bξ2
√
ξ

8(b− aw1)
− 1

16
(32 − 72ξ + 16λξ + 5ξ2)y1 +

ξ

2
y2

1 +

− 1

16
(32 − 72ξ + 5ξ2 − 8ξy2)v2 −

bξ2
√
ξ

8(b+ aw2)
+

1

16
(32 − 72ξ + 16λξ + 5ξ2)y2 −

ξ

2
y2

2

}

H2
L = ξN

{

(2 − ξ)(t0− − t0+) − 2v2(t1− − t1+) −
√

ξ(1 −
√

ξ)tw +
1

4
(22 − 3ξ)v+

+ℓ4+ +
1

16
(8 − 8ξ + 3ξ2)ℓ6+ +

1

2
(8λ+ 4λ2 − ξ)(ℓ7+ − ℓ8+) − 2λ2ξ

v2
ℓ8+ +

+
(

2y1 +
1

2
y2

1

)

ℓ1 −
(

2y2 +
1

2
y2

2

)

ℓ2 + 2
1 − 2λ− (1 − λ)

√
ξ

(1 −
√
ξ)
√
ξ

(1 − 2λ− ξ + λ
√

ξ)ℓ3 +

− 1

16
(72 − 5ξ + 8y1)v1 −

bξ
√
ξ

8(b− aw1)
− 1

16
(72 − 16λ− 5ξ)y1 −

1

2
y2

1 +

− 1

16
(72 − 5ξ + 8y2)v2 +

bξ
√
ξ

8(b+ aw2)
+

1

16
(72 − 16λ− 5ξ)y2 +

1

2
y2

2

}

(1.38)

H4ℓ
L = N

{

ξ(10 + 3ξ)(t1− + t1+) − ξ

2
(24 − 7ξ)ℓ6− − 4λ2ξ

v
ℓ8−+

+

(

8λ3ξ2

v3
λ

+
3
√
ξ

2wλ
(2 −

√

ξ)(1 −
√

ξ)2 − 3
√
ξwλ
2

(2 +
√

ξ)(1 +
√

ξ)2 − 4ξvλ

)

ℓ7− +

+

(

3
√
ξ

2w0

(2 −
√

ξ)(1 −
√

ξ)2 − 3
√
ξw0

2
(2 +

√

ξ)(1 +
√

ξ)2 − 4ξv

)

(ℓ5− − ℓ8−) +
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+

(

3
√
ξ

2w1
(2 −

√

ξ)(1 −
√

ξ)2 − 3
√
ξw1

2
(2 +

√

ξ)(1 +
√

ξ)2 − 4ξv1

)

ℓ1 +

−
(

3
√
ξ

2w2
(2 −

√

ξ)(1 −
√

ξ)2 − 3
√
ξw2

2
(2 +

√

ξ)(1 +
√

ξ)2 − 4ξv2

)

ℓ2 +

+
1 − 2λ− (1 − λ)

√
ξ

(1 − 2λ−
√
ξ)
√
ξ

{

2 − 8λ+ 8λ2 − 7ξ + 5λξ + 2λ2ξ − 3ξ2 +

−(1 − 6λ+ 8λ2 − 9ξ + 3λξ)
√

ξ

}

(

1

w1

− 1

w2

)

+

−1 − 2λ+ (1 − λ)
√
ξ

(1 − 2λ+
√
ξ)
√
ξ

{

2 − 8λ+ 8λ2 − 7ξ + 5λξ + 2λ2ξ − 3ξ2 +

+(1 − 6λ+ 8λ2 − 9ξ + 3λξ)
√

ξ

}

(w1 − w2) +

+(2 + 7ξ)v1 + (2 + 7ξ)y1 − (2 + 7ξ)v2 + (2 + 7ξ)y2

}

(1.39)

H1ℓ
F = N

{

2(2 − ξ)2(t0− − t0+) − (8 + 2ξ + ξ2)(t1− − t1+) +

+
√

ξ(1 −
√

ξ)(2 −
√

ξ)(4 +
√

ξ)tw +

−2(6 + ξ)v + 2(2 − ξ)ℓ4+ + 8ξℓ5+ − 1

2
(4 + 6ξ − 3ξ2)ℓ6+ +

+
1

v2
λ

(16λ− 72λ2 + 96λ3 − 32λ4 − 2ξ − 20λξ + 40λ2ξ − 32λ3ξ +

+3ξ2 + 8λξ2 + 4λ2ξ2 − ξ3)ℓ7+ +

− 1

v2
(16λ− 8λ2 − 2ξ − 24λξ + 4λ2ξ + 3ξ2 + 8λξ2 + 2λ2ξ2 − ξ3)ℓ8+ +

+4(1 − 2λ)(3 − 2λ)ℓ9+ + (2(4 − 3ξ)y1 − 2y2
1)ℓ1 − (2(4 − 3ξ)y2 − 2y2

2)ℓ2 +

− 2(1 − 2λ− (1 − λ)
√
ξ)

(1 − 2λ−√
ξ)(1 −√

ξ)

(

6 − 16λ+ 8λ2 + 11ξ − 5λξ + 2λ2ξ − ξ2 +

−(15 − 22λ+ 8λ2 + ξ + λξ)
√

ξ
)

ℓ3 +

−3

4
(4 − 7ξ − 4y1)v1 +

bξ
√
ξ

2(b− aw1)
− 1

4
(16 + 16λ− 21ξ)y1 + 3y2

1 +

−3

4
(4 − 7ξ − 4y2)v2 −

bξ
√
ξ

2(b+ aw2)
+

1

4
(16 + 16λ− 21ξ)y2 − 3y2

2

}

(1.40)

H2ℓ
F = ξN

{

2(2 − ξ)(t0− − t0+) − (4 − ξ)(t1− − t1+) +
√

ξ(1 −
√

ξ)tw + 2v + 2ℓ4+ +

−3

2
ξℓ6+ + (8λ− ξ)ℓ7+ − 1

v2
(8λ− ξ − 8λξ − 2λ2ξ + ξ2)ℓ8+ + 4y1ℓ1 − 4y2ℓ2 +

−2
1 − 2λ− (1 − λ)

√
ξ

(1 −
√
ξ)
√
ξ

(1 − 2λ− ξ + λ
√

ξ)ℓ3 − 5v1 − 5y1 − 5v2 + 5y2

}

(1.41)
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H4
F = N

{

4v(2 − ξ)(t0− + t0+) − 2(4 − 5ξ)(t1− + t1+) − 1

2
(1 +

√

ξ)(2 −
√

ξ)2 +

+4vℓ4− − 6vℓ5− − 8ξℓ6− − 2

vλ
(3 − 14λ+ 20λ2 − 8λ3 − 2ξ − ξ2)ℓ7− +

+
2

v
(3 − 8λ+ 4λ2 − 2ξ + 8λξ − ξ2)ℓ8− + 4(1 − 2λ)(3 − 2λ)ℓ9− +

−2(3 − y1)v1ℓ1 + 2(3 − y2)v2ℓ2 +

+
1

4
(12 + 16λ+ ξ − 4y1)v1 +

bξ
√
ξ

2(b− aw1)
− 4λξv1

y1

+
1

4
(24 + ξ)y1 − y2

1 +

−1

4
(12 + 16λ+ ξ − 4y2)v2 +

bξ
√
ξ

2(b+ aw2)
+

4λξv2

y2
+

1

4
(24 + ξ)y2 − y2

2

}

(1.42)

H4⊥
I =

√

ξN

{

− 2v(2 − ξ)(t0− + t0+) +
1

2
(16 + 7ξ)(t1− + t1+) +

+
1

4
(1 +

√

ξ)(2 −
√

ξ)2 − 2vℓ4− − 1

8
(72 − 30ξ − 3ξ2)ℓ6− +

−
(

ξv

2
+

3(2 −√
ξ)(1 −√

ξ)2

2w0
+

3(2 +
√
ξ)(1 +

√
ξ)2w0

2

)

(ℓ5− − ℓ8−) +

+

(

ξ

v3
λ

(1 − 2λ− ξ)(1 − 4λ− ξ) +

−ξvλ
2

− 3(2 −
√
ξ)(1 −

√
ξ)2

2wλ
− 3(2 +

√
ξ)(1 +

√
ξ)2wλ

2

)

ℓ7− +

+
1

v
(8λ− 4λ2 − ξ − 8λξ − λ2ξ + ξ2)ℓ8− − 2(1 − 2λ)ℓ9− +

−
(

ξv1

2
+

3(2 −
√
ξ)(1 −

√
ξ)2

2w1

+
3(2 +

√
ξ)(1 +

√
ξ)2w1

2

)

ℓ1 +

+

(

ξv2

2
+

3(2 −
√
ξ)(1 −

√
ξ)2

2w2

+
3(2 +

√
ξ)(1 +

√
ξ)2w2

2

)

ℓ2 +

−1 − 2λ− (1 − λ)
√
ξ

(1 − 2λ−
√
ξ)ξ

{

2 − 8λ+ 8λ2 − 7ξ + 5λξ + 2λ2ξ − 3ξ2 +

−(1 − 6λ+ 8λ2 − 9ξ + 3λξ)
√

ξ

}

(

1

w1
− 1

w2

)

+

−1 − 2λ+ (1 − λ)
√
ξ

(1 − 2λ+
√
ξ)ξ

{

2 − 8λ+ 8λ2 − 7ξ + 5λξ + 2λ2ξ − 3ξ2 +

+(1 − 6λ+ 8λ2 − 9ξ + 3λξ)
√

ξ

}

(w1 − w2) +

+
1

8
(28 + 5ξ)v1 +

2λξv1

y1
− bξ

√
ξ

4(b− aw1)
+

1

8
(28 + 5ξ)y1 +

−1

8
(28 + 5ξ)v2 −

2λξv2

y2

− bξ
√
ξ

4(b+ aw2)
+

1

8
(28 + 5ξ)y2

}

(1.43)
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H1⊥
A =

√

ξN

{

− 2(2 − ξ)(t0− − t0+) +
1

2
(16 − 3ξ)(t1− − t1+) +

+
1

2
(4 +

√

ξ)(2 −
√

ξ)(1 −
√

ξ)tw +
1

2
(16 − 3ξ)v +

−2ℓ4+ − 2(7 − ξ)ℓ5+ +
1

8
(8 − 6ξ + 3ξ2)ℓ6+ − 2(1 − 2λ)ℓ9+ − ξ

2
y1ℓ1 +

ξ

2
y2ℓ2 +

+
ξ

v2
λ

(1 − 5λ+ 4λ2 − 4λ3 − ξ + λξ)ℓ7+ +
1

v2
(8λ− 4λ2 − ξ − 8λξ + 5λ2ξ + ξ2)ℓ8+ +

− 1 − 2λ− (1 − λ)
√
ξ

(1 − 2λ−√
ξ)(1 −√

ξ)
√
ξ

(

6 − 16λ+ 8λ2 + 11ξ − 5λξ + 2λ2ξ − ξ2 +

−(15 − 22λ+ 8λ2 + ξ + λξ)
√

ξ
)

ℓ3 +

+
1

8
(4 + 5ξ)v1 −

bξ
√
ξ

4(b− aw1)
+

1

8
(4 + 5ξ)y1 +

+
1

8
(4 + 5ξ)v2 +

bξ
√
ξ

4(b+ aw2)
− 1

8
(4 + 5ξ)y2

}

(1.44)

H2⊥
A =

√

ξN

{

− 2(2 − ξ)(t0− − t0+) +
1

2
(8 − 3ξ)(t1− − t1+) +

ξ

2
(1 −

√

ξ)tw +

−3

2
(4 − ξ)v − 2ℓ4+ − 2(1 + ξ)ℓ5+ − 1

8
(2 − ξ)(4 − 3ξ)ℓ6+ − (8λ− ξ − λξ)ℓ7+ +

+
1

v2
(8λ+ 4λ2 − ξ − 8λξ − 3λ2ξ + ξ2)ℓ8+ + 2(1 − 2λ)ℓ9+ +

−1

2
(8 − ξ)y1ℓ1 +

1

2
(8 − ξ)y2ℓ2 −

1 − 2λ− (1 − λ)
√
ξ

1 −
√
ξ

(1 − 2λ+ λ
√

ξ − ξ)ℓ3 +

+
1

8
(52 − 5ξ)v1 +

bξ
√
ξ

4(b− aw1)
+

1

8
(52 − 5ξ)y1 +

+
1

8
(52 − 5ξ)v2 −

bξ
√
ξ

4(b+ aw2)
− 1

8
(52 − 5ξ)y2

}

(1.45)

H3N
A =

√

ξN

{

2v(2 − ξ)(t0− + t0+) − 1

2
(8 − 13ξ)(t1− + t1+) +

+
1

4
(2 −

√

ξ)2(1 +
√

ξ) + 2vℓ4− − 1

2
(8 + ξ)vℓ5− +

1

8
(8 − 30ξ + 3ξ2)ℓ6− +

−
(

8 + ξ

2
vλ − ξ

1 − 2λ− ξ

vλ

)

ℓ7− +
1

2v
(8 − 16λ− 8λ2 − 5ξ + 16λξ + 2λ2ξ − 3ξ2)ℓ8− +

−2(1 − 2λ)ℓ9− − 1

2
(8 + ξ)v1ℓ1 +

1

2
(8 + ξ)v2ℓ2 +

+
1

8
(52 + 5ξ)v1 −

2λξv1

y1
− bξ

√
ξ

4(b− aw1)
+

1

8
(52 + 5ξ)y1 +

−1

8
(52 + 5ξ)v2 +

2λξv2

y2
− bξ

√
ξ

4(b+ aw2)
+

1

8
(52 + 5ξ)y2

}

(1.46)
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A remark on divergent integrals

A subtle issue which occured for the class of integrals and gives rise to IR divergences has
to be pointed out at this step. The integral

Ĩa(−1,−1) =
∫ y1

0

∫ z+

z−

dy dz

yz
=
∫ y1

0
ln

(

z+(y)

z−(y)

)

dy

y
(1.47)

contains an IR divergence which can be regularized by a gluon mass mG =
√

Λq2. This
changes the lower limit in y from 0 to y− = Λ +

√
Λξ, and the limits in z to

z±(y) =
1

4y + ξ

(

2y − 2y2 − ξy + 2Λy + 2Λ ± 2
√

(y − Λ)2 − Λξ
√

(1 − y)2 − ξ
)

. (1.48)

The integration over z, therefore, gives rise to

Ĩa(−1,−1) =
∫ y1

y−
ln





2y − 2y2 − ξy + 2Λy + 2Λ + 2
√

(y − Λ)2 − Λξ
√

(1 − y)2 − ξ

2y − 2y2 − ξy + 2Λy + 2Λ − 2
√

(y − Λ)2 − Λξ
√

(1 − y)2 − ξ





dy

y
.

(1.49)
This integral is not analytically calculable for general values of Λ. However, one can divide
it up into a divergent and a convergent part which can be calculated separately assuming
that Λ is a small parameter. The divergent part is an integral where the integrand
coincides with the original one at the divergent point, i.e. at the origin y = 0 in the
considered case. Therefore one can neglect higher powers in y in all cases where they do
not get in conflict with the value y− and obtain

D =
∫ y1

√
Λξ

ln

(

(1 + v2)y + 2v
√
y2 − Λξ

(1 + v2)y − 2v
√
y2 − Λξ

)

dy

y
. (1.50)

Before doing this approximation, the integration has been shifted by the amount −Λ
in order to make it easier for expansions in the lower boundary. This integral can be
calculated to obtain

D = ln
(

1 + v

1 − v

)

ln

(

y2
1

Λξ

)

− Li2

(

2v

(1 + v)2

)

+ Li2

(

−2v

(1 − v)2

)

+

−1

2
Li2

(

−(1 + v)2

(1 − v)2

)

+
1

2
Li2

(

−(1 − v)2

(1 + v)2

)

=

=: tp − ln
(

1 + v

1 − v

)

ln Λ. (1.51)

In the case Λ → 0 one obtains the limiting value

D → D0 = 2 ln
(

1 + v

1 − v

)

lim
ε→0

∫ y1

ε

dy

y
(1.52)

which is an ill-defined quantity for ε = 0. However, one can subtract it from the original
integral also taken in the limit Λ → 0 because the divergences cancel,

C = lim
ε→0







∫ y1

ε
ln





2 − 2y − ξ + 2
√

(1 − y)2 − ξ

2 − 2y − ξ − 2
√

(1 − y)2 − ξ





dy

y
− 2 ln

(

1 + v

1 − v

) ∫ y1

ε

dy

y







. (1.53)
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With the substitution mentioned above, one does the partial fractioning

dy

y
= − dw

w0 − w
+

dw

w0 + w
+

dw

1 − w
− dw

1 + w
. (1.54)

This gives rise to

∫ y1

ε
ln





2 − 2y − ξ + 2
√

(1 − y)2 − ξ

2 − 2y − ξ − 2
√

(1 − y)2 − ξ





dy

y
=

= I0−(w′0) − I0−(w1) − I0+(w′0) + I0+(w1) +

−I1−(w′0) + I1−(w1) + I1+(w′0) − I1+(w1), (1.55)
∫ y1

ε

dy

y
=

= I0
0−(w′0) − I0

0−(w1) − I0
0+(w′0) + I0

0+(w1) +

−I0
1−(w′0) + I0

1−(w1) + I0
1+(w′0) − I0

1+(w1) (1.56)

where w′0 is close in value to w0. Without going into detail concerning what the different
parts are, it is instructive that the divergences are now contained in the parts I0−(w′0)
and I0

0−(w′0) which contain the factor (w0 − w)−1 in the integrand. One obtains

I0−(w) = tlp − 2 ln
(

1 + v

1 − v

)

ln(w0 − w), I0
0−(w) = − ln(w0 − w) (1.57)

where tlp is a dilogarithmic decay rate term which is finite in the limit w → w0 and actually
vanishes there. Therefore, one can calculate this convergent part, add the divergent part
of the whole expression and obtains a modified term,

I ′0−(w0) := lim
w′

0→w0

(

I0−(w′0) − 2 ln
(

1 + v

1 − v

)

I0
0−(w′0)

)

+ tp − ln
(

1 + v

1 − v

)

ln Λ =

= tp − ln
(

1 + v

1 − v

)

ln Λ (1.58)

while in all other terms one can replace w′0 by w0. tp is found to be the decay rate term
tba0−(w0) as listed in Appendix C.2.2.

1.1.5 The soft gluon approximation

Using the results for an exact gluon energy cut is shown in the previous subsection,
one can also deal with the soft gluon approximation as well. Basic ingredient for this
approximation is the eikonal approximation where the gluon momentum is neglected in
the numerators of Feynman diagram contributions. This approximation leads to the fact
that the hadron tensor is proportional to the Born term, in this case

H i
µν(soft) = g2

sCF

(

p2
1

(p1p3)2
− 2(p1p2)

(p1p3)(p2p3)
+

p2
2

(p2p3)2

)

H i
µν(Born) (1.59)

(cf. the soft gluon factor in Eq. (1.132)). The Born term is independent of the dimension-
less three-body phase space variables x = EG/

√
q2 = p3q/q

2 and u = (p1 − p2)q/q
2 and

can therefore be taken out of the integral. The integral that remains is given by

h =
αsCF
4πv

∫ λ

√
Λ

∫ u+

−u+

h(x, u)dx du (1.60)
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where

h(x, u) = 8
(1 − 2x+ Λ)(u2 − (x− Λ)2) + ξ(x− Λ)2

(u2 − (x− Λ)2)
(1.61)

and

u2
+ = (x2 − Λ)

1 − 2x+ Λ − ξ

1 − 2x+ Λ
(1.62)

where Λ can be set to zero for all cases without IR divergences. After the integration over
w one obtains

h(x) = 4

(

2u+ξ

(2 − Λ)2 − u2
+

− 2 − 4x− 2Λ − ξ

x− Λ
ln

(

x− Λ + u+

x− Λ − u+

))

(1.63)

and therefore

h =
αsCF
πv

{

(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

ln

(

2λ√
Λ

)

+ 4
(

√

1 − 2λ
√

1 − 2λ− ξ − v
)

+

+2v

(

ln
(

zλ
z0

)

+ 2 ln

(

z2
0 − 1

zλz0 − 1

))

− ln z0 + 4λ ln zλ +

+(2 − ξ)

(

1

2
ln2

(

zλ
z0

)

+ 2 ln z0 ln

(

zλz0 − 1

z2
0 − 1

)

+
1

4
ln2 z0 +

+ Li2

(

2v

1 + v

)

+ Li2

(

1 − zλ
z0

)

+ Li2(1 − zλz0) − Li2(1 − z2
0)

)}

(1.64)

where

z0 =
1 + v

1 − v
, zλ =

√
1 − 2λ+

√
1 − 2λ− ξ√

1 − 2λ−
√

1 − 2λ− ξ
. (1.65)

For λ→ 0 one obtains

h → αsCF
πv

{

(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

ln

(

2λ√
Λ

)

+

+(2 − ξ)
(

1

4
ln2

(

1 + v

1 − v

)

+ Li2

(

2v

1 + v

))

}

. (1.66)

It can be shown explicitly that the hadron tensor components of the exact solution which
were presented in the previous section can be written in this limit λ → 0 as Born term
contributions times the factor given in Eq. (1.66),

H1
U+L ≈ (4 − ξ)H H2

U+l ≈ 3ξH H3
U+L ≈ 0 H4

U+L ≈ 4vH

H1
L ≈ ξH H2

L ≈ ξH H3
L ≈ 0 H4

L ≈ 0

H1
F ≈ 2(2 − ξ)H H2

F ≈ 2ξH H3
F ≈ 0 H4

F ≈ 4vH

H1
I ≈ 0 H2

I ≈ 0 H3
I ≈ 0 H4

I ≈ −2vH

H1
E ≈ 0 H2

E ≈ 0 H3
E ≈ 0 H4

E ≈ 0

H1
A ≈ −2

√

ξH H2
A ≈ −2

√

ξH H3
A ≈ 0 H4

A ≈ 0

H1
R ≈ 0 H2

R ≈ 0 H3
R ≈ −2v

√

ξH H4
R ≈ 0 (1.67)
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Figure 1.2: Total cross section in dependence on λ/λmax where λmax = (1 − ξ)/2 for
the exact integration up to the gluon energy cut λ (solid curves) and the soft gluon
approximation (dashed curves) for center-of-mass energies

√
s = 400GeV, 500GeV, and

1000GeV. For the (running) quark mass one takes the value mt = 175GeV.

with

H = −2
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

ln

(

2λ√
Λ

)

− (2 − ξ)t0 + 2 ln
(

1 + v

1 − v

)

. (1.68)

where the limits for the decay reate terms are found in Appendix C.3. A remark is in order
here, related to the notation for the hadron tensor components. The Indices U , L and F
represent the 1

2
(1 + cos2 θ), sin2 θ and cos θ dependent parts (θ is the polar angle). They

will occur in the longitudinal polarized and unpolarized case. The other components
contribute to the transverse polarized case in the beam plane. For the perpendicular
polarization one has

H⊥I := HI for the sin(2θ) dependence, H⊥A := HA for the sin θ dependence
(1.69)

while for the normal polarization one has

HN
I := HE for the sin(2θ) dependence, HN

A := −HR for the sin θ dependence.
(1.70)

Both calculations can be seen to have the same limit. In addition to these considerations,
the exact result has also been compared with the result for the soft gluon approximation.
In Fig. 1.2 the total cross section for the exact integration and the soft gluon approxima-
tion for three different center-of-mass energies is shown.

1.1.6 The full phase space limit

One may finally consider the second possible limit, namely λ→ λmax = (1−ξ)/2 in which
case the whole phase space is used. However, as have been mentioned earlier, the limit
cannot be taken for the exact expressions because the division of the phase space into the
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two parts does only work up to λ = (1−
√
ξ)/(2−

√
ξ) where y2 takes the maximal value

1 −
√
ξ. Starting from this point, the limit y2 decreases again in order to finally coincide

with the limit y1 at λ = y1 = y2 = (1 − ξ)/2. The splitting of the integration as defined
before works only up to λ = (1 −

√
ξ)/2. For λ = (1 − ξ)/2 the portion of the phase

space to the right of y2 have to be taken into account as well. Therefore, one has to add
correcting integrals of the kind

Ĩc(l,m) =
∫ 1−

√
ξ

y2

∫ z+

z−
ylzmdy dz. (1.71)

This integral type has the same decomposition as Ĩo and Ĩab because only the limits are
changed. One therefore constructs

Ŝc(k, l) =
∫ 1−

√
ξ

y2

yldy

(4y + ξ)k
=

= (1 +
√

ξ)l
∫ w2

0

(

1 − w2

b2 − a2w2

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
, (1.72)

Îbac (l) =
∫ 1−

√
ξ

y2
ln

(

z+(y)

z−(y)

)

yldy =

= (1 +
√

ξ)l
∫ w2

0
ln

(

(1 + w)(b+ aw)

(1 − w)(b− aw)

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
(1.73)

via Ŝc(k, l) = Sab(k, l, w2) − Sab(k, l, 0). It is no problem to add these issues to the
procedure. However, one can already see from the very beginning that the result will be
the same as for the old calculations without intersection because the integrals with range
from y1 to y2 vanish and one is left with the integrals with subscripts o and c which sum
up to the full integral,

Ĩ(l,m) = Ĩo(l,m) + Ĩc(l,m) =

=
∫ (1−ξ)/2

0

∫ z+

z−
ylzmdy dz +

∫ 1−
√
ξ

(1−ξ)/2

∫ z+

z−
ylzmdy dz =

=
∫ 1−

√
ξ

0

∫ z+

z−
ylzmdy dz. (1.74)

It is expected, therefore, that the result will be the same as for the calculation taking
the whole phase space without dividing it by a gluon energy cut [15, 16, 8]. In order to
prove this expectation, the missing phase space integration has been calculated. Using
corrected decay rate terms given in Appendix C.4, the results for this additional phase
space portion (with general value of y2) are given by

H1
U+L = N

{

(4 − ξ)(2 − ξ)(tc0− − tc0+ − tc1− + tc1+) − 4(4 − ξ)vℓc4+ +

+
(

1

16
(32 + 40ξ − 12ξ2 + 3ξ3) + 2(4 − ξ)y2 −

1

2
(4 + ξ)y2

2

)

ℓc2 +

+
1

8
(128 − 52ξ + 5ξ2 − 8ξy2)v2 − (4 + ξ)

ξ(4− ξ)v2

8(4y2 + ξ)

}

, (1.75)
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H2
U+L = ξN

{

3(2 − ξ)(tc0− − tc0+ − tc1− + tc1+) − 12vℓc4+ +

−
(

1

16
(8 − 32ξ + 3ξ2) − 6y2 −

1

2
y2

2

)

ℓc2 +
1

8
(152 − 5ξ + 8y2)v2 +

ξ(4 − ξ)v2

8(4y2 + ξ)

}

, (1.76)

H4ℓ
U+L = N

{

4(2 − ξ)v(tc0− + tc0+) − 8(1 − ξ)(tc1− + tc1+) − 8(1 − ξ)ℓc4−+

+
1

2
(32 − 12ξ + 3ξ2)ℓc5− +

1

4
ξ(20 + 3ξ)ℓc6− − 16(1 − ξ)ℓc7− − 2(3 − y2 − ξ)v2ℓ

c
2 +

+
1

2
(24 − 16

√

ξ − 13ξ + 7ξ
√

ξ) − 1

2
(32 − 5ξ)y2 + 4y2

2 − ξ(2 −
√

ξ)21 − y2 +
√
ξ

2(4y2 + ξ)

}

,

(1.77)

H1
L = N

{

ξ(2 − ξ)(tc0− − tc0+) − 2ξ(2 + ξ)(tc1− − tc1+) −
√

ξ(2 + 2
√

ξ − 7ξ + 3ξ
√

ξ)tcw +

−4ξvℓc4+ + 16ξℓc5+ − ξ
(

1

16
(8 + 8ξ − 3ξ2) + 2y2 +

1

2
y2

2

)

ℓc2 +

+
1

8
(32 − 72ξ + 5ξ2 − 8ξy2)v2 −

ξ2(4 − ξ)v2

8(4y2 + ξ)

}

, (1.78)

H2
L = ξN

{

(2 − ξ)(tc0− − tc0+) − 2(1 − ξ)(tc1− − tc1+) −
√

ξ(1 −
√

ξ)tcw − 4vℓc4+ +

−
(

1

16
(8 − 8ξ + 3ξ2) − 2y2 −

1

2
y2

2

)

ℓc2 +
1

8
(72 − 5ξ + 8y2)v2 +

ξ(4 − ξ)v2

8(4y2 + ξ)

}

, (1.79)

H4ℓ
L = N

{

ξ(10 + 3ξ)(tc1− + tc1+) + ξ(24 − 7ξ)ℓc5− +
1

2
ξ(24 − 7ξ)ℓc6−+

+

(

3
√
ξ

2w2

(2 −
√

ξ)(1 −
√

ξ)2 − 3
√
ξw2

2
(2 +

√

ξ)(1 +
√

ξ)2 − 4ξv2

)

ℓc2 +

+2(1 −
√

ξ)(2 − 6
√

ξ + 13ξ) − 2(2 + 7ξ)y2

}

, (1.80)

H1ℓ
F = N

{

2(2 − ξ)2(tc0− − tc0+) − (8 + 2ξ + ξ2)(tc1− − tc1+) +

+
√

ξ(8 − 10
√

ξ + ξ + ξ
√

ξ)tcw − 8(2 − ξ)vℓc4+ + 8ξℓc5+ +

+
(

1

2
(4 + 6ξ − 3ξ2) + 2(4 − 3ξ)y2 − 2y2

2

)

ℓc2 +
3

2
(4 − 7ξ − 4y2)v2 −

ξ(4 − ξ)v2

2(4y2 + ξ)

}

,

(1.81)

H2ℓ
F = ξN

{

2(2 − ξ)(tc0− − tc0+) − (4 − ξ)(tc1− − tc1+) +

+
√

ξ(1 −
√

ξ)tcw − 8vℓ4+ +
(

3

2
ξ + 4y2

)

ℓc2 + 10v2

}

, (1.82)

H4
F = N

{

4(2 − ξ)v(tc0− + tc0+) − 2(4 − 5ξ)(tc1− + tc1+) − 8(1 − ξ)ℓc4−+

+16ℓc5− + 8ξℓc6− − 16(1 − ξ)ℓc7− − 2(3 − y2)v2ℓ
c
2 +
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+
1

2
(20 − 16

√

ξ − 3ξ + ξ
√

ξ) − 1

2
(24 + ξ)y2 + 2y2

2 − ξ(2 −
√

ξ)21 − y2 +
√
ξ

2(4y2 + ξ)

}

, (1.83)

H4⊥
I =

√

ξN

{

− 2(2 − ξ)v(tc0− + tc0+) +
1

2
(16 + 7ξ)(tc1− + tc1+) + 4(1 − ξ)ℓc4−+

+
1

4
(4 − ξ)(10 + 3ξ)ℓc5− +

1

8
(72 − 30ξ − 3ξ2)ℓc6− +

+8(1 − ξ)ℓc7− −
(

ξv2

2
+

3

2w2
(2 −

√

ξ)(1 −
√

ξ)2 +
3w2

2
(2 +

√

ξ)(1 +
√

ξ)2

)

ℓc2 +

+
1

4
(76 − 124

√

ξ + 53ξ − 7ξ
√

ξ) − 1

4
(28 + 5ξ)y2 + ξ(2 −

√

ξ)21 − y2 +
√
ξ

4(4y2 + ξ)

}

, (1.84)

H1⊥
A =

√

ξN

{

− 2(2 − ξ)(tc0− − tc0+) +
1

2
(16 − 3ξ)(tc1− − tc1+) +

+
1

2
(8 − 10

√

ξ + ξ + ξ
√

ξ)tcw + 8vℓc4+ − 2(7 − ξ)ℓc5+ +

−
(

1

8
(8 − 6ξ + 3ξ2) +

1

2
ξy2

)

ℓc2 −
1

4
(4 + 5ξ)v2 +

ξ(4 − ξ)v2

4(4y2 + ξ)

}

, (1.85)

H2⊥
A =

√

ξN

{

− 2(2 − ξ)(tc0− − tc0+) +
1

2
(8 − 3ξ)(tc1− − tc1+) +

1

2
ξ(1 −

√

ξ)tcw + 8vℓc4+ +

−2(1 + ξ)ℓc5+ +
(

1

8
(2 − ξ)(4 − 3ξ) − 1

2
(8 − ξ)y2

)

ℓc2 −
1

4
(52 − 5ξ)v2 −

ξ(4 − ξ)v2

4(4y2 + ξ)

}

,

(1.86)

H3N
A =

√

ξN

{

2(2 − ξ)v(tc0− + tc0+) − 1

2
(8 − 13ξ)(tc1− + tc1+) − 4(1 − ξ)ℓc4−+

+
1

4
(24 − 2ξ − 3ξ2)ℓc5− − 1

8
(8 − 30ξ + 3ξ2)ℓc6− − 8(1 − ξ)ℓc7− − 1

2
(8 + ξ)v2ℓ

c
2 +

+
1

4
(52 − 52

√

ξ + 5ξ − 7ξ
√

ξ) − 1

4
(52 + 5ξ)y2 + ξ(2 −

√

ξ)2 1 − y2 +
√
ξ

4(4y2 + ξ)

}

(1.87)

One can check that the sum of both contributions reproduces the result for the full phase
space for y2 = (1 − ξ)/2.

1.2 Longitudinal spin-spin correlation

In this section the O(αs) radiative corrections to longitudinal spin-spin correlations and
their polar angle dependence for massive quark pairs produced in e+e− annihilations is
calcutated. This covers the case where the polar angle is averaged as well as the polar
angle dependent calculation presented in Refs. [18, 24]. The interesting result is obtained
that the longitudinal spin-spin correlation in heavy quark pair production is 100% at the
Born term level in the forward and backward directions and remains very close to 100%
after the radiative corrections are applied.

The longitudinal polarization of massive quarks affects the shape of the energy spec-
trum of their secondary decay leptons. Thus longitudinal spin-spin correlation effects in
pair produced quarks and antiquarks will lead to correlation effects of the energy spectra
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of their secondary decay leptons and antileptons. As a byproduct of the calculation the
m → 0 limit and the role of the O(αs) residual mass effects is discussed in this section,
also for the single spin case. It will be delineated how residual mass effects contribute to
the various spin-flip and no-flip terms in the m → 0 limit for each of the three structure
functions that describe the polar angle dependence.

1.2.1 Joint quark-antiquark density matrix

An extension of the no-spin and single spin cross sections considered in the previous
section, the natural generalization consists in the differential joint quark-antiquark density
matrix

dσα = dσαλ1λ2;λ′1λ
′

2
(1.88)

where λ1 and λ2 denote the helicities of the quark and antiquark, respectively. In this
section the longitudinal polarization of the quark and antiquark is of main interest, in
particular the longitudinal spin-spin correlations. Thus one specifies to the diagonal
case λ1 = λ′1 and λ2 = λ′2. The label α specifies the polarization of the initial γ∗, Z
or interference contributions thereof. The longitudinal spin-spin correlation and its polar
angle dependence is expressed as before by the three polarization components U , L and F .

The diagonal part of the differential joint density matrix can be represented in terms
of its components along the products of the unit matrix and the z-components of the
Pauli matrix σ3 (σ3 = p̂1~σ for the quark and σ3 = p̂2~σ for the antiquark, p̂i = ~pi/|~pi|).
One has

dσα =
1

4

(

dσα1l ⊗ 1l + dσ(ℓ1)
α σ3 ⊗ 1l + dσ(ℓ2)

α 1l ⊗ σ3 + dσ(ℓ1ℓ2)
α σ3 ⊗ σ3

)

(1.89)

where the first and the second Pauli matrices stand for the quark and the antiquark,
respectively. An alternative but equivalent representation of the longitudinal spin contri-
butions can be written down in terms of the longitudinal spin components sℓ1 = 2λ1 and
sℓ2 = 2λ2 with sℓ1, s

ℓ
2 = ±1 (or sℓ1, s

ℓ
2 ∈ {↑, ↓}). One has

dσ(sℓ1, s
ℓ
2) =

1

4

(

dσα + dσ(ℓ1)
α sℓ1 + dσ(ℓ2)

α sℓ2 + dσ(ℓ1ℓ2)
α sℓ1s

ℓ
2

)

. (1.90)

Eq. (1.90) is easily inverted,

dσα = dσα(↑↑) + dσα(↑↓) + dσα(↓↑) + dσα(↓↓),
dσ(ℓ1)

α = dσα(↑↑) + dσα(↑↓) − dσα(↓↑) − dσα(↓↓),
dσ(ℓ2)

α = dσα(↑↑) − dσα(↑↓) + dσα(↓↑) − dσα(↓↓),
dσ(ℓ1ℓ2)

α = dσα(↑↑) − dσα(↑↓) − dσα(↓↑) + dσα(↓↓). (1.91)

O(αs) radiative corrections to the rate component dσα have been discussed in Refs. [7, 14],
beam polarization effects [8] and beam-event correlation effects [8, 9] have been included.
The O(αs) radiative corrections to the longitudinal spin component dσ(ℓ1)

α have been
calculated in Ref. [7] including again beam polarization and beam-event correlation ef-
fects [8]. As concerns the longitudinal spin-spin correlation component dσ(ℓ1ℓ2)

α , the O(αs)
tree graph contributions have been determined in Ref. [25]. The full O(αs) radiative cor-
rections to the fully integrated spin-spin correlation component σ(ℓ1ℓ2)

α are calculated in
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Refs. [17] and [18] where beam-event correlation effects were averaged out while the polar
angle dependence of the longitudinal spin-spin correlations, i.e. the polar angle structure
induced by the rate and spin-spin correlation components dσα and dσ(ℓ1ℓ2)

α have been
determined in Ref. [24].

As before, the electro-weak cross section and the spin-spin correlation components are
written in modular form in terms of two building blocks [3] (see Eq. (1.4)). Since the
electro-weak model dependence and the polar angle dependence of dσα and dσ(ℓ1ℓ2)

α are
the same, a compact notation dσ{ℓ1ℓ2}α is introduced where dσ{ℓ1ℓ2}α stand for either dσα or
dσ(ℓ1ℓ2)

α . Thus one writes

dσ{ℓ1ℓ2}

d cos θ
=

3

8
(1 + cos2 θ)

(

g11σ
1{ℓ1ℓ2}
U + g12σ

2{ℓ1ℓ2}
U

)

+
3

4
sin2 θ

(

g11σ
1{ℓ1ℓ2}
L + g12σ

2{ℓ1ℓ2}
L

)

+
3

4
cos θ

(

g43σ
3{ℓ1ℓ2}
F + g44σ

4{ℓ1ℓ2}
F

)

. (1.92)

The index i = 1, 2, 3, 4 in σi{ℓ1ℓ2}α runs over the four possible linear combinations of bilinear
products of vector and axial vector currents. θ is the polar angle between the electron
beam direction and the top quark direction. The components gij (i, j = 1, 2, 3, 4) of the
electro-weak coupling matrix can be found in Appendix A.

1.2.2 Born term and loop contributions

Born term and loop contribution contribute to the longitudinal spin-spin correlation com-
ponents given by

σ{ℓ1ℓ2}α =
πα2v

3q4
H i{ℓ1ℓ2}
α

(

with v =
√

1 − 4m2
q/q

2
)

(1.93)

where the helicity structure functions H i{ℓ1ℓ2}
α (α = U,L, F ) are obtained from the hadron

tensor components H i{ℓ1ℓ2}
µν via covariant projection. While the Born term contributions

for the unpolarized and single spin contributions are already given in the previous section,
the Born term contributions to the spin correlated two-body hadron tensor components
are given by

H
1(ℓ1ℓ2)
U (Born) = −2Ncq

2(1 + v2),

H
2(ℓ1ℓ2)
U (Born) = −2Ncq

2(1 − v2),

H
1(ℓ1ℓ2)
L (Born) = H

2(ℓ1ℓ2)
L (Born) = Ncq

2(1 − v2),

H
4(ℓ1ℓ2)
F (Born) = −4Ncq

2v. (1.94)

The loop contributions for the longitudinal spin-spin components read

H
1(ℓ1ℓ2)
U (loop) = −4Ncq

2(ReA+ v2 ReC),

H
2(ℓ1ℓ2)
U (loop) = −4Ncq

2(ReA− v2 ReC),

H
1(ℓ1ℓ2)
L (loop) = H

2(ℓ1ℓ2)
L (loop) = 2Ncq

2(ξReA + v2 ReB),

H
4(ℓ1ℓ2)
F (loop) = −4Ncq

2v(ReA + ReC). (1.95)
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There is also a contribution coming from the imaginary part of the vertex correction
which multiplies the imaginary part of the Breit–Wigner function of the Z resonance as
indicated in the electro-weak model parameters g43 and g13. The relevant hadron tensor
component results from the V/A interference term in the F projection. The contribution
is given by

H
3(ℓ1ℓ2)
F (loop) = −8Ncq

2v ImB. (1.96)

These contributions are rather small especially if one is far away from the Z resonance.

1.2.3 Three-body tree graph contributions

In the three-body case e+e− → qq̄G the hadron tensor components H i{ℓ1ℓ2}
α (y, z) are

related to the components of the cross section by

dσi{ℓ1ℓ2}a

dy dz
=

πα2v

3q4





q2

16π2v

4
∑

j=1

g1jH
j{ℓ1ℓ2}
a (y, z)



 for a = U,L, I

dσi{ℓ1ℓ2}a

dy dz
=

πα2v

3q4





q2

16π2v

4
∑

j=1

g4jH
j{ℓ1ℓ2}
a (y, z)



 for a = F,A (1.97)

where y = 1−2p1q/q
2 and z = 1−2p2q/q

2 are the two energy-type phase space parameters
defined earlier. Note that the three-body helicity structure functions H i{ℓ1ℓ2}

α (y, z) have a
different dimension than their two-body counterparts in Eq. (1.97), indicated by explicitly
referring to the (y, z)-dependence of the three-body structure functions. The projection
onto the three helicity structure functions U,L, F is done as for the two-body case. The
O(αs) spin dependent hadronic three-body tensor

Hµν(p1, p2, p3, s1, s2) =
∑

gluonspin

〈qq̄g|Jµ|0〉〈0|J†µ|qq̄g〉 (1.98)

can easily be calculated from the relevant Feynman diagrams. The longitudinal spin
components of the quark and antiquark can be projected out with the help of the respective
longitudinal spin vectors. They read

(sℓ1)
µ =

c1√
ξ
(
√

(1 − y)2 − ξ; 0, 0, 1 − y) (1.99)

(sℓ2)
µ =

c2√
ξ
(
√

(1 − z)2 − ξ; (1 − z) sin θ12, 0, (1 − z) cos θ12)

with

cos θ12 =
yz + y + z − 1 + ξ

√

(1 − y)2 − ξ
√

(1 − z)2 − ξ
(1.100)

where ξ = 4m2
q/q

2 = 1 − v2. In combination with the four-momenta constructed in the
previous section, this representation of spin vectors gives rise to scalar products

p1p2 =
1

2
q2(1 − y − z) −m2, p1p3 =

1

2
q2z, p2p3 =

1

2
q2y,

p1s1 = 0, p1s2 = c2
√

q2
2(1 − z)(1 − y − z) − ξ(2 − y − z)

2
√
ξ
√

(1 − z)2 − ξ
, s2

1 = −1
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p2s1 = c1
√

q2
2(1 − y)(1 − y − z) − ξ(2 − y − z)

2
√
ξ
√

(1 − y)2 − ξ
, p2s2 = 0, s2

2 = −1

p3s1 = c1
√

q2
2(1 − y)z − ξ(y + z)

2
√
ξ
√

(1 − y)2 − ξ
, p3s2 = c1

√

q2
2(1 − z)y − ξ(y + z)

2
√
ξ
√

(1 − z)2 − ξ
,

s1s2 = c1c2
2(1 − y)(1 − z)(1 − y − z) − ξ(3(1 − y − z) + y2 + yz + z2) + ξ2

ξ
√

(1 − y)2 − ξ
√

(1 − z)2 − ξ
. (1.101)

1.2.4 The full O(αs) result

After integrating the tree-graph contributions over the phase space and adding the one-
loop contributions, the full O(αs) result can again be expressed by an extended set of
decay rate terms which are given in Appendix B. In adding these two components, the
infrared singularities which are parametrized by the gluon mass cancel out. The finite
result is independent of the specific choice for the regularization procedure. The results
read

H1
U+L(αs) = N

{

− 1

4
(2 + ξ)(20 − 3ξ) +

1

4

√

ξ(32 + 12ξ + 3ξ2) +

+(4 − 3ξ)

(

2 − ξ

2
(t8 − t16) + v(t10 + 2t12) −

1

8v2
(4 − ξ)(8 − 3ξ − ξ2)t13

)

+

+
1

8v
(88 − 78ξ − 5ξ2 + 3ξ3) +

1

4v3
(32 − 88ξ + 76ξ2 − 19ξ3)t15 +

−1

2
(8 − 10ξ + ξ2)t14 −

1

4v2

(

16 − 42ξ + 31ξ2 − 4ξ3 + 8v3(4 − 3ξ)
)

t3

}

, (1.102)

H2
U+L(αs) = ξN

{

1

4
(58 − 3ξ) − 1

4

√

ξ(56 + 3ξ) − 1

8v
(54 − 65ξ + 3ξ2) +

+
2 − ξ

2
(t8 − t16) + v(t10 + 2t12) +

1

8v2
(96 − 140ξ + 35ξ2 − 3ξ3)t13 +

−1

2
(10 + 3ξ)t14 +

1

4v3
(8 − 20ξ + 13ξ2)t15 +

1

4v2
(2 + ξ − 4ξ2 − 8v3)t3

}

, (1.103)

H1
L(αs) = N

{

− 3

4
(24 + 22ξ − ξ2) +

1

4

√

ξ(48 + 112ξ + 3ξ2) +

−ξ
(

2 − ξ

2
(t8 − t16) + v(t10 + 2t12)

)

− 1

8v2
(64 − 32ξ − 164ξ2 + 51ξ3 − 3ξ4)t13 +

+
1

8v
(128 − 106ξ − 81ξ2 + 3ξ3) − ξ

4v3
(28 − 24ξ + 3ξ2)t15 +

+ξ(6 + ξ)t14 +
ξ

4v2
(30 − 27ξ + 4ξ2 + 8v3)t3

}

, (1.104)

H2
L(αs) = ξN

{

1

4
(34 − 3ξ) − 3

4

√

ξ(12 + ξ) − 1

8v
(46 − 65ξ + 3ξ2) +

−
(

2 − ξ

2
(t8 − t16) + v(t10 + 2t12)

)

+
1

8v2
(80 − 136ξ + 35ξ2 − 3ξ3)t13 +
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Figure 1.3: Energy dependence ofO(1) andO(αs) mean longitudinal spin-spin correlations
〈P ℓℓ〉 in e+e− → tt̄(g)

−(1 + ξ)t14 −
1

2v3
(4 − 9ξ + 4ξ2)t15 +

1

2v2
(1 − 4ξ + 2ξ2 + 4v3)t3

}

, (1.105)

H3
F (αs) = N

{

2πvξ

}

, (1.106)

H4
F (αs) = N

{

2
√

ξ + 4v2 + 2v(2 − ξ)(t8 − t16 + t22) +
1

4v2
(16 − 32ξ + 18ξ2 − ξ3)t21 +

+
ξ

v3
(5 − 8ξ + 4ξ2)(t20 − t19) +

√
ξ

2v3
(8 − 11ξ + 3ξ2 + 2ξ3)(t20 + t19) +

+
ξ

4v2
(20 − 22ξ + ξ2)(t18 − t17) +

√
ξ

4v2
(16 − 10ξ − 5ξ2)(t18 + t17) +

−
√
ξ

2v2
(2 + 7ξ − 5ξ2)(t12 − t10) +

1

v2
(2 − ξ)(1 + ξ)(t12 + t10 + 2t1 − 4 ln 2) +

+4v2t12 − (4 + ξ)t14 +
1

v3
(4 − 5ξ + 2ξ3)t15 −

1

2v2
(2 − ξ)(4 − 5ξ + 5ξ2)t13 +

+
1

4v2

(

(2 − ξ)(4 − 5ξ + 5ξ2) − 2v(8 − 14ξ + 7ξ2)
)

t3

}

. (1.107)

A detailed analysis of the result can be found in Refs. [18, 24]. Here only two results are
shown, namely the energy dependence of the mean longitudinal spin-spin correlation in
Fig. 1.3 and the polar angle dependence of the angle dependent spin-spin correlation in
Fig. 1.4. The correlation function in general is given by

〈P ℓℓ〉 =
σ(ℓ1ℓ2)

σ
=
σ(↑↑) − σ(↑↓) − σ(↓↑) + σ(↓↓)
σ(↑↑) + σ(↑↓) + σ(↓↑) + σ(↓↓) . (1.108)
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Figure 1.4: O(αs) polar angle dependence of the longitudinal spin-spin asymmetry in
e+e− → tt̄(g) at

√
q2 = 360, 400, 500, and 1000GeV

For the mean spin-spin correlation function one integrates the differential cross section in
Eq. (1.92) over the polar angle θ and obtains

σ{ℓ1ℓ2} =
(

g11σ
1{ℓ1ℓ2}
U + g12σ

2{ℓ1ℓ2}
U

)

+
(

g11σ
1{ℓ1ℓ2}
L + g12σ

2{ℓ1ℓ2}
L

)

=
(

g11σ
1{ℓ1ℓ2}
U+L + g12σ

2{ℓ1ℓ2}
U+L

)

(1.109)
which is used in Eq. (1.108). For the polar angle dependent spin-spin correlation one re-
places the total cross sections in Eq. (1.108) by the differential cross sections in Eq. (1.92).

1.2.5 Massless QCD and the zero-mass limit

As is well-known by now, the mq → 0 limit of spin-flip contributions does not coincide
with that of massless QCD (mq = 0). This can be easily obtained for the spin-spin
correlation results obtained in this section. The mq = 0 expressions can be calculated in
dimensional regularization as described in Ref. [15]. One obtains

H1
U(αs) = 4Ncq

2αsCF
4π

, H
1(ℓ1ℓ2)
U (αs) = −4Ncq

2αsCF
4π

,

H1
L(αs) = 8Ncq

2αsCF
4π

, H
1(ℓ1ℓ2)
L (αs) = −8Ncq

2αsCF
4π

,

H4
F (αs) = 0, H

4(ℓ1ℓ2)
F (αs) = 0. (1.110)

Using the limiting expressions for the decay rate terms given in Appendix B, for the mass
dependent results in the limit mq → 0 one obtains

H1
U(αs) = 4Ncq

2αsCF
4π

, H1
L(αs) = 8Ncq

2αsCF
4π

, H4
F (αs) = 0 (1.111)
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for the unpolarized structure functions and

H
1(ℓ1,ℓ2)
U (αs) = 12Ncq

2αsCF
4π

= (−4 + [16])Ncq
2αsCF

4π
,

H
1(ℓ1,ℓ2)
L (αs) = −8Ncq

2αsCF
4π

,

H
4(ℓ1,ℓ2)
F (αs) = 16Ncq

2αsCF
4π

= [16]Ncq
2αsCF

4π
(1.112)

for the longitudinal spin-spin correlation functions. With the square bracket notation the
difference between these results and the results for massless QCD are indicated, known
as anomalous spin-flip terms. The current-current structures for i = 2, 3 can be seen to
be zero in this limit.

By adding in the Born term contributions in Eqs. (1.21) and (1.94) and the longitudinal
single-spin hadron tensor components, one finally obtains in the mq → 0 limit (CF = 4/3
is made explicit here)

H1
U(sℓ1, s

ℓ
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4
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(

0 +
2

3
× αs

π
+ [0]
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. (1.113)

In Table 1.1 all m→ 0 contributions to the various spin configurations for the parity-even
(V V ) and parity-odd (V A) current contributions are listed where again the m = 0 no-flip
contributions has been split off by using the square bracket notation for the anomalous
spin-flip contributions.

The anomalous spin-flip contributions have their origin in the collinear limit where
the spin-flip contribution proportional to m survives since it is multiplied by the 1/m
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V V U L F

(↑↑) 0 + [4/3] 0 + [0] 0 + [0]
(↑↓) 2/3 − [4/3] 4/3 + [0] 0 − [4/3]
(↓↑) 2/3 − [4/3] 4/3 + [0] 0 + [4/3]
(↓↓) 0 + [4/3] 0 + [0] 0 + [0]

V A U L F

(↑↑) 0 + [0] 0 + [0] 0 + [4/3]
(↑↓) 2/3 − [4/3] 4/3 + [0] 0 − [4/3]
(↓↑) −2/3 + [4/3] −4/3 + [0] 0 − [4/3]
(↓↓) 0 + [0] 0 + [0] 0 + [4/3]

Table 1.1: O(αs) corrections to specific spin configurations in QCD(mq = 0) and
QCD(mq → 0) for the parity-even (upper table) and odd current contributions (lower
table). The entries are given in units of Ncq

2αs/π.

collinear mass singularity. Because the anomalous spin-flip terms are associated with
the collinear singularity, the flip contributions are universal and factorize into the Born
term contribution and an universal spin-flip bremsstrahlung function [10]. This explains
why there is no anomalous contribution for instance to H4

L and why the anomalous flip
contributions to e.g. H4

U and H1
F are equal.

1.3 Decay of the polarized top quark

After having considered the pair production process of polarized top quarks, it is a natural
consequence to also look at the decay of the polarized top quark. The top quark is very
short-lived and therefore retains its full polarization content when it decays. Therefore,
the polarization can be “read off” from the decay products. In the decay of an unpolarized
or polarized top quark to the W+ gauge boson and a bottom quark the W+ is strongly
polarized, or, phrased in a different language, the W+ has a nontrivial spin density matrix.
Thus being already polarized even for unpolarized top quarks, the spin density matrix of
the W+ can be tuned by changing the polarization of the top quark. The polarization
of the W+ will reveal itself in the angular decay distribution of its subsequent decays
W+ → l+ + νl or W+ → q̄ + q.

The CDF collaboration has already presented some results on the measurement of
the longitudinal component of the W+ based on the limited RUN I data [19]. The mea-
surement has confirmed the expected dominance of the longitudinal mode. The error
on this measurement is quite large (≈ 45%) but is expected to be reduced significantly
during RUN II at the TEVATRON started in March 2001. In RUN II one will produce
(5 − 6) × 103 top quark pairs per year and detector.

This number will be boosted to 107 − 108 top quark pairs per year and detector at
the LHC starting in 2005/2006. It is conceivable that the errors on the structure function
measurements can be reduced to the 1 − 2% level in the next few years [26]. If such an
accuracy can, in fact, be achieved and, having in mind that the O(αs) corrections to the
top decay rate amount to 8.5% [27, 28, 29, 30, 31, 32], it is quite evident that one needs
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to improve on the known theoretical Born level predictions for the structure functions by
calculating their next-to-leading order radiative corrections. At a later stage, when the
data sample of polarized top quarks has become sufficiently large, one will be able to also
analyze the decays of polarized top quarks.

Polarized top decay brings in again five additional polarized structure functions which
can be measured through an analysis of spin-momentum correlations between the polar-
ization vector of the top quark and the momenta of its decay products. Polarized top
quarks will become available at hadron colliders through single top production which oc-
curs at the 33% level of the top quark pair production rate [33]. Future e+e− colliders will
also be copious sources of polarized top quark pairs [7, 8, 15, 16, 34, 35]. For example, at
the proposed TESLA collider one expects rates of (1− 4)× 105 top quark pairs per year.
The polarization of these can be easily tuned through the availability of polarized beams
(see e.g. Ref. [36]). Further, there is a high degree of correlation between the polarization
of top and anti-top quarks produced in pairs either at e+e− colliders [17, 18, 37, 38] or
at hadron colliders [39] which can be probed through the joint decay distributions of the
top and the anti-top quark.

In this section the momentum-momentum and spin-momentum correlations in the
cascade decay process t → W+ + b followed by W+ → l+ + νl (or W+ → q̄ + q) is
analyzed. For the decay t → W+ + b the spin-momentum correlation between the spin
of the top and the momentum of the W+ is analyzed in the top quark rest frame. In the
subsequent decay of the W+ the rest frame of the gauge boson is chosen to analyze the
correlation between the momentum of the lepton (or antiquark) and the initial momentum
direction of theW+. This must be contrasted with the center of mass analysis of polarized
top decay where the spin-momentum correlations are all analyzed in the rest system of
the top quark (for an O(αs) analysis of this kind see Ref. [40]).

The decay distribution of unpolarized top quarks (or the average over its polarizations)
is governed again by the three structure functions HU , HL and HF known from the
previous sections while the complete angular decay distribution is governed by altogether
eight structure functions which are calculate analytically including their O(αs) radiative
corrections. One of the motivations for calculating the O(αs) radiative corrections is
the fact that the radiative QCD corrections populate helicity configurations that are not
accessible at the Born level. However, it turns out that the O(αs) population of such
structure functions is rather small [41].

In order to retain full control over the b mass dependence, and having also other appli-
cations in mind, a finite mass value for the b quark has been kept in Ref. [42], improving
on earlier calculations of polarized top decay where the b quark mass was neglected and
where the attention was limited to the six (diagonal) structure functions that govern the
polar angle distribution in the cascade decay [36]. The additional two (non-diagonal)
structure functions calculated in Ref. [42] describe the azimuthal correlation of the plane
of the top quark’s polarization and the plane defined by the final fermions.

1.3.1 Structure functions for the top quark decay

It turns out that it is rather convenient from the computational point of view to repre-
sent the helicity projections defined by the gauge boson polarization vectors and the top
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polarization vector in covariant form. One has

Hi = Πµν
i Hµν i = U,L, F,

HiP = Πµν
i Hµν(s

ℓ
t) i = U,L, F,

HiP = Πµν
i Hµν(s

⊥
t ) i = I, A. (1.114)

Where the covariant projectors onto the diagonal density matrix elements are given by

Πµν
L =

m2
W

m2
t

1

|~q |2
(

pµt −
pt · q
m2
W

qµ
)(

pνt −
pt · q
m2
W

qν
)

, (1.115)

Πµν
U+L = −gµν +

qµqν

m2
W

, (1.116)

Πµν
F =

1

mt

1

|~q | iǫ
µναβpt,αqβ (1.117)

where ǫ0123 = −1. Again the projector for the unpolarized-transverse component U is
not written out. Note that it can be obtained from the combination Πµν

U+L − Πµν
L . The

projectors onto the transverse-longitudinal non-diagonal density matrix elements are given
by

Πµν
I = +

mW

mt

1

|~q |
{

ǫµ(x)
(

pνt −
pt · q
m2
W

qν
)

+ µ↔ ν
}

, (1.118)

Πµν
A = −mW

m2
t

1

|~q |2
{

iǫµαβγǫα(x)pt,βqγ
(

pνt −
pt · q
m2
W

qν
)

− µ ↔ ν
}

. (1.119)

These definitions involve the transverse polarization vector of the gauge boson ǫα(x) =
(0; 1, 0, 0) pointing in the x-direction. The covariant representation of the longitudinal
component of the polarization vector of the top spin vector sℓt is given by

sℓ,µt =
1

|~q |
(

qµ − pt · q
m2
t

pµt
)

, (1.120)

whereas its transverse component s⊥t reads

s⊥,µt = (0; 1, 0, 0). (1.121)

Note the inverse powers of |~q | =
√

q2
0 −m2

W that enter the L, F , I and A projectors
and the longitudinal polarization vector. They come in for normalization reasons. These
inverse powers of |~q | will make the necessary tree graph integrations to be dealt with in
the full polar angle dependence somewhat more complicated than the total (U + L) rate
integration which has a rather simple projector.

In terms of there structure functions and including the appropriate normalization
factor the four-fold decay distribution is given by

dΓ

dq0 d cos θP d cos θ dχ
=

1

4π

GF |Vtb|2m2
W√

2π
|~q |
{

3

8
(HU + P cos θpHUP )(1 + cos2 θ) +

+
3

4
(HL + P cos θpHLP ) sin2 θ +

3

4
(HF + P cos θpHFP ) cos θ +

+
3

4
P sin θpHIP sin θ cos θ cosχ +

3

4
P sin θpHAP sin θ cosχ

}

(1.122)
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Figure 1.5: Born term contribution (left) and radiative corrections

where θP is the angle between the momentum of the W+ in the top quark rest frame
and the top quark polarization vector while P is the length of this polarization vector or
the magnitude of the polarization of the top quark. θ and χ are the polar and azimuthal
angle of the decay of the W+ boson in the rest frame of this gauge boson, relative to the
rest frame of the top quark decay. The freedom is taken to normalize the differential rate
such that one obtains the total t→ W+ + b rate upon integration and not the total rate
multiplied by the branching ratio of the respective W+ decay channel.

As Eq. (1.122) shows, the non-diagonal structure functionsHIP andHAP are associated
with azimuthal measurements. This necessitates the definition of a hadron plane which
is only possible through the availability of the x-component of the polarization vector of
the top. This is the physical explanation of why the two structure functions HIP and
HAP are functions only of the transverse component of the polarization vector of the
top quark. For similar reasons the polarization dependent structure functions HUP , HLP

and HFP depend only on the longitudinal component of the polarization vector. Setting
P = 0 in Eq. (1.122) one obtains the decay distribution for unpolarized top decay. As
in Ref. [41] the angular decay distribution can then also be sorted in terms of decays
into transverse-plus and transverse-minus W+ bosons given by the structure function
combinations (U + F )/2 and (U − F )/2 which multiply the angular factors (1 + cos θ)2

and (1 − cos θ)2, respectively.

1.3.2 Born term results

The Born term tensor is calculated from the square of the Born term amplitude (see
Fig. 1.5(a)) given by

Mµ = Vtb
g√
2
ūbγ

µ1

2
(1 − γ5)ut. (1.123)

Omitting the coupling factor Vtbg/
√

2 = 2mWVtb(GF/
√

2)1/2 one can write the Born term
tensor (the spin of the b quark is summed) in a compact way,

Bµν =
1

4
Tr ((p/b +mb)γ

µ(1 − γ5)(p/t +mt)(1 + γ5s/t)γ
ν(1 − γ5)) =

= 2
(

p̄νt p
µ
b + p̄µt p

ν
b − gµν p̄t · pb + iǫµναβpb,αp̄t,β

)

(1.124)

since only even-numbered γ-matrix strings survive between the two (1 − γ5) with

p̄µt = pµt −mts
µ
t . (1.125)
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The relation of the Born term tensor Bµν to the hadron tensor Hµν defined earlier is
found to be given by [42]

Hµν(Born) =
1

4m2
t

δ

(

q0 −
m2
t +m2

W −m2
b

2mt

)

Bµν . (1.126)

using the scaled variables x = mW/mt and y = mb/mt and the abbreviation

|~q | =
mt

2

√
λ with λ = λ(1, x2, y2) = 1 − 2x2 − 2y2 + x4 − 2x2y2 + y4 (1.127)

the Born term results read

BU+L = m2
t

1

x2

(

(1 − y2)2 + x2(1 − 2x2 + y2)
)

→ m2
t

1

x2
(1 − x2)(1 + 2x2),

BUP +LP = m2
t

√
λ

1

x2
(1 − 2x2 − y2) → m2

t

1

x2
(1 − x2)(1 − 2x2),

BL = m2
t

1

x2

(

(1 − y2)2 − x2(1 + y2)
)

→ m2
t

1

x2
(1 − x2),

BLP = m2
t

√
λ

1

x2
(1 − y2) → m2

t

1

x2
(1 − x2),

BF = −2m2
t

√
λ → −2m2

t (1 − x2),

BFP = 2m2
t (1 − x2 + y2) → 2m2

t (1 − x2),

BIP = −2m2
t

√
λ

1

x
→ −2m2

t

1

x
(1 − x2),

BAP = 2m2
t

1

x
(1 − x2 − y2) → 2m2

t

1

x
(1 − x2) (1.128)

where the right hand side expressions are the limiting values for vanishing bottom quark
mass (i.e. for y → 0).

1.3.3 The one-loop contributions

The one-loop contributions to fermionic (V − A) transitions have a long history. Since
QED and QCD have the same structure at the one-loop level the history even dates back
to QED times. The reference used here will be the work of Gounaris and Paschalis [43] (see
also Ref. [44]) who used a gluon mass regulator to regularize the gluon IR singularity. The
one-loop amplitudes (see Fig. 1.5(b)) are defined by the covariant expansion (JVµ = q̄bγµqt,
JAµ = q̄bγµγ5qt)

〈b(pb)|JVµ |t(pt)〉 = ūb(pb)
{

γµF
V
1 + pt,µF

V
2 + pb,µF

V
3

}

ut(pt),

〈b(pb)|JAµ |t(pt)〉 = ūb(pb)
{

γµF
A
1 + pt,µF

A
2 + pb,µF

A
3

}

γ5ut(pt). (1.129)

In the Standard Model the appropriate current combination is given by JVµ − JAµ .

Keeping only the finite terms and the relevant mass (M) (ln y and ln2 y) and infrared
(IR) (ln(Λt)) singular logarithmic terms, one obtains the rather simple result

F V
1 = FA

1 = 1 − αs(q
2)

4π
CF
(

4 +
1

x2
ln(1 − x2) + ln

( y

1 − x2

Λ2
t

(1 − x2)2

)

+
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+2 ln
(Λt

y

1

1 − x2

)

ln
( y

1 − x2

)

+ 2 Li(x2)
)

,

F V
2 = −FA

2 =
1

mt

αs(q
2)

4π
CF

2

x2

(

1 +
1 − x2

x2
ln(1 − x2)

)

,

F V
3 = −FA

3 =
1

mt

αs(q
2)

4π
CF

2

x2

(

− 1 +
2x2 − 1

x2
ln(1 − x2)

)

, (1.130)

where the scaled gluon mass has been denoted by Λt = m2
G/m

2
t . It is worth mentioning

at this point that the gluon mass regulator scheme can be converted to the dimensional
reduction scheme by the replacement ln(Λt) → 1/ε − γE + ln(4πµ2/m2

t ) where µ is the
renormalization scale parameter.

1.3.4 The tree-graph contributions

The tree graph contribution results from the square of the real gluon emission graphs
shown in Fig. 1.5(c) and 1.5(d). Omitting again the weak coupling factor Vtbg/

√
2 for the

time being, the corresponding hadron tensor is given by

Hµν(k0, q0) = −4παsCF
8

(k · pt)(k · pb)

{

− k · pt
k · pb

[

(pb · pb)
(

kµp̄νt + kν p̄µt − k · p̄tgµν
)

+

+i
(

ǫαβµν(pb − k) · p̄t − ǫαβγν(pb − k)µp̄t,γ + ǫαβγµ(pb − k)ν p̄t,γ
)

kαpb,β
]

+

+
k · pb
k · pt

[

(p̄t · pt)
(

kµpνb + kνpµb − k · pbgµν − iǫαβµνkαpb,β
)

+

−(p̄t · k)
(

(pt − k)µpνb + (pt − k)νpµb − (pt − k) · pbgµν − iǫαβµν(pt − k)αpb,β
)]

+

−(p̄t · pb)
(

kµpνb + kνpµb − k · pbgµν − iǫαβµνkαpb,β
)

+

+(pt · pb)
(

kµp̄νt + kν p̄µt − k · p̄tgµν
)

− (k · pb)
(

pµt p̄
ν
t + pνt p̄

µ
t − pt · p̄tgµν

)

+

+(k · pt)
(

(pb + k)µp̄νt + (pb + k)ν p̄µt + (pb + k) · p̄tgµν
)

+

+(k · p̄t)
(

2pµb p
ν
b − pb · pbgµν

)

− i
(

ǫαβµν(k · p̄t) + ǫαβγµkν p̄t,γ − ǫαβγνkµp̄t,γ
)

pb,αpt,β +

+i
(

ǫαβµν(pt · p̄t) + ǫαβγµpνt p̄t,γ − ǫαβγνpµt p̄t,γ
)

kαpb,β

}

+Bµν · ∆SGF (1.131)

where k is the 4-momenta of the emitted gluon. The hadron tensor is written in de-
pendence on the two phase-space variables k0 and q0. This notation distinguishes this
three-particle hadron tensor in Eq. (1.131) from the two-particle hadron tensor for the
Born and one-loop contributions. The IR divergent soft gluon factor ∆SGF (cf. Eq. (1.59))
is given by

∆SGF := −4παsCF
( m2

b

(k · pb)2
+

m2
t

(k · pt)2
− 2

pb · pt
(k · pb)(k · pt)

)

. (1.132)

The IR-singular part of the tree-graph contribution, therefore, is isolated by splitting off
an universal soft gluon factor which multiplies the lowest order Born term tensor Bµν .
This facilitates the treatment of the soft gluon singularity to be regularized by a (small)
gluon mass mG. Since the soft gluon factor is universal in that it multiplies the lowest
order Born contribution, the requisite soft gluon integration has to be done only once and
is identical for all eight structure functions.
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Figure 1.6: Differential W+ boson energy distribution dΓU+L/dq0 for the total rate re-
sulting from O(αs) gluon emission (mb = 4.8GeV)

1.3.5 The full O(αs) result for mb = 0

To relate the two-particle and the three-particle hadron tensors one has to do the appropi-
ate phase space integration on the hadron tensor of the three-particle case. The limits of
the phase space integration are given by

k0− ≤ k0 ≤ k0+, mW ≤ q0 ≤
m2
t +m2

W − (mb +mG)2

2mt

(1.133)

where

k0± =
(mt − q0)(M

2
+ − 2q0mt) ±

√

q2
0 −m2

W

√

(M2
− − 2q0mt)2 − 4m2

Gm
2
b

2(m2
t +m2

W − 2q0mt)
(1.134)

and M2
± := m2

t +m2
W −m2

b±m2
G. The integration over the gluon energy is simple and the

results will not be presented here in explicit analytical form. Instead some representative
results on the differential W+ boson energy distribution are shown that result from the
real gluon emission graphs Fig. 1.5(c) and 1.5(d) in graphical form in Figs. 1.6 and 1.7.
Fig. 1.6 shows the W+ boson energy distribution for the total rate dΓU+L/dq0. The energy
distribution rises sharply from the lower energy limit, where the W+ boson is produced at
rest, then increases rapidly over the intermediate range of W+ boson energies and finally
rises sharply again towards the end of the spectrum, where the soft gluon singularity
is located. In Fig. 1.7 the same distribution for the partial rate into positive helicity W
bosons, dΓ+/dq0 (Γ+ = 1

2
(ΓU+ΓF )) is shown for mb = 0 and mb 6= 0. As mentioned before

there is no Born term contribution to dΓ+/dq0 for mb = 0 and thus dΓ+/dq0 possesses
no IR singularity in this limit. The absence of the IR singularity in the mb = 0 case
(dashed line) is quite apparent in Fig. 1.6. The distribution rises moderately fast from
the lower end of the spectrum, then turns down over the intermediate range of energies
and finally tends to zero at the end of the spectrum where the phase space closes. The
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Figure 1.7: Differential W+ boson energy distribution dΓ+/dq0 for the partial rate into
positive helicity W+ bosons resulting from O(αs) gluon emission for mb = 4.8GeV (solid
line) and for mb = 0 (dashed line).

mb = 0 (dashed line) and mb 6= 0 (full line) distributions lie on top of each other for
most of the lower part of the spectrum. Starting at around 4.8GeV below the upper
phase space boundary the two distributions begin to diverge from each other. Whereas
the mb = 0 curve turns down and goes to zero at the end of the spectrum, the mb 6= 0
curve starts to rise again and, in fact, tends to infinity at the end of the spectrum due
to its IR singular behaviour. Note the huge differences in scale of the dΓU+L/dq0 and the
dΓ+/dq0 distributions which will be reflected in big differences in the total αs-corrections
for the two respective rates.

The second integration over the energy of the W boson is more difficult. Details can
be found in Ref. [42]. As it turns out, the analytical mb 6= 0 results are quite lengthy. For
this reason only the mb = 0 results are shown here since they are sufficiently simple to
be presented in compact form. They have been obtained by taking the mb → 0 limit of
the mb 6= 0 results in Ref. [42]. For practical purposes the mb = 0 results are sufficiently
accurate for top decays since mb 6= 0 effects are generally quite small. This is particularly
true if a running b quark mass at the top mass scale is used. Quantitative results on the
αs and mb 6= 0 corrections are given in Refs. [41, 42]. In combining the Born term and the
O(αs) one-loop and tree-graph contributions, the mass and infrared singular terms cancel
among the O(αs) contributions as they must according to the Lee-Nauenberg theorem and
one remains with a finite result. This result is presented in terms of scaled rate functions
defined by Γ̂i := Γi/Γ0 (i = U + L, UP + LP , L, LP , F , F P , IP , and AP ) with

Γ0 = ΓU+L(Born) =
GFm

2
Wmt

8
√

2π
|Vtb|2

(1 − x2)2(1 + 2x2)

x2
(1.135)

(with x = mW/mt) and read

Γ̂U+L = 1 + Γ̂1(x)

{

(1 − x2)(5 + 9x2 − 6x4)

2x2
− 2(1 − x2)2(1 + 2x2)π2

3x2
+

−(1 − x2)2(5 + 4x2)

x2
ln(1 − x2) − 4(1 + x2)(1 − 2x2) ln(x) +
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−4(1 − x2)2(1 + 2x2)

x2
ln(x) ln(1 − x2) − 4(1 − x2)2(1 + 2x2)

x2
Li2(x

2)

}

,

Γ̂UP +LP =
1 − 2x2

1 + 2x2
+ Γ̂1(x)

{

− (1 − x)2(15 + 2x− 5x2 − 12x3 + 2x4)

2x2
+

(1 + 4x2)π2

3x2
+

−(1 − x2)2(1 − 4x2)

x2
ln(1 − x) − (1 − x2)(3 − x2)(1 + 4x2)

x2
ln(1 + x) +

−4(1 − x2)2(1 − 2x2)

x2
Li2(x) +

4(2 + 5x4 − 2x6)

x2
Li2(−x)

}

, (1.136)

Γ̂L =
1

1 + 2x2
+ Γ̂1(x)

{

(1 − x2)(5 + 47x2 − 4x4)

2x2
− 2(1 + 5x2 + 2x4)π2

3x2
+

−3(1 − x2)2

x2
ln(1 − x2) − 2(1 − x)2(2 − x+ 6x2 + x3)

x2
ln(1 − x) ln(x) +

+16(1 + 2x2) ln(x) − 2(1 + x)2(2 + x+ 6x2 − x3)

x2
ln(x) ln(1 + x) +

−2(1 − x)2(4 + 3x+ 8x2 + x3)

x2
Li2(x) −

2(1 + x)2(4 − 3x+ 8x2 − x3)

x2
Li2(−x)

}

,

(1.137)

Γ̂LP =
1

1 + 2x2
+ Γ̂1(x)

{

− (15 − 22x+ 105x2 − 24x3 + 4x4)
(1 − x)2

2x2
+

+
(1 + 24x2 + 10x4)π2

3x2
− 3(1 − x2)2

x2
ln(1 − x) − (1 − x2)(17 + 53x2)

x2
ln(1 + x) +

−4(1 − x2)2

x2
Li2(x) +

4(2 + 22x2 + 11x4)

x2
Li2(−x)

}

, (1.138)

Γ̂F =
−2x2

1 + 2x2
+ Γ̂1(x)

{

− 2(1 − x)2(3 − 4x) +
2(2 + x2)π2

3
+

+
2(1 − x2)2(1 + 2x2)

x2
ln(1 − x) +

2(1 − x2)(1 − 9x2 + 2x4)

x2
ln(1 + x) +

+8(1 − x2)2 Li2(x) + 8(1 + 3x2 − x4) Li2(−x)
}

, (1.139)

Γ̂FP =
2x2

1 + 2x2
+ Γ̂1(x)

{

2(1 − x2)(4 + x2) − 2(1 + x2 + 2x4)π2

3
+

−2(1 − x2)2(1 + 2x2)

x2
ln(1 − x2) − 4(1 − x)2(1 + 3x+ 2x2 + 2x3)

x
ln(x) ln(1 − x) +

−4(2 − 5x2 − 2x4) ln(x) +
4(1 + x)2(1 − 3x+ 2x2 − 2x3)

x
ln(x) ln(1 + x) +

−4(1 − x)2(1 + 5x+ 6x2 + 4x3)

x
Li2(x) +

4(1 + x)2(1 − 5x+ 6x2 − 4x3)

x
Li2(−x)

}

,

(1.140)
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Γ̂IP =
−2x

1 + 2x2
+ Γ̂1(x)

{

2(1 − x)2(12 − 7x+ 12x2)

x
− (5 + 19x2 + 2x4)π2

3x
+

+
(1 − x2)2(1 + 5x2)

x3
ln(1 − x) +

(1 − x2)(1 + 30x2 + 21x4)

x3
ln(1 + x) +

+
8(1 − x2)2

x
Li2(x) −

4(7 + 15x2 + 4x4)

x
Li2(−x)

}

, (1.141)

Γ̂AP =
2x

1 + 2x2
+ Γ̂1(x)

{

2(1 − x2)(1 + 2x2)

x
− (3 − 5x2 + 6x4)π2

3x
+

−(1 − x2)2(1 + 5x2)

x3
ln(1 − x2) − 2(1 − x)2(3 + 7x+ 6x2)

x
ln(x) ln(1 − x) +

−2x(5 − 11x2) ln(x) − 2(1 + x)2(3 − 7x+ 6x2)

x
ln(x) ln(1 + x) +

−2(1 − x)2(7 + 15x+ 10x2)

x
Li2(x) −

2(1 + x)2(7 − 15x+ 10x2)

x
Li2(−x)

}

(1.142)

where

Γ̂1(x) :=
αsCFx

2

2π(1 − x2)2(1 + 2x2)
. (1.143)

Detailed numerical results and a discussion of these results are given in Ref. [42]. The
numerical results for the rate functions for mb = 4.8GeV [45] read

Γ̂U+L = 1 − 0.0854, Γ̂(U+L)P = 0.406(1 − 0.1162),

Γ̂U = 0.297(1 − 0.0624), Γ̂UP = −0.297(1 − 0.0689),

Γ̂L = 0.703(1 − 0.0951), Γ̂LP = 0.703(1 − 0.962),

Γ̂F = −0.297(1 − 0.0687), Γ̂FP = 0.297(1 − 0.0639),

Γ̂S = 0.703(1 − 0.0895), Γ̂SP = 0.703(1 − 0.0922),

Γ̂IP = −0.228(1 − 0.0810),

Γ̂AP = 0.228(1 − 0.0820) (1.144)

where the Born term results are factored out. Therefore, the second contribution in the
parentheses is the numerical value for the O(αs) radiative correction.



Chapter 2

Renormalization and resummation

In the previous chapter a running coupling constant as well as a running mass has been
used. This chapter addresses the question about the origin of such running quantities, i.e.
quantities which depend on the center-of-mass energy of the system under consideration.
As will be shown later on, the running1 is a consequence of the (necessary) renormalization
of the (otherwise) divergent perturbation series. It can be understood as taking into
account the clouds of virtual particles created in the neighbourhood of a particle which
changes it’s mass and weakens resp. strengthens the interaction of this particle with others,
depending on the spatial distance. For QED, the cloud screens the particle and therefore
weakens the interaction for increasing distances, while the opposite is valid for QCD. On
the other hand, approaching the colour charge (by using higher and higher center-of-mass
energies) will weaken the interaction. This phenomenon is known as asymptotic freedom.
The running is mathematically expressed by the renormalization group equation which
will be dealt with in the first section.

The asymptotic freedom of QCD has an important consequence for perturbation the-
ory. It means that the perturbation series is quite well convergent in the region of high
energies but badly convergent in the low energy region. Therefore, perturbation theory
can only be applied to a part of the cross section observed for particle collisions. On
the other hand, the coupling is only a parameter of theory. One is therefore led to the
attempt to replace this parameter by other parameters which might bring in better con-
vergence of the perturbation series. These other parameters can be obtained by summing
up parts of the perturbation series which are known to a high extend. This procedure is
known as resummation of the perturbation series and is equivalent with the change of the
renormalization scheme, as will be seen later on. However, these changes do not “cure”
the problem that at very low energies QCD will remain undescribable by perturbation
series.

This chapter will introduce the basic quantities inportant also for the following chap-
ters, namely the two-point or correlator function and its spectral density. Finally, the
applicability of different kinds of moments are considered, leading to the conclusion that
only so-called direct moments can correctly analyse the shape of the spectral density in
order to compare it with the theory prediction. Different kinds of effective couplings can
be constructed, depending on the special point of view.

1The general term “running” will be used in the following for the running of all kinds of quantities,
not only for the coupling and the mass.
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2.1 The renormalization group equation

The first considerations deal with the Callan–Symanzik equation for Green functions
and the renormalization group equations for the parameters of the Green function. The
Callan–Symanzik equation for a Green function Γ is obtained by comparing its dependence
before and after being renormalized by a renormalization factor ZΓ. Starting with the
dependence

Γ0 = Γ0(αs, αg, mi; pi) (2.1)

of the bare (i.e. unrenormalized) quantity on parameters as the strong coupling αs, the
gauge parameter αg, the masses mi of the included particles and their momenta pi, this
quantity can be renormalized by dividing it by a renormalization factor. This renormal-
ization is neccessary because the calculation of higher orders within perturbation theory
lead to IR- or UV-divergent integrals (or both).

2.1.1 Regularization

Both kinds of singularities have first to be parametrized. This first step is called reg-
ularization (see e.g. Ref. [46]). The regularization method which is normally used here
is called dimensional regularization and includes both kind of singularities by replacing
the four-dimensional space-time dimension by a D = 4 − 2ε dimensional one. The sin-
gularities are therefore parametrized by inverse powers of the parameter ε which tends
to zero (some effort is necessary to distinguish between IR- and UV-singularities in this
regularization, but this should not be of any concern for the moment).

2.1.2 Subtraction

The next step in the renormalization procedure is the subtraction, i.e. the absorption of
the parametrized singular parts in counter terms. Here one makes use of the multiplicative
subtraction by a renormalization factor ZΓ. By demanding that the renormalized quantity
Γ in

Γ0 = ZΓΓ (2.2)

is finite one can determine the renormalization factor by expanding it in a double series
in powers of both the perturbation series parameter and the inverse of ε and performing
a comparison of coefficients. The decision whether finite terms are or aren’t included in
this renormalization factor and the selection of these finite terms distinguishes between
the different schemes . The simplest one, the minimal subtraction scheme (MS-scheme),
includes no finite terms while the modified minimal subtraction scheme (MS-scheme)
associates every factor 1/ε by two finite terms to obtain a “shifted” parameter ε′,

1

ε′
=

1

ε
− γE + ln 4π (2.3)

where γE is Euler’s constant (γE ≈ 0.577 . . . ) which comes from the series expansion of
Euler’s gamma function. This scheme is used to simplify the final result by using the
ambiguity of the choice for the renormalization factor. The parametrized singularities are
incorporated in the renormalization factor, one is left with a renormalized quantity.
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2.1.3 Scale dependence

The subtracted quantity, however, has to depend on some additional scale, the renormal-
ization scale µ which has a mass dimensionality and compensates the disproportion in the
dimensions resulting from the dimensional regularization. Therefore one has

Γ0(αs, αg, mi; pi) = ZΓΓ(µ, αs, αg, mi; pi). (2.4)

This is the starting point for the Callan–Symanzik equation. Because the left hand side
does not depend on the scale µ, one has

0 = µ
d

dµ
Γ0 = µ

d

dµ
(ZΓΓ) = µ

dZΓ

dµ
Γ + µZΓ

dΓ

dµ
. (2.5)

The dependence on µ is given either by the explicit dependence or by the implicit de-
pendence of the parameters. Only the momentum as observable quantity cannot be scale
dependent which is the reason for separating the arguments by a semicolon. One thus
obtains

(

µ
∂

∂µ
+ µ

dαs
dµ

∂

∂αs
+ µ

dαg
dµ

∂

∂αg
+
∑

i

µ
dmi

dµ

∂

∂mi

+
µ

ZΓ

dZΓ

dµ

)

Γ(µ, αs, αg, mi; pi) = 0.

(2.6)
One defines

γα := −µ
α s

dαs
dµ

, γg :=
µ

αg

dαg
dµ

,

γmi
:= − µ

mi

dmi

dµ
and γΓ :=

µ

ZΓ

dZΓ

dµ
. (2.7)

Because of Eq. (2.5), the last definition is consistent with the others. Therefore, one ends
up with

(

µ
∂

∂µ
− αsγα

∂

∂αs
− αgγg

∂

∂αg
−
∑

i

miγmi

∂

∂mi
+ γΓ

)

Γ(µ, αs, a,mi; pi) = 0 (2.8)

which is the Callan–Symanzik equation.

2.1.4 Solution of the Callan–Symanzik equation

Eq. (2.8) becomes solvable if there is no explicit dependence on the renormalization pa-
rameter. In some sense one can “shift” this dependence to the parameters by creating a
second differential equation for Γ. This is done by scaling the moments pi by a factor et̄

and using Euler’s theorem for homogeneous functions. Looking at the different dimen-
sionalities of the parameters, one obtains (the bar in t̄ is chosen for later convenience)

(

µ
∂

∂µ
+
∑

i

mi
∂

∂mi
+
∂

∂t̄
−DΓ

)

Γ(µ, αs, αg, mi; e
t̄pi) = 0 (2.9)

where DΓ is the mass dimension of Γ. The subtraction of Eq. (2.8) and Eq. (2.9) leads to
(

− ∂

∂t̄
− αsγα

∂

∂αs
− αgγg

∂

∂αg
+

−
∑

i

mi(1 + γmi
)
∂

∂mi
+DΓ + γΓ(αs)

)

Γ(µ, αs, αg, mi; e
t̄pi) = 0, (2.10)
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the partial derivative with respect to µ cancels out. The equation is formally solved by

Γ(µ, αs, a,mi; e
t̄pi) = exp

(

∫ t̄

0
(DΓ + γΓ(ᾱs(t̄

′))) dt̄′
)

Γ̄(ᾱs, ᾱg, m̄i; p̄i) (2.11)

where the quantities ᾱs, ᾱg and m̄i depend on the new parameter t̄. Because DΓ is changed
to DΓ +γΓ, it is obvious why γΓ is called the anomalous dimension of Γ. Similarly, γα, γg
and γmi

are the anomalous dimensions of the corresponding parameters. In general one
has

A0 = ZAA ⇒ γA :=
µ

ZA

∂ZA
∂µ

= −µ

A

∂A

∂µ
(2.12)

for a quantity A because the bare quantity A0 is independent of µ. There is a great deal
of confusion in these definitions but the chosen definition of the anomalous dimension
should be kept throughout this work.

2.1.5 Running parameters

Inserting the final equation of the previous subsection into the renormalization group
equation (2.10), one obtains differential equations in t̄ for the various parameters,

dᾱs
dt̄

= −ᾱsγα where ᾱs(0) = αs,

dᾱg
dt̄

= −ᾱgγg where ᾱg(0) = αg, and

dm̄i

dt̄
= −(1 + γmi

(ᾱs))m̄i where m̄i(0) = mi. (2.13)

In the following only the first of these equations will be considered, which is known as the
renormalization group equation for the running coupling αs,

dᾱs
dt̄

= −ᾱsγα. (2.14)

This equation will not be solved explicitly at this moment because there will be better
methods afterwards to do this. But the renormalization group equation can be solved
formally. This is done by separating the variables,

dt̄ = − dᾱs
ᾱsγα

⇒ t̄ = −
∫ ᾱs

αs

dα

αγα
(2.15)

where ᾱs(t̄ = 0) = αs is used. As the first one of Eqs. (2.7) indicates, αs depends on µ,
while ᾱs does not. Therefore, the total derivative of t̄ results in

dt̄

dµ
=

1

αsγα

dαs
dµ

= − 1

αsγα

αs
µ
γα = −1

µ
. (2.16)

2.1.6 Introduction of a second mass scale

The solution for t̄ up to a constant is the negative logarithm of µ. But because µ is a
dimensional variable, there is a scale necessary to define the logarithm properly. As scale
one uses the center-of-mass energy q2 of the system so that

t̄ =
1

2
ln

(

q2

µ2

)

. (2.17)
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The reason for this scale is as follows: One knows that at t̄ = 0 there is ᾱs(t̄ = 0) = αs
which is αs(µ

2) (the square is again chosen for convenience). At the end one wants ᾱs
to be a function of the center-of-mass energy which is the only mass scale applicable
for a specific process. This is done in order to obtain ᾱs(t̄) = αs(q

2). Therefore, the
renormalization group equation for the coupling can be written as

q2dαs(q
2)

dq2
= −αs(q2)γα =: β(αs(q

2)) (2.18)

which defines the beta function. There are many different ways to define the beta function.
The definition chosen here is one of the most common ones. The beta function is a
function in αs only and not explicitly in q2 because it is expressible by a perturbative
series expansion, and the expansion parameter is again αs. Therefore, this differential
equation is an autonomous differential equation.

2.1.7 The beta function coefficients

As mentioned before, the beta function can be calculated by means of perturbation theory
and can thus be expressed as a series in αs. Actually, the beta function is known up to
the fourth order in αs. There are again different ways to denote the coefficients. The
convention used here, rather common in the literature [48], is

β
(

αs
π

)

:= −
∞
∑

m=0

βm

(

αs
π

)m+2

=

= −
(

αs
π

)2
(

β0 + β1

(

αs
π

)

+ β2

(

αs
π

)2

+ β3

(

αs
π

)3
)

+O(α6
s) (2.19)

where the expansion parameter is changed from αs to αs/π and

β0 =
1

4

[

11 − 2

3
Nf

]

, β1 =
1

16

[

102 − 38

3
Nf

]

, β2 =
1

64

[

2857

2
− 5033

18
Nf +

325

54
N2
f

]

,

β3 =
1

256

[

149753

6
+ 3564ζ(3)−

(

1078361

162
+

6508

27
ζ(3)

)

Nf

+
(

50065

162
+

6472

81
ζ(3)

)

N2
f +

1093

729
N3
f

]

. (2.20)

ζ is Riemann’s zeta-function and Nf is the number of active flavours involved at the
specific energy. The energy which will be interesting in the following is the energy cor-
responding to the rest mass of the τ lepton, mτ ≈ 1.777GeV. This energy is located
between the thresholds of the strange and the charm quark. Therefore, one has to use
Nf = 3 and obtains

β0 =
9

4
, β1 = 4, β2 =

3863

384
, β3 =

140599

4608
+

445

32
ζ(3). (2.21)

One ends up with an differential equation of the form

q2 d

dq2

(

αs
π

)

= −
(

αs
π

)2
(

β0 + β1

(

αs
π

)

+ β2

(

αs
π

)2

+ β3

(

αs
π

)3
)

+O(α6
s). (2.22)
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Considering the fact that µ2 and q2 play complementary roles in t̄, there is an apparent
contradiction to the first of Eqs. (2.7). Note, however, that αs is not a function of t̄ (as
ᾱs is) but a function of its argument alone, i.e. either µ2 or q2. Therefore, one can use
either q2 or µ2 as argument, and by using the derivative with respect to the same variable
one ends up with two differential equations which are formally equal. The equation with
µ2 instead of q2 is the one used in Ref. [47] as well as in Ref. [48]. At the same time this
frees one from keeping track on a scaling. Again one has to introduce a mass scale if one
wants to write the left hand side of the renormalization equation (2.22) like before as a
derivative with respect to some logarithm. This will be done in the next subsection by
introducing a new scale Λ.

2.1.8 Introduction of a third mass scale

By defining

t = ln

(

q2

Λ2

)

(2.23)

one obtains
d

dt

(

αs
π

)

= β
(

αs
π

)

= −
∞
∑

m=0

βm

(

αs
π

)m+2

(2.24)

with αs = αs(Λ
2et). There is still a possibility to rescale this equation. If one defines a

new parameter ā(t) = β0αs(Λ
2et)/π = 9αs(Λ

2et)/4π, one ends up with

dā(t)

dt
= −ā2(t)

(

1 + c1ā(t) + c2ā
2(t) + c3ā

3(t)
)

+O(ā6) (2.25)

where ci := βi/(β0)
i+1, thus

c1 =
64

81
, c2 =

3863

4374
, c3 =

140599

118098
+

3560

6561
ζ(3). (2.26)

This is the form of the renormalization group equation for the coupling that will be used
in the following (see Ref. [49]. The methods in Ref. [50] are more involved, resumming
the coupling to an effective coupling. This will be dealt with later on).

2.2 Correlator function and spectral density

As mentioned in the introduction of this chapter, the coupling parameter αs is a quantity
with a priori no physical meaning. It is a tool of perturbation theory which enables one
to calculate measurable quantities as power series in this parameter. Its value depends on
the methods used, e.g. the different subtraction schemes. The main topic, therefore, has
to be to express one physical observable, in the previous case the total e+e− annihilation
cross section, by another one, for which one can use the semileptonic τ decay ratio which
is well measured. Therefore, the main task is building a bridge from the one to the
other quantity by passing by the ambiguous field of perturbation series in αs as safely as
possible. This is done in Ref. [47].
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2.2.1 Vector and axial-vector contributions

The semileptonic (hadronic) τ lepton decay is mediated by the charged weak hadronic
current of the form

jwµ (x) = Vudūγµ(1 − γ5)d+ Vusūγµ(1 − γ5)s (2.27)

where Vud and Vus are Cabbibo–Kobayashi–Maskawa matrix elements (elements of the
weak mixing matrix). The correlator for the weak hadronic currents in Eq. (2.27) has the
general form

Πµν(q
2) = 12π2i

∫

〈Tjµ(x)j†ν(0)〉eiqxdx = qµqνΠq(q
2) + gµνΠg(q

2) (2.28)

where Πq(q
2) and Πg(q

2) are invariant scalar functions. These scalar functions are further
specified depending on which current is considered. In case of the (ūd) quark current
jµ(x) = ūγµ(1− γ5)d (denoted as light quark case) the massless limit is assumed in which
case the correlator is transverse, i.e. both invariant functions Πq,g(q

2) are expressible
through a single scalar correlator function Πud(q

2)

Πq(q
2) = Πud(q

2), Πg(q
2) = −q2Πud(q

2). (2.29)

The correlator in case of the (ūs) quark current (the term proportional to Vus, also referred
to as the strange quark case) is slightly different as the nonvanishing strange quark mass
is taken into account (see Ref. [51] and references therein). The remaining parts of the
consideration are rather similar to the light quark case. The specification (ūd) will be
skipped in the following and Πud(q

2) ≡ Π(q2) will be used. In addition to the different
current specifications as in Eqs. (2.27) and (2.29) it is convenient in some cases to consider
the vector and axial parts of the correlator separately,

ΠV+A(q2) = ΠV (q2) + ΠA(q2) (2.30)

with ΠV (q2) being related to the vector part and ΠA(q2) being related to the axial part.
The spectral density intorduced later on will split accordingly into vector and axial-vector
parts, ρV+A(s) = ρV (s) + ρA(s).

Because one mainly concentrates on the massless limit for the correlator, the above
mentioned simplifications apply. In the following the indices V and A will be omitted in
the generic case as well if no confusion arises. The correlator in Eq. (2.28) is normalized
to the number of colours Nc (the same holds true for the spectral density which means
that ρ(s) → Nc for s → ∞) in the leading parton model approximation with massless
quarks. In the following occasionally also a slightly different normalization will be used
which explicitly accounts for the number of colours, resulting in a correlator which is
normalized to unity.

The above considerations are general and are also used by experimentalists to classify
the appropiate channels: strange particles (K mesons) form the strange channel, non-
strange axial-vector mesons (as a1 and the like) form the axial-vector channel, and the
classical vector meson ρ represents the non-strange vector channel. In this respect the
pion is somewhat special. It is a Goldstone boson for the lightest flavours with spin zero
and gives a contribution to the axial correlator ΠA(q2) in the massless limit.
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2.2.2 The relative τ lepton decay rate

Before specifying the theoretical calculations the general form of an important observable
of τ decays will be given. The basic observable is the relative τ lepton decay rate for the
decay of the τ lepton into hadrons written in the standard form as

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + l + ν̄l)
= NcSEW

(

|Vud|2(1 + δud) + |Vus|2(1 + δus)
)

. (2.31)

The leading terms in Eq. (2.31) are the parton model results while the terms δud and
δus represent the effects of QCD interactions and mass effects (in case of nonvanishing
quark masses) [52, 53]. Vud and Vus are elements of the weak mixing matrix as defined
in Eq. (2.27), and SEW describes the electroweak radiative corrections to the τ decay
rate [54].

2.2.3 The relative hadronic cross section

In a similar manner the hadronic cross section σ
(0)
h = σ(e+e− → hadrons) can be expressed

in relation to the muonic cross section σ(e+e− → µ+µ−) = 4πα2/3s as

σ
(0)
h (s) =

4πα2

3s
R(s), R =

σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(2.32)

where α is the fine structure constant of QED and s = q2. On the other hand, the
relative hadronic cross section R(s) can be expressed as the discontinuity of the two-point
correlator Π(q2) along its cut at the negative real axis,

R(s) ∼ ρ(s) (2.33)

where ρ(s) is the spectral density . To understand the meaning of the spectral density, one
has to introduce the two-point correlator for hadronic currents also in the e+e− channel.
It is given by

12π2i
∫

〈0|jem
µ (x)jem

ν (0)|0〉eiqxd4x = (−gµνq2 + qµqν)Π(−q2). (2.34)

The scalar two-point correlator function Π(q2) is connected with the spectral density by
the dispersion relation (see e.g. Ref. [55])

Π(q2) =
∫ ∞

s0

ρ(s)ds

s+ q2
(2.35)

where s0 = 4m2
π is the production threshold of the light flavours. The dispersion relation

implies the reverse relation

ρ(s) =
1

2πi
Disc Π(s) (2.36)

where the discontinuity is given by

Disc Π(s) := Π(se−iπ) − Π(seiπ) (2.37)

and where e±iπ stands for the approach to the negative real axis from the positive and
negative imaginary half plane, resp. Note further that the argument s on the left hand



60 CHAPTER 2. RENORMALIZATION AND RESUMMATION

side is an argument of Disc Π and not of Π only. The dispersion relation has its origin in
Cauchy’s theorem. One calculates the circle integral with center at t = q2 and radius r
and enlarges this circle, avoiding the cut of Π(q2) along the negative real axis starting at
t = −s0. One then obtains

2πiΠ(q2) =
∮

|t−q2|=r

Π(t)dt

t− q2
=

=
∫ π

−π

Π(Reiϕ)iReiϕdϕ

Reiϕ − q2
+
∫ s0eiπ

Reiπ

Π(t)dt

t− q2
+
∫ Re−iπ

s0e−iπ

Π(t)dt

t− q2
=

≈ i
∫ π

−π
Π(Reiϕ)dϕ+

∫ s0

R

Π(seiπ)eiπds

seiπ − q2
+
∫ R

s0

Π(se−iπ)e−iπds

se−iπ − q2
=

= i
∫ π

−π
Π(Reiϕ)dϕ+

∫ s0

R

Π(seiπ)ds

s+ q2
+
∫ R

s0

Π(se−iπ)ds

s+ q2
=

= i
∫ π

−π
Π(Reiϕ)dϕ+

∫ R

s0

(Π(se−iπ) − Π(seiπ)) ds

s+ q2
(2.38)

where the change from t to s = −t has been used. The integral over the infinite circle
path with radius R vanishes. Using the definition of the discontinuity, one thus ends up
with the dispersion relation.

2.2.4 Adler’s function

There is still another representation for Π(q2). If one uses Π̃(q2) := Π(q2)/q2 instead of
Π(q2) and constructs a dispersion relation for this quantity, one has to take into account
the additional pole at q2 = 0. Therefore, instead of the integral starting at s = s0 the
integral starts at s = 0. The spectral density is replaced by

ρ̃(s) =
1

2πi
Disc Π̃(s) =

Disc Π(s)

−2πis
. (2.39)

Inserting Π̃(q2) one ends up with [56]

Π(q2) = Π(0) − q2
∫ ∞

0

ρ(s)ds

s(s+ q2)
= Π(0) +

∫ ∞

0

(

1

s+ q2
− 1

s

)

ρ(s)ds. (2.40)

The first, constant part is singular in general. One has to subtract this singularity. But
if one calculates the derivative of Π(q2), one obtains either

−dΠ(q2)

dq2
=
∫ ∞

s0

ρ(s)ds

(s+ q2)2
or − dΠ(q2)

dq2
=
∫ ∞

0

ρ(s)ds

(s+ q2)2
. (2.41)

Both quantities are positive definite and finite [57]. Thus, one can define an invariant
with respect to the renormalization group equation (see Refs. [58, 59]), known as Adler’s
function

D(q2) := −q2dΠ(q2)

dq2
= q2

∫ ∞

0

ρ(s)ds

(s+ q2)2
(2.42)

where the second form of the derivative has been used, knowing that the ambiguity means
that the integral up to s0 vanishes identically. This is obviously clear when one takes a
“natural glimpse” at the spectrum because there is no hadron production possible below
the light flavour threshold (see also Ref. [60] as well as restricting remarks in Chapter 7).
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2.2.5 Coefficients for Adler’s function

Adler’s function has been calculated as a perturbation series up to three-loop order for
the mass-zero part [61, 62]. The contributions for non-vanishing mass are done up to
O(m2, α2

s) and also for non-perturbative contributions in Ref. [63]. In the present appli-
cations the main emphasis is put on the massless part. At the same scale q2 as the one
taken for the running coupling αs one obtains

D(q2) = 1 +K0

(

αs
π

)

+K1

(

αs
π

)2

+K2

(

αs
π

)3

+O(α4
s) (2.43)

which is the contribution only for a single quark colour C and flavour f with

K0 = 1, K1 =
365

24
− 11ζ(3) −

(

11

12
− 2

3
ζ(3)

)

Nf ,

K2 =
87029

288
− 1103

4
ζ(3) +

275

6
ζ(5) +

−
(

7847

216
− 262

9
ζ(3) +

25

9
ζ(5)

)

Nf +
(

151

162
− 19

27
ζ(3)

)

N2
f . (2.44)

Note that K0 = 1, so that the series starts with 1+αs/π (which is transformed to 1+9a/4
for the rescaled parameter).

2.2.6 Scaling property of the coupling to first order

When quantities are considered at different energy scales, the running of the parameters
have to be taken into account. The running of the coupling is determined by the solution
of the renormalization group equation, considered here in leading order only. The equation
one has to solve is simply given by ā′(t) = −ā2 which can be integrated to result in

1

ā(t)
− 1

ā(0)
= t. (2.45)

There is the parameter Λ left in the definition of t which can be specified in order to
simplify this equation. If one fixes Λ so that ā(0) = ∞, one obtains

ā(t) =
1

t
⇒ αs(q

2) =
π

β0 ln(q2/Λ2)
. (2.46)

This scale Λ is the QCD-scale ΛQCD, in this case to the first order. It depends on the order
one uses for the expansion of the beta function and depends on the selected subtraction
scheme as well, in this case the MS-scheme. Therefore, one should more exactly name
this parameter Λ

(1)

MS
. Hoewever, for brevity the former notation is kept. If one expands

this result for the coupling constant at some fixed scale µ2, one obtains

αs(q
2) =

π

β0 ln(q2/Λ2
QCD)

=
π

β0

(

ln(µ2/Λ2
QCD) − ln(µ2/q2)

) =

≈ αs(µ
2)

(

1 +
ln(µ2/q2)

ln(µ2/Λ2
QCD)

+ . . .

)

. (2.47)
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2.3 Expressions to compare with the e+e− data

In the previous subsection a special case of the solution for the coupling has been consid-
ered, namely the solution to first order. But even in the general case the expansion will
be expressible in terms of powers of logarithms. One can choose an ansatz for Adler’s
function in replacing the coefficients Ki by a power series in ln(µ2/q2) and match the
coefficients by using the invariance property of D(q2). Starting with this section, one
considers only reduced parts of the quantities.

2.3.1 The reduced part of Adler’s function

As seen before, Adler’s function starts with 1 + 9a/4. This fact will be used to define a
reduced part d(q2) of it by setting

D(q2) = 1 +
9

4
d(q2). (2.48)

D(q2) is invariant with respect to the renormalization group equation which means that

µ2dD(q2)

dµ2
= 0 ⇒ µ2 d

dµ2
d(q2) = 0, d(µ2) = a(1 + k1a+ k2a

2 + k3a
3 + k4a

4) +O(a6)

(2.49)
with ki := Ki/(β0)

i where a = a(µ2) := ā(ln(µ2/Λ2)) is taken at the scale µ2. The
unknown coefficients k3 and k4 are included as well. Note that the invariance property is
given by a derivative with the (not explicitly indicated) dependence on µ2, not on q2. To
solve the differential equation for d(q2), one uses the ansatz

d(q2) = a + (k1 + k11ℓ)a
2 + (k2 + k21ℓ+ k22ℓ

2)a3 + (2.50)

+(k3 + k31ℓ+ k32ℓ
2 + k33ℓ

3)a4 + (k4 + k41ℓ+ k42ℓ
2 + k43ℓ

3 + k44ℓ
4)a5

with

ℓ := ln

(

µ2

q2

)

⇒ µ2 dℓ

dµ2
= 1, µ2da(µ

2)

dµ2
= β(a). (2.51)

Therefore, one obtains

0
!
= µ2 d

dµ2
d(q2) =

= β(a) + k11a
2 + 2(k1 + k11ℓ)aβ(a) +

+(k21 + 2k22ℓ)a
3 + 3(k2 + k21ℓ+ k22ℓ

2)a2β(a) +

+(k31 + 2k32ℓ+ 3k33ℓ
2)a4 + 4(k3 + k31ℓ + k32ℓ

2 + k33ℓ
3)a3β(a) +

+(k41 + 2k42ℓ+ 3k43ℓ
3 + 4k44ℓ

3)a5 +

+5(k4 + k41ℓ+ k42ℓ
2 + k43ℓ

3 + k44ℓ
4)a4β(a). (2.52)

The comparison for the coefficients of different powers of a results in

k11 = 1, k21 + 2k22ℓ = 2(k1 + k11ℓ) + c1 ⇒ k21 = 2k1 + c1, k22 = k11 = 1,

k31 + 2k32ℓ+ k33ℓ
2 = 3(k2 + k21ℓ + k22ℓ

2) + 2c1(k1 + k11ℓ) + c2 ⇒
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k31 = 3k2 + 2c1k1 + c2,

2k32 = 3k21 + 2c1k11 = 6k1 + 3c1 + 2c1 = 6k1 + 5c1,

3k33 = 3k22 = 3 ⇒ k33 = 1,

k41 + 2k42ℓ+ 3k43ℓ
2 + 4k44ℓ

3 = 4(k3 + k31ℓ+ k32ℓ
2 + k33ℓ

3) +

+3c1(k2 + k21ℓ+ k22ℓ
2) + 2c2(k1 + k11ℓ) + c3 ⇒

k41 = 4k3 + 3c1k2 + 2c2k1 + c3,

2k42 = 4k31 + 3c1k21 + 2c2k11 = 12k2 + 8c1k1 + 4c2 + 6c1k1 + 3c21 + 2c2 =

= 12k2 + 14c1k1 + 3c21 + 6c2,

3k43 = 4k32 + 3c1k22 = 12k1 + 10c1 + 3c1 = 12k1 + 13c1,

4k44 = 4k33 = 4 ⇒ k44 = 1.

The solution is thus given by

d(q2) = a+ (k1 + ℓ)a2 + (k2 + (2k1 + c1)ℓ+ ℓ2)a3 +

+
(

k3 + (3k2 + 2c1k1 + c2)ℓ+
1

2
(6k1 + 5c1)ℓ

2 + ℓ3
)

a4 +

+
(

k4 + (4k3 + 3c1k2 + 2c2k1 + c3)ℓ + (2.53)

+
1

2
(12k2 + 14c1k1 + 3c21 + 6c2)ℓ

2 +
1

3
(12k1 + 13c1)ℓ

3 + ℓ4
)

a5 +O(a6).

2.3.2 The reduced part of the correlator function

The function d(q2) or equally D(q2) are functions in q2 only by the powers of ℓ. To get
from Adler’s function to the correlator function, one has to reverse the differentiation in
Eq. (2.42) by integrating correspondingly. In the same manner one can define a relative
part of the correlator function, simply called relative correlator function p(q2), by

Π(q2) = 1 +
9

4
p(q2) (2.54)

again for a single quark colour and flavour. Then

d(q2) = −q2 d

dq2
p(q2) =

d

dℓ
p(q2) ⇒ p(q2) = p(µ2) +

∫ ℓ

0
d(q2)dℓ ′ (2.55)

where d(q2) and p(q2) are understood as (polynomial) functions in ℓ or (for the integrand)
in ℓ ′. Integration gives

p(q2) = p(µ2) + aℓ+
(

k1ℓ+
1

2
ℓ2
)

a2 +
(

k2ℓ+
1

2
(2k1 + c1)ℓ

2 +
1

3
ℓ3
)

a3 +

+
(

k3ℓ+
1

2
(3k2 + 2c1k1 + c2)ℓ

2 +
1

6
(6k1 + 5c1)ℓ

3 +
1

4
ℓ4
)

a4 +

+
(

k4ℓ+
1

2
(4k3 + 3c1k2 + 2c2k1 + c3)ℓ

2 + (2.56)

+
1

6
(12k2 + 14c1k1 + 3c21 + 6c2)ℓ

3 +
1

12
(12k1 + 13c1)ℓ

4 +
1

5
ℓ5
)

a5 +O(a6).
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2.3.3 The reduced part of the spectral density

Again one defines a reduced part, the relative spectral density r(s), by

ρf (s) = 1 +
9

4
r(s) =

1

2πi
Disc Π(s). (2.57)

In order to obtain this quantity, one first considers the discontinuities of the different
powers of ℓ = ℓ(q2),

Disc ℓ(s) = ln

(

µ2

se−iπ

)

− ln

(

µ2

seiπ

)

= ln

(

µ2

s
eiπ
)

− ln

(

µ2

s
e−iπ

)

=

= ln

(

µ2

s

)

+ iπ −
(

ln

(

µ2

s

)

− iπ

)

= iπ − (−iπ) = 2πi (2.58)

and so

1

2πi
Disc ℓ(s) = 1, similarly

1

2πi
Disc ℓ2(s) = 2 ln

(

µ2

s

)

,

1

2πi
Disc ℓ3(s) = 3 ln2

(

µ2

s

)

− π2,

1

2πi
Disc ℓ4(s) = 4 ln3

(

µ2

s

)

− 4π2 ln

(

µ2

s

)

,

1

2πi
Disc ℓ5(s) = 5 ln4

(

µ2

s

)

− 10π2 ln2

(

µ2

s

)

+ π4. (2.59)

One can define L := ln(µ2/s) and obtains

r(s) = a + (k1 + L)a2 +

(

k2 −
π2

3
+ (2k1 + c1)L+ L2

)

a3 +

+
(

k3 −
1

6
(6k1 + 5c1)π

2 + (3k2 + 2c1k1 + c2 − π2)L+
1

2
(6k1 + 5c1)L

2 + L3
)

a4 +

+

(

k4 − (12k2 + 14c1k1 + 3c21 + 6c2)
π2

6
+
π4

5
+

+

(

4k3 + 3c1k2 + 2c2k1 + c3 − (12k1 + 13c1)
π2

3

)

L + (2.60)

+
1

2
(12k2 + 14c1k1 + 3c21 + 6c2 − 4π2)L2 +

1

3
(12k1 + 13c1)L

3 + L4

)

a5 +O(a6).

2.3.4 The relative hadronic e+e− annihilation cross section

As for the perturbative series of Adler’s function in Eq. (2.43), the spectral density is
given for a single quark colour and flavour. In order to be commensurate with the relative
hadronic cross section one started with, all flavours occuring at the specified center-of-
mass energy have to be added. Assuming that all three flavours used up to now are
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massless, the contributions are the same except for a factor Q2
f denoting the square of the

electric charge of the respective quark with flavour f in units of the elementary charge.
This factor comes from the two vertices of the quark loop with the Z0 boson. Therfore,
the matching with the experimental side is done by calculating

Re+e−(s) = Nc

∑

f=u,d,s

ρ(s) = Nc

∑

f=u,d,s

Q2
f

(

1 +
9

4
r(s)

)

=

= 3
(

4

9
+

1

9
+

1

9

)(

1 +
9

4
r(s)

)

= 2
(

1 +
9

4
r(s)

)

. (2.61)

Note that there is in principle an additional term which has its origin in QCD diagrams in
analogy to the QED light-by-light diagrams.2 This additional term contributing to Re+e−

independently from the scheme is given by

−




∑

f=u,d,s

Qf





2
(

35

108
− 5

3
ζ(3)

)

a3 (2.62)

which of course vanishes in our case because the total charge is zero.

Finally one can note that the considered terms only contain the perturbative contribu-
tion. Also the long-distance non-perturbative contributions, expanded in a power series
in 1/s by using the Operator Product Expansion (OPE) and factorized in vacuum matrix
elements should principally have been taken into account. But as noteed in Ref. [66], the
magnitudes of these power corrections fall off rapidly with s, and they can be completely
neglected for center-of-mass energies beyond a few GeV. Thus one is done with the theory
side for the relative hadronic e+e− annihilation cross section at this point.

2.4 The relative semihadronic τ decay rate

As explained in Ref. [66], the semihadronic (or semileptonic) decay rate

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + e− + ν̄e)
(2.63)

can be expressed as an integral over hadronic spectral functions,

Rτ =
1

πi

∫ m2
τ

0

(

1 − s

m2
τ

)2 [(

1 +
2s

m2
τ

)

Disc Π(1)(s) + Disc Π(0)(s)

]

ds

m2
τ

=

=
1

πi

∫ m2
τ

0

(

1 − s

m2
τ

)2 [(

1 +
2s

m2
τ

)

Disc Π(1+0)(s) − 2s

m2
τ

Disc Π(0)(s)

]

ds

m2
τ

(2.64)

where the appropriate combinations of correlators are

Π(J)(q2) = |Vud|2
(

Π
(J)
ud,V (q2) + Π

(J)
ud,A(q2)

)

+ |Vus|2
(

Π
(J)
us,V (q2) + Π

(J)
us,A(q2)

)

, (2.65)

2For details see Ref. [64] where the whole set of diagrams and the calculational techniques are described
together with the results up to order a3. Mistakes in the leading term are corrected in Refs. [62, 65], see
the discussion in Ref. [66]. Cf. also considerations in Chapter 7.



66 CHAPTER 2. RENORMALIZATION AND RESUMMATION

Π(1+0)(q2) = Π(1)(q2) + Π(0)(q2), and

Πµν
ij,V/A(q2) = (qµqν − q2gµν)Π

(1)
ij,V/A(q2) + qµqνΠ

(0)
ij,V/A(q2) (2.66)

for

Πµν
ij,V (q2) = 12π2i

∫

eiqx〈0|T (V µ
ij (x)V

ν
ij (0)†)|0〉,

Πµν
ij,A(q2) = 12π2i

∫

eiqx〈0|T (Aµij(x)A
ν
ij(0)†)|0〉. (2.67)

Here J = 0, 1 is the angular momentum in the hadronic rest frame, and V µ
ij = ψ̄jγ

µψi,
Aµij = ψ̄jγ

µγ5ψi are the vector resp. axial vector colour singlet quark currents. At first
sight this seems to be a rather complicated construction scheme. Fortunately it can be
shown that the non-perturbative contributions to the correlator functions are again quite
small, while the perturbative contributions are the same for all lower indices. For the
J = 1 case as in Ref. [67], one ends up with

Rτ =
1

πi
(|Vud|2 + |Vus|2)

∫ m2
τ

0

(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)

Disc Π(s)
ds

m2
τ

. (2.68)

One can write the integral in a dimensionless form by substituting x = s/m2
τ ,

Rτ =
1

πi
(|Vud|2 + |Vus|2)

∫ 1

0
(1 − x)2(1 + 2x) Disc Π(m2

τx)dx. (2.69)

This expression is the starting point for the following considerations.

2.4.1 Introducing moments

The correlator Π(q2) used in Eq. (2.68) is the the one which previously occured in the
e+e− annihilation cross section. Therefore, one can insert Eq. (2.61) and obtains

Rτ = 2(|Vud|2 + |Vus|2)
∫ m2

τ

0

ds

m2
τ

(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)

Re+e−(s). (2.70)

This equation is the first connection between the τ decay rate and the e+e− annihilation
cross section. If one defines moments

Rn(s0) := (n + 1)
∫ s0

0

ds

s0

(

s

s0

)n

Re+e−(s) = (n+ 1)
∫ 1

0
xnRe+e−(s0x)dx, (2.71)

one can write

Rτ = (|Vud|2 + |Vus|2)
(

2R0(m
2
τ ) − 2R2(m

2
τ ) +R3(m

2
τ )
)

. (2.72)

Knowing that

(n+ 1)
∫ 1

0
xndx =

[

xn+1
]1

x=0
= 1 for all n ≥ 0, (2.73)

one can again change to relative quantities and obtain

Rτ = R0
τ

(

1 +
9

4
rτ

)

where rτ = 2r0(m
2
τ ) − 2r2(m

2
τ ) + r3(m

2
τ ), (2.74)

rn(s0) := (n+ 1)
∫ 1

0
xnr(s0x)dx. (2.75)

Besides the factor (|Vud|2 + |Vus|2) ≈ 3, R0
τ can also contain some other corrections as the

electroweak and the nonperturbative corrections. The relative quantity rτ which is to be
used in the perturbative analysis in what follows will change accordingly.
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2.4.2 Perturbative series for decay rate and moments

The following two subsections will mainly explain the features of Ref. [47]. As explained
before, the main goal is to express the perturbative series expansion of the e+e− annihila-
tion cross section as a series in the τ decay rate. Both quantities are physical observables,
and it will be shown that also the coefficients of this series are of this kind, as expected.
To be more precise, the different moments rn will be expressed in terms of rτ . To start
with, rn is given by

rn(m
2
τ ) = (n + 1)

∫ 1

0
xnr(m2

τx)dx = (2.76)

= a +
(

k1 + Ĩ(1, n)
)

a2 +

(

k2 −
π2

3
+ (2k1 + c1)Ĩ(1, n) + Ĩ(2, n)

)

a3 +O(a4)

where Eq. (2.60) has been inserted. This insertion is done up to the third order because
at this point the path of calculation is illustrated only. The full calculation is done by a
MATHEMATICA program [68]. The integral Ĩ(m,n) is defined by

Ĩ(m,n) := (n+ 1)
∫ 1

0
xn ln

(

m2
τ

m2
τx

)

dx = (n + 1)
∫ 1

0
xn ln

(

1

x

)

dx (2.77)

where µ = mτ . Similarly, rτ is given by

rτ = 2
∫ 1

0
(1 − x)2(1 + 2x)r(m2

τx)dx = (2.78)

= a+ (k1 + Iτ (1)) a2 +

(

k2 −
π2

3
+ (2k1 + c1)Iτ (1) + Iτ (2)

)

a3 +O(a4)

with

Iτ (m) := 2
∫ 1

0
(1 − x)2(1 + 2x) ln

(

1

x

)

dx = 2Ĩ(m, 0) − 2Ĩ(m, 2) + Ĩ(m, 3). (2.79)

The integral Ĩ(m,n) can be calculated analytically by using the substitution x = e−t,

Ĩ(m,n) = (n+ 1)
∫ 1

0
xn lnm

(

1

x

)

dx = (n+ 1)
∫ ∞

0
tme−(n+1)tdt =

=
[

− tme−(n+1)t
]∞

t=0
+m

∫ ∞

0
tm−1e−(n+1)tdt =

=
m(m− 1)

n+ 1

∫ ∞

0
tm−2e−(n+1)tdt = . . . (2.80)

. . . =
m!

(n+ 1)m−1

∫ ∞

0
e−(n+1)tdt =

m!

(n + 1)m

[

− e−(n+1)t
]∞

t=0
=

m!

(n+ 1)m

and

Iτ (m) =
(

2

1m
− 2

3m
+

1

4m

)

m! (2.81)

as quoted in Ref. [47].
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2.4.3 Inversion and insertion

As mentioned earlier, the main task is to invert the series expansion of rτ in terms of a
and insert this result into the series expansion of rn. The inversion of the series

rτ = a+ k̃1a
2 + k̃2a

3 + k̃3a
4 +O(a5) (2.82)

can be obtained by the ansatz

a = rτ + a1r
2
τ + a2r

3
τ + a3r

4
τ +O(r5

τ ) ⇒
a2 = r2

τ + 2a1r
3
τ + 2a2r

4
τ + a2

1r
4
τ +O(r5

τ),

a3 = r3
τ + 3a1r

4
τ +O(r5

τ ),

a4 = r4
τ +O(r5

τ). (2.83)

Inserting this, one ends up with

rτ = rτ + (a1 + k̃1)r
2
τ + (a2 + 2a1k̃1 + k̃2)r

3
τ +

+
(

a3 + (2a2 + a2
1)k̃1 + 3a1k̃2 + k̃3

)

r4
τ +O(r5

τ ). (2.84)

A comparison of coefficients then results in

a1 = −k̃1,

a2 = −k̃2 − 2a1k̃1 = −k̃2 + 2k̃2
1,

a3 = −k̃3 − 3a1k̃2 − (2a2 + a2
1)k̃1 = (2.85)

= −k̃3 + 3k̃1k̃2 + 2k̃1k̃2 − 4k̃3
1 − k̃3

1 = −k̃3 + 5k̃1k̃2 − 5k̃3
1.

After having obtained these coefficients, the result for a in terms of powers of rτ is inserted
into the series expansion of rn and results in

rn(m
2
τ ) = f0nrτ + f1nr

2
τ + f2nr

3
τ + f3nr

4
τ + f4nr

5
τ +O(r6

τ) (2.86)

where one has returned to the previous order using

f0n = I(0, n),

f1n = I(1, n),

f2n = I(2, n) + ρ1I(1, n),

f3n = I(3, n) +

(

Iτ (2) − Iτ (1)2 − π2

3

)

I(1, n) +

+
5

2
ρ1I(2, n) + ρ2I(1, n),

f4n = I(4, n) − 3

(

Iτ (2) − Iτ (1)2 − π2

3

)

I(2, n) +

+2
(

Iτ (3) − 3Iτ (1)Iτ(2) + 2Iτ (1)3
)

I(1, n) +

+ρ1

(

13

3
I(3, n) + 5

(

Iτ (2) − I − τ(1)2 − π2

3

)

I(1, n)

)

+

+3ρ2I(2, n) + ρ3I(1, n). (2.87)
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The terms I(m,n) occuring in these coefficients are not exactly the integrals Ĩ(m,n)
defined earlier but related to them by

Ĩ(m,n) =
m
∑

p=0

(

m

p

)

Iτ (p)I(m− p, n). (2.88)

This Binomial-like relation was found to express the resulting coefficients in a more concise
and closed form. ρ1, ρ2 and ρ3 are scheme independent quantities which will appear later
on when all quantities are expressed in a power series of Adler’s function. Their values
are

ρ1 = c1 ≈ 0.79012,

ρ2 = c2 − c1k1 − k2
1 + k2 ≈ 1.03463,

ρ3 = c3 − 2c2k1 + c1k
2
1 + 4k3

1 − 6k1k2 + 2k3 ≈ −2.9795 + 2k3 (2.89)

where one is left with the unknown coefficient k3. This is the situation decribed in Ref. [47].
The Padé approximation mentioned there to estimate k3 is discussed later on.

2.4.4 Introducing a circle integral

Again one uses Cauchy’s theorem to rewrite the integral. In this case one uses the “trivial
form” of this theorem which means that the integral of the function vanishes when it is
taken on a closed path encircling a region where this function is holomorphic. This is
true for the product of the correlator function with some polynomial function except for
the above mentioned cut along the negative real axis starting from the negative value of
the light flavour production threshold s0 = 4m2

π. But in extending the closed path to the
already known form of a cut disk, one does even more, i.e. one has to leave out the cut
starting at s = 0. Therefore, for the polynomial function

Pτ (x) := 2(1 + x)2(1 − 2x) (2.90)

one obtains

0
!
=

∮

|x|=1
Pτ (x)Π(m2

τx)dx+
∫ 0

eiπ
Pτ (x)Π(m2

τx)dx+
∫ e−iπ

0
Pτ (x)Π(m2

τx)dx =

=
∮

|x|=1
Pτ (x)Π(m2

τx)dx +

+
∫ 0

1
Pτ (xe

iπ)Π(m2
τxe

iπ)eiπdx+
∫ 1

0
Pτ (xe

−iπ)Π(m2
τxe

−iπ)e−iπdx =

=
∮

|x|=1
Pτ (x)Π(m2

τx)dx−
∫ 1

0
Pτ (−x)

(

Π(m2
τxe

−iπ) − Π(m2
τxe

iπ)
)

dx =

=
∮

|x|=1
Pτ (x)Π(m2

τx)dx−
∫ 1

0
Pτ (−x) Disc Π(m2

τx)dx. (2.91)

and ends up with

Rτ = −6πi(|Vud|2 + |Vus|2)
∮

|x|=1
Pτ (x)Π(m2

τx)dx. (2.92)
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2.4.5 Introducing a weight function

As a next step Adler’s function is introduced. One can do this by defining a weight
function

Wτ (x) :=
1

x

∫ x

−1
Pτ (x

′)dx′ =
2

x

∫ x

−1
(1 + x′)2(1 − 2x′)dx′ =

1

x
(1 + 2x− 2x3 − x4). (2.93)

Using this weight function, one can perform a partial integration where the surface term
vanishes because Wτ (−1) vanishes. One obtains

∮

|x|=1
Wτ (x)D(m2

τx)dx = −
∮

|x|=1
xWτ (x)

dΠ(m2
τx)

dx
dx = (2.94)

=
∮

|x|=1

d(xWτ (x))

dx
Π(m2

τx)dx−
[

xWτ (x)Π(m2
τx)

]eiπ

x=e−iπ
=

∮

|x|=1
Pτ (x)Π(m2

τx)dx.

Therefore, one finally obtains

Rτ = −6πi(|Vud|2 + |Vus|2)
∮

|x|=1
Wτ (x)D(m2

τx)dx. (2.95)

2.4.6 Oscillatory and circle part

Eq. (2.95) gives the connection between Adler’s function and the decay rate. This equation
can be written in reduced quantities where the different moments are split off,

rn(m
2
τ ) =

1

2πi

∮

|x|=1
Wn(x)d(m

2
τx)dx (2.96)

where Wn(x) is the weight function corresponding to Pn(x) = (n+ 1)(−x)n,

Wn(x) =
n+ 1

x

∫ x

−1
(−x′)ndx′ = (−1)n

x

[

x′n+1
]x

x′=−1
=

1

x
+ (−1)nxn. (2.97)

Therefore, the reduced moment splits off into two parts, the circle part rcirc and the
oscillatory part ∆n,

rn(m
2
τ ) = rcirc(m

2
τ ) + ∆n(m

2
τ ) where (2.98)

rcirc(m
2
τ ) =

1

2πi

∮

|x|=1

1

x
d(m2

τx)dx =
1

2π

∫ π

−π
d(m2

τe
iϕ)dϕ, (2.99)

∆n(m
2
τ ) =

(−1)n

2πi

∮

xnd(m2
τx)dx =

(−1)n

2π

∫ π

−π
ei(n+1)ϕd(m2

τe
iϕ)dϕ, (2.100)

the circle part being the same for all moments, while the oscillatory part is n dependent.
Because of its oscillatory behaviour, this contribution is suppressed but not negligible.
Again one can write

rτ = rcirc(m
2
τ ) + 2∆0(m

2
τ ) − 2∆2(m

2
τ ) + ∆3(m

2
τ ) =: rcirc(m

2
τ ) + ∆τ . (2.101)
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2.5 Resummation techniques

Different power series have appeared up to now, from the power series of the beta function
up to the power series of the τ decay rate and the different moments discussed just before.
In the last section the power series of the strong coupling have been replaced by a power
series in the τ decay rate. The construction of the power series of rτ was done by using
the explicit series expansion of the beta function and inserting this into Adler’s function
which then was integrated using a specific weight function. But there is another possibility,
namely to solve the renormalization group equation for the strong coupling exactly up to
a given order of the beta function accuracy. This procedure is called resummation. The
name is somehow misleading because one does not resum the power series expansion of
rτ with respect to the beta function coefficients but leaves the expression unexpanded.

2.5.1 Solution of the renormalization equation for the coupling

The renormalization group equation

ā′(t) = −ā2(1 + c1ā+ c2ā
2 + c3ā

3) +O(ā6), ā(0) = ∞ (2.102)

has been solved already for the leading order, the solution was ā(t) = t−1. But one can go
a few steps further. In order to do this, one choses a more appropriate parameter z = 1/ā
for which the renormalization group equation simplifies to

z′(t) = 1 +
c1
z

+
c2
z2

+
c3
z3

+O(z−4), z(0) = 0. (2.103)

The leading order solution is simply z(t) = t. For the first order one obtains

t = t0 +
∫ dx

1 + c1/z
= t0 +

∫ z dz

z + c1
= t0 +

∫
(

1 − c1
z + c1

)

dz =

= t0 + z − c1 ln(z + c1) = z − c1 (ln(z + c1) − ln c1) (2.104)

where in the last step the initial condition to determine t0 = c1 ln c1 has been used. For
the second order one obtains

t = t0 +
∫

dz

1 + c1/z + c2/z2
= t0 +

∫

z2dz

z2 + c1z + c2
=

= t0 +
∫

(

1 − c1
2

2z + c1
z2 + c1z + c2

+

(

c21
2
− c2

)

1

z2 + c1z + c2

)

dz =

= t0 + z − c1
2

ln(z2 + c1z + c2) −
2c2 − c21
√

4c2 − c21
arctan





2z + c1
√

4c2 − c21



 =

= z − c1
2

(

ln(z2 + c1z + c2) − ln c2
)

+

− 2c2 − c21
√

4c2 − c21



arctan





2z + c1
√

4c2 − c21



− arctan





c1
√

4c2 − c21







 . (2.105)

Both equations are implicit equations for z and thus ā. But this does not matter when one
only wants to determine numerical dependences. Moreover, there is a possibility given by
the command NDSolve in MATHEMATICA to solve a given differential equation by pure
numerical means resulting in an interpolating function. This will be used in the following.
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2.5.2 Determination of αs(m
2
τ) at different orders

The value aτ := a(m2
τ ) determined by solving the renormalization group equation still

depends on the parameter Λ. One can close this gap left by the theory by fitting it
to the well-known τ decay rate parameter rτ . For this purpose one has to rewrite the
moments in terms of aτ which one uses as initial value for solving the renormalization
group equation. In this way one avoids the parameter Λ. Although done for higher orders
using MATHEMATICA, the considerations at this point are limited again to the solution
of the renormalization group equation to leading order. One rewrites

a(m2
τx)
−1 = ln

(

m2
τx

Λ2

)

= ln

(

m2
τ

Λ2

)

+ ln x = a−1
τ + ln x ⇔ a(m2

τx) =
aτ

1 + aτ ln x
.

(2.106)
In using the renormalization group equation together with the defining differential equa-
tion for the weight function Wn(x),

q2 da

dq2
= x

da

dx
= −a2,

d

dx
(xWn(x)) = Pn(x) = (n + 1)(−x)n, (2.107)

one can calculate the nth moment at the τ mass scale to be

rn(m
2
τ ) =

1

2πi

∮

|x|=1
Wn(x)d(m

2
τx)dx =

= aτ
(

r0n + k1aτr1n + k2a
2
τr2n + k3a

3
τr3n + k4a

4
τr4n

)

+O(a6
τ ) (2.108)

where d = a(1 + k1a+ k2a
2 + k3a

3 + k4a
4) is used at the scale q2, and

ai+1
τ rin :=

1

2πi

∮

|x|=1
Wn(x)a(m

2
τx)

i+1dx. (2.109)

As an example r10 shall be calculated,

a2
τr10 =

1

2πi

∮

|x|=1
W0(x)a

2(m2
τx)dx = − 1

2πi

∮

|x|=1
W0(x)x

da(m2
τx)

dx
dx =

=
1

2πi

∮

|x|=1
P0(x)a(m

2
τx)dx =

1

2πi

∮

|x|=1

aτdx

1 + aτ ln x
=

=
1

2π

∫ π

−π

aτe
iϕdϕ

1 + iaτϕ
⇒ r10 =

1

2πaτ

∫ π

−π

eiϕdϕ

1 + iaτϕ
. (2.110)

The specific combination 2r0 − 2r2 + r3 is then fitted to the experimental value at rτ by
some systematic trial and error method.

2.5.3 Singularities and convergence radius

The use of a(m2
τx) on the whole circle parametrized by x = eiϕ leads to the question

whether this function is defined on the whole circle or whether there are singularities on
this circle which restrict the convergence radius. In terms of the angle ϕ, the renormal-
ization group equation is written as

−ida(m
2
τe
iϕ)

dϕ
= −a2(1 + c1a+ c2a

2 + c3a
3) +O(a6) (2.111)
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which is solved by

ϕ(a; aτ ) = −i
∫ a

aτ

da′

β(a′)
. (2.112)

ϕ = ϕ(a; aτ ) describes the angle corresponding to a parameter a which is evolved from the
generally complex initial value aτ . Singularities in the evolution process are encountered
at angles

ϕs(aτ ) := ϕ(a+ ∞; aτ) = −i
∫ ∞

aτ

da′

β(a′)
. (2.113)

Even though there are no singularities for real val-
ues of aτ , one has to extend the search to the whole
complex plane because the convergence radius is de-
termined by the singularities which are located most
close to the origin. The somehow unhandy equa-
tion (2.113) can again be rewritten in terms of z =
1/a to give

ϕs(aτ ) := i
∫ 1/aτ

0

dz

1 + c1/z + c2/z2 + c3/z3
(2.114)

which then will be integrated by MATHEMATICA.
After inversion, the singular starting values aτ (ϕs)
appear as lines in the complex aτ plane which are
parametrized by the angle ϕs at which the singularity
a = ∞ occurs. They are shown Fig. 2.1, together
with the convergence circle. The obtained values are
given in the Ref. [49], the resummed value a(4)

τ =
0.2704 extracted from the τ decay rate lies outside
the region of convergence.

Figure 2.1: Singular starting val-
ues a(4)

τ (φs) (φs ∈ [−π, π]) as
parametric curves in the complex
plane. The radius of the dashed
circle determines the convergence
radius of the resummed series.

2.5.4 The advantage of resummation techniques

There is a very simple example given in Ref. [50] to explain the advantage of the resum-
mation technique. Take two observables f and g given by perturbative series in powers
of a coupling a,

f(a) = a(1 − a+ a2 − . . . ) =
a

1 + a
, (2.115)

g(a) = a(1 − 2a+ 4a2 − . . . ) =
a

1 + 2a
. (2.116)

In this example one explicitly knows the functional dependence as shown as last term on
the left. The two observables are related by

g(f) =
f

1 + f
= f(1 − f + f 2 − . . . ). (2.117)

Now assume that one wants to fit the right hand side of Eq. (2.115) to an experimental
value of about f = 0.6. The exact formula results in a = 1.5 for which the series
in Eq. (2.115) diverges. Therefore, one cannot obtain a from this fit without a proper
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resummation procedure which in this case is trivially given by the appended exact formula.
With the same reason one cannot obtain a value of g in terms of a using the perturbative
series in Eq. (2.116). On the other hand, the direct relation in terms of the series in
Eq. (2.117) converges perfectly for f = 0.6 and gives an unambiguous result for g in
terms of the measured f . Such an improvement does only occur when the underlying
theory and the origin of the series are analyzed in detail. One is able to do so with the
above resummation procedure, but one cannot answer the question about the convergence
or divergence of the series obtained by reexpanding the moments in terms of rτ .

2.5.5 Scheme dependence and a new beta function

It has to be emphasized that the renormalization group equation for the coupling and
therefore the resummation procedure is invariant under a one-parameter subgroup para-
metrized by γ which describes the rescaling of the renormalization scale µ. This rescaling
is connected with a change of the selected subtraction scheme. To see this connection,
remember that the renormalization scale is introduced in dimensional regularization to
compensate the “loss of dimensionality” when going from a four dimensional to a D di-
mensional space-time with D = 4−2ε. A one-loop integral thus results in a compensation
factor µ−2ε. On the other hand, the integral itself in general produces a logarithmic singu-
larity which is parametrized by 1/ε. Therefore, the singular term is proportional to µ−2ε/ε
in the MS-scheme. If one changes to the MS-scheme, the singularity 1/ε together with
constants shown in Eq. (2.3) is regarded as 1/ε′. But instead of changing the dimensional
parameter one can absorb this change in the renormalization scale µ,

(µ2)−ε
(

1

ε
− γE + ln 4π

)

=
(µ̄2)−ε

ε
, µ̄2 = eγµ2, γ = γE − ln 4π (2.118)

where the expansion of the additional factor in ε is used. Every change of the subtrac-
tion scheme is expressible in this form by using an appropriate γ. The rescaling of the
renormalization scale does not change the renormalization group equation itself for it is
an autonomeous differential equation, but it changes the coupling parameter,

ã(µ2) = a(eγµ2) = a− γa2 + (γ2 − c1γ)a
3 − (γ3 − 5

2
c1γ

2 + c2γ)a
4 + . . . (2.119)

and is called the one parameter subgroup of the renormalization group. This transfor-
mation under the subgroup can be obtained by calculating a Taylor series expansion of
a(eγµ2),

ã(µ2) = a(eγµ2) = a(Λ2et+γ) = ā(t+ γ) =
∞
∑

n=0

γn

n!

dnā(t)

dtn
(2.120)

where the terms of the Taylor series can be calculated iteratively by using the beta func-
tion,

ā0 := ā(t), āi :=
dāi−1(t)

dt
=
dā(t)

dt

dāi−1

dā
= β(ā)

dāi−1

dā
. (2.121)

The invariance of the beta function itself is rather evident, as can be shown as follows.
For this purpose the series in Eq. (2.119) is inverted by the “standard ansatz”

a = ã+ b1ã
2 + b2ã

3 + b3ã
4 +O(ã5) ⇒
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a2 = ã2 + 2b1ã
3 + 2b2ã

4 + b21ã
4 +O(ã5),

a3 = ã3 + 3b1ã
4 +O(ã5),

a4 = ã4 +O(ã5). (2.122)

One obtains

b1 = γ,

b2 = 2b1γ − γ2 + c1γ = 2γ2 − γ2 + c1γ = γ2 + c1γ,

b3 = 2b2γ + b21γ − 3b1(γ
2 − c1γ) + γ3 − 5

2
c1γ

2 + c2γ =

= 2γ3 + 2c1γ
2 + γ3 − 3γ3 + 3c1γ

2 + γ3 − 5

2
c1γ

2 + c2γ =

= γ3 +
5

2
c1γ

2 + c2γ (2.123)

and thus

a = ã + γã2 + (γ2 + c1γ)ã
3 +

(

γ3 +
5

2
c1γ

2 + c2γ
)

ã4 +O(ã5). (2.124)

This expression can be inserted in the beta function in terms of a and gives rise to the
beta function for ã,

β(ã) =
dã

dt
=
da

dt

dã

da
= β(a)

dã

da
(2.125)

which turns out to be invariant. On the other hand, if one rewrites the reduced function
d(q2) in terms of ã, the coefficients ki are rescaled while the coefficients ci remain fixed.
Therefore, a suitable choice for a scheme could lead to a value ã inside the convergence
region while at the same time the series in ki might have deteriorated. This again under-
lines the fact that the coupling taken in a specific scheme has no physical meaning. To
get rid of this ambiguity, one might use a physical observable, namely the reduced Adler’s
function itself as an effective coupling [69, 70, 71], and construct a corresponding beta
function

βd(d) = −d2(1 + ρ1d+ ρ2d
2 + ρ3d

3) +O(d6) (2.126)

with the coefficients

ρ1 = c1, ρ2 = c2 − c1k1 − k2
1 + k2,

ρ3 = c3 − 2c2k1 + c1k
2
1 + 4k3

1 − 6k1k2 + 2k3. (2.127)

Because the new beta function is expressed in terms of a physical observable, these coef-
ficients are renormalization group invariants.

2.5.6 The Padé approximation

The problem that the coefficient k3 is not known up to now still remains. But there are
some methods to obtain an estimate for it. The most popular method is described in this
subsection. It is called the Padé approximation and is based on the assumption that the
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approximation of the present series is given by a ratio of polynomial functions (see e.g.
Ref. [72]),

P[M/N ](x) :=
AM(x)

BN (x)
=

1 + a1x+ . . .+ aMx
M

1 + b1x+ . . .+ bNxN
, (2.128)

called Padé approximand . In this expression a general factor of the given series as well
as a factorized power of x are omitted. The coefficients can be determined by fitting the
series expansion of this ratio to the given series up to order M + N , one then can use
this series expansion to estimate the coefficient of order M +N + 1. It is a rather simple
method, and to understand it to the full extend it is the best to apply it directly to the
actual problem. The series one has to estimate is given by

d = a(1 + k1a+ k2a
2 + k3a

3 + k4a
4) +O(a6) (2.129)

which is acually known up to the coefficient k2, i.e. to the second order where the general
factor a is omitted. To estimate this series one therefore has to select a Padé approximand
with total order M+N = 2. The mostly used approximands are those in the mean range,
in this case P[1/1](x) (note that P[2/0](x) actually does not work). Therefore, one expands
this approximand into a series,

P[1/1](a) =
1 + a1a

1 + b1a
= 1 + (a1 − b1)a+ (b21 − a1b1)a

2 + (a1b
2
1 − b31)a

3 +O(a4). (2.130)

If one then compare this to the actual series, one obtains

k1 = a1 − b1 ⇒ a1 = b1 + k1

k2 = b21 − a1b1 = b21 − b21 − b1k1 ⇒ b1 = −k2

k1
, a1 = k1 −

k2

k1
(2.131)

and so finally as [1/1] Padé approximation

k3 ≈ a1b
2
1 − b31 = k1b

2
1 =

k2
2

k1
≈ 2.17. (2.132)

This estimate is also given in Refs. [67, 73].

2.5.7 The subgroup dependence of ρ3

Although ρ3 is scheme independent by definition, one introduces an artificial scheme
dependence by the estimated dependent quantity k3. The scheme dependence can be
obtained by inserting the “shifted” coupling ã of Eq. (2.119) in Eq. (2.129) which leads
to

d̃ = ã + (k1 − γ)ã2 + (k2 − (2k1 + c1)γ + γ2)ã3 +

+
(

k3 − (3k2 + 2c1k1 + c2)γ +
(

3k1 +
5

2
c1

)

γ2 − γ3
)

ã4 +O(ã5) =

=: ã + k̃1ã
2 + k̃2ã

3 + k̃3ã
4 +O(ã5). (2.133)
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One obtains

ρ̃1 = c1 = ρ1,

ρ̃2 = c2 − c1k̃1 − k̃2
1 + k̃2 =

= c2 − c1(k1 − γ) − (k1 − γ)2 + k2 − (2k1 + c1)γ + γ2 =

= c2 − c1k1 − k2
1 + k2 + (c1 + 2k1 − (2k1 + c1))γ − γ2 + γ2 = ρ2 (2.134)

which indicates the invariance of the first two coefficients, and

ρ̃3 = c3 − 2c2k̃1 + c1k̃
2
1 + 4k̃3

1 − 6k̃1k̃2 + 2k̃3 =

= c3 − 2c2k1 + c1k
2
1 + 4k3

1 − 6k1k2 + k3 +

+
(

2c2 − 2c1k1 − 12k2
1 + 6k2 + 6k1(2k1 + c1) − 6k2 − 4c1k1 − 2c2

)

γ + (2.135)

+
(

c1 + 12k1 − 6(2k1 + c1) − 6k1 + 2
(

3k1 +
5

2
c1

))

γ2 − 4γ3 + 6γ3 − 2γ3 = ρ3.

Figure 2.2: Dependence of the beta function
coefficient ρ3 on the subgroup parameter γ
which specifies the choice of the renormal-
ization scheme

This would be the situation if one would
know k3. But one does not know it up
to now. Instead one estimates some value
for it by using the Padé approximation.
For instance, one estimates a value in the
shifted system as k̃3 = k̃2

2/k̃1. Then ρ̃3

will indeed become dependent on γ [50].
The dependence is shown in Fig. 2.2 and
corresponds to the MS-scheme. For this
one obtains a value ρ3 = 1.36. If one is
led by the principle of minimal sensitiv-
ity [74] which works in many applications
(see e.g. [75]), one would select a value in
the region around γ = −1.3288, at which
value one has ρ3 = 2.4530. Note that
this value is not very far away from the
value γ = −2 for the G-scheme [61] with
ρ3 = 2.0518. Finally, an estimate for k3 in-
dependent from the Padé method is given.

The assumption is that one uses a subtraction scheme in which Adler’s function is ex-
pressible as pure geometrical series (called “GS scheme”),

d = aGS(1 + kaGS + k2a2
GS + k3a3

GS) +O(a5
GS). (2.136)

Note that the scheme dependence gives the additional degree of freedom to fit the second
order coefficient to the geometrical series. Then the assumption fixes the third order
coefficient. Numerically one obtains

d = aGS(1 − 0.1917aGS + 0.0367a2
GS + (k3 − 2.602)a3

GS) +O(a5
GS) (2.137)

which gives an estimate k3 = 2.595.
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2.6 Moments and effective couplings

The ordinary criterion for the “quality” of moments as in Eq. (2.71) is the explicit con-
vergence of the perturbation series. However, this convergence can be concealed by the
use of a particular scheme. In order to get rid of artificial scheme-dependent constants in
the perturbation theory expressions, one can express the spectral density in terms of an
effective coupling. The really invariant measure is given by the mutual relations between
moments while the effective coupling is still a parameter which one needs for construct-
ing a scheme-independent convergence criterion. The arbitrareness of its choice became
obvious in the last section. There is no special physical meaning given to such kind of a
parameter. Despite this fact, the introduction of a natural internal coupling parameter
allows one to extend the perturbation theory series available for the description of the
relations between observables by one more term as compared to the analysis in e.g. the
MS-scheme (see e.g. Refs. [47, 76]). In this section (which covers a part of the calculations
presented in Ref. [51]) one returns to the unreduced quantities.

2.6.1 The effective coupling on the cut

Starting with Adler’s function given in Eq. (2.43) one deduces the spectral density ρ(s)
within the MS-scheme,

ρ(s) = 1 +
αs(s)

π
+K1

(

αs(s)

π

)2

+

(

K2 −
π2

3
β2

0

)(

αs(s)

π

)3

+ . . . (2.138)

where the term proportional to π2 is a result of the analytic continuation from the Eu-
clidean domain (see the calculations in Chapter 2.3). An effective coupling aM(s) is defined
on the physical cut for sufficiently large values of s by the relation

aM(s) =
αs(s)

π
+K1

(

αs(s)

π

)2

+

(

K2 −
π2

3
β2

0

)(

αs(s)

π

)3

+ . . . (2.139)

such that
ρ(s) = 1 + aM (s). (2.140)

The subscript “M” stands for a Minkowskian definition of the effective coupling, i.e. the
definition on the physical cut. The decomposition of the spectral density in Eq. (2.140)
reflects the fact that within perturbation theory the correlator contains the parton part
which is independent of αs. All the constants that may appear in the perturbation theory
expression for the spectral density ρ(s) due to a particular choice of the renormalization
scheme are absorbed into the definition of the effective charge (see e.g. Refs. [69, 77, 78]),
so that only effects of the running of the coupling itself remain. The solution of the
evolution equation for the effective coupling,

s
daM(s)

ds
= β(aM(s)) = −aM (s)

(

β0aM (s) + β1aM(s)2 + β2aM(s)3 +O(aM(s)4)
)

(2.141)
resulting from the renormalization group analysis of the correlator with a given effective
beta function β(a) can be obtained by quadrature,

aM(s) = aM +
∫ s

M2
τ

β(aM(s′))
ds′

s′
= (2.142)
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= aM + β0La
2
M + (β1L+ β2

0L
2)a3

M + (β2L+
5

2
β1β0L

2 + β3
0L

3)a4
M +O(a5

M) =

= aM − β(aM)L+
1

2
β(aM)

∂β(a)

∂a

∣

∣

∣

∣

∣

a=aM

L2 − 1

6
β(aM)

∂

∂a
β(a)

∂β(a)

∂a

∣

∣

∣

∣

∣

a=aM

L3 +O(L4) =

= exp

(

−Lβ(a)
∂

∂a

)

a

∣

∣

∣

∣

∣

a=aM

(2.143)

where aM = aM(M2
τ ) and L = ln(M2

τ /s). In the last line the solution of Eq. (2.141) is
written in a symbolic operator form. Defining the effective coupling aM (s) directly through
the spectral density ρ(s) itself one obtains perturbative corrections to the moments in
Eq. (2.145) only because of running. Without running one would have

Ml = 1 + aM(M2
τ ) or ml = aM(M2

τ ) (2.144)

with ml defined in Eq. (2.145). Thus, moments just allow one to study the evolution or
beta function of the effective coupling aM(s).

2.6.2 Direct moments and improvement of the convergence

The contributions of powers of logarithms (from Eq. (2.143)) to normalized moments

Ml = (l + 1)
∫ M2

τ

0
ρ(s)

slds

(M2
τ )
l+1

≡ 1 +ml. (2.145)

are given by

(l + 1)
∫ M2

τ

0
ln

(

M2
τ

s

)

slds

(M2
τ )
l+1

=
1

l + 1
, (2.146)

(l + 1)
∫ M2

τ

0
ln2

(

M2
τ

s

)

slds

(M2
τ )
l+1

=
2

(l + 1)2
, . . . (2.147)

A general formula for an arbitrary (integer) power of the logarithm reads

(l + 1)
∫ M2

τ

0
lnp

(

M2
τ

s

)

slds

(M2
τ )
l+1

=
p!

(l + 1)p
. (2.148)

Therefore, at any fixed order of the perturbation series expansion the effects of running die
out for large values of l improving the (explicit) asymptotic structure of the perturbative
series for the moments in Eq. (2.145). This is obvious and expected in QCD with its
property of asymptotic freedom because the moments with weight functions sl suppress
the infrared (small s) region of integration where perturbation theory is not applicable.
Such moments are called direct moments. However, emphasizing the high-energy region is
not preferable from the experimental point of view. Therefore, one modifies the moments
in order to balance the precision requirements.

2.6.3 Modified moments and deprovement of the convergence

As the simplest modification done in order to suppress experimental errors from the high-
energy end of the spectrum, the system of modified moments

Mkl =
∫

wkl(s)
ρ(s)ds

M2
τ

=
(k + l + 1)!

k!l!

∫ M2
τ

0

(

1 − s

M2
τ

)k (
s

M2
τ

)l
ρ(s)ds

M2
τ

=: 1 +mkl.

(2.149)
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Figure 2.3: Different weight functions wkl(s) for (k, l) = (3, 0), (2, 1), (1, 2), and (0, 3).

q2complex      plane

A

Figure 2.4: contour of integration
in the complex q2-plane

has been introduced. Some examples for the weight
function wkl(s) are shown in Fig. 2.3. Within the set
given in Eq. (2.149) the best choice from the experi-
mental point of view is to use large values for k and
small values for l. This choice was also advocated
to be justified theoretically as improving the preci-
sion based on the integration over the contour in the
complex q2-plane (see Fig. 2.4 and Ref. [79]). The
reasoning was that the weight functions (1− s/M2

τ )
k

suppress the contribution of that part of the contour
that is close to the real positive semi-axis where OPE
is not applicable (region A in Fig. 2.4) which in turn,
according to standard wisdom, can improve the ac-
curacy of theoretical predictions. But this is not the
whole story, as will be shown later. In order to ob-
serve the effect of modified moments, one again con-
siders powers of logarithms,

(k + 1)
∫ M2

τ

0

(

1 − s

M2
τ

)k

ln

(

M2
τ

s

)

ds

M2
τ

=
k+1
∑

j=1

1

j
= γE + ψ(k + 2), (2.150)

(k + 1)
∫ M2

τ

0

(

1 − s

M2
τ

)k

ln2

(

M2
τ

s

)

ds

M2
τ

=





k+1
∑

j=1

1

j





2

+
k+1
∑

j=1

1

j2
= (2.151)

= (γE + ψ(k + 2))2 + ψ′(k + 2)

. . .

where γE is Euler’s constant, ψ(z) is the digamma function, and ψ′(z) is the first derivative
of the digamma function (cf. Appendix D.5). For large values of k, Eq. (2.150) grows as
ln(k), while Eq. (2.151) grows as ln2(k).
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2.6.4 The effective scale as a new criterion

The property of convergence of the resulting perturbation series for the moments can
be reformulated in the language of effective scales for the moments themselves. This is
similar to the approach where moments are reexpressed by moments [47]. Indeed, taking
the expansion of Eq. (2.142) up to next-to-leading order,

aM(s) = aM + β0La
2
M +O(a3

M) = aM + β0a
2
M ln(M2

τ /s) +O(a3
M), (2.152)

for the sl-moments (i.e. the moments M0l of Eq. (2.149)) one has

m0l = aM +
β0

l + 1
a2
M +O(a3

M) (2.153)

which translates into the effective scale M2
τ e
−1/(l+1) through the relation

aM +
β0a

2
M

l + 1
+O(a3

M) = aM (M2
τ e
−1/(l+1)) +O(a3

M). (2.154)

On the other hand, for the (M2
τ − s)k-moments given by Eq. (2.149) with large values for

k and l = 0 the result of integrating Eq. (2.152) leads to

mk0 = aM + β0a
2
M ln(k) +O(a3

M) = aM(M2
τ /k) +O(a3

M). (2.155)

This leads to the effective scale M2
τ /k for large k. The results of these explicit calculations

agree with a qualitative estimate based on the observation that the essential region of
integration where integrals for the moments are saturated for reasonably smooth functions
ρ(s) is located around

smax = M2
τ

l

l + k
. (2.156)

Obviously, the quantity aM(M2
τ /k) cannot be evaluated in perturbative QCD for large

values of k. But even for finite values k = 2 and 3 one obtains

m20 = aM + β0a
2
M

11

6
+O(a3

M) = aM(M2
τ e
−11/6) +O(a3

M) = aM(0.16M2
τ ) +O(a3

M),

m30 = aM + β0a
2
M

25

12
+O(a3

M) = aM(M2
τ e
−25/12) +O(a3

M) = aM(0.12M2
τ ) +O(a3

M).

(2.157)

The effective scale ΛM for the effective coupling aM defined in Eq. (2.139) is given by

Λ2
M = exp(k1/β0)Λ

2
MS

= 2.07Λ2
MS

≈ 0.1GeV2 (2.158)

where the value ΛMS = 350MeV [80] as determined from τ decays is used. Keeping this
in mind, a value 0.12 ×M2

τ = 0.36GeV2 for the effective coupling of the moment M30 is
definitely located in the nonperturbative region for the process under consideration.
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2.6.5 Integration of running effects to all orders

According to Cauchy’s theorem, the integration along a contour of a closed curve in the
complex plane is completely equivalent to the integration along the cut – if the cut can
be identified. Applying this general statement to the correlator functions and spectral
densities, the condition stated here is no problem at all. For finite-order perturbation
theory expressions at least the cut is determined by the analyticity properties of the
functions lnp(−M2

τ /q
2) for positive integers p. This leads to the assumption that it would

also work if one would use the renormalization group improved correlator function. Under
this assumption the integration along the contour including a full renormalization group
resummation has developed to be the most popular technique of accounting for the running
of perturbative quantities: it efficiently resums an infinite number of terms generated by
the evolution of the coupling constant [81, 67].

However, the analyticity structure of the resummed correlator function is different
from the one in finite-order perturbation theory. Additional cuts lead to the inclusion of
nonperturbative features which have to be taken special care of [82]. Such a situation will
be met in the considerations that follow.

2.6.6 The effective coupling on the contour

As in the case of the analysis on the physical cut, the main concern is to account for
the running. Therefore, the introduction of an effective coupling is helpful also in the
Euclidean domain. Starting with Adler’s function in Eq. (2.43), one introduces again an
effective coupling aE(q2) by

D(q2) = −q2 d

dq2
Π(q2) = 1 + aE(q2). (2.159)

This equation can be solved for Π(q2) by using the ansatz

Π(q2) = ln

(

µ2

q2

)

+ ln
(

f(aE(q2))
)

. (2.160)

Inserting this ansatz, one obtains

−q2 d

dq2
Π(q2) = 1 − 1

f(aE(q2))
q2 d

dq2
f
(

aE(q2)
)

= 1 − f ′(aE(q2))

f(aE(q2))
q2daE(q2)

dq2
(2.161)

The effective coupling aE(q2) obeys the renormalization group equation (see e.g. [88])

q2 d

dq2
aE(q2) = β(aE(q2)). (2.162)

Taking this into account, one obtains

1 + aE(q2)
!
= 1 − f ′(aE(q2))

f(aE(q2))
β
(

aE(q2)
)

⇒ f ′
(

aE(q2)
)

β
(

aE(q2)
)

= −f
(

aE(q2)
)

aE(q2).

(2.163)
This differential equation for f can be solved by separation,

ln f =
∫ df

f
= −

∫ aEdaE
β(aE)

. (2.164)
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For β(a) = −β0a
2 one obtains

β(a) = −β0a
2 ⇒ ln f =

1

β0
ln aE , (2.165)

for β(a) = −β0a
2 − β1a

3 one obtains

ln f =
∫ aEdaE
β0a2

E + β1a3
E

=
∫ daE
β0aE + β1a2

E

=

=
1

β0

∫

daE
aE + c1a

2
E

=
1

β 0

(ln aE − ln(1 + c1aE)) =
(

c1 =
β1

β0

)

=
1

β0
ln
(

aE
1 + c1aE

)

=
1

β0
ln

(

β0aE
β0 + β1aE

)

. (2.166)

It is obvious that this scheme can be generalized to arbitary finite parts of the beta
function series. For the considerations that are aimed for, however, it is enough to use
only the leading order in the beta function which contains already the bulk of the whole
effect. Effects due to higher order corrections of the beta function are quite small and do
not change the basic picture. They only slightly affect the conclusions numerically [49, 50].
Therefore, the resummed correlation function reads

Π(q2) = ln

(

µ2

q2

)

+
1

β0

ln(aE(q2)) + subtractions (2.167)

where

aE(q2) =
ατ/π

1 + (β0ατ/π) ln(q2/M2
τ )

(2.168)

with aE(M2
τ ) = ατ/π. Parameterizing the contour by q2 = M2

τ e
iϕ one obtains

Π(M2
τ e

iϕ) = −iϕ− 1

β0
ln(1 + iβ0ατϕ/π) + subtractions (2.169)

where appropriate subtractions are added.

2.6.7 The moments on the circle

Now the modified moments in Eq. (2.149) can be analyzed. According to

1

2πi

∮

|z|=1
Π(M2

τ z)z
ldz =

−1

2πi

(

∫ 0eiπ

eiπ
+
∫ e−iπ

0e−iπ

)

Π(M2
τ z)z

ldz =

=
−1

2πi

∫ 1

0

(

Π(M2
τ xe

−iπ) − Π(M2
τ xe

−iπ)
)

(−x)l(−dx) =

= (−1)l
∫ 1

0
ρ(M2

τ x)x
kdx =

∫ M2
τ

0

ρ(s)slds

(M2
τ )
l+1

(2.170)

they can be expressed by

Mkl = 1 +mkl =
(−1)l

2πi

(k + l + 1)!

k!l!

∮

|z|=1
Π(M2

τ z)(1 + z)kzldz =

=
(−1)l

2π

(k + l + 1)!

k!l!

∫ π

−π
Π(M2

τ e
iϕ)(1 + eiϕ)kei(l+1)ϕdϕ. (2.171)
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Taking the correlator function as given in Eq. (2.169), the first part leads to the parton
result Mkl = 1 while the second, ατ -dependent part gives the moment mkl where

mkl =
(−1)l+1

2πβ0

(k + l + 1)!

k!l!

∫ π

−π
(1 + eiϕ)keilϕ ln(1 + iβ0ατϕ/π)eiϕdϕ. (2.172)

Note that the estimate of the saturation region for the moments in this form is more
complicated because the measure of the integral is a rapidly oscillating function, especially

∫ π

−π
(1 + eiϕ)keilϕeiϕdϕ = 0. (2.173)

Additional care is necessary to identify essential regions of integration. In the following
subsections the zeroth order moment m00 will be considered for reasons of simplicity.

2.6.8 The appearence of nonperturbative contributions

One can treat the moment

m00 =
1

2πβ0

∫ π

−π
ln(1 + iβ0ατϕ/π)eiϕdϕ (2.174)

simply by expanding the logarithm into a power series in ατ , the effective coupling in τ
decays. This gives nothing new in comparison with the finite-order perturbation theory
case. At least one gets the chance to find out the convergence condition of this series
which is the convergence condition of the logarithm series, β0ατ < 1. With

αexp
τ

π
= 0.14,

1

πβ0
=

4

9π
= 0.1415 . . . , (2.175)

the convergence criterion is fulfilled, though only marginally. But one can also proceed
with the analysis of the moments in a different way by constructing just an efficient
computational scheme. Integrating n times by parts one obtains

m00 =
−1

2πβ0

∫ π

−π
ln(1 + iβ0ατϕ/π)eiϕdϕ =

=
−1

2πiβ0

{

[

ln(1 + iβ0ατϕ/π)eiϕ
]π

−π
−
(

β0ατ
π

)

∫ π

−π

ieiϕdϕ

1 + iβ0ατϕ/π

}

=

=
−1

2πiβ0

{

[

ln(1 + iβ0ατϕ/π)eiϕ
]π

−π
−
(

β0ατ
π

)[

eiϕ

1 + iβ0ατϕ/π

]π

−π
+

−
(

β0ατ
π

)2
∫ π

−π

ieiϕdϕ

(1 + iβ0ατϕ/π)2

}

=

=
−1

2πiβ0

{

[

ln(1 + iβ0ατϕ/π)eiϕ
]π

−π
−
(

β0ατ
π

)[

eiϕ

1 + iβ0ατϕ/π

]π

−π
+

−
(

β0ατ
π

)2 [
eiϕ

(1 + iβ0ατϕ/π)2

]π

−π
− 2

(

β0ατ
π

)3
∫ π

−π

ieiϕdϕ

(1 + iβ0ατϕ/π)3

}

= . . .

=
−1

2πiβ0

{

[

ln(1 + iβ0ατϕ/π)eiϕ
]π

−π
−

n−1
∑

j=1

(j − 1)!

(

β0ατ
π

)j [
eiϕ

(1 + iβ0ατϕ/π)j

]π

−π
+

−(n− 1)!

(

β0ατ
π

)n
∫ π

−π

ieiϕdϕ

(1 + iβ0ατϕ/π)n

}

. (2.176)
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where the derivatives of u = ln(1 + iβ0ατϕ/π) and v = eiϕ have been used as a chain to
accomblish this integration by parts. Using the polar coordinate functions r and φ (note
the difference to ϕ!) defined by

1 ± iβ0ατ = re±iφ, r =
√

1 + β2
0α

2
τ , φ = arctan(β0ατ ) (2.177)

one obtains
[

ln(1 + iβ0ατϕ/π)eiϕ
]π

−π
= −(ln(reiφ − ln(re−iφ)) = −2iφ, (2.178)

[

eiϕ

(1 + iβ0ατϕ/π)j

]π

−π
= −

(

1

rjeijφ
− 1

rje−ijφ

)

=
−1

rj
(−2i sin(jφ)).

Therefore finally, after n-fold integration by part one has

m00 =
−1

2πiβ0

{

− 2iφ+
n−1
∑

j=1

(j − 1)!

(

β0ατ
πr

)j

(−2i sin(jφ)) +

−(n− 1)!

(

β0ατ
π

)n
∫ π

−π

ieiϕdϕ

(1 + iβ0ατϕ/π)n

}

= (2.179)

=
1

πβ0

{

φ+
n−1
∑

j=1

(j − 1)!

(

β0ατ
πr

)j

sin(jφ) +
(n− 1)!

2

(

β0ατ
π

)n
∫ π

−π

eiϕdϕ

(1 + iβ0ατϕ/π)n

}

.

The n-fold integration by parts removes a polynomial of order n from the expansion of
the logarithm in Eq. (2.169). This result is an asymptotic expansion, the last term in
Eq. (2.179) is the residual term of formal order αnτ . But this result is not an ordinary
series expansion but an asymptotic expansion valid in the sense of Poincaré. The meaning
of this becomes obvious when the residual term is replaced by using an identity valid for
any n,

(n− 1)!

(

β0ατ
π

)n
∫ π

−π

eiϕdϕ

(1 + iβ0ατϕ/π)n
=

= 2πe−π/β0ατ − (n− 1)!

(

β0ατ
π

)n (∫ −π

−∞
+
∫ ∞

π

)

eiϕdϕ

(1 + iβ0ατϕ/π)n
(2.180)

Then the zeroth order moment reads

m00 =
1

πβ0

{

πe−π/β0ατ + φ+
n−1
∑

j=1

(j − 1)!

(

β0ατ
πr

)j

sin(jφ)

−(n− 1)!

2

(

β0ατ
π

)n (∫ −π

−∞
+
∫ ∞

π

)

eiϕdϕ

(1 + iβ0ατϕ/π)n

}

(2.181)

which is a valid change because the new residual term is again well-defined. But in
doing this change, an explicit nonperturbative term e−π/β0ατ appeared. Eq. (2.181) and
Eq. (2.179) are formally different but actually identical. Therefore, the choice for the
expansion (or representation) for the moment is a question of calculating the residual
term. Any conclusions about the precision or the analytic structure of the sum of the
series based on the terms of the series only without a specification of the residual term
are rather useless. This residual term will be calculated in the following.
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2.6.9 A new spectral density

Using u = ln(1 + iβ0ατϕ/π) and v = 1 + eiϕ to build
up a one-fold integration by parts (the boundary term
vanishes because of v) one obtains an equivalent rep-
resentation for the zeroth order moments,

m00 =
ατ
2π2

∫ π

−π

(1 + eiϕ)dϕ

1 + iβ0ατϕ/π
. (2.182)

One now can extend the integration range from the
interval [−π, π] on the real axis to a rectangular con-
tour in the complex ϕ-plane (see Fig. 2.5). The ver-
tical length R tends to infinity. Using the residue
theorem one obtains

π

R o

−π

o

ϕ −plane

complex

Figure 2.5: the integration con-
tour in the complex ϕ-plane

m00 =
ατ
2π2

∫ π

−π

(1 + eiϕ)dϕ

1 + iβ0ατϕ/π
=

ατ
2π2

2πiRes

[

1 + eiϕ

1 + iβ0ατϕ/π
;ϕ =

iπ

β0ατ

]

+

− ατ
2π2

(

∫ π+i∞

π+i0
+
∫ −π+i∞

π+i∞
+
∫ −π+i0

−π+i∞

)

(1 + eiϕ)dϕ

1 + iβ0ατϕ/π
=

=
iατ
π

1 + eiϕ

iβ0ατ/π

∣

∣

∣

∣

∣

ϕ=iπ/β0ατ

+

− ατ
2π2

∫ ∞

0

(1 + eiπ−ξ)idξ

1 + iβ0ατ − β0ατξ/π
+ (ϕ = π + iξ)

+
ατ
2π2

∫ ∞

0

(1 + e−iπ−ξ)idξ

1 − iβ0ατ − β0ατξ/π
+ (ϕ = −π + iξ)

+
ατ
2π2

lim
R→∞

∫ π

−π

(1 + eiϕ̃−R)dϕ̃

1 + iβ0ατ ϕ̃/π − β0ατR/π
. (ϕ = ϕ̃+ iR) (2.183)

The last part vanishes because the integrand vanishes for R → ∞ while the integration
range is finite. Therefore, one obtains

m00 =
1

β0
(1 + e−π/β0ατ ) +

− iατ
2π2

∫ ∞

0

(

(1 − e−ξ)dξ

1 − β0ατξ/π + iβ0ατ
− (1 − e−ξ)dξ

1 − β0ατξ/π − iβ0ατ

)

=

=
1

β0
(1 + e−π/β0ατ ) − β0α

2
τ

π2

∫ ∞

0

(1 − e−ξ)dξ

(1 − β0ατξ/π)2 + β2
0α

2
τ

=

=
1

β0
(1 + e−π/β0ατ ) − 1

β0

∫ ∞

0

(1 − e−ξ)dξ

π2 + (ξ − π/β0ατ )2
. (2.184)

One can replace −π/β0ατ = ln(Λ2/M2
τ ) and substitute −ξ = ln(s/M2

τ ), so e−ξ = s/M2
τ

and −dξ = ds/s, to obtain

m00 =
1

β0

(

1 +
Λ2

M2
τ

)

− 1

β0

∫ M2
τ

0

(1 − s/M2
τ )ds

(π2 + ln2(s/Λ2))s
. (2.185)
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A single integration by parts can be performed, using the elements

u = 1 − x ⇒ u′ = −1, v =
1

π
arctan

(

ln(x/a)

π

)

⇒ v′ =
1

(π2 + ln2(x/a))x
,

(2.186)
with x = s/M2

τ and a = Λ2/M2
τ to obtain

β0m00 = 1 + a−
∫ 1

0

(1 − x)dx

(π2 + ln2(x/a))x
=

= 1 + a+
1

π

[

(1 − x) arctan

(

ln(x/a)

π

)]1

0

+
1

π

∫ 1

0
arctan

(

ln(x/a)

π

)

dx =

= 1 + a− 1

2
+

1

π

∫ 1

0
arctan

(

ln(x/a)

π

)

dx =

= 1 + a− 1

2
− 1

2

∫ 1

0
dx− 1

π

∫ 1

0
arctan

(

π

ln(x/a)

)

dx =

=
Λ2

M2
τ

− 1

π

∫ M2
τ

0
arctan

(

π

ln(s/Λ2)

)

ds

M2
τ

(2.187)

where for the last steps the identity

y = tan z =
1

cot z
=

−1

tan(z + π/2)
⇔ z = arctan y = −π

2
− arctan

(

1

y

)

(2.188)

is employed. Finally,

arccos





ln(s/Λ2)
√

π2 + ln2(s/Λ2)



 = arcsin





π
√

π2 + ln2(s/Λ2)



 = arctan

(

π

ln(s/Λ2)

)

(2.189)

leading to

m00 =
1

β0

(

Λ2

M2
τ

)

+
1

πβ0

∫ M2
τ

0
arccos





ln(s/Λ2)
√

π2 + ln(s/Λ2)





ds

M2
τ

(2.190)

which stays on the same Riemann sheet for the range of values that is of interest here.
One easily recognizes this representation as an integration over the singularities of Π(q2)
in Eq. (2.167). In addition to a cut along the positive semi-axis there appears also a part
of the singularity on the negative real s-axis. This part is a pure mathematical feature of
the concrete approximation chosen for Π(q2) and is not related to the physical content of
the problem. Indeed, if moments are written as explicit functions one can calculate them
in the way found most convenient for a concrete application. The result reads

m00 =
∫ M2

τ

−Λ2

σ(s)ds

M2
τ

(2.191)

with

σ(s) =
1

β0
θ(Λ2 + s)θ(−s) +

1

πβ0
θ(s) arccos





ln(s/Λ2)
√

π2 + ln2(s/Λ2)



 . (2.192)
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Figure 2.6: The spectral function σ(s) as a function of s. Shown is the exact result for the
discontinuity (full line) as well as results for non-closed circle integrals approaching the
axis along a full circle from both sides, see Fig. 2.2. The numerical values for the distances
orthogonal to the real axis towards the positive and negative imaginary semi-plane in s
are given in units of M2

τ .

This formal result can be reformulated as integration over the spectrum σ(s) using
Cauchy’s theorem. Indeed, from Eq. (2.167) one readily deduces the singularity of the
resummed polarization function with the discontinuity

Disc Π(s) =
2πi

β0

{

θ(Λ2 + s)θ(−s) +
1

π
θ(s) arccos





ln(s/Λ2)
√

π2 + ln2(s/Λ2)





}

(2.193)

which coincides with σ(s) in Eq. (2.192) and, thereby, simply represents the spectrum.

2.6.10 A comment on the universality of the IR fixed point

The spectrum is displayed in Fig. 2.6. The part of the spectral density along the negative
real axis is the afore mentioned nonperturbative contribution coming from the resum-
mation procedure. Using appropriate branches of the cut for the relevant functions, the
continuum part of the spectral density can be rewritten as

σc(s) =
1

πβ0
arctan(β0α(s)), α(s) =

π

β0 ln(s/Λ2)
(2.194)

By differentiation one can construct a differential equation for the continuum part,

s
d

ds
σc(s) = − 1

π2β0
sin2(πβ0σc(s)) for s > 0. (2.195)

This equation can be considered as an evolution equation for the spectral density σc(s)
determining σc(s) through its initial value σ(M2

τ ) which in turn can be understood as an
effective coupling. Because of the initial value taken to be σ(M2

τ ), one now defines the
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Figure 2.7: The spectral function ρp(s) as a function of s, given by Eq. (2.198). All
spectral functions for p > 0 are going to zero for s → 0, for p ≥ 2 they have nontrivial
zeros and a fluctuating behaviour near the origin.

coupling as the value of the spectral density σc(s) on the cut far from the IR region. This
is a perturbation theory definition. The evolution of this coupling, however, is calculated
by taking into account the analytic continuation. Then it has an IR fixed point with the
coupling value

σc(0) = 1/β0. (2.196)

This IR fixed point and the behaviour of the spectral density as solution of the initial
value problem, however, is not universal. If Adler’s function starts with a proper power
of the coupling constant as it is the case for gluonic observables, for instance, this picture
will change. For

Dp(Q
2) =

(

αE(Q2)

π

)p+1

(2.197)

one obtains

ρp(s) =
1

2πi

(

Πp(se
−iπ) − Πp(se

iπ)
)

=
1

πβ0

sin(pφ(s))

prp(s)
(2.198)

where

r(s) = β0

√

ln2(s/Λ2) + π2, tanφ(s) =
π

ln(s/Λ2)
= β0α(s). (2.199)

For p = 0 one retains Eq. (2.194),

ρ0(s) =
1

πβ0
φ(s) =

1

πβ0
arctan(β0α(s)). (2.200)

But for large values of p the function ρp(s) starts to fluctuate when starting at ρ(M2
τ )

and approaching s = 0 where it finally reaches zero. Because of this behaviour, shown
in Fig. 2.7 in some detail for the first four values of p, ρp(s) cannot be interpreted as a
(positive) spectral density in a region which enlarges with increasing values of p.
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For the special case p = 1 a more explicit calculation can be performed. Starting from
D1(Q

2) = (αs(Q
2)/π)2 one obtains

ρ1(s) =
1

2πiβ0

(

1

β0 ln(se−iπ/Λ2)
− 1

β0 ln(seiπ/Λ2)

)

=

=
1

2πiβ2
0

ln(s/Λ2) + iπ − ln(s/Λ2) + iπ

ln2(s/Λ2) + π2
=

1

β2
0

1

ln2(s/Λ2) + π2
=

=
1

β2
0

1

π2/β2
0α

2
s(s) + π2

=
α2
s(s)

π2(1 − β2
0α

2
s(s))

. (2.201)

Therefore, one defines a new effective coupling

σ̄c(s) =
αs(s)

π
√

1 + β2
0α

2
s(s)

. (2.202)

The beta function for this effective coupling σ̄c(s) is calculated by taking the derivative
of

1

ā2(s)
=

1

a2(s)
+ π2β2

0 , a(s) =
αs(s)

π
. (2.203)

One obtains

−2

σ̄3
c (s)

β̄M (σ̄c(s)) =
−2

σ̄3
c (s)

s
dσ̄c(s)

ds
=

−2

a3(s)
s
da(s)

ds
=

−2

a3(s)
β (a(s)) =

2β0

a(s)
, (2.204)

so that

β̄M (σ̄c(s)) = − σ̄
3
c (s)

a(s)
β0 = −β0σ̄

2
c (s)

√

1 − π2β2
0 σ̄

2
c (s). (2.205)

In contrast to the case p = 0, the spectral density runs to zero for s → 0. The infrared
fixed point of σ̄c(s) is therefore not given by 1/β0 but by σ̄c(0) = 0 while the comparison
of the beta functions and their series expansions result in

βM(σc) = − 1

π2β0
sin2 (πβ0σc) = −β0σ

2
c

(

1 − 1

3
(πβ0σc)

2 + . . .
)

,

β̄M(σ̄c) = −β0σ̄
2
c

√

1 − π2β2
0 σ̄

2
c = −β0σ̄

2
c

(

1 − 1

2
(πβ0σ̄c)

2 + . . .
)

. (2.206)

2.6.11 Moments on the complex path

Especially the considerations of the last subsections show that the spectral density “feels”
the IR region. This IR region is located around the origin but might have different (and
sometimes unpredictable) forms, according to the kind of resummation. The zeros of the
beta function, for instance, are responsible for the location of these poles. But because
the beta function is only known up to finite order, nothing can be said about the exact
location of IR singularities and cuts. On the other hand, from the point of view of closed
integrals in the complex plane, the location of singularities does not matter for the result,
as long as the critical region is not touched by the path (see Fig. 2.8). Because of the
considerations done before, one indicates the critical region as the interiour of a circle of
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q2complex      plane

Cd

q2complex      plane

Cb

Cc

Ca

B A B’’ B’ B A

Figure 2.8: Contours in the complex plane with a fixation in the region A, taking into
account possible occurrences of singularities. The figure part on the left hand side shows
the standard circle path which circumvents the singular region B while the occurence of
other singularity regions as discussed in the text (regions B′ and B′′) may lead to different
possibilities for choosing a path (Ca, Cb, Cc). The path Cd crosses the singularity region
and, therefore, cannot be used from the perturbation theory point of view.

radius Λ2 about the origin, and the moments are again an indicator for how much this
quantitatively not penetrable region contributes to the result. The moments are given by

mkl =
(k + l + 1)!

k!l!

∫ M2
τ

−Λ2

(

1 − s

M2
τ

)k (
s

M2
τ

)l
σ(s)ds

M2
τ

=

. =
(k + l + 1)!

k!l!

∫ Λ2/M2
τ

−Λ2/M2
τ

(1 − x)kxlσ(M2
τ x)dx +

+
(k + l + 1)!

k!l!

∫ 1

Λ2/M2
τ

(1 − x)kxlσc(M
2
τ x)dx. (2.207)

The question to pose is how much the non-perturbative first part contributes to the
second part. In Table 2.1 values for the contribution of the interval range [−Λ2,Λ2] to the
contribution for the whole range [−Λ2,M2

τ ] are given for different values of k and l, taking
Λ2 = 0.2GeV2. A strong enhancement can be observed especially for the case l = 0 and
large values for k. One observes that the first term is larger than the second one already
for k > 3. This observation confirms the statement that the large k moments are sensitive
to the badly known parameter Λ. A more detailed analysis is found in Ref. [51].

l = 3 −0.000 −0.000 −0.000 −0.000 −0.000 −0.001 −0.002 −0.003
l = 2 +0.000 +0.002 +0.004 +0.008 +0.013 +0.020 +0.030 +0.042
l = 1 −0.003 −0.009 −0.018 −0.032 −0.052 −0.078 −0.113 −0.160
l = 0 +0.186 +0.305 +0.396 +0.469 +0.530 +0.582 +0.626 +0.665

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Table 2.1: Contribution of the integral taken over the interval from −Λ2 to +Λ2 for the
moments mkl in Eq. (2.207) relative to the integral over to the whole integration range.



Chapter 3

Diagrams of the sunrise type

Two-point correlators, as they were introduced in the previous chapter, are the main
topic also for the chapter that follows. Next-to-leading order corrections for the baryonic
correlator function can be calculated analytically for one finite and two vanishing quark
masses. However, for a special type of Feynman diagram topology, two-point functions
can be treated in a more general way. In these cases it is possible to calculate Feynman
diagrams for different masses, an arbitrary number of internal lines, and an unspecified
space-time dimension. These are two-point functions diagrams where the two outer ver-
tices are connected by an arbitrary number of lines. The basic form, namely the case of
three lines, is known in the literature as sunrise diagram. The diagrams with an arbitrary
number of internal lines shall be called water melon diagrams in the following.1

Of course, Feynman diagrams with an arbitrary number of legs meeting at a vertex are
only possible if the concrete form of the field theory is abandoned for the moment – the
electroweak theory, for instance, would only allow the connection between two fermion
lines and one boson line, the QCD as field theory for the strong interaction also allows
for the connection of three or four boson lines, and finally for effective theories there are
still other constellations available. In this chapter the specification of the field theory
should therefore be postponed. This means that scalar propagators are used as Feynman
rule elements for all kinds of propagators, characterized only by the four-momentum
of the corresponding particle and its (potentially vanishing) mass. In this simplified
approach, vertices have only kinematic meaning as the momentum conservation have to
be guaranteed at these points, they do not contribute anything (resp. only a factor 1)
to the Feynman diagrams. In this simplified theory it is easy, therefore, to look at the
momenta not in Minkowskian domain but in Euclidean domain, as it was done in the
previous chapter. This simplifies the calculations and representations significantly.

The special issue of the considerations presented in this chapter is that the calculations
will be done in configuration space and not in momentum space. By Fourier transforms,
convolutions are changed to simple multiplications. Because the transition from mo-
mentum space to configuration space is done by a Fourier tranform, easier methods in
calculating within configuration space can therefore be expected. Whereas conventionally
for n internal lines a (n− 1)-fold d-dimensional integration is needed, in this case only a
single one-dimensional integration has to be performed.

1In the literature there are also other names such as banana diagrams [83] or basketball diagrams [84].
An alternative name for sunrise diagrams is sunset diagrams , depending on the mood of the author.
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3.1 Basics for the configuration space calculation

In this section the tools shall be supplied which are necessary for a calculation of Feynman
diagrams within configuration space. These are mainly the propagators and the two-point
functions, the correlator functions of composite fields to be constructed from these.

3.1.1 Propagators and correlators in configuration space

Starting point are current operators which generally can be described as fields composed
of elementary parts (e.g. quark and gluon fields in case of the QCD). But there could also
be found derivatives of these elementary fields as in chiral perturbation theory. For the
current at the space-time point x the monomial

jn(x) = D{µ}1φ1(x,m1) · · ·D{µ}nφn(x,mn) (3.1)

can be used. Here {µ} = {µ1, . . . , µk} is a multi-index, so

D{µ} =
∂k

∂xµ1 · · ·∂xµk

. (3.2)

Water melon diagrams are contained in the leading order contribution of the correlator

Π(x) = 〈Tjn(x)Jn′(0)〉 (3.3)

which in configuration space takes the simple form

Π(x) = D{µ}1{ν}1(x,m1) · · ·D{µ}n{ν}n(x,mn). (3.4)

Here D{µ}{ν}(x,m) = D{µ}D{ν}D(x,m) is the derivative of the propagator D(x,m) with
respect to the coordinate x with a pair {{µ}, {ν}} of multi-indices. But how does the
propagator D(x,m) itself looks like? Here the building blocks start to get concise form.
The propagator of a particle with mass m in D-dimensional space-time is given by the
Fourier transform of the (Euclidean) scalar propagator in momentum space,

D(x,m) =
∫ dDp

(2π)D
eipµxµ

p2 +m2
=

(mx)λKλ(mx)

(2π)λ+1x2λ
. (3.5)

This expression depends only on |x| =
√
x2 =

√
xµxµ which is denoted by x. Furthermore,

practical considerations lead one to express the space-time dimension as D = 2λ + 2 by
a parameter λ. Kλ(z) is the McDonald function, a modified Bessel function of the third
kind, cf. Ref. [85]. In Appendix D.1 the Bessel functions which are a central quantity in
the calculations are looked at more closely.

In the limit m→ 0 the propagator in Eq. (3.5) simplifies to

D(x, 0) =
∫

dDp

(2π)D
eipµxµ

p2
=

Γ(λ)

4πλ+1x2λ
(3.6)

where Γ(λ) is Euler’s gamma function.
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3.1.2 Options for the configuration space representation

The configuration space representation as presented here admits a few options. Propa-
gators for particles with non-vanishing spin, for instance, can be obtained by calculating
derivatives at the space-time point x. The calculation of the derivative does not change
the functional structure and leads only to minimal modifications of the basic technique.
For example, the propagator of the fermion with spin 1/2 is given by

S(x,m) =

(

iγµ
∂

∂xµ
+m

)

D(x,m), (3.7)

where γµ is a matrix of the Clifford algebra of Dirac matrices. A further generalization is
given by taking into account also soft particle radiations from internal lines. The change
for an internal line with mass m and four-momentum p for a particle with momentum
q → 0 to be emitted is given by

D(p2, m) =
1

p2 +m2
→ 1

p2 +m2
V (p, q)

1

(p− q)2 +m2
=

q=0
=

1

p2 +m2
V (p, 0)

1

p2 +m2
= −V (p, 0)

d

dm2

(

1

p2 +m2

)

. (3.8)

The derivative with respect to the mass can be calculated either for the result without
radiation at the very end or already for the propagator itself before the integration has
taken place. The last choice, however, only leads to a change for the index of the McDonald
function, the general formula reads

D(µ)(x,m) =
∫

dDp

(2π)D
eipµxµ

(p2 +m2)µ+1
=

1

(2π)λ+12µΓ(µ+ 1)

(

m

x

)λ−µ
Kλ−µ(mx). (3.9)

Also in this case only marginal modifications have to be applied in order to cover these
cases. In the following, therefore, only the basic form should be considered, all other
forms can be obtained by corresponding modifications. In addition, the generality of the
representation up to now should be limited to the actual forms of interest for this thesis.
First of all, it should be mentioned again that the propagator D(x,m) depends only on
the four-absolute value x =

√
xµxµ. Finally, in Eq. (3.3) only the case n′ = n shall be

considered, omitting the tadpole situations which do not contain any interesting aspect
for the calculations presented here. Tadpole diagrams in this respect are connections
between legs ending at the same vertex. Because of their form one can call them leaves
of the water melon. They will be left out.

At large, Eq. (3.4) together with the explicit representation for the propagators in
Eq. (3.5) already constitutes the final result for the correlator function in configuration
space. However, for practical application the momentum space representation turns out
to be more useful. This representation will be derived in the following subsection.

3.1.3 Translation back into momentum space

The translation of the configuration space result back to momentum space is done by the
inverse Fourier transform,

Π̃(p2) =
∫

Π(x)eipµxµ

dDx =
∫

〈Tjn(x)jn′(0)〉dDx. (3.10)
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A few words about the history of the subject are in order here. Before calculations in
momentum space came into being with the development of recursions relying on the inte-
gration by parts technique, the configuration space technique was already used. It proved
to be successful for massless diagrams with rather general topology [61] and indicated
a real breakthrough in this field. Also the case of massive diagrams was considered in
configuration space representation [86]. But it turned out that the configuration space
representation was not of much help in this case because the angular dependence did not
decouple and thus no essential simplifications could be expected.

However, for the special topology of water melon diagrams the angular dependence
decouples completely. The angular integration in Eq. (3.10) can be performed in D-
dimensional space-time and gives

∫

eipµxµ

dDx̂ = 2πλ+1
(

px

2

)−λ
Jλ(px), (3.11)

again with x =
√
xµxµ and p =

√
pµpµ. Jλ(z) is the Bessel function of the first kind

(cf. Appendix D.1.1), and dDx̂ is the rotation invariant measure of the unit sphere in D-
dimensional (Euclidean) space-time. The generalization of Eq. (3.11) to more complicated
integrands is simple. After taking an angular average it leads to different orders of the
Bessel function. These emerge through the expansion of plane waves exp(ipµx

µ) in a series
of functions orthogonal on the D-dimensional unit sphere, the Gegenbauer polynomials
Cλ
l (z) (cf. Appendix D.4),

exp(ipµx
µ) = Γ(λ)

(

px

2

)−λ ∞
∑

l=0

il(λ+ l)Jλ+l(px)C
λ
l

(

pµx
µ

px

)

. (3.12)

Integration techniques including the Gegenbauer polynomials are described in some detail
in Ref. [61] where also many useful relations between the polynomials are found. These
are in part collected in Appendix D.4 (see also Ref. [87]). Again a restriction to the
standard case is possible which is given by the one-dimensional integral

Π̃(p2) = 2πλ+1
∫ ∞

0

(

px

2

)−λ
Jλ(px)D(x,m1) · · ·D(x,mn)x

2λ+1dx. (3.13)

This integral with a Bessel function kernel describes the Hankel transform, a special kind
of integral transform.

3.1.4 Analyticity of the correlator function

Eq. (3.13) already leads to informations about the analyticity of the correlator function
Π̃(p2). In order to obtain this information, the asymptotic behaviour of the relevant
Bessel functions have to be examined. At this point, however, a rough estimate suffices.
Therefore, according to Appendix D.1.4,

Jλ(z) →
√

2

πz
cos

(

z − π

2
λ− π

4

)

, Kλ(z) →
√

π

2z
e−z. (3.14)

Only the exponential part is of interest here because it determines the suppression or
enhancement of the integrand at large values of z. Each of the factors D(x,mi), being
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proportional to a McDonald function Kλ(mx), contributes an exponential factor e−mix.
The entirety of all factors, therefore, results in a factor e−Mx with M =

∑n
i=1mi. On the

other hand, because of the cosine function the Bessel function Jλ(px) has two complex
exponential parts, eipx and e−ipx. Therefore, the integrand is bounded only in the case
where the real part of the total exponent is less than zero, so the requirement is given by

− Im p−M < 0, Im p−M < 0 ⇒ | Im p | < M =
n
∑

i=1

mi. (3.15)

In the strip of the complex plane parallel to the real axis given by this condition, the
correlator function is analytic. Expressed by the relativistic invariant quantity p2, this
means that the correlator function is analytic for Re(p2) > −M2 whereas, starting from
energies E = M in the Minkowskian domain (found at Re(p2) < 0), it becomes singular.
Depending on the number of internal lines of the diagram, this singularity is either a
single pole (for the most degenerate case of a single propagator) or a cut.

3.1.5 Momentum subtraction

In the previous subsection the behaviour for large values of x which corresponds to the
infrared (IR) region was considered. Some attention has to be paid also to the behaviour
at small values of x, i.e. the ultraviolet (UV) region. For space-time dimensions D > 2 (i.e.
λ > 0) and a sufficiently high number of internal lines or propagator factors, the integral
diverges in the ultraviolet region (i.e. for small values of x).2 However, UV singularities for
water melon diagrams are very simple because there is only a general divergence and no
subdivergencies. The R operation, the prescription how the renormalization is performed
(cf. Ref. [88]), is well-defined, simple and applicable to numerical calculations which is
an important condition for practical applications. The subtraction method consists of
an expansion of the Bessel function of the first kind in the integrand into a Taylor series
about x = 0 which then is subtracted from the Bessel function term by term up to a given
order. This procedure is a recipe for a general but finite singularity. Expressed explicitly,
the subtracted integral kernel is given by

[

(

px

2

)−λ
Jλ(px)

]

N

=
(

px

2

)−λ
Jλ(px) −

N
∑

k=0

(−1)k

k!Γ(λ+ k + 1)

(

px

2

)2k

. (3.16)

Inserted into Eq. (3.13), this corresponds to the momentum subtraction

Π̃mom(p2) = Π̃(p2) −
N
∑

k=0

p2k

k!

(

d

dp2

)k

Π̃(p2)
∣

∣

∣

p2=0
. (3.17)

Note that the subtraction at the point p2 = 0 is possible only if the diagram contains at
least one massive line. On the other hand, if the diagram consists of massless lines only,
the diagram can be calculated analytically anyhow in simple fashion. The subtraction
can then be solved trivially.

2For λ = 0 the singularities are only logarithmic ones which makes this case technically simpler. Also
the strength of the singularity does not grow so rapidly with increasing number of lines.
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3.1.6 An “unorthodox” dimensional regularization

To give a meaning to the single terms in the expansion of Eq. (3.13) a regularization
has to be performed. In most of the cases the dimensional regularization will be used
here. However, in some cases one can also apply so-called “unorthodox” renormalization
methods which are related to the dimensional regularization method but are simpler. In
the specific case it is enough to perform regularization by multiplying an additional factor
x2ω (in order to keep the mass dimension a factor (µx)2ω is preferred instead). Therefore,
all propagators are kept in integer space-time dimension, only the space-time dimension
of the integration measure is changed. This regularization method shall be called “un-
orthodox regularization method” in the following [89]. Note that similar modifications of
the dimensional regularization method are known also for other applications. In some
supersymmetric theories one keeps the four-dimensional structure of tensor fields in order
to save the Ward identities. The corresponding modification of the dimensional regular-
ization method is known as dimensional regularization by dimensional reduction. Here as
well as in the considered case substantial simplifications result for the calculations.

It remains to show that finite quantities like the subtracted correlator function in
Eq. (3.17) are independent on whether the full or the unorthodox dimensional regular-
ization method is used. This will be shown for the simplest case, the case of a diagram
consisting of a massive and a massless internal line. The corresponding diagram needs
only one single subtraction (N = 0). If one calculates

Π̃D(p2) =
∫

D(x,m)D(x, 0)eipµxµ

dDx =

=
Γ(1 − λ)

(4π)λ+1λ
(m2)λ−1

2F1

(

1, 1 − λ; 1 + λ;− p2

m2

)

(3.18)

by using the conventional method and

Π̃ω(p
2) =

∫

D4(x,m)D4(x, 0)eipµxµ

x2ωd4x =

=
Γ(1 + ω)Γ(ω)

(4π)2

(

m2

4

)−ω

2F1

(

1 + ω, ω; 2;− p2

m2

)

(3.19)

by using the unorthodox method where 2F1(a, b; c; x) is the hypergeometric function (cf.
Appendix D.2), for the corresponding limits ω → 0 and λ = 1 − ε → 1 the differences
Π̃D(p2)− Π̃D(0) and Π̃ω(p

2)− Π̃ω(0) are both finite and coincide. Because both methods
lead to the same result, one can use ε instead of ω in the following.
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3.2 Comparison with known results

In some special cases the analytical calculation of the integral in Eq. (3.13) is possible.
In these cases a comparison with results given in the literature is appropiate. Here the
comparatively trivial case of a water melon diagram with massless internal lines will not
be dealed with. Instead, the case of vanishing outer momentum p is considered, the so-
called bubble water melon diagrams.3 Then the Bessel factor disappears from Eq. (3.13),
and one has

2πλ+1
(

mx

2

)−λ
Jλ(mx) →

2πλ+1

Γ(λ+ 1)
for mx → 0. (3.20)

The complexity of examples which are dealt with increases with the number of internal
lines in the diagram. Diagrams with a single massive line and an arbitrary number of
massless lines are solved by the formula

∫ ∞

0
xµKν(mx)dx = 2µ−1m−µ−1Γ

(

1 + µ+ ν

2

)

Γ
(

1 + µ− ν

2

)

. (3.21)

The simplest example is (µ = 1 − λ, ν = λ)

Π̃11(0) =
∫

D(x,m)D(x, 0)dDx =
2πλ+1

Γ(λ+ 1)

∫

D(x,m)D(x, 0)x2λ+1dx =

=
2πλ+1

Γ(λ+ 1)

∫

(

(mx)λKλ(mx)

(2π)λ+1x2λ

)(

Γ(λ)

4πλ+1x2λ

)

x2λ+1dx =

=
mλ

2λ(2π)λ+1

∫ ∞

0
x1−λKλ(mx)dx =

(

m2

2

)λ−1
Γ(1 − λ)

4λ(2π)λ+1
. (3.22)

The corresponding calculation in momentum space confirms this result. Diagrams with
two massive and an arbitrary number of massless lines can be determined using

∫ ∞

0
x2α−1Kµ(mx)Kµ(mx)dx =

22α−3

m2αΓ(2α)
Γ(α+ µ)Γ(α)2Γ(α− µ) (3.23)

(see Appendix D.3). Here the example of a three-loop diagram with two equally massive
lines and two massless lines at vanishing total momentum is given,

Π̃22(0) =
∫

D(x,m)2D(x, 0)2dDx =
2πλ+1

Γ(λ+ 1)

∫

D(x,m)2D(x, 0)2x2λ+1dx =

=
2πλ+1

Γ(λ+ 1)

∫

(

(mx)λKλ(mx)

(2π)λ+1x2λ

)2 (
Γ(λ)

4πλ+1x2λ

)2

x2λ+1dx =

=

(

m2

2

)3λ−1
Γ(λ)2Γ(1 − λ)Γ(1 − 2λ)2Γ(1 + 3λ)

16(2π)3λ+3Γ(λ+ 1)Γ(2 − 4λ)
. (3.24)

This result corresponds to the base element M1 for the calculation of massive three-loop
diagrams with general three-loop topology as it is dealt with in Ref. [83].

3Bubble diagrams in general also contain diagrams not belonging to the water melon topology.
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3.2.1 The case of three different masses

A more complicated example is the sunrise diagram with three different massive lines.
This example exceeds the previous ones in its complexity already because the integral
is UV divergent. For a special choice of the outer momenta there exists an analytic
expression for this diagram [90]. For the calculation in configuration space the starting
expression is given by

Π̃3(p
2) = 2πλ+1

∫ ∞

0

(

px

2

)−λ
Jλ(px)D(x,m1)D(x,m2)D(x,m3)x

2λ+1dx. (3.25)

To extract the finite part, the momentum subtraction is used. Therefore, Π̃3(p
2) is split

up into a finite part Π̃mom(p2) and a singular part Π̃sing(p
2),

Π̃3(p
2) = Π̃mom(p2) + Π̃sing(p

2). (3.26)

The momentum subtracted correlator function is then given by

Π̃mom(p2) = 2πλ+1
∫ ∞

0

[

(

px

2

)−λ
Jλ(px)

]

1

D(x,m1)D(x,m2)D(x,m3)x
2λ+1dx (3.27)

where the definition of the square brackets in Eq. (3.16) is used. The singular part is
given correspondingly by

Π̃sing(p
2) = A+ p2B =

2πλ+1

Γ(λ+ 1)

∫ ∞

0
D(x,m1)D(x,m2)D(x,m3)x

2λ+1dx +

−p2 2π2λ+1

4Γ(λ+ 2)

∫ ∞

0
x2D(x,m1)D(x,m2)D(x,m3)x

2λ+1dx. (3.28)

In the literature the diagram is considered at a so-called pseudo threshold , in this case
p = m1 + m2 −m3 [90]. For simplicity the special case m1 = m2 = m3/2 = m is used
here. For the case p = 0 the part B in Eq. (3.28) does not contribute. Furthermore, the
momentum subtracted correlator function vanishes totally because it is regular at p = 0,
Π̃mom(0) = 0. Therefore, only the part A in Eq. (3.28) needs to be considered in order to
compare with the result [90]

Π̃ref
3 (0) = π4−2εm

2−4εΓ2(1 + ε)

(1 − ε)(1 − 2ε)

[

− 3

ε2
+

8 ln 2

ε
− 8 ln2 2

]

+O(ε). (3.29)

The part A is of the general form
∫ ∞

0
xρKµ(mx)Kµ(mx)Kµ(2mx)dx (3.30)

(µ = λ and ρ = 1 − λ in this case). This integral is calculable without having to take
recourse to integral tables (e.g. Ref. [91]). Primarily the method consists in a further sub-
traction, with the help of which the integral can be reduced to known (already calculated)
integrals. This subtraction is applied to the last of the McDonald functions which occur
in the integrand as factors. Using the power series expansion

(

ξ

2

)λ

Kλ(ξ) =
Γ(λ)

2



1 +
1

1 − λ

(

ξ

2

)2

− Γ(1 − λ)

Γ(1 + λ)

(

ξ

2

)2λ


+O(ξ4, ξ2+2λ). (3.31)
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the subtraction can be performed. Note that the part A is still singular at x = 0. This
part can be split into a finite part F and a singular part S according to (2π)2DA = F +S
(the same normalization as in Ref. [90] is used). As mentioned before, the singular part
can be reduced to known and already calculated integrals with two McDonald functions
and can be calculated according to

S =
(2π)Dm2λ

Γ(λ+ 1)

∫ ∞

0
x2(1−λ)−1Kλ(mx)Kλ(mx) ×

×Γ(λ)

2

[

1 +
(mx)2

1 − λ
− Γ(1 − λ)

Γ(1 + λ)
(mx)2λ

]

dx =

=
(2π)Dm2−4ε

Γ(λ+ 1)

∫ ∞

0
ξ2ε−1Kλ(ξ)Kλ(ξ)

Γ(λ)

2

[

1 +
ξ2

1 − λ
− Γ(1 − λ)

Γ(1 + λ)
ξ2λ

]

dξ =

= π4−2εm
2−4εΓ2(1 + ε)

(1 − ε)(1 − 2ε)

[

− 3

ε2
+

8 ln 2

ε
+ 8(2 − 2 ln 2 − ln2 2)

]

+O(ε). (3.32)

The pole part of this contribution is in agreement with the one in Eq. (3.29), only the
finite part is different. This will be corrected by the part F . Because

F =
(2π)Dm2λ

Γ(λ+ 1)

∫ ∞

0
x2(1−λ)−1Kλ(mx)Kλ(mx) × (3.33)

×
{

(mx)λKλ(2mx) −
Γ(λ)

2

[

1 +
(mx)2

1 − λ
− Γ(1 − λ)

Γ(1 + λ)
(mx)2λ

]}

dx

is a finite contribution, one can take D = 4 (i.e. λ = 1). F can then be simplified which
leads to

F = 16π4m2
∫ ∞

0

dz

z
K1(z)K1(z)

{

zK1(2z) −
1

2

[

1 + z2(−1 + 2γE + 2 ln z)
]

}

. (3.34)

This (integer dimensional) integral can be calculated numerically, the result reads

F = 16π4m2 [−0.306853 . . . ] = 16π4m2 [−(1 − ln 2) × 1.0000 . . . ] (3.35)

(the analytic form is shown only for illustrative reasons). Because F is finite, the overall
factor can be adjusted to the one of S (the difference is absorbed into O(ε)). One obtains

F = π4−2εm
2−4εΓ2(1 + ε)

(1 − ε)(1 − 2ε)
[−16(1 − ln 2) × 1.0000 . . . ] +O(ε), (3.36)

and both parts (S and F ) together result in the same expression as in Eq. (3.29). One
should emphasize that for the case of non-vanishing external momentum p no new sit-
uation arrises. There are only different finite parts which emerge. A subtraction term
corresponding to the part B in Eq. (3.28) is required. However, this case is easier to deal
with because the singularity at x = 0 is weaker and there is only one subtraction term
needed.

3.2.2 Further considerations in four space-time dimensions

A general remark on the calculation of the correlator function near the production thresh-
old of quark-antiquark pairs is in order here. In Ref. [90] the correlator function was given
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at this threshold. Note, however, that the correlator function at the threshold is not an-
alytic and therefore no Taylor series expansion can be given. Some higher derivatives of
the correlator function as function of the outer squared momentum p2 do not exist at the
threshold. In Sec. 3.5 a method will be introduced how calculations near the threshold
can be performed.

The examples shown here are well-known so far and were developed by others using
methods which differ from the methods described here. While it is possible to calculate
water melon diagrams with an arbitrary number of internal lines carrying different masses
using configuration space techniques, one rarely finds analytical expressions in the litera-
ture with which a comparison can be made. Beyond two-loop calculations there are only
a few in the literature. A three-loop example will be dealt with in the following section.

3.2.3 Examples in odd space-time dimensions

It is interesting that the calculation of the correlator function in Eq. (3.13) can be per-
formed in a closed form for odd space-time dimensions and an arbitrary number of internal
lines. As the simplest example this shall be shown here for D → D0 = 3 space-time di-
mensions. Applications of the results in three space-time dimensions can be found. In
three space-time dimensions the results can be used to compute phase space integrals for
particles in jets where the momentum along the direction of the jet is fixed [92]. Another
application can be found in three-dimensional QCD which emerges as the high temper-
ature limit of the ordinary theory of strong interactions for the quark-gluon plasma (see
e.g. [93, 94, 95, 96]). Three-dimensional models are also used to study the question of
dynamical mass generation and the infrared structure of the models of quantum field the-
ory [97, 98, 99]. A further theoretical application consists in the investigation of properties
of baryons in the limit of infinite number of colours Nc → ∞ where one has to take into
account the spin structure of internal lines.

For λ0 = (D0 − 2)/2 = 1/2 the propagator in Eq. (3.5) simplifies and results in

D(x,m) → D3(x,m) =

√
mxK1/2(mx)

(2π)3/2x
=
e−mx

4πx
(3.37)

while the integral kernel is given by

(

px

2

)−1/2

J1/2(px) =
2√
π

sin(px)

px
. (3.38)

The explicit result for the water melon diagram with n internal lines is then given by the
integral

Π̃(p2) = 4π
∫ ∞

0

sin(px)

px

e−Mx

(4πx)n−2
(µx)2εdx =

=
Γ(2 − n+ 2ε)

2ip(4π)n−1

[

(M − ip)n−2−2ε − (M + ip)n−2−2ε
]

µ2ε (3.39)

where ε is the regularization parameter and M =
∑

mi. At this point the advantages
of the unorthodox regularization method becomes obvious: it allows for the analytical
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calculation of an arbitrary water melon diagram in general odd space-time dimensions.
While the general expression for the spectral density (for n ≥ 2) reads

ρ(s) =
1

2πi
Disc Π̃(s) =

(
√
s−M)n−2

2(4π)n−1(n− 2)!
√
s
θ(s−M2), (3.40)

a few special cases are shown here. For n = 1 the usual propagator function emerges,

ρ(s) =
1

2πi

(

Π̃(se−iπ) − Π̃(seiπ)
)

= δ(s−m2). (3.41)

For n = 2 the correlator function is still finite,

Π̃(p2) =
1

8πip
ln

(

M + ip

M − ip

)

(3.42)

so there is no need of a regularization. The corresponding spectral density is given by

ρ(s) =
1

8π
√
s
θ
(

s− (m1 +m2)
2
)

. (3.43)

This is a special case of Eq. (3.40), moreover it is nothing else than the three-dimensional
phase-space for two particles. Only the cases for n > 2 are interesting. For the proper
sunrise diagram (n = 3) one obtains the correlator function

Π̃(p2) =
1

32π2

{

1

ε
− M

ip
ln

(

M + ip

M − ip

)

− ln

(

M2 + p2

µ2

)}

. (3.44)

The arbitrary scale µ mirrors the regularization. But the spectral density is independent
of this scale and finite,

ρ(s) =

√
s−M

32π2
√
s
θ(s−M2), (3.45)

as is expected.

At this point the relation between the momentum subtraction and the unorthodox reg-
ularization method can be shown directly. Taking Eq. (3.39) for n = 3 with a momentum
subtraction included, one obtains

Π̃(p2) =
∫ ∞

0

(

sin(px)

px
− 1

)

e−Mx

(4π)2x
(µ2x2)ǫdx (3.46)

which is UV-finite even for ǫ = 0 because there is no singularity at the origin. For practical
computations it is convenient to keep the factor (µ2x2)ǫ in the integrand since this factor
gives a meaning to each of the two terms in the round brackets in Eq. (3.46) separately.
Then the direct calculation gives

Π̃(p2) =
∫ ∞

0

(

sin(px)

px
− 1

)

e−Mx

(4π)2x
(µ2x2)ǫdx =

=
Γ(−1 + 2ǫ)

2ip(4π)2

[

(M − ip)1−2ǫ − (M + ip)1−2ǫ
]

µ2ǫ − Γ(2ǫ)

(4π)2

(

µ

M

)2ǫ

=

= − 1

32π2

{

M

ip
ln

(

M + ip

M − ip

)

+ ln

(

M2 + p2

M2

)}

. (3.47)
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The poles cancel in this expression and the arbitrary scale µ changes to M . This cor-
responds to a transition from MS-type of renormalization schemes to a momentum sub-
traction scheme (with subtraction at the origin in this particular case). Since the spectral
density ρ(s) is finite, it can be computed using any regularization scheme as can be seen
by comparing Eqs. (3.44) and (3.47).

The method presented here is also applicable for odd space-time dimensions other
than D0 = 3. For D0 = 5 (λ0 = 3/2) for instance, the propagator reads

D(x,m) → D5(x,m) =
(mx)3/2K3/2(mx)

(2π)5/2x3
=

e−mx

8π2x3
(1 +mx) (3.48)

which assures that the integration in Eq. (3.13) can be performed in terms of elementary
functions (powers and logarithms) again.

Note that particular models of different space-time dimensions are very useful because
their properties may be simpler, and this may therefore allow one to study general features
of the underlying field theory. For example, in six-dimensional space-time the simplest
model of quantum field theory φ3 is asymptotically free and can be used for simulations of
some features of QCD. Though five-dimensional models are less popular than others, still
there are useful applications for Yang-Mills theory in five-dimensional space-time where
the UV structure of the models can be analyzed [100].

3.2.4 Analytic continuation in momentum space

The spectral density, representing the n-particle phase space as mentioned before, can be
calculated for an arbitary space-time dimension in a closed form. Using the result

Kλ(z) =
iπ

2
eiπλ/2H+

λ (iz),
(

H+
λ (x)

)∗
= H−λ (x) (3.49)

for complex z and real x and λ, where H+
λ (z) = H

(1)
λ (z) and H−λ (z) = H

(2)
λ (z) are the

Hankel functions [101] (see Appendix D.1.2), an analytic continuation of Eq. (3.13) to the
complex plane can be performed which is necessary for calculating the spectral density

ρ(s) =
i

2π

∫ ∞

0

(

2πξ

s

)λ+1

Jλ(ξ)

[

e−iπ(λ+1)
n
∏

i=1

1

4

(

mi

√
s

2πξ

)λ

eiπ(λ+1/2)H+
λ

(

miξ√
s

)

+

−eiπ(λ+1)
n
∏

i=1

1

4

(

mi

√
s

2πξ

)λ

e−iπ(λ+1/2)H−λ

(

miξ√
s

)]

dξ. (3.50)

It is understood in this expression that a proper momentum subtraction has been per-
formed, according to Eq. (3.16). The one-dimensional integral representation in Eq. (3.50)
is simple enough for further processing, so that one can easily discuss special mass config-
urations. The evaluation of the integral in Eq. (3.50), however, is not always straightfor-
ward. The integrand contains highly oscillating functions that require some care in the
numerical treatment. This is to be expected since the discontinuity, or the spectral density,
is a distribution rather than a smooth function. However, because the analytic structure
and the asymptotic behaviour of the integrand in Eq. (3.50) is completely known, the
numerical computation of ρ(s) can be made reliable and fast in domains where ρ(s) is
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smooth enough, in particular far from threshold. One recipe is to extract the oscillating
asymptotics first and then to perform the integration analytically, or to integrate the os-
cillating asymptotics numerically using integration routines that have special options for
the treatment of oscillatory integrands. Both ways were checked in simple examples with
reliable results. The remaining non-oscillating part is a slowly changing function which
can be integrated numerically without difficulties. With this extra care the integration
can be easily made safe, reliable and fast even for an average personal computer. The
general numerical procedures are checked in three-dimensional space-time (D0 = 3) where
exact results are available.

For this check the spectral density for the n = 3 water melon diagram in three-
dimensional space-time is recomputed. The Hankel function for indices j + 1/2 (or for
D0 = 2j + 1) is a finite combination of powers and an exponential (cf. Appendix D.1.5)
which makes possible the explicit computation of the integral in Eq. (3.50), with the result

ρ(s) = −1

π

∫ ∞

0

(

sin ξ

ξ
− 1

)

sin

(

Mξ√
s

)

dξ

(4π)2ξ
=

√
s−M

32π2
√
s
θ(s−M2). (3.51)

This form agrees with the explicit formula given by Eq. (3.45). For this special case the
explicit calculation is shown. The starting point is

ρ(s) =
1

2πi

[

Π̃(se−iπ) − Π̃(se+iπ)
]

=

=
2πλ+1

2πi

[

∫ ∞

0

(

x
√
se−iπ/2

2

)−λ

Jλ(x
√
se−iπ/2)x2λ+1

n
∏

i=1

D(x,mi)dx +

−
∫ ∞

0

(

x
√
se+iπ/2

2

)−λ

Jλ(x
√
se+iπ/2)x2λ+1

n
∏

i=1

D(x,mi)dx

]

=

= −i
[

∫ −i∞

−i0

(

ξ

2π

)−λ
Jλ(ξ)

(

ξe+iπ/2√
s

)2λ+1
e+iπ/2√

s

n
∏

i=1

D

(

ξe+iπ/2√
s

,mi

)

dξ +

−
∫ i∞

i0

(

ξ

2π

)−λ
Jλ(ξ)

(

ξe−iπ/2√
s

)2λ+1
e−iπ/2√

s

n
∏

i=1

D

(

ξe−iπ/2√
s

,mi

)

dξ

]

=

=
1

2πi

[

∫ −i∞

−i0

(

2πξ

s

)λ+1

Jλ(ξ)e
+iπ(λ+1)

n
∏

i=1

D

(

ξe+iπ/2√
s

,mi

)

dξ +

−
∫ +i∞

+i0

(

2πξ

s

)λ+1

Jλ(ξ)e
−iπ(λ+1)

n
∏

i=1

D

(

ξe−iπ/2√
s

,mi

)

dξ

]

. (3.52)

Now λ = 1/2 and n = 3 is selected. Using

J1/2(ξ) =

√

2

πξ
sin ξ, H±1/2

(

mξ√
s

)

=

√

√

√

√

2
√
s

πmξ
e∓iπ/2e±imξ/

√
s (3.53)

and

D

(

ξe±iπ/2√
s

,m

)

=
1

4

√

√

√

√

m
√
s

2πξ
e∓iπH∓1/2

(

mξ√
s

)

=

√
s

4πξ
e∓iπ/2e∓imξ/

√
s, (3.54)
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the product of propagators is given by

e±3iπ/2
3
∏

i=1

D

(

ξe±iπ/2√
s

,mi

)

=

(√
s

4πξ

)3

e∓iMξ/
√
s. (3.55)

Therefore, the spectral density in this case is given by

ρ(s) =
1

2πi

[

∫ −i∞

−i0

sin ξ

(4πξ)2
e−iMξ/

√
sdξ −

∫ +i∞

+i0

sin ξ

(4πξ)2
e+iMξ/

√
sdξ

]

. (3.56)

Because there are no singularities on the complex ξ-plane except for the point ξ = 0 and
since the exponential factors suppress the integrand for arcs from −i∞ to ∞ and from
+i∞ to ∞, the integrals can be replaced by the (common) third part of the respective
closed paths,

ρ(s) =
1

2πi

∫ ∞

0

sin ξ

(4πξ)2

[

e−iMξ/
√
s − e+iMξ/

√
s
]

dξ = = −1

π

∫ ∞

0

sin ξ

(4πξ)2
sin

(

Mξ√
s

)

dξ.

(3.57)
This result is the unsubtracted version of Eq. (3.51). In order to obtain the final result
given in Eq. (3.51), the necessary integrations are performed by moving the contour back
into the complex ξ-plane and regularizing the singularity at the origin by an infinitely
small shift ±i0. Then closing the contour in the upper or lower semi-plane according to
the sign of regularization one finds the integral by computing the residue at the origin.

3.3 Integral transformation in configuration space

The analytic structure of the spectral density can be determined directly by using the
correlator function in configuration space. First of all, the opposite holds, as one can see
by translating the dispersion relation into configuration space,

Π(x) =
1

(2π)D

∫

Π̃(p2)e−ipµxµ

dDp =
∫

ρ(s)ds
∫

dDp

(2π)D
e−ipµxµ

s + p2
=
∫

ρ(s)D(x,
√
s)ds.

(3.58)
Here D(x,

√
s) is the propagator for a particle with “mass”

√
s. This representation

was used for sum rule applications in Refs. [102, 103] where the spectral density for
the two-loop sunrise diagram was found in two-dimensional space-time [104]. With the
explicit form of the propagator in configuration space given by Eq. (3.5), the representation
in Eq. (3.58) turns into a particular example of the Hankel transform, namely the K-
transform [105, 106]. Up to inessential factors of x and m, Eq. (3.58) reduces to the
generic form of the K-transform for a conjugate pair of functions f and g,

g(y) =
∫ ∞

0
f(x)Kν(xy)

√
xy dx. (3.59)

The inverse of this transform is known to be given by

f(x) =
1

πi

∫ c+i∞

c−i∞
g(y)Iν(xy)

√
xy dy (3.60)

where Iν(x) is a modified Bessel function of the first kind and the integration runs along
a vertical contour in the complex plane to the right of the right-most singularity of the
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function g(y) [106]. In order to obtain a representation for the spectral density ρ(s) of a
water melon diagram in general D-dimensional space-time one needs to apply the inverse
K-transform to the particular case given by Eq. (3.58). One has

ρ(s) = −i
(

2π√
s

)λ
∫ c+i∞

c−i∞
xλ+1Π(x)Iλ(x

√
s)dx. (3.61)

The inverse transform given by Eq. (3.61) solves the problem of determining the spectral
density of water melon diagrams by reducing it to the computation of a one-dimensional
integral for the general class of water melon diagrams with any number of internal lines
and different masses. Compared to the general solution given by Eq. (3.50), the above
form is simpler. In the following some explicit examples of applying the technique of
computing the spectral density of water melon diagrams on the basis of integral transforms
in configuration space are given (see also Refs. [107, 108]).

3.3.1 The one-loop case

First a remark about the mass degenerate one-loop case is in order. All necessary integrals
(both for the direct and the inverse K-transform) involve no more than the product of
three Bessel functions which can be found in a standard collection of formulas for special
functions (see e.g. Ref. [101]). The spectral density in D-dimensional space-time (for two
internal lines with equal masses m) can be computed to be

ρ(s) =
(s− 4m2)λ−1/2

24λ+1πλ+1/2Γ(λ+ 1/2)
√
s
,

√
s > 2m. (3.62)

This formula is useful since it can be used to test the limiting cases of more general results.
The corresponding spectral density for the nondegenerate case with two different masses
m1 and m2 reads

(2π)2λ+1ρ(s) =
Ω2λ+1

4
√
s

(

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2

4s

)λ−1/2

,
√
s > m1 +m2, (3.63)

where

Ωd =
2πd/2

Γ(d/2)
(3.64)

is a volume of a unit sphere in d-dimensional space-time. Note the identity

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2 =

[

s− (m1 +m2)
2
] [

s− (m1 −m2)
2
]

(3.65)

which immediately allows one to locate the two-particle threshold.

3.3.2 General considerations for the odd-dimensional case

For odd-dimensional space-time the representation in Eq. (3.58) reduces to the ordinary
Laplace transformation. To obtain the spectral density one can use Eq. (3.61). For ener-
gies below threshold it is possible to close the contour of integration to the right. With the
appropiate choice of the constant c as specified above, the closed contour integration gives
zero due to the absence of singularities in the relevant domain of the right semi-plane. By
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closing the contour of integration to the left and keeping only that part of the function
Iλ(z) which is exponentially falling for Re(z) < 0 one can obtain another convenient inte-
gral representation for the spectral density when the energy is above threshold. The only
singularities within the closed contour are then poles at the origin (in odd-dimensional
space-time) and the evaluation of the integral can be done by determining the corre-
sponding residues. These are purely algebraic manipulations, the simplicity of which also
explain the simplicity of the computations in odd-dimensional space-time. For a small
number of internal lines n the spectral density can also be found by using the convolution
formulas for the spectral densities of a smaller number of particles (see e.g. Ref. [109]).
For large n the computations described in Ref. [109] become quite cumbersome and the
technique suggested in Refs. [107, 108] is much more convenient.

3.3.3 Examples for three-dimensional space-time

As an example for the odd-dimensional case, calculations in three dimensions are presented
here. Using the three-dimensional propagator

D3(x,m) =

√
mxK1/2(mx)

(2π)3/2x
=
e−mx

4πx
, (3.66)

Eq. (3.58) takes the form

Π(x) =
∫ ∞

0
ρ(s)

e−x
√
s

4πx
ds ⇔ 4πxΠ(x) =

∫ ∞

0
2
√
sρ(s)e−x

√
sd
√
s. (3.67)

Inverting Eq. (3.67) results in

2
√
sρ(s) =

1

2πi

∫ c+i∞

c−i∞
4πxΠ(x)ex

√
sdx ⇔ ρ(s) = −i

∫ c+i∞

c−i∞

xex
√
s

√
s

Π(x)dx. (3.68)

This is a special case of Eq. (3.61) with

I1/2(z) =

√

2

πz
sinh(z) (3.69)

where only the ez piece of the hyperbolic function has to be retained. The solution given
by Eq. (3.68) has the appropiate support as distribution or, equivalently, as an inverse
Laplace transform. It vanishes for

√
s < M =

∑

mi since the contour of integration can be
closed to the right where there are no singularities of the integrand. Recall that for large
x with Re(x) > 0 the asymptotic behaviour of the correlator function Π(x) is governed
by the sum of the masses of the propagators and reads Π(x) ∼ exp(−Mx). For

√
s > M

one can close the contour to the left in the complex x-plane. The only singularities are
then the poles of Π(x) at the origin, since Π(x) is a product of propagators only, given
in three space-time dimensions by Eq. (3.66) as well. The integration in Eq. (3.68) then
reduces to finding the residues of the poles at the origin. Indeed, the insertion of

Π(x) =
n
∏

i=1

D3(x,mi) =
e−Mx

(4πx)n
(3.70)
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into Eq. (3.68) leads to

ρ(s) =
−i

(4π)n

∫ c+i∞

c−i∞

e(
√
s−M)x

xn−1
√
s
dx, (3.71)

and by closing the contour to the left one obtains

ρ(s) =
−i

(4π)n
2πi Res

[

e(
√
s−M)x

xn−1
√
s

; x = 0

]

θ(
√
s−M) =

=
1

2(4π)n−1

1

(n− 2)!

dn−2

dxn−2

(

xn−1e(
√
s−M)x

xn−1
√
s

) ∣

∣

∣

∣

∣

x=0

θ(
√
s−M) =

=
(
√
s−M)n−2

2(4π)n−1(n− 2)!
√
s
θ(
√
s−M). (3.72)

This result is in full agreement with Eq. (3.40).

3.3.4 The even-dimensional case

For even-dimensional space-time the analytic structure of Π(x) in Eq. (3.4) is more com-
plicated. There is a cut along the negative axis in the complex x-plane which prevents a
straightforward evaluation by simply closing the contour of integration to the left (with
Re(x) < 0). The discontinuity along the cut, however, is well-known and includes only
Bessel functions that appear in the product of propagators for the correlator function.
Therefore, the representation in Eq. (3.61) is essentially equivalent to the direct analytic
continuation of the Fourier transform [107] but may be more convenient for a numerical
treatment because there is no oscillating integrand in Eq. (3.61).

3.3.5 The four-dimensional case in more detail

In even number of dimensions one is dealing with a genuine K-transform. The important
case of four-dimensional space-time is discussed in some detail in the following. For D = 4
(λ = 1), Eqs. (3.5) and (3.58) give

Π(x) =
∫

ρ(s)D4(x,
√
s)ds =

∫

ρ(s)
x
√
sK1(x

√
s)

4π2x2
ds, (3.73)

and Eq. (3.61) is written as

ρ(s) =
1

2πi
√
s

∫ c+i∞

c−i∞
4π2x2Π(x)I1(x

√
s)dx. (3.74)

All remarks about the behaviour at large x apply here as well. However, the structure
of singularities is more complicated than in the odd-dimensional case. In addition to the
poles at the origin there is a cut along the negative axis that renders the computation of the
spectral density more difficult. The cut arises from the presence of the functions K1(mix)
in the correlator function Π(x). Also the asymptotic behaviour of the function I1(z) is
more complicated than that of I1/2(z). In particular the extraction of the exponentially
falling component on the negative real axis is not straightforward. Incidentally, the fall-off
behaviour of the function I1(z) on the negative real axis can be taken as an example of
Stokes’ phenomenon of asymptotic expansions (see e.g. [85]). While the analytic structure
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of the representation is quite transparent and the integration can be performed along a
contour in the complex plane, there are some subtleties when one wants to obtain a
convenient form for a numerical treatment analogous to the odd-dimensional case [107].

After closing the contour to the left (for
√
s > M) using the appropiate part of the

function I1(z) one obtains

iπ
∫ c+i∞

c−i∞
x2Π(x)I1(x

√
s)dx (3.75)

= −
∫ ∞

ǫ
r2
(

Π(eiπr) + Π(e−iπr)
)

K1(r
√
s)dr + 2

∫ ∞

ǫ
r2Π(r)K1(r

√
s)dr

+
∫

C−

z2Π(z)(iπI1(z
√
s) +K1(z

√
s))dz +

∫

C+

z2Π(z)(iπI1(z
√
s) −K1(z

√
s))dz

for the quantity entering Eq. (3.74).

The contours C+ and C− are semi-circles
of radius ǫ around the origin in the upper
and lower complex semi-plane, respectively
(see Fig. 3.1). For practical evaluations of
Π(e±iπr) the rule

K1(e
±iπξ) = −K1(ξ) ∓ iπI1(ξ) (3.76)

(ξ = mr > 0) for the analytic continuation
of the McDonald functions is used.

Some comments are in order. The cor-
relator function Π(z) at z = e±iπr is propor-
tional to the product of propagators of the
form

D4(e
±iπr,mi) ∼

mi

r
[K1(mir) ± iπI1(mir)] .

(3.77)

Figure 3.1: Integration contours used
in the evaluation of Eq. (3.75). R1, R2,
R3 and R4 are segments of a circle ar-
round the origin where the radius of the
circle is taken to infinity.

It is clear from this equation that the leading singular contribution proportional to the
product of K1(mir) cancels in the sum in Eq. (3.75). Also the next-to-leading singu-
lar term disappears because of different signs in the product. Recall that the small ξ
behaviour of the functions K1(ξ) and I1(ξ) is given by

K1(ξ) =
1

ξ
+O(ξ ln ξ), I1(ξ) =

ξ

2
+O(ξ3). (3.78)

3.3.6 Remarks on the contour integration

A few remarks on the final representation Eq. (3.75) which is in a suitable form for
numerical integration are in order at this point. An auxiliary regularization in terms of
a circle of finite radius ǫ was introduced, the circle running around the origin with its
pole-type singularities. The spectral density is independent of ǫ, and the parameter ǫ
completely cancels in the full expression for the spectral density as given by Eq. (3.75).
This is natural since the spectral density is finite for the class of water melon diagrams.
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Eq. (3.75) contains no oscillatory integrands (cf. Eq. (3.50) to see the difference), and
the integration can safely be done numerically. Thus Eq. (3.75) is an useful alternative
representation for the spectral density. In practice the integration over the semi-circles is
done by expanding the integrand in z for small z and keeping only terms singular in ǫ.
The expansion requires only a finite number of terms and is a purely algebraic operation.
Then the singularity in ǫ exactly cancels against those of the remaining integrals. This
cancellation can also be done analytically leaving well-defined and smooth integrands for
further numerical treatment.

Even if the full computation of the spectral function in the even-dimensional case
described here is straightforward, it is nevertheless cumbersome. In order to exhibit the
essential points in this calculation, the main lines of the calculation are illustrated by a
simple and instructive example. Consider the calculation of the integral

∫ c+i∞

c−i∞

ln z

z2
ezdz (3.79)

which is rather close in structure to the real case. Due to the singularity at the origin one
has to treat the vicinity of the origin carefully. One then proceeds by closing the contour
to the left,

∫ c+i∞

c−i∞

ln z

z2
ezdz =

∫

Cǫ

ln z

z2
ezdz −

∫ ∞

ǫ

2iπ

x2
e−xdx =

= −2πi
∫ ∞

ǫ

e−xdx

x2
+ i

∫ π

−π

ln ǫ+ iφ

ǫ
(1 + ǫeiφ)e−iφdφ =

= −2πi
∫ ∞

ǫ

e−xdx

x2
+ i

∫ π

−π

(

ln ǫ

ǫ
e−iφ +

iφ

ǫ
e−iφ + ln ǫ+ iφ

)

dφ =

= −2πi
∫ ∞

ǫ

e−xdx

x2
+

ln ǫ

ǫ
0 +

2πi

ǫ
+ 2πi ln ǫ+ 0 =

= −2πi

(

∫ ∞

ǫ

e−xdx

x2
− 1

ǫ
− ln ǫ

)

. (3.80)

The combination in the brackets of the last equation remains finite as ǫ → 0. Now this
limit should be considered in more detail. First the integration is split into two parts,
from ǫ to 1 and from 1 to infinity,

∫ ∞

ǫ

e−xdx

x2
=
∫ ∞

1

e−xdx

x2
+
∫ 1

ǫ

e−xdx

x2
. (3.81)

Then the first integral is just a number which can be found numerically with high precision.
In the second integral one can expand the exponent in the integrand and finds

∫ 1

ǫ

e−xdx

x2
=
∫ 1

ǫ

dx

x2

(

1 − x+
x2

2
− . . .

)

=
1

ǫ
− 1 + ln ǫ+

1

2
(1 − ǫ) + . . . (3.82)

The singularity has the correct form and the finite series converges well. If one takes a
value 0.1 instead of 1 for the splitting point in Eq. (3.81), the convergence of the finite
series will be very fast. This procedure would be used for practical integration in a realistic
case. An exact answer for the simple example after two integrations-by-part is given by

∫ ∞

ǫ

e−xdx

x2
= e−ǫ

(

1

ǫ
+ ln ǫ

)

−
∫ ∞

ǫ
e−x ln x dx. (3.83)
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The last integral is finite at ǫ = 0 and for the present purpose it suffices to compute it in
this limit. The result is

∫ ∞

0
e−x ln x dx = −γE (3.84)

where γE is Euler’s constant. All these manipulations can be easily done with a symbolic
program. For the original integral one finds

−2πi

(

∫ ∞

ǫ

e−xdx

x2
− 1

ǫ
− ln ǫ

)

= −2πi
(

e−ǫ
(

1

ǫ
+ ln ǫ

)

+ γE − 1

ǫ
− ln ǫ

)

=

= 2πi(1 − γE) at ǫ = 0. (3.85)

Thus finally
∫ c+i∞

c−i∞

ln z

z2
ezdz = 2πi(1 − γE). (3.86)

This concludes the discussion of how to treat subtractions in this simplified case. The
generalization to Bessel functions is straightforward (just expand near the origin and get
expressions as in Eq. (3.80)). Then the form of the subtraction term depends on the
number n of propagators in a water melon diagram. Writing down an explicit expression
for some n is routine and can be left to the interested user. All the required expansions
can be performed by a symbolic manipulation program.

3.3.7 The two-dimensional case

For two-dimensional space-time the representation analogous to Eq. (3.75) is simpler
because there is no power singularity at the origin but only a logarithmic singularity
which allows one to shrink the contour to a point (take the limit ǫ→ 0). In this case one
obtains

ρ(s) =
1

π

∫ ∞

0
r(2Π(r) − Π(eiπr) − Π(e−iπr))K0(r

√
s)dr. (3.87)

For D0 = 2 the results are shown for the cases n = 2 and n = 3 in the following. For the
one-loop case n = 2 one has

ρ(s) =
1

2π

∫ ∞

0
rI0(m1r)I0(m2r)K0(r

√
s)dr (3.88)

which can be integrated explicitly (see Appendix D.3) and results in [91]

ρ(s) =
1

2πs

∞
∑

k,l=0

(

(k + l)!

k!l!

)2 (
m2

1

s

)k (
m2

2

s

)l

. (3.89)

This series can of course also be directly obtained by expanding Eq. (3.63).

For the case n = 3 one obtains

ρ(s) =
1

(2π)2

∫ ∞

0
r(K0(m1r)I0(m2r)I0(m3r) + I0(m1r)K0(m2r)I0(m3r)

+I0(m1r)I0(m2r)K0(m3r))K0(r
√
s)dr. (3.90)
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3.4 Configuration space based recurrence relations

In this section three-loop vacuum bubble diagrams
with only one non-vanishing mass m are con-
sidered. A general three-loop vacuum diagram
has the topology of a tetrahedron which can also
thought of as “fish+propagator” topology, i.e. a
fish-type diagram with an attached propagator (cf.
Fig. 3.2). Using conventional recurrence relations
based on the integration-by-parts technique, vac-
uum bubble diagrams can be reduced to master
integrals, some of them having the water melon
topology with a propagator attached (denoted
by “melon+propagator” topology), some of them
have a more complicated topology, the “specta-
cles+propagator” topology.

0 x

Figure 3.2: Three-loop vacuum bub-
ble diagram in two different repre-
sentations, namely the tetrahedron
representation on the left hand side,
and the “fish+propagator” represen-
tation on the right hand side where
the configuration space points 0 and
x are indicated.

The classification of the topology prototypes for three-loop vacuum bubbles was pre-
sented in Ref. [110] and shall be used in the following. The analytical computation of
some missing master integrals has recently been completed [111]. However, the solution of
the recurrence relations leading to the master integrals is complicated and time consum-
ing, especially for large powers of propagators. In this section, therefore, new recurrence
relations for a particular topology of vacuum bubbles are suggested which allows for an
explicit solution [112]. The simplicity of the presented technique is manifest again in the
configuration space representation for Feynman diagrams.

3.4.1 Explicit examples for the water melon topology

Figure 3.3: Three-loop (i.e. four-line) wa-
ter melon diagram (left hand side) and
two-loop water melon (three-line water
melon, being the ordinary sunrise dia-
gram, right hand side).

After a deliberate use of the recurrence rela-
tions for bubbles, in some cases two propaga-
tors can be removed. A typical situation of
such a kind was analyzed in Ref. [83]. In such
a case the diagrams become simple indeed.
Even the most complicated ones belong to
the subclass of water melon topologies which
can be computed immediately (see Fig. 3.3).
The most attractive feature of such a strat-
egy is that for high derivatives of propaga-
tors (large powers of denominators) the cor-
responding recurrence relations for this par-
ticular topology can be solved very efficiently.

While the water melon class of diagrams can appear as part of the remnants of the
general recursive procedure, there are some cases when they are just the final aim of the
recurrence procedure. This is the case for the BN subclass of diagrams [83]. Some of the
master integrals (for instance, D3(0, 1, 0, 1, 1, 1) in Ref. [110]) are exactly water melons.
A further simplification of water melon diagrams can be achieved with the use of their
particular properties. In the configuration space representation the water melon diagrams
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can be reduced to a specific basis set of simple integrals quite efficiently.

In the particular case of the subclass BN of the bubble diagrams, the water melon
topology diagrams emerge naturally and can be chosen as master configurations. The
reduction of a general diagram of this subclass to the water melon topology is explicitly
constructed in Ref. [83]. The expansion in ε within dimensional regularization is straight-
forward and is explicitly given for the evaluation of the numerical value of the integral
B4 [83] for which a new representation will be given here.

The starting point of the calculation is the definition of the BN class of diagrams [83],

BN (0, 0, n3, n4, n5, n6) =
∫

dDk dDl dDp

m3D(πD/2Γ(1 + ε))3
×

× m2n3

((p+ k)2 +m2)n3

m2n4

((p+ l)2 +m2)n4

m2n5

((p+ k + l)2 +m2)n5

m2n6

(p2 +m2)n6
(3.91)

with two propagators absent (n1 = n2 = 0) to obtain a water melon topology for the three-
loop case. In the following these first two indices in the notation for the BN class diagrams
will be suppressed. The configuration space expression for the generalized propagator
(with crosses or having differentiated in its mass or momentum) is given by Eq. (3.9). This
can be inserted into the above expression for BN and after rearrangement of integrations
leads to

BN (n3, n4, n5, n6) =
m2(n3+n4+n5+n6)−3D

(πD/2Γ(1 + ε))3
×

× (2π)3D
∫

D(n3−1)(x,m)D(n4−1)(x,m)D(n5−1)(x,m)D(n6−1)(x,m)dDx (3.92)

which can be reduced to a one-dimensional integral using the rotational invariance of the
integration measure in Euclidean space-time,

dDx =
2πλ+1

Γ(λ+ 1)
x2λ+1dx. (3.93)

Note that various techniques of eliminating tensorial structures for vacuum diagrams were
discussed in Refs. [108, 113]. On the other hand one has

(

px

2

)−λ
Jλ(px) →

1

Γ(λ+ 1)
for p→ 0 (3.94)

and therefore

Π̃(0) =
2πλ+1

Γ(λ+ 1)

∫ ∞

0
D(n3−1)(x,m)D(n4−1)(x,m)D(n5−1)(x,m)D(n6−1)(x,m)x2λ+1dx.

(3.95)
The comparison of these two formulas results in

BN (n3, n4, n5, n6) =
(2π)3Dm2(n3+n4+n5+n6)−3D

(πD/2Γ(1 + ε))3
Π̃(0) (3.96)

where the powers of the propagators occuring in Π̃(0) have been appropiately adjusted.
Some explicit applications of Eqs. (3.95) and (3.96) will be discussed in the following.
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3.4.2 The integral BN(2, 2, 2, 2)

As a first example the integral BN(2, 2, 2, 2) is considered for the case λ = 1 (four-
dimensional space-time). The expressions for the generalized propagator is given by

D(1)(x,m) =
(x/m)1−λ

(2π)λ+121Γ(2)
Kλ−1(mx) =

xεm−ε

2(2π)2−εK−ε(mx) (3.97)

which results in

D(1)(x,m) =
1

2(2π)2
K0(mx) (3.98)

for ε = 0. One obtains

BN(2, 2, 2, 2) =
(2π)12m4

π6

2π2

16(2π)8

∫ ∞

0
K4

0 (mx)x3dx = 2
∫ ∞

0
K4

0(x)x
3dx (3.99)

where mx is replaced by a dimensionless x in the last step. Note that the function K0(x)
is a propagator of a massive particle in two-dimensional space-time. Therefore, many
results can be obtained by using two-dimensional field theory in Euclidean space-time
(see e.g. Refs. [102, 104]). For the more general case of D-dimensional space-time one
obtains

Π̃(0) =
2π2−εm−4ε

16(2π)8−4εΓ(2 − ε)

∫ ∞

0
x4εK4

−ε(mx)x
3−2εdx (3.100)

and

BN(2, 2, 2, 2) =
21−2ε

(1 − ε)Γ(1 + ε)3Γ(1 − ε)

∫ ∞

0
K4
−ε(x)x

3+2εx. (3.101)

To find higher orders in the ε-expansion necessary for computations within dimensional
regularization, series expansions in ε of all quantities entering Eq. (3.101) are used. First
one has the rather obvious results

21−2ε

(1 − ε)Γ(1 + ε)3Γ(1 − ε)
= 2(1 + ε− 2ε ln 2 + 2εγE) +O(ε2),

x3+2ε = x3(1 + 2ε lnx) +O(ε2). (3.102)

Within the dimensional regularization scheme the propagator in the configuration space
contains the McDonald function with a non-integer index depending on the regularization
parameter ε. To expand the McDonald function in the parameter ε entering its index,
one uses the general formula [101]

[

∂Kν(z)

∂ν

]

ν=±n
= ±1

2
n!

n−1
∑

k=0

(

z

2

)k−n Kk(z)

k!(n− k)
, n ∈ {0, 1, . . .} (3.103)

for the derivative of the McDonald function with respect to its index near integer values
of this index. In this case one obtains

K−ε(x) = K0(x) +O(ε2). (3.104)

One ends up with

BN(2, 2, 2, 2) = 2
∫ ∞

0
K4

0(x)x
3dx+ 2ε(1 + 2 ln 2 + 2γE)

∫ ∞

0
K4

0 (x)x3dx

+4ε
∫ ∞

0
K4

0 (x)x3 ln x dx+O(ε2) =

= 2I0(3) + 2ε(1 − 2 ln 2 + 2γE)I0(3) + 4εI l0(3) +O(ε2) (3.105)
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where a general notation for the configuration space integrals

Im(q) =
∫ ∞

0
K4−m

0 (x)Km
1 (x)xqdx,

I lm(q) =
∫ ∞

0
K4−m

0 (x)Km
1 (x)xq ln x dx (3.106)

is introduced. The only new contribution in the ε-expansion up to the first order in
Eq. (3.105) is connected with the logarithmic integral I l0(3)(I lm(q) from Eq. (3.106)).
The part related to I0(3) in this order is a trivial kinematic contribution. The term
2(ln 2 − γE) in Eq. (3.105) can be easily removed by redefining the logarithmic integral
using ln x→ ln(xeγE/2).

Identifying the parameters B3 and B4 from [83] one finds

BN(2, 2, 2, 2) = −3

8
+

7

16
B3 +

(

63

32
B3 +

3

16
B4

)

ε+O(ε2) = (3.107)

= −3

8
+

7

16
ζ(3) +

(

63

32
ζ(3) − 63

32
ζ(4) +

3

16
B4

)

ε+O(ε2)

where B3 = ζ(3) − 9
2
εζ(4) +O(ε2) and ζ(n) is Riemann’s zeta function. The comparison

of the zeroth order term of Eq. (3.107) with Eq. (3.105) results in the relation

I0(3) = − 3

16
+

7

32
ζ(3) (3.108)

which assigns a value to one of the initial terms of the recurrence relations which will
dealt with in the following. The relation was checked numerically. In the first order part
of the ε-expansion one solves for B4 obtaining the representation

B4 =
16

3

(

2(1 − 2 ln 2 + 2γE)I0(3) + 4I l0(3) +
63

32
(ζ(4) − ζ(3))

)

=

=
32

3

(

(1 − 2 ln 2 + 2γE)I0(3) + 2I l0(3)
)

+
21

2

(

ζ(4) − ζ(3)
)

(3.109)

which after substituting for I l0(3) from Eq. (3.106) gives numerically B4 = −1.7628 . . .
This numerical value expressed in terms of configuration space integrals of the technique
presented here coincides with the result given in Ref. [83]. Taking the analytical expression
for B4 from Ref. [83],

B4 = 16 Li4

(

1

2

)

+
2

3
ln4(2) − 2

3
π2 ln2(2) − 13

180
π4 (3.110)

with Li4(z) being a fourth order polylogarithm,

Li4(z) =
∞
∑

k=1

zk

k4
, |z| < 1, (3.111)

one obtains the result for the logarithmic integral Ĩ l0(3),

Ĩ l0(3) =
∫ ∞

0
K4

0(x) ln(xeγE/2)x3 dx = (3.112)

=
3

32
+

3

4
Li4

(

1

2

)

− 17

1920
π4 − 1

32
π2 ln2(2) +

1

32
ln4(2) +

49

128
ζ(3)

which serves as the initial value for the recurrence relations for the set of logarithmic
integrals. This value is checked numerically as well.
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3.4.3 The integrals BN(2, 2, 2, 1) and BN(2, 3, 3, 4)

For a further demonstration of the efficiency of the configuration space technique for fixed
powers of the propagators, the two integrals BN (2, 2, 2, 1) and BN(2, 3, 3, 4) are calculated
(the latter does not contain B4 which is the reason for having selected this example). For
the integral BN(2, 2, 2, 1) in four-dimensional space-time (λ = 1) one has to include the
propagator

D(0)(x,m) =
(x/m)−λ

(2π)λ+120Γ(1)
Kλ(mx) =

xε−1m1−ε

(2π)2−ε K1−ε(mx) (3.113)

equal to mK1(mx)/4π
2x for λ = 1 which is a standard propagator of a massive particle

for D = 4. One obtains a representation of the form

BN(2, 2, 2, 1) = 4
∫

K3
0 (x)K1(x)x

2dx = 4I1(2) (3.114)

(as before, the mass m is absorved in x). For the integral BN (2, 2, 2, 1) in the case λ = 1−ε
the generalization of Eq. (3.114) of the form

BN(2, 2, 2, 1) =
22−2ε

(1 − ε)Γ(1 + ε)3Γ(1 − ε)

∫ ∞

0
K3
−ε(x)K1−ε(x)x

2+2εdx (3.115)

is obtained. The ε-expansion of the factor multiplying the integral is the same as in the
former case except for an overall factor of 2. A similar statement is valid for the expansion
of the power of x. What remains to be done is to expand the McDonald functions in the
vicinity of integer values of their indices. To obtain this expansion one can use the relation

∂Kν(x)

∂ν

∣

∣

∣

ν=1
=

1

2

(

x

2

)−1

K0(x) =
1

x
K0(x) (3.116)

which contributes to the power expansion as

K1−ε(x) = K1(x) −
ε

x
K0(x) +O(ε2). (3.117)

Using these expansions one obtains the representation in terms of the basic integrals,

BN (2, 2, 2, 1) = 4
∫ ∞

0
x2K3

0 (x)K1(x)dx +

+4ε(1 − 2 ln 2 + 2γE)
∫ ∞

0
x2K3

0 (x)K1(x)dx +

−4ε
∫ ∞

0
xK4

0 (x)dx+ 8ε
∫ ∞

0
x2 ln xK3

0(x)K1(x)dx+O(ε2) =

= 4I1(2) + 4ε(1 − 2 ln 2 + 2γE)I1(2) − 4εI0(1) + 8εI l1(2) +O(ε2).

This result has to be compared with the output of the RECURSOR package [83] in terms
of the explicit master integrals B3 and B4,

BN (2, 2, 2, 1) =
7

4
B3 +

3

4
B4ε+O(ε2) =

=
7

4
ζ(3) +

(

3

4
B4 −

63

8
ζ(4)

)

ε+O(ε2). (3.118)
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The zeroth order comparison gives the result I1(2) = 7ζ(3)/16 which has been verified
numerically. The first order comparison results in

B4 =
4

3
(4(1 − 2 ln 2 + 2γE)I1(2) − 4I0(1) + 8I l1(2) +

63

8
ζ(4)) = (3.119)

=
16

3
((1 − 2 ln 2 + 2γE)I1(2) − I0(1) + 2I l1(2)) +

21

2
ζ(4) = −1.7628

as before (see Eq. (3.109)). For the integral BN(2, 3, 3, 4) in the case λ = 1− ε one needs
to include further propagators. They are given by

D(2)(x, 1) =
x2−λ

(2π)λ+122Γ(3)
Kλ−2(x) =

x1+ε

8(2π)2−εK−1−ε(x),

D(3)(x, 1) =
x3−λ

(2π)λ+123Γ(4)
Kλ−3(x) =

x2+ε

48(2π)2−εK−2−ε(x). (3.120)

Both McDonald functions have to be expanded in their index. One has K−1(x) = K1(x)
and

∂Kν(x)

∂ν

∣

∣

∣

ν=−1
= −1

2

(

x

2

)−1

K0(x) = −1

x
K0(x), (3.121)

thus
K−1−ε(x) = K1(x) +

ε

x
K0(x) +O(ε2), (3.122)

and

∂Kν(x)

∂ν

∣

∣

∣

ν=−2
= −1

2
2!

(

1

2!

(

x

2

)−2

K0(x) +
1

1!1!

(

x

2

)−1

K1(x)

)

= − 2

x2
K0(x) −

2

x
K1(x),

(3.123)
so that

K−2−ε = K2(x) +
2ε

x
K1(x) +

2ε

x2
K0(x) + O(ε2). (3.124)

With these relations the ε-expansion for the integral in question is obtained,

BN(2, 3, 3, 4) =
2−2ε

192(1 − ε)Γ(1 + ε)3Γ(1 − ε)
×

×
∫ ∞

0
K−ε(x)K

2
−1−ε(x)K−2−ε(x)x

7+2εdx =

=
1

192
I21(7) +

ε

192
(1 − 2 ln 2 + 2γE)I21(7) +

ε

96
I11(6)

+
ε

96
I3(6) +

ε

96
I2(5) +

ε

96
I l21(7) +O(ε2) (3.125)

where the generalized integral

Imn(q) =
∫ ∞

0
K4−m−n

0 (x)Km
1 (x)Kn

2 (x)xqdx (3.126)

is introduced. This expansion has to be compared with the representation through master
integrals found in momentum space,

BN(2, 3, 3, 4) =
1

576
+
(

385

65536
B3 −

809

884736

)

ε+O(ε2) (3.127)
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resulting in the identification

I21(7) =
∫ ∞

0
K0(x)K

2
1(x)K2(x)x

7dx =
1

3
(3.128)

which is surprisingly simple and contains no transcendental numbers usually present in
such integrals. It is a curiosity that a similar identification allows one to express ζ(3) in
terms of the basis integrals,

ζ(3) =
1024

1155

(

(1 − 2 ln 2 + 2γE)I21(7) + 2I11(6)

+2I3(6) + 2I2(5) + 2I l21(7) +
809

4608

)

. (3.129)

Both equations are checked numerically to make certain that they are valid. These results
serve as a hint that the standard basis may not be the simplest and most relevant basis
for computations of massive three-loop diagrams.

3.4.4 The recursion

The preceding section has shown that three-loop water melon diagrams can be expressed
as configuration space integrals of a product of at most four McDonald functions Kν(x)
where ν need not be an integer. In this subsection the three steps of how to reduce the
set of necessary integrals to a smaller set are to be exhibited. First one can get rid of the
non-integer dimensionality of the functions by using Eq. (3.103) to expand into powers of
ε resulting in integrals containing a product of four McDonald functions with or without
a factor ln(x). As a second step one uses the relation

Kn(x) = 2
n− 1

x
Kn−1(x) +Kn−2(x) (3.130)

for McDonald functions of different orders to further reduce the integrals to integrals only
containing K4

0 , K3
0K1, K

2
0K

2
1 , K0K

3
1 and K4

1 together with some positive powers of x and
again with or without a factor ln(x). The last step consists in using

d

dx
Kν(x) = −1

2
(Kν−1(x) +Kν+1(x)) (3.131)

for integer ν (which is valid for any complex ν as well) and a partial integration in order to
reduce the necessary integrals to integrals containing only the McDonald function K0(x).
For this purpose one uses two special cases of Eq. (3.131),

d

dx
K0(x) = −K1(x) and

d

dx
K1(x) = −1

2
(K0(x) +K2(x)) = −K0(x) −

1

x
K1(x). (3.132)

This recurrence procedure will now be considered for two different cases.

For integrals not containing logarithms, after some simple algebra one obtains the
reduction relation
∫ ∞

0
K4

1 (x)xqdx = −
∫ ∞

0

d

dx
(K0(x))K1(x)

3xqdx = (3.133)

= −
[

K0(x)K
3
1 (x)xq

]∞

0
− 3

∫ ∞

0
K2

0(x)K
2
1 (x)xqdx+ (q − 3)

∫ ∞

0
K0(x)K

3
1 (x)xq−1dx
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for the most tedious case of four factors K1(x) in the integrand. The other cases are
simpler and will not be written down here. For q > m, the surface terms of the form
[K

(4−m)
0 (x)Km

1 (x)xq]∞0 vanishes. Therefore, the only elements of this recursion are the
integrals Im(q), and the recursion is expressed as

I4(q) = (q − 3)I3(q − 1) − 3I2(q),

I3(q) =
1

2
((q − 2)I2(q − 1) − 2I1(q)),

I2(q) =
1

3
((q − 1)I1(q − 1) − I0(q)),

I1(q) =
1

4
qI0(q − 1), (3.134)

which reduces the starting integrals to the basis integrals

I0(q) =
∫ ∞

0
K4

0 (x)xqdx. (3.135)

For integrals containing a single logarithm, on the other hand, one finds

∫ ∞

0
K4

1 (x)xq ln x dx = −
∫ ∞

0
K3

1 (x)
dK0(x)

dx
xq ln x dx

= −
[

K0(x)K
3
1 (x)xq ln x

]∞

0
− 3

∫ ∞

0
K2

0 (x)K2
1(x)x

q ln x dx +

+(q − 3)
∫ ∞

0
K0(x)K

3
1 (x)xq−1 ln x dx+

∫ ∞

0
K0(x)K

3
1 (x)xq−1dx (3.136)

for the case with four functions K1(x) in the integrand. For integer q > m, the surface
terms [K4−m

0 (x)Km
1 (x)xq ln x]∞0 vanish again. Therefore, the recursion is expressed in

terms of the integrals I lm(q) and is given by

I l4(q) = (q − 3)I l3(q − 1) + I3(q − 1) − 3I l2(q),

I l3(q) =
1

2
((q − 2)I l2(q − 1) + I2(q − 1) − 2I l1(q)),

I l2(q) =
1

3
((q − 1)I l1(q − 1) + I1(q − 1) − I l0(q)),

I l1(q) =
1

4
(qI l0(q − 1) + I0(q − 1)). (3.137)

Together with Eqs. (3.134) these relations give the complete set of one-parameter recur-
rence equations for reducing a general water melon integral to a set of master integrals of
the form I0(q) from Eq. (3.135) and

I l0(q) =
∫ ∞

0
K4

0 (x)xq ln x dx. (3.138)

All steps of the reduction as described before are at hand now. Therefore, Eqs. (3.135)
and (3.138) constitute the basis for the evaluation of water melon diagrams with high
powers of denominators.
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3.4.5 The genuine sunrise case N = 3

The case of a two-loop water melon (genuine sunrise) is simple indeed and can be easily
analyzed along the same lines. The corresponding basis set of configuration space integrals
is quite analogous to the previous case and is simpler because it now includes only three
McDonald functions,

Jn(q) =
∫ ∞

0
K3−n

0 (x)Kn
1 (x)xqdx,

J ln(q) =
∫ ∞

0
K3−n

0 (x)Kn
1 (x)xq ln x dx. (3.139)

The reduction to the basis set of integrals analogous to the case of three-loop water melons
given in Eqs. (3.135) and (3.137) can be readily obtained.

3.4.6 The efficiency of the reduction

The direct reduction of a water melon diagram to the master integrals is rather slow
within the straightforward application of recurrence relations based on the momentum
space representation. In practice the computation proceeds through the use of a table
of integrals with given powers of the denominators. One would have a three-dimensional
table for a given total power N if no modifications of the basic technique as developed
in Ref. [83] have been introduced. Therefore, the number of entries grows as fast as N3,
compared to an increase as a first power of N for the reduction method introduced here
(see Ref. [112] for more details). Note that in Refs. [114, 115] different recursion techniques
have been described which also avoid the use of the three-dimensional tables in reducing
the water-melon diagram. For instance, in the package MATAD [114] the three-loop water
melon diagrams are reduced to a one-dimensional table of integrals using a dedicated set
of (momentum-based) recurrence relations.

3.4.7 The generalization to the spectacle topology

y 0 x
0 y x

Figure 3.4: “spectacle+propagator”
representation, also called “specta-
cle” topology diagram, in two differ-
ent forms. The configurations space
points 0, x and y are indicated.

If starting with the general tetrahedron topology,
one propagator is removed, one ends up with the
spectacle topology, as shown in Fig. 3.4 in two dif-
ferent representations. The configurations space
expression of a spectacle topology diagram (with
a different mass M on the frame) written in a form
suitable for the actual purpose is given by

S =
∫

D(x− y,M)D(x,m)2D(y,m)2dDx dDy.

(3.140)
The key relation for a drastic simplification of the configuration space integral with the
spectacle topology is the addition theorem for Bessel functions allowing one to perform
some angular integration explicitly. One needs to integrate over the relative angle in the
propagator D(x− y,M). The relation used here is given by [101]

Zλ(mR)

Rλ
= 2λm−λΓ(λ)

∞
∑

k=0

(λ+ k)
Jλ+k(mρ)

ρλ
Zλ+k(mr)

rλ
Cλ
k (cosϕ) (3.141)
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where Cλ
k are the Gegenbauer polynomials, Z is any of the Bessel functions J , N , or H±,

R =
√

r2 + ρ2 − 2rρ cosϕ (3.142)

and r > ρ. For r < ρ the arguments of the Bessel functions on the right hand side of
Eq. (3.141) should be interchanged. For Z = H+ and m = eiπ/2M one can use

Kλ(z) =
iπ

2
eiπλ/2H+

λ (eiπ/2z),

Iλ(z) = e−iπλ/2Jλ(e
iπ/2z) for − π < arg z ≤ π

2
,

Iλ(z) = e3iπλ/2Jλ(e
−3iπ/2z) for

π

2
< arg z ≤ π (3.143)

to obtain

Kλ(MR)

Rλ
= 2λΓ(λ)

∞
∑

k=0

(λ+ k)
Iλ+k(Mρ)

ρλ
Kλ+k(Mr)

rλ
Cλ
k (cosϕ), r > ρ. (3.144)

The sum disappears after integration over the relative angle and only one term contributes,

∫

Kλ(MR)

Rλ
dΩρ = 2λΓ(λ)

∞
∑

k=0

(λ+ k)
Iλ+k(Mρ)

ρλ
Kλ+k(Mr)

rλ

∫

Cλ
k (cosϕ)dΩϕ =

= 2λΓ(λ)λ
Iλ(Mρ)

ρλ
Kλ(Mr)

rλ
2πλ+1

Γ(λ+ 1)
Cλ

0 (1) =

= (2π)λ+1 Iλ(Mρ)

ρλ
Kλ(Mr)

rλ
, r > ρ, (3.145)

where the first equality is a consequence of the orthogonality relation for the Gegenbauer
polynomials (cf. Appendix D.4) with the trivial factor Cλ

0 (1) = 1. The result

∫

D(x− y,M)dΩxdΩy =

=
2πλ+1

Γ(λ+ 1)

∫

D(R,M)dΩx =
2πλ+1

Γ(λ+ 1)

∫

(MR)λKλ(MR)

(2π)λ+1R2λ
dΩx =

=
2πλ+1

Γ(λ+ 1)
Mλ

(

Kλ(Mx)

xλ
Iλ(My)

yλ
θ(x− y) +

Kλ(My)

yλ
Iλ(Mx)

xλ
θ(y − x)

)

(3.146)

allows one to write down an expression for any spectacle-type diagram in the form of a
two-fold integral with a simple integration measure,

S =
2πλ+1

Γ(λ+ 1)
Mλ

∫ ∞

0
D(x,m)2x2λ+1dx

∫ ∞

0
D(y,m)2y2λ+1dy ×

×
(

Kλ(Mx)

xλ
Iλ(My)

yλ
θ(x− y) +

Kλ(My)

yλ
Iλ(Mx)

xλ
θ(y − x)

)

(3.147)

where θ(x) is the standard step-function distribution.
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3.4.8 Computation of the integral basis for N = 4

A recursion only makes sense if starting values can be given. These starting values are
discussed in the following. For even space-time dimensions, the general integral left over
by the recursion has the form

I(q) =
∫ ∞

0
K4

0(x)x
2q+1dx = I0(2q + 1). (3.148)

First, the case q = 0 shall be considered. The integral I(0) is the result for a four-
line (three-loop) water melon diagram with a massive propagator D(x,m) = K0(mx)/2π
within a two-dimensional theory with measure 2πx dx. The corresponding two-line water
melon (master one-loop diagram) in momentum space has the explicit form [102]

Π̃2(p
2) =

1

2π
√
p2
√
p2 + 4m2

ln

(√
p2 + 4m2 +

√
p2

√
p2 + 4m2 −

√
p2

)

. (3.149)

Using the substitution p2 = 4m2 sinh2(η/2), one obtains

Π̃2(4m
2 sinh2(η/2)) =

1

4πm2

η

sinh η
, d2p = 2πp dp = 2πm2 sinh η dη (3.150)

and therefore

I(0) = 2πm2
∫

Π̃2(p)
2d2p =

1

4

∫ ∞

0

η2dη

sinh η
=

7

8
ζ(3) (3.151)

where the standard integral [91]

∫ ∞

0

ηα−1dη

sinh η
=

2α − 1

2α−1
Γ(α)ζ(α) (3.152)

has been used. Results for other values of q can be obtained by differentiating one of the
two Π̃2 in the integrand,

I(q) = 2πm2
∫

Π̃2(p)(−m2
p)
qΠ̃2(p)d

2p (3.153)

where p is a two-dimensional d’Alembert operator in (Euclidean) momentum space,

p = ∂2/∂pµ∂p
µ. There is a possibility to differentiate a separate line of this three-

loop water melon diagram that leads to different representations for higher moments, but
Eq. (3.153) is found to be the most convenient one. A general analytical solution to
Eq. (3.153) for arbitrary large q is not yet available at present, but solutions for some first
values of q can be found by reducing them to the standard set of master integrals, resulting
in analytic expression such as I(q) = Aqζ(3) − Bq where Aq and Bq are rational positive
numbers. The details of these considerations can be found in Ref. [112]. However, one
should mention that an analytic expression as I(q) = Aqζ(3)−Bq is not very convenient
because for high values the values for Aqζ(3) and Bq become quite large while they nearly
cancel in the difference. Therefore, it is more convenient in this case to give estimates for
I(q). Such estimates can be found in Ref. [112] as well.
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3.4.9 Computation of the integral basis for N = 3

The basic initial integral (the basic sunrise diagram BS) for the recurrence relation has
the explicit form

BS =
∫

Π̃2(p
2)

p2 +M2
d2p (3.154)

with Π̃2(p
2) given by Eq. (3.149). Here M is a mass of the third line which is kept different

from the other two with masses m. By differentiating with respect to M , any positive
power of the propagator (and/or power of x in configuration space representation) can be
obtained. After changing the integration variable as in the preceding subsection one finds
an explicit representation

BS =
∫ ∞

0

η dη

4m2 sinh2(η/2) +M2
. (3.155)

After a change of variables the integration can be done and can be reduced to a polylog-
arithm function. Namely, for t = e−η one has

BS =
∫ ∞

0

η dη

4m2 sinh2(η/2) +M2
= − 1

m2

∫ 1

0

ln t dt

1 − 2γt+ t2
= −Li2(1/t1) − Li2(1/t2)

m2(t1 − t2)
(3.156)

where γ = 1 −M2/2m2, t1,2 = γ ±
√
γ2 − 1 and Li2(z) is the dilogarithm function,

Li2(z) =
∞
∑

k=1

zk

k2
, |z| < 1. (3.157)

The differentiation with respect to M is now straightforward and can be performed with
a symbolic manipulation program. Because γ is a real number less or equal to one, t1 and
t2 are either the same as γ (for γ = ±1) or complex conjugate numbers,

t1 = t̄2 = γ + i
√

1 − γ2 =: ζ. (3.158)

Because |ζ | = 1, possible values for the parameter ζ are referred to as roots of unity in
the following, as it is done in the literature (cf. Ref. [111]).

In the case M = 2m the integration simplifies because the two independent parameters
M and 2m on which the integrand depends, coincide (degenerate case). The integral is
then reduced to a special case of Eq. (3.152). One has γ = −1, ζ = −1 and

∫ 1

0

ln t dt

(1 + t)2
= − ln 2 (3.159)

which leads to

BS(M = 2m) =
ln 2

m2
. (3.160)

For the caseM = m the standard result – Clausen’s polylogarithm Cl2(π/3) – is reproduced
(see e.g. Ref. [111]). Indeed, γ = 1/2 and ζ = exp(iπ/3), so one obtains

BS(M = m) = − 1

m2

∫ 1

0

ln t dt

1 − t+ t2
=

2

m2
√

3
Im Li2(e

iπ/3) =
2

m2
√

3
Cl2

(

π

3

)

. (3.161)

where the definition of Clausen’s polylogarithm, Cl2(θ) = Im Li2(e
iθ) has been used.
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3.4.10 Transcendental numbers for three-loop bubbles

At this point a closer look at the water melon and spectacle topologies is in order. In
calculating the general three-loop bubble topology (tetrahedron topology), many different
transcendental numbers (the simplest being given by ζ(3) or ln(2)) are found in the results.
The argument of Ref. [116] is that all necessary transcendental numbers that appear in the
tetrahedron case can already be found in the simpler spectacle and water melon topology.
This argument will be explained in more detail in these subsections.

As before, the main building block for the treatment of three-loop vacuum bubbles
is the one-loop two-line massive correlator Π(p2) in D = 2 − 2ε dimensional (Euclidean)
space-time,

Π̃(p2) =
∫

dDk

((p− k)2 +m2)(k2 +m2)
(3.162)

=
23+2επ1−εΓ(1 + ε)

(p2 + 4m2)1+ε 2F1

(

1 + ε,
1

2
;
3

2
;

p2

p2 + 4m2

)

with 2F1(a, b; c; z) being the hypergeometric function or, alternatively (cf. Eq. (3.63))

Π̃(p2) =
∫ ∞

4m2

ρ(s)ds

s+ p2
, ρ(s) =

(s− 4m2)ε

2π
√

s(s− 4m2)

π1/2−ε

24εΓ(1/2 + ε)
. (3.163)

In order to reproduce the transcendental structure of the finite parts of the tetrahe-
dron in four dimensions a first order ε expansion of water melons and spectacles near
two-dimensional space-time is needed. Note that these diagrams are well-defined and ul-
traviolet finite in two dimensions and, formally, require no regularization. However, the
sought-for transcendental structure appears only in higher orders of the ε expansion while
the leading order is simple and contains only the standard transcendental numbers such
as ζ(3) or ln(2). Therefore one writes

Π̃(p2) = Π̃2(p
2) + ε∆εΠ̃2(p

2) +O(ε2) (3.164)

and keeps only the first order in ε which happens to be sufficient for the goal of finding
all the transcendental numbers appearing in the tetrahedron case.

The calculation of the zeroth and first order term in ε of the correlator function is
done by using the expansion of the spectral density ρ(s), given in Eq. (3.163),

ρ(s) =
1

2π
√

s(s− 4m2)

{

1 + ε ln

(

s− 4m2

m2

)

+O(ε2)

}

=: ρ2(s) + ε∆ερ2(s) +O(ε2).

(3.165)
For both parts one applies the substitution s = 4m2 cos2(ξ/2). Even though the result for
the leading order part was shown already, the calculation is detailed here also for this part
in order to be able to take the same steps for the part of order ε. Inserting the leading
order part into Eq. (3.163), one obtains

Π̃2(p
2) =

∫ s

4m2

ρ2(s)ds

s+ p2
=

1

2π

∫ ∞

0

dξ

4m2 cos2(ξ/2) + p2
=

1

2π

∫ ∞

0

dξ

m2(eξ + 2 + e−ξ) + p2
.

(3.166)
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Using a second substitution t = e−ξ, one ends up with

Π̃2(p
2) =

1

2πm2

∫ 1

0

dt

1 + 2t+ t2 + p2t/m2
. (3.167)

At this point it is again natural to use p2 = 4m2 sinh2(η/2) to obtain

Π̃2(4m
2 sinh2(η/2) =

1

2πm2

∫ 1

0

dt

1 + (eη + e−η)t+ t2
=

1

2πm2

∫ 1

0

dt

(t+ eη)(t+ e−η)
.

(3.168)
One can use the partional fractioning

dt

(t+ eη)(t+ e−η)
=

dt

eη − e−η

(

1

t+ eη
− 1

t+ e−η

)

=
dt

2 sinh η

(

1

t+ eη
− 1

t+ e−η

)

(3.169)

before performing the integration over t which results in

Π̃2(4m
2 sinh2(η/2) =

1

4πm2 sinh η

[

ln(t+ e−η) − ln(t+ eη)
]1

0
=

=
1

4πm2 sinh η

(

ln

(

1 + e−η

e−η

)

− ln
(

1 + eη

eη

)

)

=

=
1

4πm2 sinh η

(

ln(eη + 1) − ln
(

1 + eη

eη

))

=

=
1

4πm2 sinh η
ln(eη) =

η

4πm2 sinh η
. (3.170)

With the same substitutions one has for the first order correction

∆εΠ̃2(4m
2 sinh2(η/2)) =

1

4πm2 sinh η

∫ 1

0

(

1

t+ e−η
− 1

t+ eη

)

(2 ln(1−t)−ln t)dt. (3.171)

Using
∫ 1

0

ln(1 − t)dt

t+ y
= −Li2

(

1

1 + y

)

,
∫ 1

0

ln t dt

t+ y
= Li2

(

−1

y

)

(3.172)

and the fundamental dilogarithm relations (see Appendix E) one obtains

li2

(

1

1 + y

)

= − li2(1 + y) − 1

2
ln2(−1 − y) =

= li2(−y) + ln(1 + y) ln(−y) − 1

2
ln2(−1 − y),

li2

(

−1

y

)

= − li2(−y) −
1

2
ln2 y (3.173)

(li2(z) is the indefinite dilogarithm, see Appendix E.1) and therefore

∆εΠ̃(4m2 sinh2(η/2)) =
−1

4πm2 sinh η

[

2 li2

(

1

1 + y

)

+ li2

(

−1

y

)]e−η

y=eη

=
−f(e−η)

4πm2 sinh η

(3.174)
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where

f(y) :=
[

li2(−t) + 2 ln(1 + t) ln(−t) − ln2(−1 − t) − 1

2
ln2 t

]y

1/y
=

= 2 Li2(−y) + 2 ln y ln(1 + y) − 1

2
ln2 y +

π2

6
=

= 2
∫ y

0

ln z

1 + z
dz − 1

2
ln2 y + ζ(2). (3.175)

In the last step the two first terms were expressed by an integral again.

3.4.11 Water melons and spectacles from a new point of view

The function f(y) is of central inportance for the following. Expanding the water melon
diagram up to first order in ε,

W = 2πm2
∫

Π̃(p2)2d2p = W0 + εW1 +O(ε2), (3.176)

the leading order contribution reproduces the previous result,

W0 = 2πm2
∫

Π̃2(p
2)2d2p =

7

8
ζ(3). (3.177)

For the first order term one obtains

W1 = (4πm2)2
∫ ∞

0
Π̃2(4m

2 sinh2(η/2))∆εΠ̃2(4m
2 sinh2(η/2)) sinh η dη = (3.178)

= −
∫ ∞

0

η f(e−η)dη

sinh η
=

∫ 1

0

2 ln t

1 − t2
f(t)dt =

∫ 1

0
f(t) ln t

(

1

1 − t
+

1

1 + t

)

dt.

This result will be worked out later using a more general concept. If one proceeds the
same way for the spectacle diagram

S(M) =
∫

d2p

p2 +M2
Π̃2(p)

2 = S0(M) + εS1(M) +O(ε2), (3.179)

one obtains

S1(M) = 2
∫

d2p

p2 +M2
Π̃2(p)∆εΠ̃2(p) =

1

2πm4

∫ 1

0

2tf(t) ln t dt

(1 − t2)(1 − 2γt+ t2)
=

=
1

2πm4

∫ 1

0
f(t) ln t

[

1

(1 − ζ)(1 − ζ̄)(1 − t)
− 1

(1 + ζ)(1 + ζ̄)(1 + t)
+

− 1

ζ − ζ̄

(

2ζ

(1 − ζ2)(ζ − t)
− 2ζ̄

(1 − ζ̄2)(ζ̄ − t)

)]

dt (3.180)

where γ and ζ are the same quantities as before.
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3.4.12 The sixth order roots of unity

There is a common integral for all these cases, given by

∫ 1

0

dz

ζ̄ − z
f(z) ln z = 2M(ζ) + 3 Li4(ζ) − ζ(2) Li2(ζ). (3.181)

While the second and third part on the right hand side can be given explicitly in terms
of polylogarithms. The first contribution gives

M(ζ) =
∫ 1

0

dz

ζ̄ − z1
ln z1

∫ z1

0

dz2
1 + z2

ln z2 (3.182)

which does not have such a simple form. Instead, using so-called shuffling methods ex-
plained in Appendix F, it can be reduced to the primitives

U3,1 =
∑

m>n>0

(−1)n

m3n
=

1

2
ζ(4) +

1

2
ζ(2) ln2(2) − 1

12
ln4(2) − 2 Li4

(

1

2

)

and (3.183)

V3,1 =
∑

m>n>0

(−1)m cos
(

2πn

3

)

1

m3n
(3.184)

occuring in Ref. [111] and the Clausen’s polylogarithms

Cl2(θ) = Im Li2(e
iθ), Cl4(θ) = Im Li4(e

iθ). (3.185)

One obtains

M(1) =
17π4

1440
+ 2U3,1,

M(eiπ/3) =
197π4

38880
− 1

3
Cl22

(

π

3

)

+ 2V3,1 +
5iπ3

162
ln 3 +

13

108
iπ2 Cl2

(

π

3

)

− 35i

18
Cl4

(

π

3

)

,

M(e2iπ/3) = − 79π4

12960
+

1

3
Cl22

(

π

3

)

+
7iπ2

36
Cl2

(

π

3

)

− 11i

6
Cl4

(

π

3

)

and

M(−1) = − π4

288
= − 5

16
ζ(4) (3.186)

as well as the complex conjugate of the second and third line. The sixth order roots of
unity ζ = 1, eiπ/3, e2iπ/3, and −1 used here correspond to M = 0, m,

√
3m, and 2m,

respectively. The first and last case occur in the water melon case as well. Here one
obtains (cf. Appendix F)

W1 =
37π4

720
+ 4U3,1. (3.187)

For the standard arrangement M = m of masses for the spectacle diagram one obtains

S1(M = m) = −251π4

58320
+ 4U3,1 −

16

3
V3,1 +

8

9
Cl22

(

π

3

)

. (3.188)
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3.5 The threshold expansion

With the method described so far the s-dependence of the spectral density can be calcu-
lated by a one-fold numerical integration according to Eq. (3.61). The numerical integra-
tion in Eq. (3.61) can be done for arbitrary space-time dimensions and a general number
of lines with arbitrary masses. In this sense this is the most efficient representation for the
spectral density of the water melon diagram. However, one can also develop an explicit
expansion near the threshold with any desired accuracy. The corresponding expansion of
Eq. (3.61) can then be compared with series expansions near the production threshold
obtained with the traditional momentum space technique. It should be stressed that one
is only interested in the spectral density because it is the main object for physical appli-
cations (see e.g. Refs. [45, 117, 118, 119, 120, 121, 122]). For practical reasons one starts
with

Π̃(p2) = 2πλ+1
∫ ∞

0

(

px

2

)−λ
Jλ(px)Π(x)x2λ+1dx (3.189)

(cf. Eq. (3.13)). The UV singularity of this correlation function can be subtracted as before
by a power series expansion of the weight function (px/2)−λJλ(px) to an appropiate order
which will be added and subtracted to this weight. But because the subtraction terms do
not contribute to the spectral density, one can avoid this subtraction altogether. In order
that the formally written expressions make sense they are supposed to be dimensionally
regularized. Once again the unorthodox dimensional regularization method for water
melon diagrams is used.

3.5.1 Continuation to the Minkowskian domain

The threshold region of a water melon diagram is determined by the condition p2+M2 ≃ 0
where p is the Euclidean momentum and M =

∑

imi is the threshold value for the spectral
density. One introduces the Minkowskian momentum pM defined by p2

M = −p2 which is
an analytic continuation to the physical cut. Operationally this analytic continuation can
be performed by replacing p→ ipM . To analyze the region near the threshold one uses the
parameter ∆ = M−pM which takes complex values. The parameter ∆ is more convenient
in the Euclidean domain while the parameter E = −∆ = pM −M is the actual energy
counted from threshold which is used in phenomenological applications. The analytic
continuation of the Fourier transform in Eq. (3.189) to the Minkowskian domain has the
form

Π̃(−p2) = 2πλ+1
∫ ∞

0

(

ipx

2

)−λ
Jλ(ipx)Π(x)x2λ+1dx (3.190)

(the index M is dropped again because p is considered to be the Minkowskian momentum
in the following). For the threshold expansion one has to analyze the large x behaviour
of the integrand. It is this region that saturates the integral in the limit p → M or,
equivalently, E → 0. It is convenient to perform the analysis in a basis where the integrand
has a simple large x behaviour. The most important part of the integrand is the Bessel
function Jλ(ipx) which contains both rising and falling pieces at large x,

Jλ(ipx) =
1

2
(H+

λ (ipx) +H−λ (ipx)) (3.191)

where the Hankel functions H±(ipx) show an asymptotic behaviour

H±λ (ipx) ∼ z−1/2e±px (3.192)
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for large values of x (cf. Appendix D.1.4). This situation in a sense is quite analogous to
the situation for the trigonometric function cos(z) for imaginary arguments z. Accordingly
one splits up Π̃(−p2) into Π̃(−p2) = Π̃+(−p2) + Π̃−(−p2) with

Π̃±(−p2) = πλ+1
∫ ∞

0

(

ipx

2

)−λ
H±λ (ipx)Π(x)x2λ+1dx. (3.193)

The two parts Π̃±(−p2) of the correlation function Π̃(−p2) have completely different
behaviour near threshold which allows one to analyze them independently.

3.5.2 The regular part Π̃+(−p2)

One first considers the contribution of the part Π̃+(−p2) in a more qualitative way. The
behaviour at large x is given by the asymptotic form of the functions which at leading
order is

H+(ipx) =

√

2

iπpx
e−px(1 +O(x−1)), K(mx) =

√

π

2mx
e−mx(1 +O(x−1)). (3.194)

The large x range of the integral (above a reasonably large cutoff parameter Λ) has the
general form

Π̃+
Λ(−p2) ∼

∫ ∞

Λ
x−ae−(2M−∆)xdx (3.195)

where p = M − ∆ and
a = (n− 1)(λ+ 1/2). (3.196)

The right hand side of Eq. (3.195) is an analytic function in ∆ in the vicinity of ∆ = 0. It
exhibits no cut or other singularities near the threshold and therefore does not contribute
to the spectral density. That is the reason why the part Π̃+(−p2) can be called the regular
part. In more detail, one can use the relation

Kλ(z) =
πi

2
eiλπ/2H+

λ (iz) (3.197)

between Bessel functions of different kinds in order to replace the Hankel functionH+
λ (ipx)

by the McDonald function Kλ(px),

Π̃+(−p2) = πλ+1
∫ ∞

0

(

ipx

2

)−λ
H+
λ (ipx)Π(x)x2λ+1+2εdx =

= −2iπλ
∫ ∞

0

(

px

2

)−λ
e−iλπ/2e−iλπ/2Kλ(px)Π(x)x2λ+1+2εdx =

= −2i(−π)λ
∫ ∞

0

(

px

2

)−λ
Kλ(px)Π(x)x2λ+1+2εdx =

=
(−2πi)2λ+1

(p2)λ

∫ ∞

0
Π+(x)x2λ+1dx (3.198)

where Π+(x) = Π(x)D(x, p) is the polarization function of a new effective diagram which
is equal to the initial polarization function multiplied by a propagator with p as mass
parameter. One thus ends up with a vacuum bubble of the water melon type with one
additional line compared to the initial diagram (see Fig. 3.5).
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p

Figure 3.5: Representation of the
regular part Π̃+(−p2) as vacuum
bubble with added line. The cross
denotes an arbitrary number of de-
rivatives of the specified line.

These diagrams have no singular behaviour at the
production threshold p = M . As mentioned above,
Π̃+(−p2) is analytic in ∆ near the origin ∆ = 0 and
can therefore be omitted in the calculation of the
spectral density. All derivatives of Π̃+(−p2) with
respect to ∆ = M − p are represented as vacuum
bubbles with one additional line carrying rising in-
dices. Such diagrams can be efficiently calculated
within the recurrence relation technique developed
in Refs. [107, 108, 112]. If this part is found to be
regular, one is left with the part Π̃(−p2).

3.5.3 The singular part Π̃(−p2)

In contrast to the previous case, the integrand of Π̃(−p2) contains H−(ipx) which behaves
like a rising exponential function at large x,

H−(ipx) ∼ x−1/2epx. (3.199)

Therefore the integral is represented by

Π̃−Λ(−p2) ∼
∫ ∞

Λ
x−ae−∆xdx (3.200)

at p = M − ∆. The function Π̃−(−p2) is non-analytic near ∆ = M − p = 0 because for
∆ < 0 the integrand in Eq. (3.200) grows in the large x region and the integral diverges
at the upper limit. Therefore the function which is determined by this integral is singular
at ∆ < 0 (E > 0) and requires an interpretation for these values of the argument ∆. In
the complex ∆ plane with a cut along the negative axis the function is analytic. This cut
corresponds to the physical positive energy cut. The discontinuity across the cut gives
rise to the non-vanishing spectral density of the diagram.

Still the integration cannot be done analytically. In order to obtain an expansion
for the spectral density near the threshold in an analytical form one makes use of the
asymptotic series expansion for the function Π(x) which crucially simplifies the integrands
but still preserves the singular structure of the integral in terms of the variable ∆. The
asymptotic series expansion to order N of the main part of each propagator, i.e. of the
McDonald function, is given by [85]

Kas
λ,N(z) =

(

π

2z

)1/2

e−z
[

N−1
∑

n=0

(λ, n)

(2z)n
+ θ

(λ,N)

(2z)N

]

, (λ, n) :=
Γ(λ+ n− 1/2)

n!Γ(λ− n− 1/2)
(3.201)

(θ ∈ [0, 1]). Therefore the asymptotic expansion of the function Π(x) consists of an
exponential factor e−Mx and an inverse power series in x up to an order Ñ which is
closely related to N . It is this asymptotic expansion that determines the singularity
structure of the integral. The whole integral can be written as a sum of two terms,

Π̃−(−p2) = πλ+1
∫ (

ipx

2

)−λ
H−λ (ipx) (Π(x) − Πas

N (x)) x2λ+1+2εdx (3.202)

+πλ+1
∫ (

ipx

2

)−λ
H−λ (ipx)Πas

N (x)x2λ+1+2εdx = Π̃di(−p2) + Π̃as(−p2).
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The integrand of the first term Π̃di(−p2) behaves as 1/xÑ at large x while the integrand
of the second term accumulates all lower powers of the large x expansion. Note that only
the large x behaviour is essential for the near threshold expansion of the spectral density.
This fact has been taken into account in Eqs. (3.195) and (3.200) where a cutoff Λ was
introduced. A regularization is necessary even if the spectral density will be independent
of it because the asymptotic expansion is not valid in the region near the origin in x.
But because the cutoff regularization is quite inconvenient for practical calculations, the
unorthodox dimensional regularization will be used in the following.

3.5.4 The difference part Π̃di(−p2)

The first part

Πdi(−p2) = πλ+1
∫ ∞

0

(

ipx

2

)−λ
H−λ (ipx) (Π(x) − Πas(x)) x2λ+1+2εdx (3.203)

contains the difference between the exact correlator in configuration space and its asymp-
totic approximation. If one takes the asymptotic expansion up to some order N , this
difference will effectively be of order o(x−N )4. Because of this the Hankel function
H−λ (i(M − ∆)x) can be expanded in η = ∆/M . The effective power x−N guarantees
that the integrand decreases sufficiently fast for large values of x and the integral con-
verges even at ∆ = 0. Therefore Π̃di(−p2) gives no contributions to the spectral density
up to a given order of the expansion in ∆, the term is inessential when the expansion of
the spectral density is evaluated up to some given order.

One can readily determine the order of the expansion near ∆ = 0 at which a contribu-
tion to the spectral density appears when one uses further simplifications of the integrand
of the term Π̃di(−p2) in Eq. (3.202). Namely, one replaces the Hankel function under
the integration sign by its asymptotic series expansion. The resulting exponential factor
e(p−M)t can then be expanded in the parameter ∆ = M − p and integrated together with
the finite inverse power series in x. One obtains a finite power series in this parameter
∆ which leads to a non-regular term of order ∆N (for instance, ∆N ln ∆ or ∆N

√
∆).

Therefore the part Π̃di(−p2) is regular and gives no contribution to the spectral density
up to the order ∆N . For this reason one concentrates on the expansion of the second part
Π̃as(−p2) and finds that only this part contains the contribution to the spectral density
up to the order N .

3.5.5 The asymptotic part Π̃as(−p2)

The expansion of the spectral density at small E is determined only by the integral

Πas(p2) = πλ+1
∫ ∞

0

(

ipx

2

)−λ
H−λ (ipx)Πas(x)x2λ+1+2εdx (3.204)

which is analytically calculable. It results in hypergeometric functions 2F1(a, b; c; z) ac-
compained by Euler’s Gamma functions where these as well as the parameters a and b

4The notation o(x−N ) indicates a contribution less than x−N , in contrast to the notation O(x−N−1)
which means that the rest of the series starts with a term proportional to x−N−1.
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are in general linearly depending on ε. The argument z is

either
p2

M2
= (1 − η)2 or

M2

p2
=

1

(1 − η)2
, η =

∆

M
. (3.205)

One therefore uses the relations

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b− c + 1; 1 − z) +

+(1 − z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1 − z)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1

(

a, a− c+ 1; a+ b− c+ 1; 1 − 1

z

)

+

+(1 − z)c−a−bza−c
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1

(

c− a, 1 − a; c− a− b+ 1; 1 − 1

z

)

(3.206)

to convert the expression into an expression with hypergeometric functions at arguments
close to zero (cf. Appendix D.2.2). Expanded in terms of η, this expression will result in
a power series of the general form

A0

(

1

2ε
+ ln

(

∆

µ

)

+ C0

)

+A1

(

1

2ε
+ ln

(

∆

µ

)

+ C1

)

∆+A2

(

1

2ε
+ ln

(

∆

µ

)

+ C2

)

∆2+. . .

(3.207)
which will become unreliable at some finite power ∆N because of the previous difference
term.

3.5.6 The double-asymptotic part Π̃das(−p2)

Since the interesting singular behaviour of Π̃as(−p2) is determined by the behaviour at
large x, one can replace the first factor in the integrand of Π̃as(−p2), i.e. the Hankel
function, in the large x region by its asymptotic expansion up to some order N . One uses

H−asλ,N (iz) =
(

2

πz

)1/2

ez+iλπ/2
[

N−1
∑

n=0

(−1)n(λ, n)

(2z)n
+ θ

(−1)N(λ,N)

(2z)N

]

(3.208)

(cf. Eq. (3.201) for the notation) to obtain a representation

Π̃das(−p2) = πλ+1
∫ (

ipx

2

)−λ
H−asλ,N (ipx)Πas

N (x)x2λ+1+2εdx. (3.209)

The index “das” stands for “double asymptotic” and indicates that the integrand in
Eq. (3.209) consists of a product of two asymptotic expansions: one for the correlator
function Π(x) and another for the Hankel function H−λ (x) as weight (or kernel). Both
asymptotic expansions are straightforward and can be obtained from standard handbooks
on Bessel functions.

3.5.7 The result for the near threshold expansion

Because the integrand of the only integral relevant for the determination of the spectral
density contains a product of two asymptotic series, one arrives at the conclusion that
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the integration necessary for evaluating the near threshold expansion of the water melon
diagrams reduces to integrals of the type of Euler’s Gamma function, i.e. integrals con-
taining exponentials and powers. Indeed, the result of the expansion in Eq. (3.209) is an
exponential function e−∆x times a power series in 1/x, namely

x−a+2εe−∆x
N−1
∑

j=0

Aj
xj

(3.210)

where a has already been defined in Eq. (3.196), and the coefficients Aj are simple func-
tions of the momentum p and the masses mi. The expression in Eq. (3.210) can be
integrated analytically using

∫ ∞

0
x−a+2εe−∆xdx = Γ(1 − a+ 2ε)∆a−1−2ε. (3.211)

The result is

Πdas(M − ∆) =
N−1
∑

j=0

AjΓ(1 − a− j + 2ε)∆a+j−1−2ε. (3.212)

This expression is the final representation for the part of the polarization function of
a water melon diagram necessary for the calculation of the spectral density near the
production threshold.

The general structure of the expression in Eq. (3.212) can be discussed in detail. In
the case where a takes integer values, these coefficients result in 1/ε-divergences for small
values of ε. The powers of ∆ in Eq. (3.212) have to be expanded to first order in ε and
give

1

2ε
∆2ε =

1

2ε
+ ln ∆ +O(ε). (3.213)

Because of

Disc ln(∆) ≡ ln(−E − i0) − ln(−E + i0) = −2πiθ(E) (3.214)

Πdas(M − ∆) in Eq. (3.212) contributes to
the spectral density. For half-integer values
of a the power of ∆ itself has a cut even for
ε = 0. The discontinuity is then given by

Disc
√

∆ = −2i
√

E θ(E). (3.215)

The method to construct a threshold ex-
pansion thus simply reduces to the analyt-
ical calculation of the integral in Eq. (3.209)
which can be done for arbitrary dimension
and an arbitrary number of lines with differ-
ent masses (see Fig. 3.6). The technique is
used in the following to work out some spe-
cific examples demonstrating both the sim-
plicity and efficiency of the method.

Figure 3.6: The spectral density for
the four-line water melon diagram with
equal masses for D = e = 2.718 . . .,
D = 3, and D = π = 3.14 . . . space-
time dimensions, to demonstrate the
practical convenience of the method.
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3.6 Comparison of near threshold expansions

Even though a calculation of the spectral density is possible for any choice of mass pa-
rameters, the following three examples will deal with the case of equal masses in order to
compare these special cases with the results given in the literature (see e.g. Ref. [130]). For
the one-loop case the series can be compared with the series expansions of the exact ex-
pressions for the spectral densities as given by Eq. (3.62). But also the quite inconvenient
case of one very small mass is considered for different diagrams.

3.6.1 Equal mass sunset diagram

The polarization function represented by the sunset diagram with three propagators with
equal masses m in D = 4 space-time dimensions is given by

Π(x) =
m3K1(mx)

3

(2π)6x3
. (3.216)

The exact spectral density is given by the integral representation in Eq. (3.61) which for
this particular case reads

ρ(s) =
2π

i
√
s

∫ c+i∞

c−i∞
I1(x

√
s)Π(x)x2dx. (3.217)

In order to obtain a threshold expansion of the spectral density in Eq. (3.217) one uses
Eq. (3.212) to calculate the expansion of the appropiate part of the polarization function.
To illustrate the procedure the explicit form of the integrand in Eq. (3.209) is presented
which is given by an asymptotic expansion at large x,

π2
(

ipx

2

)−1

Has
1,N(px)Πas

N (x)x3+2ε =
m3/2e(p−3m)x

(4π)3p3/2
x−3+2ε ×

×
{

1 +
9

8mx
− 3

8px
+

9

128m2x2
− 27

64mpx2
− 15

128p2x2
+O(x−3)

}

. (3.218)

From Eq. (3.218) one can easily read off the coefficients Aj that enter the expansion in
Eq. (3.210). The spectral density is obtained by performing the term-by-term integration
of the series in Eq. (3.218) and by evaluating the discontinuity across the cut along the
positive energy axis E > 0. The result reads

ρ
(

(M + E)2
)

=
E2

384π3
√

3

{

1 − 1

2
η +

7

16
η2 − 3

8
η3 +

39

128
η4 − 57

256
η5 + (3.219)

+
129

1024
η6 − 3

256
η7 − 4047

32768
η8 +

18603

65536
η9 − 248829

524288
η10 +O(η11)

}

where η = E/M and M = 3m is used. The simplicity of the derivation is striking. With
no cost it can be generalized to any number of lines, arbitrary masses, and any space-time
dimension. The standard equal mass sunset is chosen for definiteness only. It also allows us
to compare our results with results available in the literature. Eq. (3.219) reproduces the
expansion coefficients ãj obtained in Ref. [130] (the fourth column in Table 1 of Ref. [130])
by a direct integration in momentum space using the technique of region separation [123].
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The case of the equal mass standard sunset diagram is the simplest one. There exists
an analytical expression for the spectral density of the sunset diagram with three equal
mass propagators in D = 4 space-time dimensions in terms of elliptic integrals [91] (see
also Ref [124]). This expression can be used for a comparison with the exact result
in Eq. (3.217) or with the expansion in Eq. (3.219). However, the result for D = 2
is presented here only in order to keep the resulting expressions in a reasonably short
form (cf. Ref. [116]). In D = 2 space-time dimensions the spectral density for a sunset
diagram with equal masses m can be readily obtained. One just uses the exact expression
for the spectral density in the convolution representation [107, 108, 112] and proceed
towards n = 3 equal masses. The convolution function for two spectral densities in D = 2
dimensional space-time (λ = 0) reads

ρ(s; s1; s2) =
1

2π
√

(s− s1 − s2)2 − 4s1s2

. (3.220)

The two spectral densities one has to convolute are the spectral density of a correlator
with two equal masses and the spectral density of a single massive line. While the latter
is given by ρ(s;m2) = δ(s−m2), the former can be obtained from Eq. (3.220) by inserting
s1 = s2 = m2,

ρ(s;m2;m2) =
1

2π
√

s(s− 4m2)
. (3.221)

Therefore, the convolution leads to

ρ(s;m2;m2;m2) =
1

4π2

∫ (
√
s−m)2

4m2

dt
√

(s−m2 − t)2 − 4m2t
√

t(t− 4m2)
=

=
1

4π2

∫ (
√
s−m)2

4m2

dt
√

t(t− 4m2)((
√
s+m)2 − t)((

√
s−m)2 − t)

. (3.222)

Now one use the relation (cf. Ref. [91])

∫ t2

t1

dt
√

(t− t0)(t− t1)(t2 − t)(t3 − t)
=

2
√

(t3 − t1)(t2 − t0)
K(k2), (3.223)

k2 =
(t2 − t1)(t3 − t0)

(t3 − t1)(t2 − t0)
(3.224)

with t3 > t2 > t > t1 > t0 and the definition of the complete elliptic integral of the first
kind

K(k2) =
∫ π/2

0

dϕ
√

1 − k2 sin2 ϕ
= F

(

π

2
, k2

)

(3.225)

(note the difference in the definition) for t0 = 0, t1 = 4m2, t2 = (
√
s − m)2, and t3 =

(
√
s+m)2 to perform the integration in Eq. (3.222). One obtains

k2 =
((
√
s−m)2 − 4m2)(

√
s +m)2

((
√
s+m)2 − 4m2)(

√
s−m)2

(3.226)
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and finally ends up with

ρ(s;m2;m2;m2) =
K(k2)

2π2(
√
s−m)

√

(
√
s+m)2 − 4m2

. (3.227)

Therefore, the spectral density in terms of the energy E reads (see e.g. Ref. [125])

ρ
(

(M + E)2
)

=
1

2π2(2m+ E)
√

(4m+ E)2 − 4m2
K(k2),

k2 =
((2m+ E)2 − 4m2)(4m+ E)2

((4m+ E)2 − 4m2)(2m+ E)2
, M = 3m. (3.228)

By expanding the elliptic integral in terms of the threshold parameter E one reproduces
the threshold expansion in Eq. (3.219). The result for D = 4 space-time dimensions is
expressible by the elliptic integrals with some rational functions as factors that makes the
result a bit longer. Note that the representation in Eq. (3.228) is understood to be an
analytical expression for the spectral density. However, it is a matter of taste whether the
representation through the elliptic integrals as in Eq. (3.228) is considered simpler (or in a
more analytical form) than the integral representation in Eq. (3.61). The only objection
against the latter which one can find in the literature is that the Bessel functions are
complicated (see e.g. Ref. [131]). But after more than a century of intensive investigation
they are well-known and no more complicated than the square root of the fourth order
polynomial which is used in Eq. (3.225) to define the elliptic integral.

3.6.2 Equal mass water melon diagrams
with four or more propagators

The water melon diagrams with four or more propagators cannot be easily calculated
by using the momentum space technique because this requires multiloop integration of
entangled momenta. Within the configuration space technique the generalization to any
number of lines (or loops) is immediate with no extra effort. Consider first a three-loop
case of water melon diagrams. The polarization function of the equal mass water melon
diagram with four propagators in D = 4 space-time is given by

Π(x) =
m4K1(mx)

4

(2π)8x4
. (3.229)

The exact spectral density of this diagram can be obtained from Eq. (3.217) while the
near threshold expansion can be found using Eq. (3.212). One constructs the expansion
of the spectral density near threshold explicitly and compares it with the exact result.
The expansion of the integrand (cf. Eq. (3.209)) reads

π2
(

ipx

2

)−1

Has
1,N(px)Πas

N (x)x3+2ε =
m2e(p−4m)x

(4π)4
√

2πp3/2
x−9/2+2ε ×

×
{

1 +
3

2mx
− 3

8px
+

3

8m2x2
− 15

128p2x2
− 9

16mpx2
+O(x−3)

}

. (3.230)
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After the integration and the calculation of the discontinuity one obtains the expansion
of the spectral density in the form

ρ
(

(M + E)2
)

=
E7/2M1/2

26880π5
√

2

{

1 − 1

4
η +

81

352
η2 − 2811

18304
η3 +

17581

292864
η4 + (3.231)

+
1085791

19914752
η5 − 597243189

3027042304
η6 +

4581732455

12108169216
η7 − 496039631453

810146594816
η8 +O(η9)

}

where η = E/M and M = 4m is the threshold value. One sees the difference with the
previous three-line case. In Eq. (3.231) the cut represents the square root branch while in
the three-line case it was a logarithmic cut. One can easily figure out the reason for this
by looking at the asymptotic structure of the integrand. For even number of lines (i.e.
odd number of loops) it is a square root branch, while for an odd number of lines (even
number of loops) it is a logarithmic branch. This is true in even space-time dimensions. In
the general case the structure of the cut depends on the dimensionality of the space-time
as well. The general formula reads

ρ
(

(M + E)2
)

∼ E(λ+1/2)(n−1)−1(1 +O(E)). (3.232)

ForD = 4 space-time dimension (i.e. λ = 1) one can verify the result of Ref. [107, 108, 112]
(cf. Eq. (3.232)),

ρ
(

(M + E)2
)

∼ E(3n−5)/2(1 +O(E)). (3.233)

Numerically Eq. (3.231) reads

ρ
(

(M + E)2
)

= 8.5962 · 10−5E7/2M1/2
{

1.000 − 0.250η + 0.230η2 + (3.234)

−0.154η3 + 0.060η4 + 0.055η5 − 0.197η6 + 0.378η7 − 0.612η8 +O(η9)
}

where the coefficients have been written down up to three decimal places. It is difficult
to say anything definite about the convergence of this series. By construction it is an
asymptotic series. However, the practical (or explicit) convergence can always be checked
by comparing series expansions like the one shown in Eq. (3.234) with the exact spectral
density given in Eq. (3.217) by numerical integration.

To conclude this part of the section, one can state that the spectral density of the water
melon diagram is most efficiently calculated within the configuration space technique.
Whether it is the exact result or the expansion, the configuration space technique can
readily deliver the desired result. The exact formula in Eq. (3.217) as well as the threshold
expansion obtained from it can be used to calculate the spectral density for an arbitrarily
large number of internal lines. Even not shown here, the case of different masses does not
lead to any complications within the configuration space technique: the exact formula in
Eq. (3.61) and/or the near threshold expansion work equally well for any arrangement
of masses. Plots for general cases of different masses are not shown here because they
are not very illustrative, showing only the common threshold. However, there is some
interesting kinematic regime for different masses which is important for applications and
which, to the best of my knowledge, have not been discussed earlier in the literature. An
analytical solution for the expansion of the spectral density in this regime is given in the
following.
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Figure 3.7: Various results for the spectral density for n = 3 equal masses in D = 4
space-time dimensions in dependence on the threshold parameter E/M . Shown are the
exact solution obtained by using Eq. (3.217) (solid curve) and threshold expansions for
different orders taken from Eq. (3.219) (dashed to dotted curves).

3.6.3 Strongly asymmetric case m0 ≪M

The threshold expansion for equal (or close) masses breaks down for E ≈ M =
∑

mi.
The example is shown in Fig. 3.7 for the D = 4 proper sunset. However, if the masses are
not equal, the region of the break-down of the expansion is determined by the mass with
the smallest numerical value. The simplest example where one can see this phenomenon
is the analytical expression for the spectral density of the single loop with two different
masses m1 and m2. In D = 4 space-time dimensions (see e.g. Ref. [107, 108, 112]) one
has

ρ
(

(M + E)2
)

=

√

E(E + 2m1)(E + 2m2)(E + 2M)

(4π(M + E))2
(3.235)

where M = m1 +m2. The threshold expansion is obtained by expanding the right hand
side of Eq. (3.235) in E for small values of E. Ifm2 is much smaller thanm1, the expansion
breaks down at E ≈ 2m2. The break-down of the series expansion can also be observed
in more general cases. If one of the masses (which is called m0) is much smaller than the
other masses, the threshold expansion is only valid in a very limited region E <∼ 2m0.

To generalize the expansion and to extend it to the region of E ∼ M one has to
treat the smallest mass exactly. In this case one can use a method which is called the
resummation of the smallest mass contributions. For this special resummation technique
one starts with the representation

Π̃pas(−p2) = πλ+1
∫ (

ipx

2

)−λ
H−asλ,N (ipx)Πas

m0
(x)x2λ+1+2εdx (3.236)
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which is the part of the correlator function contributing to the spectral density. The
integrand in Eq. (3.236) has the form

Πas
m0

(x) = Πas
n−1(x)D(m0, x) (3.237)

where the asymptotic expansions are substituted for all the propagators except for the one
with the small mass m0. This is indicated by the index “pas” in Eq. (3.236) which stands
for “partial asymptotic”. The main technical observation leading to the generalization
of the expansion method is that Πpas(p) is still analytically computable in a closed form.
Indeed, the integral to be computed has the form

∫ ∞

0
xµ−1e−α̃xKν(βx)dx =

=

√
π(2β)ν

(2α̃)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
2F1

(

µ+ ν

2
,
µ+ ν + 1

2
;µ+

1

2
; 1 − β2

α̃2

)

(3.238)

where α̃ = ∆−m0 and β = m0. The integral Π̃pas(−p2) in Eq. (3.236) is thus expressible in
terms of hypergeometric functions [101, 126]. For the construction of the spectral density,
being our main concern as mentioned before, one has to find the discontinuity of the right
hand side of Eq. (3.238). There are several ways to do this. For instance one can proceed
by applying the discontinuity operation to the integrand of the integral representation
of the hypergeometric function. The resulting integrals are calculated again in terms of
hypergeometric functions. Indeed (cf. Appendix D.2.2),

1

2πi
Disc

∫ ∞

0
xµ−1eαxKν(βx)dx =

=
2µ(α2 − β2)1/2−µ

α1/2−νβν
Γ(3/2)

Γ(3/2 − µ)
2F1

(

1 − µ− ν

2
,
2 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

(3.239)

where α = E + m0. The final expression in Eq. (3.239) completely solves the problem
of the generalization of the near threshold expansion technique. For integer values of µ
there are no singular Gamma functions (with negative integer argument). Therefore one
can remove the regularization and set ε = 0 when using this expression. Thus a direct
transition from the correlation function as expressed through the integral to the spectral
density in terms of one hypergeometric function has been found for each genuine integral.
There is no need to use the recurrence relations available for hypergeometric functions.

In the following subsections explicit examples are given for D = 4 compared with the
exact result in Eq. (3.217) and the pure expansion near the threshold. In the following the
standard threshold expansion without resummation is called the pure threshold expansion.

3.6.4 The two-line water melon with a small mass

One starts with a (over)simplified example of the two-line diagram with masses m and
m0 ≪ m in four space-time dimensions. In this example the expansion of the spectral
density and its generalized expansion can be readily compared analytically with the exact
result in Eq. (3.235). This is the feature that justifies the discussion in this section. The
results for the spectral density of this diagram are shown in Fig. 3.8. The solid curve
displays the exact result obtained by using Eq. (3.217) (which reproduces the analytical
expression in Eq. (3.235)). This result is compared with the two expansions.
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Figure 3.8: Various solutions for the spectral density for two masses m and m0 ≪ m
and D = 4 space-time dimensions. Shown are the exact solution which is obtained by
using Eq. (3.217) (solid curve), the pure threshold expansions using Eq. (3.240) (dotted
curves), and the solutions for the resummation of the smallest mass contributions like in
Eq. (3.241) (dashed curves), both expansions from the first up to the fourth order in the
asymptotic expansion. For the pure threshold expansion the order is indicated explicitly.

The pure expansion of the spectral density near threshold (the second order asymptotic
expansion should suffice to show the general features in a short and concise form) reads

ρdas
(

(M + E)2
)

=

√
2m0mE

8π2M3/2

{

1 +
(

1

m
+

1

m0

− 7

M

)

E

4
+

−
(

1

m2
0

+
1

m2
+

12

m0m
− 79

M2

)

E2

32
+O(E3)

}

(3.240)

where M = m + m0. As mentioned above, this series breaks down for E > 2m0 (see
Eq. (3.235)). If one looks at the dotted curves in Fig. 3.8 this becomes obvious. Here the
series expansions is plotted up to the fourth order with the mass arrangement m0 = m/10.
The dashed lines represent the resummation of the smallest mass contributions. The
analytical expression for the spectral density of the polarization function in Eq. (3.236)
for the generalized asymptotic expansion based on Eq. (3.239) is given by

ρpas
(

(M + E)2
)

=

√

mE(E + 2m0)

8π2(E +M)3/2

{

2F1

(

0,
1

2
;
3

2
; 1 − m2

0

(E +m0)2

)

+

+
E(E + 2m0)

8m(E +M)
2F1

(

1

2
, 1;

5

2
; 1 − m2

0

(E +m0)2

)

+ (3.241)

− E2(E + 2m0)
2

128m2(E +M)2

(

1 +
16m(E +M)

5(E +m0)2

)

2F1

(

1,
3

2
;
7

2
; 1 − m2

0

(E +m0)2

)

+ . . .

}

.
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The regularization parameter has been set to ε = 0 because the spectral density is finite.
With ε = 0 the resulting expressions for the hypergeometric functions in Eq. (3.239)
simplify. The first term in the curly brackets of Eq. (3.241) is obviously equal to 1 in
this limit because the first parameter of the hypergeometric function vanishes for ε = 0.
However, Eq. (3.241) is kept in its given form to show the structure of the contributions.
The generalized threshold expansion has the form

ρpas
(

(M + E)2
)

= g0(E,m0) + Eg1(E,m0) + E2g2(E,m0) + . . . (3.242)

where the functions gj(E,m0) represent effects of the resummation of the smallest mass
and are not polynomials in the threshold parameter E. In the simple two-line case the
hypergeometric functions reduce to elementary functions. For instance,

2F1

(

1

2
, 1;

5

2
; 1 − m2

0

(E +m0)2

)

= (3.243)

=
3(E +m0)

2E(E + 2m0)



E +m0 −
m2
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2
√

E(E + 2m0)
ln





E +m0 +
√

E(E + 2m0)

E +m0 −
√

E(E + 2m0)







 .

Higher order contributions are given by hypergeometric functions with larger numerical
values of the parameters. They can be simplified by using Gaussian recurrence relations
for hypergeometric functions (see e.g. Ref. [101]).

Figure 3.9: The same as Fig. 3.8 where the spectral density is normalized to the leading
order expression of the pure threshold expansion.

The convergence of the expansion in Eq. (3.241) breaks down only at E ∼M = m+m0.
The resummation leads to an essential improvement of the convergence in comparison
with the pure threshold expansion. In Fig. 3.9 the same curves are shown divided by the
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leading order term. This representation is more convenient for the diagrams which will
be discussed in following subsections.

Note that Eq. (3.243) does not lead to the exact function in Eq. (3.235) because terms
of order EN stemming from the difference part Πdi(p) of the correlator are missing. It
simply corrects the behaviour of the coefficient functions by the small mass contributions.

Figure 3.10: The spectral density for the sunset diagram in D = 4 space-time dimensions
with a tiny mass m0, normalized to the general power behaviour. Shown are the exact
result obtained by using Eq. (3.217) (solid curve), the threshold expansion according to
Eq. (3.244) (dotted curves), and the result for the resummation of the smallest mass
contributions according to Eq. (3.245) (dashed curves).

3.6.5 The sunset diagram with a small mass

As next the sunset diagram with two equal masses m and a third mass m0 ≪ m (m0 =
m/10) is analyzed. The exact result obtained by using Eq. (3.217) and normalized to the
leading order term is shown in Fig. 3.10 as the solid curve. The pure expansion near the
threshold reads

ρdas
(

(M + E)2
)

=
mE2

√
m0M

128π3M2

{

1 +
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1
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+
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m
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M
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E

8
+
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5
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0

+
4

m2
+
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m0m
+
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− 1115

M2

)

E2

512
+O(E3)

}

. (3.244)

It is shown by the dotted curves in Fig. 3.10. In case of the resummation of the smallest
mass contributions one obtains hypergeometric functions which do not obviously reduce to
elementary functions in this case. The result for the spectral density within the asymptotic
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expansion up to the second order in Eq. (3.236) is given by
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)
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)
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(
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5m
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)(
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(
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4
,
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4
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0

(E +m0)2

)}

. (3.245)

It can be seen that the dashed curves in Fig. 3.10 that represent the result in Eq. (3.245)
approximate the exact curve much better than the dotted curves.

Figure 3.11: The spectral density for the four-line water melon diagram in D = 4 space-
time dimensions with a tiny mass m0, normalized to the general power behaviour. Shown
are the exact result obtained by using Eq. (3.217) (solid curve), the threshold expan-
sion according to Eq. (3.246) (dotted curves), and the result for the resummation of the
smallest mass contributions according to Eq. (3.247) (dashed curves).

3.6.6 The four-line water melon with a small mass

With this example the consideration of the strongly asymmetric case is finished and at
the same time the way to the multi-line water melon diagrams which can be treated in
an analogous manner is shown. The result for the exact expression obtained by using
Eq. (3.217) is shown in Fig. 3.11 as a solid line, normalized to the leading order term.
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The dotted lines represent the results for the pure expansion near threshold which is given
by

ρdas
(

(E +M)2
)

=
m3/2E7/2

√
2m0

3360π5M3/2

{
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m
− 19
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E

12
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−
(

5

m2
0

− 3

m2
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28

m0m
+

368

mM
− 2195

M2

)

E2

1056
+O(E3)

}

.

The asymptotic expansion to the second order in Eq. (3.236) gives
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In Fig. 3.11 one can see how the expansion improves if the resummation of the smallest
mass contributions (displayed as dashed lines) is performed.

The result of this section is quite general and applicable to all cases of one small mass.
For some particular arrangement of masses one can obtain even simpler expressions as
discussed in the next section.

3.6.7 The convolution with a small mass

In this section a result for the resummation of the smallest mass effects is obtained along
a different route, namely, via the convolution of spectral densities. However, this method
works in a narrower kinematic region than the method described in the previous section.
In D = 4 space-time dimensions, the convolution weight is given by

ρ(s; s1; s2) =
1

(4π)2s

√

(s− s1 − s2)2 − 4s1s2. (3.248)

The upper limit of the integration is determined by the requirement of positivity of the
the square root argument. The zeros of the square root with respect to s2 are given by
s±2 = (

√
s ±√

s1)
2, and the demand (s2 − s+

2 )(s2 − s−2 ) > 0 together with s+
2 > s−2 leads

to s2 > s+
2 or s2 < s−2 . The physical region is the latter one. With ρ1(s) = δ(s−m2

0) for
the spectral density of the single small mass line one obtains

ρ(s) =
∫ ∞

0
ds1

∫ (
√
s−√s1)2

M ′2
ds2ρ(s; s1; s2)ρ1(s1)ρ2(s2) =

=
1

(4π)2s

∫ (
√
s−m0)2

M ′2

√

(s−m2
0 − s2)2 − 4m2

0s2 ρ2(s2)ds2 (3.249)

where the low limit of integration is M ′ = M − m0. Inserting s = (M + E)2 and
s2 = (M ′ + E ′)2 one obtains

ρ̂(E) =
1

(4π)2(M + E)2

∫ E

0

√

(E −E ′)(E + E ′ + 2M) +m2
0 ×

×
√

(E −E ′ + 2m0)(E + E ′ + 2M ′) +m2
0

ρ̂′(E ′)dE ′

2(M ′ + E ′)
(3.250)
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where ρ̂(E) = ρ2((M+E)2) and ρ̂′(E ′) = ρ2((M
′+E ′)2). For the second of these functions

one uses the threshold expansion in E ′/M ′ as expansion parameter. For small E < M ′

the threshold expansion inserted for ρ̂′(E ′) is valid because E < M ′ implies E ′ < M ′. The
described procedure can be extended to the case of a very light sub-block of the diagram,
e.g. a light fish diagram. In this case one has to replace ρ1(s) by the spectral density of
the light sub-diagram which is well-known.

3.6.8 Recovering Π̃(−p2) through ρ(s) near threshold

The analytic structure of water melon diagrams is completely fixed by the dispersion
representation. Therefore, the focus of this presentation have been on the computation
of the spectral density as the basic quantity important both for applications and the
theoretical investigation of the diagram. However, with an analytical expression for the
spectral density ρ(s) at hand one can readily reconstruct the non-analytic piece of the
polarization function in momentum space by using the dispersion relation

Π̃(−p2) =
∫

ρ(s)ds

s− p2
. (3.251)

One rewrites this equation in terms of threshold parameters according to p = M −∆ and
s = (M + E)2 using Π̂(∆) := Π̃(−p2) and ρ̂(E) := ρ(s) and obtains

Π̂(∆) =
∫ ∞

0

2(M + E)ρ̂(E)dE

(E + ∆)(2M + E − ∆)
, p = M − ∆. (3.252)

UV singularities can be removed by subtraction or by dimensional regularization. Again
the unorthodox dimensional regularization prescription is used. For a general form of the
threshold expansion ρ̂(E) = Eγ∑ akE

k one has to calculate integrals of the form

Π̂σ(∆) =
∫ ∞

0

EσdE

(E + ∆)(2M + E − ∆)
= − π

sin(πσ)

∆σ − (2M − ∆)σ

2(M − ∆)
. (3.253)

Only the powers ∆σ contribute to the singular part of the polarization function. Ex-
pressions like the one presented in Eq. (3.253) then allow one to restore that part of the
correlation function Π̃(−p2) which has singularities near the threshold.



Chapter 4

The correlator of
finite mass baryon currents

Baryons form a rich family of particles which has been experimentally studied with high
accuracy [127]. A theoretical analysis of these experimental data gives a lot of information
about the structure of QCD and the numerical values of its parameters. The hypothetical
limit Nc → ∞ for the number Nc of colours which is a very powerful tool for investigating
the general properties of gauge interactions was especially successful for baryons [128].
The spectrum of baryons is contained in the correlator of two baryonic currents and
the spectral density associated with it. To leading order the correlator is given by a
product of Nc fermionic propagators. The diagrams of this topology, known as sunrise
type diagrams, have been studied in the previous chapter in detail (cf. Refs. [107, 108,
112, 116, 129, 130, 131, 132]). They are rather frequently used in phenomenological
applications [109, 84, 133]. With the advent of new accelerators and detectors many
properties of baryons containing a heavy quark have been experimentally measured in
recent years [127]. However, theoretical calculations beyond the leading order have not
been done yet for many interesting cases.

In this chapter the αs corrections to the correlator of two baryonic currents with
one finite mass quark and two massless quarks are calculated in analytical form. The
magnitude of the αs corrections will be discussed and the massless and HQET limits
are obtained as special cases. Analytical results for the moments of the spectral density
associated with the correlator are presented as well. Note that the massless case has
been known since long ago [134]. The mesonic analogue of the baryonic calculation was
completed some time ago [135] and has subsequently provided a rich source of inspiration
for many applications in meson physics.

The chapter is closed with considerations about the pole mass. The reason for these
considerations is that in recent times the pole mass became somewhat “condemned” as
being of no practical use for perturbation theory calculations. In the closing section it is
argued why it is important to consider the energy region for which a mass concept is used
and that the pole mass at its natural place (namely close to threshold) is still the best
choice for perturbation theory calculations in this region.
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4.1 Finite mass baryonic currents and correlators

The three-quark current considered here is of the form

j = ǫabc(uTaCΓdb)Γ
′Ψc (4.1)

where Ψ is a finite mass quark with mass parameter m, u and d are massless quarks and
C is the charge conjugation matrix. ǫabc is the totally antimetric tensor and a, b, c are
colour indices for the SU(3) colour group. Finally, Γ and Γ′ are Dirac gamma matrices
which correspond to the quantum numbers of the baryon. For instance, taking Γ = 1 and
Γ′ = γ5 corresponds to a current describing a JP = 1/2− baryon. In order to exhibit the
general features of the calculation it suffices to take Γ = Γ′ = 1. The correlator of two
baryonic currents is expanded as

i
∫

〈Tj(x)j̄(0)〉eiqxdx = γνq
νΠq(−q2) +mΠm(−q2). (4.2)

The argument (−q2) is a convention to indicate that the correlator is considered in Min-
kowskian metric. Γ′ = γ5 leads to the trivial change Πq(−q2) → −Πq(−q2). Before
going into further details, the diagrams to next-to-leading order are displayed in Fig. 4.1.
The figure shows the general situation, even for different masses. In the case which is
considered here, the massive line is taken out of the trace in all cases, therefore only
diagrams with label ending with “1” are considered.

The leading and next-to-leading order contribution is given by two- and three-loop
integrals, respectively. As will be explained later, the last integration will be replaced
by a convolution of the spectral density with a weight (or convolution) function, similar
to the treatment in the previous chapter. One therefore ends up with one- and two-
loop integrals. At the beginning of this chapter, therefore, it is natural to introduce
the standard integrals. A second step consists in explaining how to obtain the spectral
densities for these integrals in a more general manner before starting with the leading
order contribution.

4.1.1 Correlator functions to one- and two-loop order

The massless standard one-loop integral G(n1, n2) in the Euclidean domain is given by

1

(4π)D/2
(p2)D/2−n1−n2G(n1, n2) :=

∫ dDk

(2π)D
1

(k2)n1((p− k)2)n2
. (4.3)

G(n1, n2) can be expressed purely in terms of Euler’s Gamma functions and does not
depend on the moments. The expression is given by

G(n1, n2) =
Γ(n1 + n2 −D/2)

Γ(n1)Γ(n2)

Γ(D/2 − n1)Γ(D/2 − n2)

Γ(D − n1 − n2)
(4.4)

which vanishes if n1 or n2 is zero or a negative integer. A basic element of the future
results will be

G(1, 1) =
Γ(ε)

Γ(1)2

Γ(1 − ε)2

Γ(2 − 2ε)
=

Γ(1 + ε)Γ(1 − ε)2

ε(1 − 2ε)Γ(1 − 2ε)
=:

G

ε
(4.5)
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(a1) (a2) (b21) (c21)

(b11) (b12) (b22) (c22)

(c11) (c12) (b23) (c23)

Figure 4.1: Leading order and next-to-leading order diagrams for the finite mass hadronic
current correlator. Double lines indicate the finite mass quark, single lines the massless
quarks. The springy lines stand for the gluons. The letters denote the leading order
diagram (a), the self energy diagram (b), and the fish diagram (c). The first number for
(b) and (c) assigns whether the massive line is involved in the radiative corrections (2) or
not (1). The last number indicates which of the lines (massive line 1 or massless lines 2
and 3) is excluded from the trace, shown in the figure as a box drawn over the diagram.

which fixes the so-called G-scheme where powers in G are not expanded. In a similar
manner one defines the massless standard two-loop integral

1

(4π)D
(p2)D−n1−n2−n3−n4−n5G(n1, n2, n3, n4, n5) =

:=
∫

dDk

(2π)D
dDl

(2π)D
1

(k2)n1(l2)n2((p− k)2)n3((p− l)2)n4((k − l)2)n5
. (4.6)

G(n1, n2, n3, n4, n5) can be reduced to one-loop integrals and thereby to Euler’s Gamma
functions by using the integration-by-parts technique. According to these almost tradi-
tional settings one defines one- and two-loop integrals in the finite mass case. The single
mass standard one-loop integral V (n1, n2; p

2/m2) is defined as

1

(4π)D/2
(m2)D/2−n1−n2V (n1, n2; p

2/m2) :=
∫ dDk

(2π)D
1

(k2 +m2)n1((p− k)2)n2
. (4.7)
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Using Feynman parametrization one obtains

V (n1, n2; p
2/m2) =

Γ(n1 + n2 −D/2)

Γ(n1)Γ(n2)

∫ 1

0
(1 − x)D/2−n2−1xn2−1

(

1 +
xp2

m2

)D/2−n1−n2

dx.

(4.8)
Special cases are

V (n1, n2; p
2/m2) = 0 for n1 ≤ 0,

V (n1, 0; p2/m2) = V (n1, 0;−1) =
Γ(n1 −D/2)

Γ(n1)
, V (1, 0;−1) = −G

ε
+ 1 +O(ε),

V (1, 1; p2/m2) = Γ(2 −D/2)
∫ 1

0
(1 − x)D/2−2

(

1 +
xp2

m2

)D/2−2

dx,

V (1, 1;−1) = Γ(2 −D/2)
∫ 1

0
(1 − x)D−4dx =

Γ(ε)

1 − 2ε
=

G

ε
+O(ε). (4.9)

The standard single mass two-loop integral V (n1, n2, n3, n4, n5; p
2/m2) finally is given by

1

(4π)D
(m2)D−n1−n2−n3−n4−n5V (n1, n2, n3, n4, n5; p

2/m2) =

:=
∫

dDk

(2π)D
dDl

(2π)D
1

(k2 +m2)n1(l2 +m2)n2((p− k)2)n3((p− l)2)n4((k − l)2)n5
. (4.10)

4.1.2 The integral representation of the basic spectral densities

To obtain the spectral density, one inverts the dispersion relation

Π(q2) =
∫

ρ(s)ds

q2 + s
(4.11)

(the correlator function now in Euclidean metric) to obtain (cf. Chapter 2)

ρ(s) =
1

2πi
Disc Π(s) :=

1

2πi

(

Π(se−iπ) − Π(se+iπ)
)

(4.12)

This has to be applied to the standard one- and two-loop integrals V and leads to spectral
densities ρV . One can calculate the discontinuity of the one-loop integral V (n1, n2; p

2/m2)
even by keeping the integration in Eq. (4.8). In order to perform this operation it is useful
to use the dimensional representation of the standard integrals (indicated by the tilde),

V (n1, n2; p
2/m2) = (m2)n1+n2−D/2Ṽ (n1, n2; p

2),

V (n1, n2, n3, n4, n5; p
2/m2) = (m2)n1+n2+n3+n4+n5−DṼ (n1, n2, n3, n4, n5; p

2), (4.13)

Therefore, one starts with

Ṽ (n1, n2; p
2) =

Γ(n1 + n2 −D/2)

Γ(n1)Γ(n2)

∫ 1

0
(1 − x)D/2−n2−1xn2−1

(

m2 + xp2
)D/2−n1−n2

dx.

(4.14)
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The crucial point in the calculation of the discontinuity for the integrand is the non-
integer power of (m2 + xp2). In the case p2 < −m2, the integration encounters a cut for
x > −m2/p2. The discontinuity is therefore given by

Disc(m2 − xs)−n = (m2 + xse−iπ)−n − (m2 + xseiπ)−n =

=
[

(

(xs−m2)e−iπ
)−n −

(

(xs−m2)eiπ
)−n]

θ(xs−m2) =

=
(

einπ − e−inπ
)

(xs−m2)−nθ(xs−m2) = 2i sin(nπ)(xs−m2)nθ(xs−m2)

(4.15)

where n is in general a non-integer number. Making use of

sin(nπ) =
π

Γ(n)Γ(1 − n)
(4.16)

one obtains

ρ̃V (n1, n2; s) =

= Cn1n2

∫ 1

m2/s
(1 − x)D/2−n2−1xn2−1(xs−m2)D/2−n1−n2dx =

= Cn1n2(m
2)D/2−n1−n2

∫ 1

m2/s
(1 − x)D/2−n2−1xn2−1

(

xs

m2
− 1

)D/2−n1−n2

dx =

= Cn1n2s
D/2−n1−n2

∫ 1

m2/s
(1 − x)D/2−n2−1xn2−1

(

x− m2

s

)D/2−n1−n2

dx (4.17)

where

Cn1n2 :=
1

Γ(n1)Γ(n2)Γ(1 +D/2 − n1 − n2)
. (4.18)

The last two expressions in Eq. (4.17) indicate the two possible dimensionless represen-
tations,

ρ̃V (n1, n2; s) = (m2)D/2−n1−n2ρV (n1, n2; s/m
2),

ρ̃V (n1, n2; s) = sD/2−n1−n2 ρ̂V (n1, n2;m
2/s). (4.19)

While the procedure of the calculations allows for a direct transition from V to ρ, the hat-
ted quantities ρ̂ are mainly used for the final result because of their explicit s-dependence.
On the one-loop level they read

ρ̂V (n1, n2; z) = Cn1n2

∫ 1

m2/s
(1 − x)D/2−n2−1xn2−1(x− z)D/2−n1−n2dx (4.20)

where the abbreviation z = m2/s is used. The general relations between hatted and
unhatted spectral densities are given by

ρV (n1, n2; 1/z) = zn1+n2−D/2ρ̂V (n1, n2; z) and (4.21)

ρV (n1, n2, n3, n4, n5; 1/z) = zn1+n2+n3+n4+n5−Dρ̂V (n1, n2, n3, n4, n5; z). (4.22)
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Finally one uses the explicit formula for ρ̂V (n1, n2; z) to obtain a second main ingredient
for the final result. For z ≤ 1 one has

ρ̂V (1, 1; z) =
1

Γ(1 − ε)

∫ 1

z
(1 − x)−ε(x− z)−εdx = (x′ := x− z)

=
1

Γ(1 − ε)

∫ 1−z

0
(1 − z − x′)−εx′−εdx′ =

(1 − z)−ε

Γ(1 − ε)

∫ 1−z

0

(

1 − x′

1 − z

)−ε
x′−εdx′ =

=
(1 − z)−ε

Γ(1 − ε)

∫ 1

0
(1 − x′′)−ε(1 − z)−εx′′−ε(1 − z)dx′′ =

(

x′′ :=
x′

1 − z

)

=
(1 − z)1−2ε

Γ(1 − ε)

∫ 1

0
(1 − x′′)−εx′′−εdx′′ =

Γ(1 − ε)2

Γ(2 − 2ε)Γ(1 − ε)
(1 − z)1−2ε =

=
G

Γ(1 − ε)Γ(1 + ε)
(1 − z)1−2ε, using again G =

Γ(1 − ε)2Γ(1 + ε)

Γ(2 − 2ε)
. (4.23)

4.2 The mass part of the correlator

According to Eq. (4.2), two main ingredients have to be considered, namely the momentum
part Πq(−q2) and the mass part Πm(−q2) of the correlator function. This section deals
with the (easier) mass part, starting with the leading order diagram.

4.2.1 Contribution from the leading order diagram (a1)

The contribution of the leading order diagram (a1) is given by

−iVa1(−q2) =
∫

dDp

(2π)D
dDk

(2π)D
Tr

(

i

q/− p/

i

p/− /k

)

i

/k −m
=

= −i
∫

dDp

(2π)D
dDk

(2π)D
Tr((q/− p/)(p/− /k))

(q − p)2(p− k)2

/k +m

k2 −m2
=

= −4i
∫ dDk

(2π)D
/k +m

k2 −m2

∫ dDp

(2π)D
(q − p)(p− k)

(q − p)2(p− k)2
=

= −2i
∫

dDk

(2π)D
/k +m

k2 −m2

∫

dDp

(2π)D
(q − k)2 − (q − p)2 − (p− k)2

(q − p)2(p− k)2
=

=
−2

(4π)D/2

∫

dDk

(2π)D
/k +m

k2 −m2

(

−(q − k)2
)D/2−1

G(1, 1). (4.24)

For the mass part one has

V m
a1 (−q2) =

−2i

(4π)D/2

∫

dDk

(2π)D
G(1, 1)

(k2 −m2)(−(q − k)2)1−D/2 =

=
−2

(4π)D
(m2)D−2G(1, 1)V (1, 1 −D/2;−q2/m2). (4.25)

The corresponding spectral density is given by

ρma1(s) =
−2

(4π)D
(m2)2−2εG(1, 1)ρV (1, ε− 1; s/m2) =

=
−2

(4π)D
G(1, 1)ρ̃V (1, ε− 1; s) = −2G(1, 1)

(4π)D
s2−2ερ̂V (1, ε− 1;m2/s). (4.26)
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4.2.2 The colour factors

The colour factor for the leading order diagram is simply given by

ǫijkǫ
ijk = Nc! = 6. (4.27)

For a diagram containing a self energy loop one uses

∑

a

(T a)ii′(T
a)jj′ =

1

2

(

δij′δ
j
i′ −

1

Nc
δii′δ

j
j′

)

(4.28)

to obtain

Cself = ǫijkǫ
i′′jk(T a)ii′(T

b)i
′

i′′δab =
1

2
ǫijkǫ

i′′jk
(

δii′′δ
i′

i′ −
1

Nc
δii′δ

i′

i′′

)

=

=
1

2

(

Ncǫijkǫ
ijk − 1

Nc
ǫijkǫ

ijk
)

=
N2
c − 1

2Nc
ǫijkǫ

ijk = CFNc!. (4.29)

For a diagram containing a fish one obtains

Cfish = ǫijkǫ
i′j′k(T a)ii′(T

b)jj′δab =
1

2
ǫijkǫ

i′j′k
(

δij′δ
j
i′ −

1

Nc
δii′δ

j
j′

)

=

=
1

2

(

ǫijkǫ
jik − 1

Nc
ǫijkǫ

ijk
)

= −Nc + 1

2Nc
ǫijkǫ

ijk = −CBNc!. (4.30)

4.2.3 The light results: self energy diagram (b21) and fish (c11)

Light diagrams are those where the gluon is exchanged between the massless quark lines.
The results for the two diagrams (b21) and (c11) are taken from the output of the MATH-
EMATICA package developed for massless three-loop integrals, being

ρmb21(s) =
4G2g2

s

(4π)3D/2
s2−3ε

(

1

4ε2
+

1

8ε
+

11

16

)

ρ̂V (1, 2ε− 1;m2/s), (4.31)

ρmc11(s) =
4G2g2

s

(4π)3D/2
s2−3ε

(

2

ε2
+

3

2ε
+

27

4
− 6ζ(3)

)

ρ̂V (1, 2ε− 1;m2/s) (4.32)

Both parts have to be combined, taking care also on the colour factors which are Nc!
for the leading order diagram (a1), Nc!CF (CF = 4/3) for the self energy diagram (b21)
and −Nc!CB (CB = 2/3) for the fish diagram (c11). Dropping the general factor that
normalizes to the leading order diagram for a moment, one obtains (note the additional
factor 2 because the self energy diagram is occuring twice)

ρmlight(s) = 2Nc!CFρ
m
b21(s) −Nc!CBρ

m
c11(s) =

=
4G2g2

sNc!

(4π)3D/2
s2−3ε ×

×
(

2CF

(

1

4ε2
+

1

8ε
+

11

16

)

− CB

(

2

ε2
+

3

2ε
+

27

4
− 6ζ(3)

))

ρ̂V (1, 2ε− 1;m2/s) =

=
2G2g2

sNc!

(4π)3D/2
s2−3εCF

(

1

ε2
+

1

2ε
+

11

4
− 2

ε2
− 3

2ε
− 27

4
+ 6ζ(3)

)

ρ̂V (1, 2ε− 1;m2/s) =

=
2G2g2

sNc!

(4π)3D/2
s2−3εCF

(

− 1

ε2
− 1

ε
− 4 + 6ζ(3)

)

ρ̂V (1, 2ε− 1;m2/s) =

= −2G2g2
sNc!

(4π)3D/2
s2−3εCF

(

1

ε2
+

1

ε
+ 4 − 6ζ(3)

)

ρ̂V (1, 2ε− 1;m2/s). (4.33)
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The light correction is generally represented as

ρmlight(s) = − 2Nc!

(4π)D
αsCF
4π

G(1, 1)2s2−3ε
(

B0 +B1ε+B2ε
2
)

ρ̂V (1, 2ε− 1;m2/s). (4.34)

4.2.4 Combining leading order and light corrections

The combination of the two parts is given by

ρmleading(s) = − 2Nc!

(4π)D
G(1, 1)s2−2ερ̂V (1, ε− 1;m2/s) (4.35)

and

ρmlight(s) = − 2Nc!

(4π)D
αsCF
4π

G(1, 1)2s2−3ε
(

B0 +B1ε+B2ε
2
)

ρ̂V (1, 2ε− 1;m2/s). (4.36)

After having obtained this result, the next step is to factor out common structures.
Separating the pure integral from the common factor, one writes

ρ̂V (1, ε− 1; z) =: C1εĝ1(z), ρ̂V (1, 2ε− 1; z) =: C2εĝ2(z) (4.37)

with

ĝn(z) :=
∫ 1

z
(1 − x)2−(1+n)εxnε−2(x− z)2−(n+1)εdx,

Cnε :=
1

Γ(nε− 1)Γ(D/2 − nε+ 1)
=

1

Γ(nε− 1)Γ(3 − (n+ 1)ε)
(4.38)

(i.e. C1 = −1/2 + O(ε) and C2 = 1 +O(ε)). Using this, one obtains

ρml (s) := ρmleading(s) + ρmlight(s) =

= − 2Nc!

(4π)D
G(1, 1)s2−2εC1ε

(

ĝ1(m
2/s) +

+
αsCF
4π

s−ε
C2

C1
G(1, 1)(B0 +B1ε+B2ε

2)ĝ2(m
2/s)

)

=

=: Cg
(

ĝ1(m
2/s) +

αsCF
4π

Crĝ2(m
2/s)

)

=

= Cg
((

1 +
αsCF
4π

Cr
)

ĝ1(m
2/s) +

αsCF
4π

Cr
(

ĝ2(m
2/s) − ĝ1(m

2/s)
)

)

(4.39)

with

Cg = − 2Nc!

(4π)D
G(1, 1)s2−2εC1ε = −2Nc!G

(4π)D
s2−2εC1 →

Nc!s
2

(4π)4
. (4.40)

While the singularity contained in the first part is absorbed by the light current renor-
malization factor, the second part is finite, even though Cr is proportional to 1/ε and is
expanded as

Cr =

(

µ2

s

)ε
C2

C1
G(1, 1)(B0 +B1ε+B2ε

2 +O(ε3)) =

=
G

ε

(

2B0 + ε

(

2B0 ln

(

µ2

s

)

+ 2B1 +B0

))

+O(ε2) =
Cr

0

ε
+ Cr

1 +O(ε). (4.41)
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The reason is that the integral difference ĝ2(z) − ĝ1(z) is of order ε,

ĝ2(z) − ĝ1(z) =

=
∫ 1

z
(1 − x)2−3εx2ε−2(x− z)2−3εdx−

∫ 1

z
(1 − x)2−2εxε−2(x− z)2−2εdx =

= ε
∫ 1

z

(1 − x)2(x− z)2

x2
(ln x− ln(1 − x) − ln(x− z)) dx+O(ε2) =

= ε

{

4z(1 + z)(Li2(z) − Li2(1)) − 2
(

1

3
+ 3z − 3z2 − 1

3
z3
)

ln(1 − z) +

−
(

z + 4z2 +
1

3
z3
)

ln z +
1

9
+

7

3
z − 7

3
z2 − 1

9
z3

}

+O(ε2) =

=: εĝ1
21(z) +O(ε2). (4.42)

Therefore, one obtains

ρml (s) =
Nc!s

2

(4π)4

(

(

1 +
αsCF
4πε

Cr
0

)

ĝ1(m
2/s)+

αsCF
4π

(

Cr
1 ĝ

0
1(m

2/s) + Cr
0 ĝ

1
21(m

2/s)
)

)

+O(ε).

(4.43)
The first part is absorbed into the light current renormalization factor while the second
gives the finite correction.

4.2.5 The massive contribution (b11)

This subsection contains the calculations for the self energy correction to the massive line.
It starts with the calculation of the self energy diagram, leads to the extraction of the
singular parts which will renormalize the mass and the wave function, and will finally
result in a rather compact form for the finite parts wich remain. The calculations in this
subsection are done within Minkowskian metric (indicated by the negative arguments, in
contrast to the fish).

Starting with the master bubble

Basic ingredient will be the master bubble diagram

ΠB(−p2) =
∫

dDk

(2π)D
1

(k2 −m2)(p− k)2
=

(m2)D/2−2

(4π)D/2
V (1, 1;−p2/m2) =

∫

ρB(s)ds

s− p2
,

ρB(s) =
(m2)D/2−2

(4π)D/2
ρV (1, 1; s/m2) =

1

(4π)D/2
ρ̃V (1, 1; s). (4.44)

One starts with the self energy diagram, given by

−iΣ(−k2) =
∫

dDl

(2π)D
(−igsγα)

i

/l −m
(−igsγα)

−i
(k − l)2

=

= −g2
s

∫ dDl

(2π)D
γα(/l −m)γα

(l2 −m2)(k − l)2
= −i/kΣp(−k2) − imΣm(−k2). (4.45)
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Therefore, the momentum part reads

Σp(−k2) = −ig2
s

∫ dDl

(2π)D

1
4
Tr(/kγα(/l +m)γα)

k2(l2 −m2)(k − l)2
=

= −i(2 −D)g2
s

∫

dDl

(2π)D
kl

k2(l2 −m2)(k − l)2
=

= −i2 −D

2
g2
s

∫

dDl

(2π)D
k2 +m2 + l2 −m2 − (k − l)2

k2(l2 −m2)(k − l)2
=

=
(2 −D)g2

s

2(4π)D/2

((

1 +
m2

k2

)

Ṽ (1, 1;−k2) − Ṽ (1, 0;−k2)

)

⇒

ρ̃p(s) =
(2 −D)g2

s

2(4π)D/2

(

1 +
m2

s

)

ρ̃V (1, 1; s) =
2 −D

2
g2
s

(

1 +
m2

s

)

ρB(s). (4.46)

The correlator function is given by the dispersion relation

Π̃p(−k2) =
∫

ρ̃p(s)ds

s− k2
=

2 −D

2
g2
s

∫

(1 +m2/s)ρB(s)

s− k2
ds. (4.47)

For the mass part one obtains

Σm(−k2) = −ig2
s

∫

dDl

(2π)D

1
4
Tr(γα(/l +m)γα)

m(l2 −m2)(k − l)2
=

= −iDg2
s

∫

dDl

(2π)D
1

(l2 −m2)(k − l)2
=

Dg2
s

(4π)D/2
Ṽ (1, 1;−k2) ⇒

ρ̃m(s) =
Dg2

s

(4π)D/2
ρ̃V (1, 1; s) = Dg2

sρB(s) ⇒

Π̃m(−k2) =
∫ ρ̃m(s)ds

s− k2
= Dg2

s

∫ ρB(s)ds

s− k2
. (4.48)

Renormalization of mass and wave function

For the renormalization one has to decide which subtraction point to use. For this purpose
one considers the two possibilities for the master bubble,

ΠB(0) =
Γ(ε)m−2ε

(4π)D/2

∫ 1

0
(1 − x)−ε1−εdx =

Γ(ε)m−2ε

(4π)D/2

∫ 1

0
x−εdx =

Γ(ε)m−2ε

(4π)D/2(1 − ε)
=

=
Γ(1 + ε)m−2ε

(4π)D/2ε(1 − ε)
=

Gm−2ε

(4π)D/2ε

(

1 − ε− (1 − ζ(2)) ε2 +O(ε3)
)

, (4.49)

ΠB(−m2) =
Γ(ε)m−2ε

(4π)D/2

∫ 1

0
(1 − x)−ε(1 − x)−εdx =

Γ(ε)m−2ε

(4π)D/2

∫ 1

0
x−2εdx = (4.50)

=
Γ(ε)m−2ε

(4π)D/2(1 − 2ε)
=

Γ(1 + ε)m−2ε

(4π)D/2ε(1 − 2ε)
=

Gm−2ε

(4π)D/2ε

(

1 + ζ(2)ε2 +O(ε3)
)

.

It is obvious that ΠB(−m2) is much “closer” to G/ε than ΠB(0). Using ΠB(−m2), there-
fore, has the advantage that one has not to calculate all orders in ε of the corresponding
coefficient. It is more convenient, therefore, to take the subtraction at the point s = m2.
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The self energy contributions is associated with the wave function and the mass renor-
malization. To see this, one uses an ansatz for the renormalization and calculates

i(1 + a)

/k −m(1 + b)
=

i(1 + a)

(/k −m)(1 −mb/(/k −m))
≈ i(1 + a)

/k −m

(

1 +
mb

/k −m

)

=

=
i(1 + a)

/k −m
+

i

/k −m
(1 + a)mb

1

/k −m
=

≈ i

/k −m
+

i

/k −m
(/k −m)a

1

/k −m
+

i

/k −m
mb

1

/k −m
=

=
i

/k −m
+

i

/k −m
(−i/ka + ima− imb)

i

/k −m
=

=
i

/k −m
+

i

/k −m
(−i/ka− im(b − a))

i

/k −m
. (4.51)

From this result one obtains Π̃p = a, Π̃m = b− a, so that

a(−k2) = Π̃p(−k2) =
2 −D

2
g2
s

∫

ρB(s)ds

s− k2

(

1 +
m2

s

)

=:
∫

ρa(s)

s− k2
ds,

b(−k2) = Π̃p(−k2) + Π̃m(−k2) =

= g2
s

∫ ρB(s)ds

s− k2

(

D + 2

2
− D − 2

2

m2

s

)

=:
∫ ρb(s)

s− k2
ds. (4.52)

Now one splits off the singular parts a(−m2) and b(−m2) resp. to obtain

a(−k2) =
∫

ρa(s)

s−m2
ds+

∫ (

1

s− k2
− 1

s−m2

)

ρa(s)ds = (4.53)

=
∫

ρa(s)

s−m2
ds+ (k2 −m2)

∫

ρa(s)ds

(s−m2)(s− k2)
=: a(−m2) + af(−k2),

b(−k2) =
∫

ρb(s)

s−m2
ds+ (k2 −m2)

∫

ρb(s)ds

(s−m2)(s− k2)
=: b(−m2) + bf (−k2).

These singular parts can be computed within dimensional regularization,

a(−m2) =
∫

ρa(s)

s−m2
ds =

2 −D

2
g2
s

∫

ρB(s)ds

s−m2

(

1 +
m2

s

)

=

= −(1 − ε)g2
s

(4π)D/2
Γ(1 − ε)

Γ(2 − 2ε)
µ2ε

∫ ∞

m2

(s−m2)−2ε

s1−ε

(

1 +
m2

s

)

ds. (4.54)

Using the substitution z = m2/s, the integral results in

(m2)ε
∫ ∞

m2

(s−m2)−2ε

s1−ε

(

1 +
m2

s

)

ds = (m2)ε
∫ ∞

m2

(

1 − m2

s

)−2ε

s−1−ε
(

1 +
m2

s

)

ds =

=
∫ 1

0
(1 − z)−2εz−1+ε(1 + z)dz =

∫ 1

0
(1 − z)−2εz−1+εdz +

∫ 1

0
(1 − z)−2εzεdz =

= B(1 − 2ε, ε) +B(1 − 2ε, 1 + ε) =
Γ(1 − 2ε)Γ(ε)

Γ(1 − ε)
+

Γ(1 − 2ε)Γ(1 + ε)

Γ(2 − ε)
=

=
Γ(1 − 2ε)Γ(ε)

Γ(2 − ε)
(1 − ε+ ε) =

Γ(1 − 2ε)Γ(ε)

Γ(2 − ε)
(4.55)
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so that

a(−m2) =
−g2

s

(4π)D/2

(

µ2

m2

)ε
Γ(2 − ε)

Γ(2 − 2ε)

Γ(1 − 2ε)Γ(ε)

Γ(2 − ε)
=

=
−g2

s

(4π)D/2

(

µ2

m2

)ε
Γ(1 − 2ε)Γ(ε)

Γ(2 − 2ε)
=

−g2
s

(4π)D/2

(

µ2

m2

)ε
G

ε

Γ(1 − 2ε)

Γ(1 − ε)2
=

=
−g2

s

(4π)D/2

(

µ2

m2

)ε
G

ε

(

1 + ζ(2)ε2 +O(ε3)
)

. (4.56)

Similarly one obtains

b(−m2) =
∫

ρb(s)ds

s−m2
= g2

s

∫

ρB(s)ds

s−m2

(

D + 2

2
− D − 2

2

m2

s

)

=

=
g2
s

(4π)D/2
Γ(1 − ε)

Γ(2 − 2ε)
µ2ε

∫ ∞

m2

(s−m2)−2ε

s1−ε

(

3 − ε− (1 − ε)
m2

s

)

ds = . . .

=
g2
s

(4π)D/2

(

µ2

m2

)ε
Γ(1 − ε)

Γ(2 − 2ε)

Γ(1 − 2ε)Γ(ε)

Γ(2 − ε)
((1 − ε)(3 − ε) − ε(1 − ε)) =

=
g2
s

(4π)D/2

(

µ2

m2

)ε
Γ(1 − 2ε)Γ(ε)

Γ(2 − 2ε)
(3 − 2ε) = . . .

=
g2
s

(4π)D/2

(

µ2

m2

)ε
G

ε

(

3 − 2ε+ 3ζ(2)ε2 +O(ε3)
)

. (4.57)

These singular parts are absorbed into the wave function and the mass renormalization,
respectively, while the finite parts are remaining.

The finite contribution from the massive self energy diagram (b11)

Having collected the contributions to an effective propagator, one expands this propagator
again to obtain the finite corrections to the diagram itself,

i(1 + af)

/k −m(1 + bf )
=

i(1 + af )(/k +m(1 + bf ))

k2 −m2(1 + bf )2
=

≈ i(/k +m)(1 + af) + imbf
k2 −m2 − 2m2bf

=
i(/k +m)(1 + af) + imbf

(k2 −m2)(1 − 2m2bf/(k2 −m2))
=

≈ i(/k +m)(1 + af) + imbf
k2 −m2

(

1 +
2m2bf
k2 −m2

)

=

≈ i(/k +m)(1 + af) + imbf
k2 −m2

+
2im2(/k +m)bf

(k2 −m2)2
=

=
i/k

k2 −m2

(

1 + af +
2m2bf
k2 −m2

)

+
im

k2 −m2

(

1 + af + bf +
2m2bf
k2 −m2

)

=

=:
i/k

k2 −m2
(1 + P (−k2)) +

im

k2 −m2
(1 +M(−k2)). (4.58)

Because only the mass part of the diagram is considered, only the M part of this corrected
propagator is needed. It consists of two contributions, the one called “a+b” and the final,
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“b”-contribution. Defining ρa+b := ρa + ρb, one obtains

1

k2 −m2
(af (−k2) + bf(−k2)) =

∫

ρa+b(s)ds

(s−m2)(s− k2)
(4.59)

and

2m2

(k2 −m2)2
bf (−k2) =

2m2

k2 −m2

∫

ρb(s)ds

(s−m2)(s− k2)
=

= 2m2
∫

ρb(s)ds

(s−m2)2

(

1

k2 −m2
− 1

k2 − s

)

. (4.60)

Therefore, the mass part of the effective propagator is given by

Dm
eff(−k2) =

i

k2 −m2
(1 +M(−k2)) =

=
i

k2 −m2

(

1 + af (−k2) + bf (−k2) +
2m2bf (−k2)

k2 −m2

)

= (4.61)

=
i

k2 −m2
+ i

∫

ρa+b(s)ds

(s−m2)(s− k2)
+ 2im2

∫

ρb(s)ds

(s−m2)2

(

1

k2 −m2
− 1

k2 − s

)

.

To see how one has to insert this effective propagator into the diagram, one considers
again the leading order diagram. It reads

−iVa1(−q2) =
∫

dDp

(2π)D
dDk

(2π)D
Tr

(

i

q/− p/

i

p/− /k

)

i

/k −m
=

= −2
∫

dDk

(2π)D
i

/k −m

∫

dDp

(2π)D
((q − k)2 − (q − p)2 − (p− k)2)

(q − p)2(p− k)2
=

= 2
∫

dDk

(2π)D
i

/k −m

(

−(q − k)2
)

∫

dDp

(2π)D
1

(q − p)2(p− k)2
=

=
2i

(4π)D/2

∫ dDk

(2π)D
i

/k −m

(

−(q − k)2
)D/2−1

G(1, 1). (4.62)

Therefore, one concludes that

Va1(−q2) + Vb11(−q2) = −2G(1, 1)

(4π)D/2

∫

dDk

(2π)D
Deff(−k2)

(−(q − k)2)1−D/2 (4.63)

and

V m
b11(−q2) =

2iG(1, 1)

(4π)D/2

∫

ρa+b(s)ds

s−m2

∫

dDk

(2π)D
1

(k2 − s)(−(q − k)2)1−D/2 +

−4iG(1, 1)

(4π)D/2

∫ m2ρb(s)ds

(s−m2)2

∫ dDk

(2π)D

(

1

k2 −m2
− 1

k2 − s

)

1

(−(q − k)2)1−D/2 =

=
2G(1, 1)

(4π)D

∫

ρa+b(s)

s−m2
sD−2V (1, 1 −D/2;−q2/s)ds +

−4G(1, 1)

(4π)D

∫

m2ρb(s)

(s−m2)2

(

(m2)D−2V (1, 1 −D/2;−q2/m2) +

−sD−2V (1, 1 −D/2;−q2/s)
)

ds. (4.64)
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The spectral density is given by

ρmb11(s) =
2G(1, 1)

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρV (1, ε− 1; s/s1)ds1 +

−4G(1, 1)

(4π)D

∫ ∞

m2

m2ρb(s1)

(s1 −m2)2

(

(m2)2−2ερV (1, ε− 1; s/m2) +

−s2−2ε
1 ρV (1, ε− 1; s/s1)

)

ds1 =

=
2G(1, 1)

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρV (1, ε− 1; s/s1)ds1 +

−4G(1, 1)

(4π)D
(m2)2−2ερV (1, ε− 1; s/m2)

∫ ∞

s

m2ρb(s1)

(s1 −m2)2
ds1 +

−4G(1, 1)

(4π)D

∫ s

m2

m2ρb(s1)

(s1 −m2)2

(

(m2)2−2ερV (1, ε− 1; s/m2) +

−s2−2ε
1 ρV (1, ε− 1; s/s1)

)

ds1. (4.65)

Now one defines the quantity

Lb(s) :=
∫ ∞

s

m2ρb(s1)

(s1 −m2)2
ds1, L′b(s) = − m2ρb(s)

(s−m2)2
(4.66)

which can also be used as derivative in the last integrand, and obtains

ρmb11(s) =
2G(1, 1)

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρV (1, ε− 1; s/s1)ds1 +

−4G(1, 1)

(4π)D
Lb(s)(m

2)2−2ερV (1, ε− 1; s/m2) +

+
4G(1, 1)

(4π)D

∫ s

m2
L′b(s1)

(

(m2)2−2ερV (1, ε− 1; s/m2) − s2−2ε
1 ρV (1, ε− 1; s/s1)

)

ds1 =

=
2G(1, 1)

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρV (1, ε− 1; s/s1)ds1 +

−4G(1, 1)

(4π)D
Lb(s)(m

2)2−2ερV (1, ε− 1; s/m2) +

+
4G(1, 1)

(4π)D

[

Lb(s1)
(

(m2)2−2ερV (1, ε− 1; s/m2) − s2−2ε
1 ρV (1, ε− 1; s/s1)

)]s

m2
+

+
4G(1, 1)

(4π)D

∫ s

m2
Lb(s1)

d

ds1

(

s2−2ε
1 ρV (1, ε− 1; s/s1)

)

ds1 =

=
2G(1, 1)

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρV (1, ε− 1; s/s1)ds1 +

−4G(1, 1)

(4π)D
Lb(s)s

2−2ερV (1, ε− 1; 1) +

+
4G(1, 1)

(4π)D

∫ s

m2
Lb(s1)

d

ds1

(

s2−2ε
1 ρV (1, ε− 1; s/s1)

)

ds1 =

=
2G

(4π)D

∫ s

m2

ρa+b(s1)

s1 −m2
s2−2ε
1 ρ1

V (1, ε− 1; s/s1)ds1 +

+
4G

(4π)D

∫ s

m2
Lb(s1)

d

ds1

(

s2−2ε
1 ρ1

V (1, ε− 1; s/s1)
)

ds1. (4.67)
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(note that ρV (1, ε − 1; 1) = 0). Finally one has to determine the different parts of this
rather compact expression. These are

ρa+b(s) = ρa(s) + ρb(s) = g2
s

(

2 −D

2

(

1 +
m2

s

)

+D +
2 −D

2

(

1 +
m2

s

))

ρB(s) =

= g2
s

(

(2 −D)

(

1 +
m2

s

)

+D

)

ρB(s) = g2
s

(

2

(

1 +
m2

s

)

−D
m2

s

)

ρB(s) =

= g2
s

(

2 − (D − 2)
m2

s

)

ρB(s) = 2g2
s

(

1 − D − 2

2

m2

s

)

ρB(s) = (4.68)

= 2g2
s

(

1 − m2

s

)

ρB(s) =
2g2

s

(4π)D/2

(

1 − m2

s

)2

θ(s−m2) =:
g2
s

(4π)D/2
ρ̂a+b(m

2/s),

Lb(s) =
∫ ∞

s

m2ρb(s1)

(s1 −m2)2
ds1 = g2

s

∫ ∞

s

m2ρB(s1)

(s1 −m2)2

(

D + 2

2
− D − 2

2

m2

s1

)

ds1 =

=
g2
s

(4π)D/2

∫ ∞

s

m2ds1

s1(s1 −m2)

(

3 − m2

s1

)

=
g2
s

(4π)D/2

∫ ∞

s

m2ds1

s2
1(1 −m2/s1)

(

3 − m2

s1

)

=

=
g2
s

(4π)D/2

∫ 1

1−m2/s

dx

x
(2 + x) =

g2
s

(4π)D/2

[

2 lnx+ x
]1

1−m2/s
=

=
g2
s

(4π)D/2

(

−2 ln

(

1 − m2

s

)

+
m2

s

)

=:
g2
s

(4π)D/2
L̂b(m

2/s) (4.69)

(using x = 1 −m2/s1) where the last lines are taken at D = 4, and finally

ρ1
V (1, ε− 1; 1/z) = −

(

1 +
1

z

)

ln z+
3

2

(

1 − 1

z

)

+
z

6

(

1 − 1

z3

)

=
1

z2
ρ̂1
V (1, ε− 1; z). (4.70)

Using ρV (1, ε − 1; 1/z) = z2ε−2ρ̂V (1, ε − 1; z), one gets rid of the factor in front of the
spectral density. Substituing z1 = m2/s1 with

dz1 = −m
2

s2
1

ds1 ⇒ ds1

s1
= −dz1

z1
,

d

ds1
(. . .) ds1 =

d

dz1
(. . .) dz1 (4.71)

while the limits are changed to [1, m2/s] = −[m2/s, 1] in both parts, one can continue to

ρmb11(s) =
2g2

sGs
2−2ε

(4π)3D/2

∫ 1

m2/s

ρ̂a+b(z1)

z1(1 − z1)
ρ̂1
V (1, ε− 1;m2/sz1)dz1 +

−4g2
sGs

2−2ε

(4π)3D/2

∫ 1

m2/s
L̂b(z1)

d

dz1

(

ρ̂1
V (1, ε− 1;m2/sz1)

)

dz1,

ρmb11(m
2/z) =

4g2
sGs

2−2ε

(4π)3D/2

[

∫ 1

z

ρ̂a+b(z1)

2z1(1 − z1)
ρ̂1
V (1, ε− 1; z/z1)dz1 +

−
∫ 1

z
L̂b(z1)

d

dz1

(

ρ̂1
V (1, ε− 1; z/z1)

)

dz1

]

. (4.72)
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4.2.6 The fish contribution (c21)

This subsection contains the calculations for the half-covered, semi-massive fish. The
diagram (c21) of Fig. 4.1 is calculated by keeping out the line which is not involved in
the gluon exchange. The corresponding spectral density is written in terms of so-called
prototypes and afterwards has to be convoluted with the remaining part. An algebra of
convolution functions is developed to reduce the result to basic expressions.

The contribution of the semi-massive half-covered fish (c21)

The contribution of diagram (c21) is given by

−iVc21(−q2) =
∫ dDp

(2π)D
dDk

(2π)D
dDl

(2π)D
×

× Tr

(

i

p/− /l
(−igsγα)

i

p/− /k

i

(q/− p/)

)

i

/l −m
(−igsγα)

i

/k −m

−i
(k − l)2

=

= −g2
s

∫

dDp

(2π)D
dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)γα(p/− /k)(q/− p/))

(p− k)2(p− l)2(q − p)2(k − l)2

(/l +m)γα(/k +m)

(l2 −m2)(k2 −m2)
. (4.73)

The massive part is considered by taking the trace divided by m,

−iV m
c21(−q2) =

= −g2
s

∫

dDp

(2π)D
dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)γα(p/− /k)(q/− p/))

(p− k)2(p− l)2(q − p)2(k − l)2

(k + l)α

(k2 −m2)(l2 −m2)
=

= −g2
s

∫ dDp

(2π)D
dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)(/k + /l)(p/− /k)(q/− p/))

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(q − p)2(k − l)2
=

= −g2
s

∫

dDp

(2π)D
(q − p)µ
(q − p)2

∫

dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)(/k + /l)(p/− /k)γµ)

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
=

= −g2
s

∫

dDp

(2π)D
qp− p2

(q − p)2p2

∫

dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)(/k + /l)(p/− /k)p/)

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
=

=:
∫ dDp

(2π)D
qp− p2

(q − p)2p2
Ṽ m
c21(−p2). (4.74)

where

Ṽ m
c21(−p2) := −g2

s

∫ dDk

(2π)D
dDl

(2π)D
Tr((p/− /l)(/k + /l)(p/− /k)p/)

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
(4.75)

is calculated by a computer code in MATHEMATICA. In order to convert to spectral
densities, the dispersion relation

Ṽ m
c21(−p2) =

∫

ρ̃mc21(s)ds

s− p2
(4.76)

is inserted. One obtains

V m
c21(−q2) = i

∫

dDp

(2π)D
(qp− p2)

(q − p)2p2

∫

ρ̃mc21(s)ds

s− p2
=

=
∫

(

i
∫ dDp

(2π)D
(qp− p2)

(q − p)2p2(s− p2)

)

ρ̃mc21(s)ds =:
∫

λ̃(−q2, s)ρ̃mc21(s)ds,

ρmc21(s) =
∫

λ(s, s1)ρ̃
m
c21(s1)ds1. (4.77)
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λ(s, s1) is the convolution function. The general procedure is to calculate the inner integral
of Eq. (4.74), given in Eq. (4.75), reformulate it in terms of spectral densities and convolute
it with the convolution function. The inner integral is given by

Ṽ m
c21(−p2) =

4g2
s

(4π)D

[

(p2 −m2)2Ṽ (1, 1, 1, 1, 1;−p2) − p2Ṽ (1, 1, 1, 1, 0;−p2) +

+
1

2
(p2 +m2)

(

Ṽ (1, 1, 0, 1, 1;−p2) + Ṽ (1, 1, 1, 0, 1;−p2)
)

+

+(p2 −m2)
(

Ṽ (0, 1, 1, 1, 1;−p2) + Ṽ (1, 0, 1, 1, 1;−p2)
)

+ (4.78)

−1

2

(

Ṽ (1, 0, 0, 1, 1;−p2) + Ṽ (0, 1, 1, 0, 1;−p2)
)

+ Ṽ (0, 0, 1, 1, 1;−p2)

]

and the corresponding spectral density reads

ρ̃mc21(s) =
4g2

s

(4π)D

[

(s−m2)2ρ̃V (1, 1, 1, 1, 1; s)− sρ̃V (1, 1, 1, 1, 0; s) +

+(s+m2)ρ̃V (1, 1, 0, 1, 1; s) + 2(s−m2)ρ̃V (0, 1, 1, 1, 1; s) +

+ρ̃V (0, 0, 1, 1, 1; s)− ρ̃V (0, 1, 1, 0, 1; s)

]

=

=
4g2

ss
D−3

(4π)D

[

(1 − z)2ρ̂V (1, 1, 1, 1, 1; z) − ρ̂V (1, 1, 1, 1, 0; z) +

+(1 + z)ρ̂V (1, 1, 0, 1, 1; z) + 2(1 − z)ρ̂V (0, 1, 1, 1, 1; z) +

−ρ̂V (0, 1, 1, 0, 1; z) + ρ̂V (0, 0, 1, 1, 1; z)

]

(4.79)

where the short hand notation z = m2/s and the symmetry properties of the standard
integrals are used. The different spectral densities in this expression are called prototypes
and will be calculated in the next subsection. The convolution function will be dealt with
next by constructing an algebra of convolution functions.

The algebra of convolution functions

The elements of the algebra are integrals λn(s, s1) of the type of the master bubble spectral
density in Eq. (4.44). The algebra which turns out to be a simple reduction chain allows
one to reduce all elements to a single basic element. On the level of correlator integrals
within Minkowskian spacetime the algebra reads

λ̃n(−q2, s) := i
∫ dDp

(2π)D
(−p2)n

sn(s− p2)(q − p)2
= i

∫ dDp

(2π)D
(s− p2 − s)(−p2)n−1

sn(s− p2)(q − p)2
=

= i
∫

dDp

(2π)D
(p2)n−1

sn(q − p)2
− i

∫

dDp

(2π)D
(−p2)n−1

sn−1(s− p2)(q − p)2
=

= −λ̃n−1(−q2, s) = . . . = (−1)nλ̃0(−q2, s),

λ̃0(−q2, s) = i
∫

dDp

(2π)D
1

(s− p2)(q − p)2
= −i

∫

dDp

(2π)D
1

(p2 − s)(q − p)2
=

=
sD/2−2

(4π)D/2
V (1, 1;−q2/s). (4.80)
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Within the Euclidean domain one has

λ̃n(q
2, s) =

∫

dDp

(2π)D
(p2)n

sn(s+ p2)(q − p)2
= (−1)nλ̃0(q

2, s), (4.81)

λ̃0(q
2, s) =

∫

dDp

(2π)D
1

(s+ p2)(q − p)2
=

sD/2−2

(4π)D/2
V (1, 1; q2/s). (4.82)

Taking the discontinuity for both expressions, one obtains

λn(s, s1) = (−1)nλ0(s, s1), λ0(s, s1) =
s−ε1

(4π)2−ερV (1, 1; s/s1) =
s−ε

(4π)2−ε ρ̂V (1, 1; s1/s).

(4.83)

The only weight

Looking at the correlator representation of the convolution function in the present case,

λ̃(−q2, s) = i
∫ dDp

(2π)D
(qp− p2)

(q − p)2p2(s− p2)
(4.84)

one recognizes that there is a negative power of p2. This would lead out of the algebra
described above and produce an explicite infrared divergence. In order to avoid this one
has to modify the fish contribution by a subtraction at p2 = 0,

V m
c21(−q2) = i

∫ dDp

(2π)D
(qp− p2)

(q − p)2p2

∫ ρ̃mc21(s)ds

s− p2
=

= i
∫ dDp

(2π)D
(qp− p2)

(q − p)2p2

(

Ṽ m
c21(0) +

∫

(

1

s− p2
− 1

s

)

ρ̃mc21(s)ds

)

=

= iṼ m
c21(0)

∫

dDp

(2π)D
(qp− p2)

(q − p)2p2
+ i

∫

dDp

(2π)D
(qp− p2)

(q − p)2

∫

ρ̃mc21(s)ds

s(s− p2)
. (4.85)

It can be shown that the first term vanishes, one can therefore proceed with

V m
c21(−q2) =

∫

(

i
∫

dDp

(2π)D
(qp− p2)

s(q − p)2(s− p2)

)

ρ̃mc21(s)ds =
∫

λ̃(−q2, s)ρ̃mc21(s)ds (4.86)

where λ̃ is now changed to

λ̃(−q2, s) = i
∫ dDp

(2π)D
(qp− p2)

s(q − p)2(s− p2)
=

i

2

∫ dDp

(2π)D
(q2 − p2 − (q − p)2)

s(q − p)2(s− p2)
=

=
1

2

(

q2

s
λ̃0(−q2, s) + λ̃1(−q2, s)

)

=
1

2

(

q2

s
− 1

)

λ̃0(−q2, s) (4.87)

(which means that the algebra of convolution functions is extended to negative n) such
that

λ(s, s1) =
1

2

(

s

s1
− 1

)

λ0(s, s1) =
s−ε

2(4π)2−ε

(

s

s1
− 1

)

ρ̂V (1, 1; s1/s) =

=
−1

2(4π)2

(

1 − s

s1

)(

1 − s1

s

)

θ(s− s1) +O(ε). (4.88)
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4.3 The momentum part of the correlator

The same procedure as before will now be applied to the momentum part of the correlator
function. The expressions are roughly twice the length of the expressions for the mass part.
In addition there is some complication for the renormalization which will be mentioned
at the very end.

4.3.1 The leading order diagram (a1)

Taking the contribution of the leading order diagram (a1) as given in Eq. (4.25), the
momentum part is obtained by calculating one fourth of the trace with q/ and dividing
the expression by q2. One obtains

V q
a1(−q2) =

−2iG(1, 1)

(4π)D/2

∫

dDk

(2π)D
qk

q2(k2 −m2)

(

−(q − k)2
)D/2−1

=

=
−iG(1, 1)

(4π)D/2

∫

dDk

(2π)D
q2 +m2 + k2 −m2 − (q − k)2

q2(k2 −m2)

(

−(q − k)2
)D/2−1

=

=
−iG(1, 1)

(4π)D/2

(

1 +
m2

q2

)

∫

dDk

(2π)D
1

(k2 −m2)(−(q − k)2)1−D/2 +

− iG(1, 1)

(4π)D/2q2

∫

dDk

(2π)D
1

(k2 −m2)(−(q − k)2)−D/2
=

= −G(1, 1)

(4π)D

(

1 +
m2

q2

)

(m2)D/2−1−1−D/2V (1, 1 −D/2;−q2/m2) +

− G(1, 1)

(4π)Dq2
(m2)D/2−1+D/2V (1,−D/2;−q2/m2) = (4.89)

= −G(1, 1)

(4π)D
(m2)D−2

((

1 +
m2

q2

)

V (1, 1 −D/2;−q2/m2) +
m2

q2
V (1,−D/2; q2/m2)

)

such that

ρqa1(s) = −G(1, 1)

(4π)D
(m2)2−2ε

((

1 +
m2

s

)

ρV (1, ε− 1; s/m2) +
m2

s
ρV (1, ε− 2; s/m2)

)

=

= −G(1, 1)

(4π)D
s2−2ε

((

1 +
m2

s

)

ρ̂V (1, ε− 1;m2/s) + ρ̂V (1, ε− 2;m2/s)

)

=

= − G

(4π)D
s2−2ε1

ε

((

1 +
m2

s

)

ρ̂V (1, ε− 1;m2/s) + ρ̂V (1, ε− 2;m2/s)

)

. (4.90)

The difference to the mass part is that ρ̂V (1, ε− 1; z) is replaced by

1

2
((1 + z)ρ̂V (1, ε− 1; z) + ρ̂V (1, ε− 2; z)) . (4.91)

Something similar happens to the contribution from the correction of the light part of the
diagram as well as to the massive line correction as it will become obvious soon.
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4.3.2 The light contributions (b21) and (c11)

The calculation of the contribution due to the correction of the light part is calculated by
the MATHEMATICA package. The results are given by

ρqb21(s) =
4g2

sG
2

(4π)3D/2
s2−3ε

(

1

8ε2
+

1

16ε
+

11

32

)

× (4.92)

×
((

1 +
m2

s

)

ρ̂V (1, 2ε− 1;m2/s) + ρ̂V (1, 2ε− 2;m2/s)

)

,

ρqc11(s) =
4g2

sG
2

(4π)3D/2
s2−3ε

(

1

ε2
+

3

4ε
+

27

8
− 3ζ(3)

)

× (4.93)

×
((

1 +
m2

s

)

ρ̂V (1, 2ε− 1;m2/s) + ρ̂V (1, 2ε− 2;m2/s)

)

.

The colour factors for the leading order diagram are given by Nc!, for the massless line
self energy diagram (b21) by Nc!CF , and for the massless fish (c11) by −Nc!CB. The
massless line self energy correction is applied at each of the lines, such that the leading
order term and the light contribution are given by

ρqleading(s) = − Nc!G

(4π)D
s2−2ε1

ε

((

1 +
m2

s

)

ρ̂V (1, ε− 1;m2/s) + ρ̂V (1, ε− 2;m2/s)

)

,

ρqlight(s) = 2Nc!CFρ
q
b21(s) −Nc!CBρ

q
c11(s) = (4.94)

= −Nc!CF g
2
sG

2

(4π)3D/2
s2−3ε

(

1

ε2
+

1

ε
+ 4 − 6ζ(3)

)

×

×
((

1 +
m2

s

)

ρ̂V (1, 2ε− 1;m2/s) + ρ̂V (1, 2ε− 2;m2/s)

)

=

=: −Nc!CF g
2
sG(1, 1)2

(4π)3D/2
s2−3ε

(

B0 +B1ε+B2ε
2
)

× (4.95)

×
((

1 +
m2

s

)

ρ̂V (1, 2ε− 1;m2/s) + ρ̂V (1, 2ε− 2;m2/s)

)

where B0 = B1 = 1 and B2 = 4−6ζ(3) as in the mass part calculation. Before combining
these two expressions one rewrites them in terms of pure integrals, extracting the Γ
structure,

ρ̂V (1, nε− 1; z) =
1

Γ(nε− 1)Γ(D/2 − nε+ 1)

∫ 1

z
(1 − x)D/2−nεxnε−2(x− z)D/2−nεdx =

=
1

Γ(nε− 1)Γ(3 − (n+ 1)ε)

∫ 1

z
(1 − x)2−(n+1)εxnε−2(x− z)2−(n+1)εdx, (4.96)

ρ̂V (1, nε− 2; z) =
1

Γ(nε− 2)Γ(4 − (n+ 1)ε)

∫ 1

z
(1 − x)3−(n+1)εxnε−3(x− z)3−(n+1)εdx.

The relative factor is given by

Cr
ρn :=

Γ(nε− 1)Γ(3 − (n+ 1)ε)

Γ(nε− 2)Γ(4 − (n+ 1)ε)
=

nε− 2

3 − (n+ 1)ε
= −2

3

(

1 +
2 − n

6
ε+O(ε2)

)

. (4.97)
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With this one can define

(1 + z)ρ̂V (1, ε− 1; z) + ρ̂V (1, ε− 2; z) =: 2C1εĝ
q
1(z), (4.98)

(1 + z)ρ̂V (1, 2ε− 1; z) + ρ̂V (1, 2ε− 2; z) =: 2C2εĝ
q
2(z) (4.99)

with Cnε = (Γ(nε− 1)Γ(3 − (n + 1)ε))−1 as in the mass part calculation and

2ĝqn(z) = (1 + z)
∫ 1

z
(1 − x)2−(n+1)εxnε−2(x− z)2−(n+1)εdx +

+Cr
ρn

∫ 1

z
(1 − x)3−(n+1)εxnε−3(x− z)3−(n+1)εdx. (4.100)

Now one can collect the terms to obtain

ρql (s) := ρqleading(s) + ρqlight(s) =

= − 2Nc!

(4π)D
s2−2εG(1, 1)C1ε

(

ĝq1(m
2/s) +

+
αsCF
4π

s−ε
C2

C1
G(1, 1)(B0 +B1ε+B2ε

2)ĝq2(m
2/s)

)

=

=
Nc!s

2

(4π)4

((

1 +
αsCF
4πε

Cr
0

)

ĝq1(m
2/s) +

αsCF
4π

(

Cr
1 ĝ

q0
1 (m2/s) + Cr

0 ĝ
q1
21(m

2/s)
)

)

(4.101)

in analogy to the mass part calculation, with

ĝq1(z) = gq01 (z) +O(ε), ĝq21(z) := ĝq2(z) − ĝq1(z) = ĝq121(z)ε +O(ε2). (4.102)

One obtains

ĝq01 (z) =
∫ 1

z

(

(1 + z)
(1 − x)2(x− z)2

2x2
− (1 − x)3(x− z)3

3x3

)

dx =

=
1

12
− 2

3
z +

2

3
z3 − 1

12
z4 − z2 ln z. (4.103)

A complete calculation up to O(ε) shows that ĝq121(z) is given by

ĝq121(z) =
∫ 1

z

(

(1 + z)
(1 − x)2(x− z)2

2x2
− (1 − x)3(x− z)3

3x3

)

×

× (ln x− ln(1 − x) − ln(x− z)) dx +

+
1

18

∫ 1

z

(1 − x)3(x− z)3

x3
dx =

=
7

144
− 1

18
z +

1

18
z3 − 7

144
z4 − 2z2 (Li2(z) − Li2(1)) +

−
(

1

6
− 4

3
z +

4

3
z3 − 1

6
z4
)

ln(1 − z) +
(

3

2
z2 +

2

3
z3 − 1

12
z4
)

ln z. (4.104)

The result in Eq. (4.101) represents the three contributions: The first one needs no expan-
sion of ĝq1 but is absorbed in the renormalization factor for the light current. The second
term is the offspring of the singular part, and the third one the finite mass correction.
One has

Cr
0 = 2B0G, Cr

1 =

(

2B0 ln

(

µ2

s

)

+ 2B1 +B0

)

G. (4.105)
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4.3.3 The massive contribution (b11)

According to the considerations for the mass part, the finite contribution of the momentum
part of the effective massive propagator is given by

Dq
eff(−k2) =

i

k2 −m2
− i

∫ ρa(s)ds

(s−m2)(k2 − s)
+ 2im2

∫ ρb(s)ds

(s−m2)2

(

1

k2 −m2
− 1

k2 − s

)

.

(4.106)
This term has to replace the expression i/(k2 −m2) in the leading order contribution

V q
a1(−q2) = −G(1, 1)

(4π)D/2

∫

dDk

(2π)D
i

k2 −m2
× (4.107)

×
((

1 +
m2

q2

)

(

−(q − k)2
)D/2−1

+
k2 −m2

q2

(

−(q − k)2
)D/2−1

+
1

q2

(

−(q − k)2
)D/2

)

.

As one will see, in contrast to the leading order term, one has to take into account also
the second term which would vanish for the leading order calculation itself. One obtains

V q
a1(−q2) + V q

b11(−q2) = −G(1, 1)

(4π)D/2

∫

dDk

(2π)D
Dk

eff(−k2)

((

1 +
m2

q2

)

(

−(q − k)2
)D/2−1

+

+
k2 −m2

q2

(

−(q − k)2
)D/2−1

+
1

q2

(

−(q − k)2
)D/2

)

, (4.108)

V q
b11(−q2) =

iG(1, 1)

(4π)D/2

∫

ρa(s)ds

s−m2

∫

dDk

(2π)D
1

k2 − s

((

1 +
m2

q2

)

(

−(q − k)2
)D/2−1

+

+

(

k2 − s

q2
+
s−m2

q2

)

(

−(q − k)2
)D/2−1

+
1

q2

(

−(q − k)2
)D/2

)

+

−2iG(1, 1)

(4π)D/2

∫

m2ρb(s)ds

(s−m2)2

∫

dDk

(2π)D

(

1

k2 −m2
− 1

k2 − s

)

×

×
((

1 +
m2

q2

)

(

−(q − k)2
)D/2−1

+

+
k2 −m2

q2

(

−(q − k)2
)D/2−1

+
1

q2

(

−(q − k)2
)D/2

)

=

=
G(1, 1)

(4π)D

∫

ρa(s)ds

s−m2
sD−2

((

1 +
m2

q2

)

V (1, 1 −D/2;−q2/s) +

+
s−m2

q2
V (1,−D/2;−q2/s) +

s

q2
V (1,−D/2;−q2/s)

)

+

−2G(1, 1)

(4π)D

∫

m2ρb(s)ds

(s−m2)2
(m2)D−2 ×

×
((

1 +
m2

q2

)

V (1, 1 −D/2;−q2/m2) +
m2

q2
V (1,−D/2;−q2/m2)

)

+

+
2G(1, 1)

(4π)D

∫

m2ρb(s)ds

(s−m2)2
sD−2

((

1 +
m2

q2

)

V (1, 1 −D/2;−q2/s) +

+
s−m2

q2
V (1, 1 −D/2;−q2/s) +

s

q2
V (1,−D/2;−q2/s)

)

. (4.109)
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It is obvious that in the first and third line the first and second terms can be combined
so that the explicit m2 dependence vanishes. The spectral density is therefore given by

ρqb11(s) =
G(1, 1)

(4π)D

∫

ρa(s1)ds1

s1 −m2
s2−2ε
1 ×

×
((

1 +
s1

s

)

ρV (1, ε− 1; s/s1) +
s1

s
ρV (1, ε− 2; s/s1)

)

+

−2G(1, 1)

(4π)D

∫ m2ρb(s1)ds1

(s1 −m2)2
(m2)2−2ε ×

×
((

1 +
m2

s

)

ρV (1, ε− 1; s/m2) +
m2

s
ρV (1, ε− 2; s/m2)

)

+

+
2G(1, 1)

(4π)D

∫ m2ρb(s1)ds1

(s1 −m2)2
s2−2ε ×

×
(

(

1 +
s1

s

)

ρV (1, ε− 1; s/s1) +
s1

s
ρV (1, ε− 2; s/s1)

)

= . . .

=
G

(4π)D

∫ s

m2

ρa(s1)

s1 −m2
×

× s2−2ε
1

((

1 +
s1

s

)

ρ1
V (1, ε− 1; s/s1) +

s1

s
ρ1
V (1, ε− 2; s/s1)

)

ds1 +

+
2G

(4π)D

∫ s

m2
Lb(s1) ×

× d

ds1

(

s2−2ε
1

((

1 +
s1

s

)

ρ1
V (1, ε− 1; s/s1) +

s1

s
ρ1
V (1, ε− 2; s/s1)

)

)

ds1.

(4.110)

Using

ρa(s) =
2 −D

2
g2
s

(

1 +
m2

s

)

ρB(s) =
−g2

s

(4π)D/2

(

1 +
m2

s

)(

1 − m2

s

)

θ(s−m2) =

=:
g2
s

(4π)D/2
ρ̂a(m

2/s), ρ̂a(z) = −(1 + z)(1 − z), (4.111)

Lb(s) =
g2
s

(4π)D/2
L̂b(m

2/s), L̂b(z) = z − 2 ln(1 − z) (4.112)

and the quantities ρ̂V , one ends up with

ρqb11(m
2/z) =

2g2
sGs

2−2ε

(4π)3D/2
×

×
[

∫ 1

z

ρ̂a(z1)

2z1(1 − z1)

((

1 +
z

z1

)

ρ̂1
V (1, ε− 1; z/z1) + ρ̂1

V (1, ε− 2; z/z1)
)

dz1 +

−
∫ 1

z
L̂b(z1)

d

dz1

((

1 +
z

z1

)

ρ̂1
V (1, ε− 1; z/z1) + ρ̂1

V (1, ε− 2; z/z1)
)

dz1

]

. (4.113)
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4.3.4 The fish contribution (c21)

Starting with Eq. (4.73), the momentum part is given by

V q
c21(−q2) = −ig2

s

∫

dDp

(2π)D
dDk

(2π)D
dDl

(2π)D
×

× Tr((q/− p/)(p/− /l)γα(p/− /k))1
4
Tr(q/(/l +m)γα(/k +m))

q2(q − p)2(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
=

=: i
∫

dDp

(2π)D
(q − p)µqν
(q − p)2q2

Ṽ qµν
c21 (−p2). (4.114)

The tensor integral Ṽ qµν
c21 (−p2) can be expressed in terms of covariants,

Ṽ qµν
c21 (−p2) = gµνp2Ṽ q1

c21(−p2) + pµpνṼ q2
c21(−p2) (4.115)

where the covariants can be determined by contracting with the dual basis ,

Dp2Ṽ q1
c21(−p2) + p2Ṽ q2

c21(−p2) = gµν Ṽ
qµν
c21 (−p2) =: p2V̂ q1

c21(−p2), (4.116)

p4Ṽ q1
c21(−p2) + p4Ṽ q2

c21(−p2) = pµpνṼ
qµν
c21 (−p2) =: p4V̂ q2

c21(−p2) (4.117)

and thus

Ṽ q1
c21(−p2) =

V̂ q1
c21(−p2) − V̂ q2

c21(−p2)

D − 1
, Ṽ q2

c21(−p2) =
DV̂ q2

c21(−p2) − V̂ q1
c21(−p2)

D − 1
. (4.118)

Inserting this, one obtains

V q
c21(−q2) = i

∫

dDp

(2π)D
1

(q − p)2q2

(

p2(q2 − qp)Ṽ q1
c21(−p2) + (qp− p2)(qp)Ṽ q2

c21(−p2)
)

=

= i
∫

dDp

(2π)D
1

(D − 1)(q − p)2q2

(

p2(q2 − qp)
(

V̂ q1
c21(−p2) − V̂ q2

c21(−p2)
)

+

+(qp− p2)(qp)
(

DV̂ q2
c21(−p2) − V̂ q1

c21(−p2)
)

)

=

= i
∫

dDp

(2π)D

[

p2(q2 − qp) − (qp− p2)(qp)

(D − 1)(q − p)2q2
V̂ q1
c21(−p2) +

+
D(qp− p2)(qp) − p2(q2 − qp)

(D − 1)(q − p)2q2
V̂ q2
c21(−p2)

]

= (4.119)

= i
∫

dDp

(2π)D

[

q2p2 − (qp)2

(D − 1)(q − p)2q2
V̂ q1
c21(−p2) +

D(qp− p2)(qp) − p2(q2 − qp)

(D − 1)(q − p)2q2
V̂ q2
c21(−p2)

]

.

Expressing the correlator functions by using the dispersion relation

V̂ qi
c21(−p2) =

∫

ρ̂qic21(s1)ds1

s1 − p2
(4.120)

and formally obtains

ρqc21(s) =
∫

(

λ1(s, s1)ρ̂
q1
c21(s1) + λ2(s, s1)ρ̂

q2
c21(s1)

)

ds1. (4.121)

All these parts have to be calculated.
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The convolution functions

In the present case one has

4(q2p2 − (qp)2) = 4q2p2 −
(

q2 + p2 − (q − p)2
)2

=

= 2q2p2 − q4 − p4 + 2q2(q − p)2 + 2p2(q − p)2 − (q − p)4 (4.122)

and therefore (all vanishing contributions are omitted)

λ̃1(−q2, s1) =
i

(D − 1)q2

∫ dDp

(2π)D
q2p2 − (qp)2

(q − p)2(s1 − p2)
=

=
i

4(D − 1)q2

∫

dDp

(2π)D
2q2p2 − q4 − p4

(q − p)2(s1 − p2)
=

=
1

4(D − 1)q2

(

−2q2s1λ̃1(−q2, s1) − q4λ̃0(−q2, s1) − s2
1λ̃2(−q2, s1)

)

=

=
1

4(D − 1)q2

(

2q2s1 − q4 − s2
1

)

λ̃0(−q2, s) = − (q2 − s1)
2

4(D − 1)q2
λ̃0(−q2, s1), (4.123)

or in terms of spectral densities

λ1(s, s1) = − (s− s1)
2

4(D − 1)s
λ0(s, s1), λ0(s, s1) =

−1

(4π)2

(

1 − s1

s

)

θ(s− s1) +O(ε). (4.124)

For the second convolution function one calculates

4
(

D(qp− p2)(qp) − p2(q2 − qp)
)

=

= D
(

q2 − p2 − (q − p)2
) (

q2 + p2 − (q − p)2
)

− 2p2
(

q2 − p2 + (q − p)2
)

=

= D
(

q4 − 2q2(q − p)2 + (q − p)4 − p4
)

− 2p2
(

q2 − p2 + (q − p)2
)

=

= Dq4 − (D − 2)p4 − 2p2q2 − 2Dq2(q − p)2 − 2p2(q − p)2 +D(q − p)4 (4.125)

and therefore obtains

λ̃2(−q2, s1) =
1

4(D − 1)q2

(

Dq4λ̃0(−q2, s1) +

−(D − 2)s2
1λ̃2(−q2, s1) + 2q2s1λ̃1(−q2, s1)

)

=

=
1

4(D − 1)q2

(

Dq4 − (D − 2)s2
1 − 2q2s1

)

λ̃0(−q2, s1), (4.126)

or in terms of spectral densities

λ2(s, s1) =
1

4(D − 1)s

(

Ds2 − (D − 2)s2
1 − 2ss1

)

λ0(s, s1) =

=
(s− s1)

4(D − 1)s
(Ds+ (D − 2)s1)λ0(s, s1). (4.127)
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The first projection

The first projection is given by

p2V̂ q1
c21(−p2) = gµνṼ

qµν
c21 (−p2) =

= g2
s

∫

dDk

(2π)D
dDl

(2π)D
Tr(γµ(p/− /l)γα(p/− /k))1

4
Tr(γµ(/l +m)γα(/k +m))

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
=

=
g2
s

(4π)D

[

4(p2 −m2)2Ṽ (1, 1, 1, 1, 1;−p2) + 8(p2 −m2)Ṽ (0, 1, 1, 1, 1;−p2) +

+8p2Ṽ (1, 1, 1, 0, 1;−p2) − 4p2Ṽ (1, 1, 1, 1, 0;−p2) +

+4Ṽ (0, 0, 1, 1, 1;−p2) + 4Ṽ (1, 1, 0, 0, 1;−p2) +

−2(2 −D)
(

Ṽ (0, 1, 0, 1, 1;−p2) + Ṽ (0, 1, 1, 0, 1;−p2)
)

+

+2(2 −D)
(

Ṽ (0, 1, 1, 1, 0;−p2) + Ṽ (1, 1, 1, 0, 0;−p2)
)

+

−(2 −D)Ṽ (1, 1, 1, 1,−1;−p2)
]

, (4.128)

and the spectral density reads (z = m2/s)

ρ̂q1c21(s) =
g2
s

(4π)Ds

[

4(s−m2)2ρ̃V (1, 1, 1, 1, 1; s) + 8(s−m2)ρ̃V (0, 1, 1, 1, 1; s) +

+8sρ̃V (1, 1, 1, 0, 1; s)− 4sρ̃V (1, 1, 1, 1, 0; s) +

+4ρ̃V (0, 0, 1, 1, 1; s) + 4ρ̃V (1, 1, 0, 0, 1; s) +

−2(2 −D) (ρ̃V (0, 1, 0, 1, 1; s) + ρ̃V (0, 1, 1, 0, 1; s)) +

+2(2 −D) (ρ̃V (0, 1, 1, 1, 0; s) + ρ̃V (1, 1, 1, 0, 0; s)) +

−(2 −D)ρ̃V (1, 1, 1, 1,−1; s)
]

=

=
g2
ss
D−4

(4π)D

[

4 (1 − z)2 ρ̂V (1, 1, 1, 1, 1; z) + 8(1 − z)ρ̂V (0, 1, 1, 1, 1; z) +

+8ρ̂V (1, 1, 1, 0, 1; z) − 4ρ̂V (1, 1, 1, 1, 0; z) +

+4ρ̂V (0, 0, 1, 1, 1; z) + 4ρ̂V (1, 1, 0, 0, 1; z) +

−2(2 −D) (ρ̂V (0, 1, 0, 1, 1; z) + ρ̂V (0, 1, 1, 0, 1; z)) +

+2(2 −D) (ρ̂V (0, 1, 1, 1, 0; z) + ρ̂V (1, 1, 1, 0, 0; z)) +

−(2 −D)ρ̂V (1, 1, 1, 1,−1; z)
]

. (4.129)

The second projection

The second projection is given by

p4V̂ q2
c21(−p2) = pµpνṼ

qµν
c21 (−p2) =
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= g2
s

∫ dDk

(2π)D
dDk

(2π)D
Tr(p/(p/− /l)γα(p/− /k))1

4
Tr(p/(/l +m)γα(/k +m))

(k2 −m2)(l2 −m2)(p− k)2(p− l)2(k − l)2
=

=
g2
s

(4π)D

[

2(p2 +m2)(p2 −m2)2Ṽ (1, 1, 1, 1, 1;−p2) + 4(p4 −m4)Ṽ (0, 1, 1, 1, 1;−p2) +

+4(p4 +m4)Ṽ (1, 1, 1, 0, 1;−p2) − (3p4 +m4)Ṽ (1, 1, 1, 1, 0;−p2) +

+2(p2 +m2)Ṽ (0, 0, 1, 1, 1;−p2) + 2p2Ṽ (1, 1, 0, 0, 1;−p2) +

+2(p2 −m2)Ṽ (0, 1, 0, 1, 1;−p2) − 2(p2 +m2)Ṽ (0, 1, 1, 0, 1;−p2) +

−2(p2 −m2)Ṽ (0, 1, 1, 1, 0;−p2) − 2(p2 +m2)Ṽ (1, 1, 1, 0, 0;−p2) +

+2m2Ṽ (1, 1,−1, 1, 1;−p2) + p2Ṽ (1, 1, 1, 1,−1;−p2) − 2Ṽ (−1, 1, 1, 0, 1;−p2) +

+2Ṽ (0, 0, 0, 1, 1;−p2) − Ṽ (0, 0, 1, 1, 0;−p2) + 2Ṽ (0, 1, 0, 0, 1;−p2) +

−2Ṽ (0, 1, 1,−1, 1;−p2) + 2Ṽ (0, 1, 1, 0, 0;−p2) − Ṽ (1, 1, 0, 0, 0;−p2)
]

(4.130)

and the spectral density reads (z = m2/s)

ρ̂q2c21(s) =
g2
s

(4π)Ds2

[

2(s+m2)(s−m2)2ρ̃V (1, 1, 1, 1, 1; s) + 4(s2 −m4)ρ̃V (0, 1, 1, 1, 1; s) +

+4(s2 +m4)ρ̃V (1, 1, 1, 0, 1; s)− (3s2 +m4)ρ̃V (1, 1, 1, 1, 0; s) +

+2(s+m2)ρ̃V (0, 0, 1, 1, 1; s) + 2sρ̃V (1, 1, 0, 0, 1; s) +

+2(s−m2)ρ̃V (0, 1, 0, 1, 1; s)− 2(s+m2)ρ̃V (0, 1, 1, 0, 1; s) +

−2(s−m2)ρ̃V (0, 1, 1, 1, 0; s)− 2(s+m2)ρ̃V (1, 1, 1, 0, 0; s) +

+2m2ρ̃V (1, 1,−1, 1, 1; s) + sρ̃V (1, 1, 1, 1,−1; s)− 2ρ̃V (−1, 1, 1, 0, 1; s) +

+2ρ̃V (0, 0, 0, 1, 1; s)− ρ̃V (0, 0, 1, 1, 0; s) + 2ρ̃V (0, 1, 0, 0, 1; s) +

−2ρ̃V (0, 1, 1,−1, 1; s) + 2ρ̃V (0, 1, 1, 0, 0; s)− ρ̃V (1, 1, 0, 0, 0; s)
]

=

=
g2
ss
D−4

(4π)D

[

2(1 + z)(1 − z)2ρ̂V (1, 1, 1, 1, 1; z) +

+4(1 − z2)ρ̂V (0, 1, 1, 1, 1; z) +

+4(1 + z2)ρ̂V (1, 1, 1, 0, 1; z)− (3 + z2)ρ̂V (1, 1, 1, 1, 0; z) +

+2(1 + z)ρ̂V (0, 0, 1, 1, 1; z) + 2ρ̂V (1, 1, 0, 0, 1; z) +

+2(1 − z)ρ̂V (0, 1, 0, 1, 1; z)− 2(1 + z)ρ̂V (0, 1, 1, 0, 1; z) +

−2(1 − z)ρ̂V (0, 1, 1, 1, 0; z)− 2(1 + z)ρ̂V (1, 1, 1, 0, 0; z) +

+2zρ̂V (1, 1,−1, 1, 1; z) + ρ̂V (1, 1, 1, 1,−1; z) − 2ρ̂V (−1, 1, 1, 0, 1; z) +

+2ρ̂V (0, 0, 0, 1, 1; z)− ρ̂V (0, 0, 1, 1, 0; z) + 2ρ̂V (0, 1, 0, 0, 1; z) +

−2ρ̂V (0, 1, 1,−1, 1; z) + 2ρ̂V (0, 1, 1, 0, 0; z)− ρ̂V (1, 1, 0, 0, 0; z)
]

. (4.131)
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4.4 The fish prototypes

As one can see from the last expression of the previous section, there are many spectral
functions of the standard two-loop integrals V , the so-called prototypes, necessary in order
to built up the final results. These prototypes will be dealt with in this section. Before
dealing with the calculations, however, the prototypes will be classified and two integrals
will be calculated in advance which are of help in the following.

4.4.1 General simplification paths for the prototypes

Starting with the two-loop integrals V , also on this level there are relations which can be
used in order to simplify the calculations. First of all, the symmetry property

V (n1, n2, n3, n4, n5; p
2/m2) = V (n2, n1, n4, n3, n5; p

2/m2) (4.132)

can be used to collect the integrals. The symmetry property is of course valid on the level
of spectral densities as well. For two vanishing entries the integrals can be split up into
two one-loop standard integrals V . Because of V (0, n2; p

2/m2) = 0, most of the integrals

V (0, 0, 0, 1, 1; p2/m2) = V (0, 1; p2/m2)V (0, 1; p2/m2) = 0,

V (0, 0, 1, 0, 1; p2/m2) = V (0, 1; p2/m2)V (0, 1; p2/m2) = 0,

V (0, 1, 0, 0, 1; p2/m2) = V (0, 1; p2/m2)V (1, 0; p2/m2) = 0,

V (1, 0, 0, 0, 1; p2/m2) = V (1, 0; p2/m2)V (0, 1; p2/m2) = 0,

V (0, 0, 1, 1, 0; p2/m2) = V (0, 1; p2/m2)V (0, 1; p2/m2) = 0,

V (0, 1, 0, 1, 0; p2/m2) = V (0, 0; p2/m2)V (1, 1; p2/m2) = 0,

V (1, 0, 0, 1, 0; p2/m2) = V (1, 0; p2/m2)V (0, 1; p2/m2) = 0,

V (0, 1, 1, 0, 0; p2/m2) = V (0, 1; p2/m2)V (1, 0; p2/m2) = 0,

V (1, 0, 1, 0, 0; p2/m2) = V (1, 1; p2/m2)V (0, 0; p2/m2) = 0,

V (1, 1, 0, 0, 0; p2/m2) = V (1, 0; p2/m2)V (1, 0; p2/m2) (4.133)

vanish. The last integral is the only non-vanishing one. Because of V (n1, 0; p2/m2) =
V (n1, 0;−1), however, the corresponding spectral density vanishes as well. But also in
other cases other simplifications are possible. If the last entry vanishes, the integral can
generally be written as a product of two massive one-loop integrals. If two other entries
vanish or take negative values, one of the integrals can be performed first. If this integral
it is a massless one-loop integral G, the result is again a product of two one-loop integrals
where the massive one-loop integral has a non-integer entry. Cases which can be resolved
in this kind are

V (0, 0, 1, 1, 1 : p2/m2) = 0,

V (0, 1, 0, 1, 1; p2/m2) = V (0, 1; p2/m2)V (1, 1; p2/m2) = 0,
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V (0, 1, 1, 0, 1; p2/m2) = G(1, 1)V (1, 2 −D/2; p2/m2),

V (0, 1, 1, 1, 0; p2/m2) = V (0, 1; p2/m2)V (1, 1; p2/m2) = 0,

V (1, 0, 0, 1, 1; p2/m2) = G(1, 1)V (1, 2 −D/2; p2/m2),

V (1, 0, 1, 0, 1; p2/m2) = V (1, 1; p2/m2)V (0, 1; p2/m2) = 0,

V (1, 0, 1, 1, 0; p2/m2) = V (1, 1; p2/m2)V (0, 1; p2/m2) = 0 (4.134)

where for the first two

1

(4π)D
(m2)D−3V (0, 0, 1, 1, 1; p2/m2) =

=
∫

dDk

(2π)D
dDl

(2π)D
1

(p− k)2(p− l)2(k − l)2
=

∫

dDk

(2π)D
dDl

(2π)D
1

k2l2(k − l)2
= 0,

1

(4π)D
(m2)D−3V (0, 1, 0, 1, 1; p2/m2) =

=
∫

dDk

(2π)D
dDl

(2π)D
1

(l2 +m2)(p− l)2(k − l)2
=
∫

dDk

(2π)D
1

k2

∫

dDl

(2π)D
1

(l2 +m2)(p− l)2
=

=
1

(4π)D
(m2)D−3V (0, 1; p2/m2)V (1, 1; p2/m2), (4.135)

the first vanishing because of the absence of an outer scale to represent the integral (this
rule will be called “scaling rule” in the following).

The nested integrals V ε(n1, n2; p
2/m2)

In some of the cases of taking one integration in advance, one is left with nested integrals
of the type

1

(4π)D/2
(m2)D/2−n1−n2V ε(n1, n2; q

2/m2) :=
∫

dDp

(2π)D
V (1, 1; p2/m2)

(p2 +m2)n1((q − p)2)n2
. (4.136)

A way to obtain a value for the integral for n1 = 0 is given by resolving the part
V (1, 1; p2/m2),

1

(4π)D
(m2)D−n2−2V ε(0, n2; q

2/m2) =
1

(4π)D/2
(m2)D/2−2

∫

dDp

(2π)D
V (1, 1; p2/m2)

((q − p)2)n2
=

=
∫

dDp

(2π)D
1

((q − p)2)n2

∫

dDk

(2π)D
1

(k2 +m2)(p− k)2
=

=
∫

dDk

(2π)D
1

(k2 +m2)

∫

dDp

(2π)D
1

((q − p)2)n2(p− k)2
=

=
1

(4π)D/2

∫ dDk

(2π)D
G(1, n2)

(k2 +m2)((q − k)2)n2+1−D/2 =

=
1

(4π)D
(m2)D/2−1−n2−1+D/2G(1, n2)V (1, 1 + n2 −D/2; q2/m2), (4.137)



4.4. THE FISH PROTOTYPES 175

therefore

V ε(0, n2; q
2/m2) = G(1, n2)V (1, 1 + n2 −D/2; q2/m2),

ρε(0, n2; s/m
2) = G(1, n2)ρV (1, 1 + n2 −D/2; s/m2). (4.138)

For n1 6= 0 a more involved method has been used, similar to the one used in the calcula-
tions for the massive contributions. However, the integrals will be calculated only for the
cases which are of interest, namely for n1 = 0 and n1 = 1. For n1 = 0 one obtains

1

(4π)D/2
(m2)D/2−n2V ε(0, n2; q

2/m2) =

=
∫

dDp

(2π)D
V (1, 1; p2/m2)

((q − p)2)n2
=

∫

dDp

(2π)D
1

((q − p)2)n2

∫

ρV (1, 1; s/m2)ds

s+ p2
=

=
∫

ρV (1, 1; s/m2)ds
∫

dDp

(2π)D
1

(p2 + s)((q − p)2)n2
=

=
1

(4π)D/2
(m2)D/2−1−n2

∫

ρV (1, 1; s/m2)V (1, n2; q
2/s)ds (4.139)

while for n1 = 1

1

(4π)D/2
(m2)D/2−1−n2V ε(1, n2; q

2/m2) =
∫

dDp

(2π)D
V (1, 1; p2/m2)

(p2 +m2)((q − p)2)n2
=

=
∫ dDp

(2π)D
1

(p2 +m2)((q − p)2)n2

∫ ρV (1, 1; s/m2)ds

s+ p2
=

=
∫ dDp

(2π)D
1

((q − p)2)n2

∫ ρV (1, 1; s/m2)

s−m2

(

1

p2 +m2
− 1

p2 + s

)

ds = (4.140)

=
1

(4π)D/2
(m2)D/2−1−n2

∫ ρV (1, 1; s/m2)

s−m2

(

V (1, n2; q
2/m2) − V (1, n2; q

2/s)
)

ds.

In this (second) case the first part results in the infinite constant

V (1, 1;−1) =
∫ ∞

m2

ρV (1, 1; s/m2)

s−m2
ds (4.141)

which will be a basic element later on. Therefore, one obtains

V ε(0, n2; q
2/m2) =

∫ ρV (1, 1; s/m2)

m2
V (1, n2; q

2/s)ds, (4.142)

V ε(1, n2; q
2/m2) = V (1, 1;−1)V (1, n2; q

2/m2) −
∫

m2

ρV (1, 1; s/m2)

s−m2
V (1, n2; q

2/s)ds.

The corresponding spectral densities are given by finite expressions,

ρεV (0, n2; s/m
2) =

∫ s

m2

ρV (1, 1; s1/m
2)

m2
ρV (1, n2; s/s1)ds1, (4.143)

ρεV (1, n2; s/m
2) = V (1, 1;−1)ρV (1, n2; s/m

2) −
∫ s

m2

ρV (1, 1; s1/m
2)

s1 −m2
ρV (1, n2; s/s1)ds1
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The integrals are limited to the interval [m2, s] by the two spectral densities involved. The
identification of an infinite term in the last expression can be called “passive subtraction”.
One obtains the same result in “active subtraction” by inserting

V (1, 1; p2/m2) =
∫ ρV (1, 1; s/m2)

s+ p2
ds = V (1, 1;−1) − (p2 +m2)

∫ ρV (1, 1; s/m2)

(s−m2)(s+ p2)
ds.

(4.144)
To conclude, one obtains

ρV (0, n2; 1/z) =
∫ 1

z

ρV (1, 1; 1/z1)

z2
1

ρV (1, n2; z1/z)dz1, (4.145)

ρV (1, n2; 1/z) = V (1, 1;−1)ρV (1, n2; 1/z) −
∫ 1

z

ρV (1, 1; 1/z1)

z1(1 − z1)
ρV (1, n2; z1/z)dz1.

For later convenience one changes to the hatted quantities

ρ̂εV (n1, n2; z) = zD/2−n1−n2−ερV (n1, n2; 1/z) (4.146)

and obtains

ρ̂εV (0, n2; z) = z1−ε
∫ 1

z

ρ̂V (1, 1; z1)

zn2+1
1

ρ̂V (1, n2; z/z1)dz1, (4.147)

ρ̂εV (1, n2; z) = z−ε
(

V (1, 1;−1)ρ̂V (1, n2; z) −
∫ 1

z

ρ̂V (1, 1; z1)

zn2
1 (1 − z1)

ρ̂V (1, n2; z/z1)dz1

)

.

Finally one can look at two special cases which are used in the following. The spectral
density ρ̂V (1, 0; z) vanishes, so that

ρ̂εV (0, 0; z) = ρ̂V (1, 0; z) = 0. (4.148)

For n2 = 1 one can use ρV (1, 1; z) = (1 − z)θ(1 − z) +O(ε) to obtain

∫ 1

z

ρ̂V (1, 1; z1)

z2
1

ρ̂V (1, 1; z/z1)dz1 =
∫ 1

z

1 − z1
z2
1

(

1 − z

z1

)

dz1 =
1 − z2

2z
+ ln z, (4.149)

∫ 1

z

ρ̂V (1, 1; z1)

z1(1 − z1)
ρ̂V (1, 1; z/z1)dz1 =

∫ 1

z

1 − z1
z1(1 − z1)

(

1 − z

z1

)

dz1 = z − 1 − ln z

and therefore (with V (1, 1;−1) = G/ε)

ρ̂εV (0, 1; z) = z1−ε
(

1 − z2

2z
+ ln z

)

=
1

2
(1 − z2) + z ln z,

ρ̂εV (1, 1; z) = z−ε (V (1, 1;−1)ρ̂V (1, 1; z) + 1 − z + ln z) =

=
G

ε
z−ερ̂V (1, 1; z) + 1 − z + ln z. (4.150)

The vector integral V ′(1, 1; p2/m2)

In cases of negative entries, one is left with a vector integral of the kind

1

(4π)D/2
(m2)D/2−2pµV ′(1, 1; p2/m2) :=

∫ dDk

(2π)D
kµ

(k2 +m2)(p− k)2
. (4.151)
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These integrals will also be calculated in advance at this point. By contracting the integral
with pµ one obtains

1

(4π)D/2
p2(m2)D/2−2V ′(1, 1; p2/m2) =

∫ dDk

(2π)D
pk

(k2 +m2)(p− k)2
=

=
1

2

∫

dDk

(2π)D
p2 + k2 − (p− k)2

(k2 +m2)(p− k)2
=

1

2

∫

dDk

(2π)D
p2 −m2 + k2 +m2 − (p− k)2

(k2 +m2)(p− k)2
=

=
1

2

∫

dDk

(2π)D
1

(p− k)2
+

1

2

∫

dDk

(2π)D
p2 −m2

(k2 +m2)(p− k)2
− 1

2

∫

dDk

(2π)D
1

k2 +m2
=

=
1

2(4π)D/2
(m2)D/2−2

(

(p2 −m2)V (1, 1; p2/m2) −m2V (1, 0;−1)
)

, (4.152)

such that

V ′(1, 1; p2/m2) =
1

2

(

1 − m2

p2

)

V (1, 1; p2/m2) − m2

2p2
V (1, 0;−1). (4.153)

The corresponding spectral density is given by

ρ′V (1, 1; s/m2) =
1

2

(

1 +
m2

s

)

ρV (1, 1; s/m2), ρ′V (1, 1; 1/z) =
1

2
(1 + z)ρ̂V (1, 1; 1/z).

(4.154)
Finally, one can restore the correlator by using the dispersion relation and an “active
subtraction”,

V ′(1, 1; p2/m2) =
∫ ρ′V (1, 1; s/m2)

s + p2
ds =

=
∫

ρ′V (1, 1; s/m2)

s−m2
− (p2 +m2)

∫

ρ′V (1, 1; s/m2)

(s+ p2)(s−m2)
ds =

= V ′(1, 1;−1) − (p2 +m2)
∫ ρ′V (1, 1; s/m2)

(s+ p2)(s−m2)
ds. (4.155)

One still has to calculate the singular part V ′(1, 1;−1). Here one uses

ρV (1, 1; 1/z) =
Γ(1 − ε)

Γ(2 − 2ε)
zε(1 − z)1−2ε, therefore

ρ′V (1, 1; 1/z) =
Γ(1 − ε)

2Γ(2 − 2ε)
(1 + z)zε(1 − z)1−2ε (4.156)

and so V (1, 1;−1) = Γ(ε)/(1 − 2ε) as before and

V ′(1, 1;−1) =
∫ ∞

m2

ρ′V (1, 1; s/m2)

s−m2
ds =

∫ 1

0

ρ′V (1, 1; 1/z)

m2/z −m2

m2

z2
dz =

=
∫ 1

0

ρ′V (1, 1; 1/z)

z(1 − z)
dz =

Γ(1 − ε)

2Γ(2 − 2ε)

∫ 1

0
(1 + z)zε−1(1 − z)−2εdz =

=
Γ(1 − ε)

2Γ(2 − 2ε)

(∫ 1

0
zε−1(1 − z)−2εdz +

∫ 1

0
zε(1 − z)−2εdz

)

=

=
Γ(1 − ε)

2Γ(2 − 2ε)

(

Γ(ε)Γ(1 − 2ε)

Γ(1 − ε)
+

Γ(1 + ε)Γ(1 − 2ε)

Γ(2 − ε)

)

=

=
Γ(ε)

2(1 − 2ε)

(

1 +
ε

1 − ε

)

=
Γ(ε)

2(1 − ε)(1 − 2ε)
=

G

2ε
(1 + ε) +O(ε). (4.157)
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4.4.2 Calculation of the prototypes

After having done some work in advance, most of the calculations for the prototypes are
straightforward. The calculation starts with the two most complicated prototypes, the
proper fish ρ̂V (1, 1, 1, 1, 1; z) and the spectacle ρ̂V (1, 1, 1, 1, 0; z) and leads to simpler cases.
In the end all prototypes are listed in order to have them at hand when the fish diagrams
are constructed.

The prototype ρ̂V (1, 1, 1, 1, 1; z) (proper fish)

One starts with the integral which is provided in Refs. [135, 137]. In the notation of
Ref. [135] it is the one called I, given by

I = F (1) + F (xaxb) − F (xa) − F (xb) +O(ε) (4.158)

where

F (x) =
∞
∑

n=1

xn

n3

(

2 + (2 − n ln x)2
)

=
∞
∑

n=1

xn

n3

(

6 − 4 lnx+ n2 ln2 x
)

=

= 6 Li3(x) − 4 Li2(x) ln x+ Li1(x) ln2 x. (4.159)

In the limit mb → 0, xb tends to zero and xa to m2/(m2 − q2). After a thorough analysis
of the limiting process one obtains

I = F (1) − F

(

m2

m2 − q2

)

+O(ε) = 6ζ(3)− F

(

m2

m2 − q2

)

+O(ε). (4.160)

The next step is to construct a connection to the integrals V (expressed in powers of m2

so that no “external” discontinuity contributions from −q2 can arise). One obtains

I = −(−q2eγE )2ε

πD

∫

q2dDk dDl

(k2 −m2)(l2 −m2)(q − k)2(q − l)2(k − l)2
=

=
e2γEε(−q2)1+2ε

πD
(2π)2D ×

×
∫

dDk

(2π)D
dDl

(2π)D
1

(k2 −m2)(l2 −m2)(q − k)2(q − l)2(k − l)2
=

=
e2γEε(−q2)5−D

πD
(2π)2D 1

(4π)D
(m2)D−5V (1, 1, 1, 1, 1;−q2/m2) =

= e2γEε

(

−q2

m2

)5−D
V (1, 1, 1, 1, 1;−q2/m2) (4.161)

and thus, turned to Euclidean space,

V (1, 1, 1, 1, 1; q2/m2) = e−2γEε

(

q2

m2

)D−5 (

F (1) − F

(

m2

q2 +m2

))

+O(ε). (4.162)

Fortunately, one can use D = 4 because the quantities one has to calculate are finite.
Using

Disc ln

(

m2

m2 − s

)

= 2πi, Disc ln2

(

m2

m2 − s

)

= 4πi ln

(

m2

s−m2

)

= −4πi ln
(

s

m2
− 1

)

(4.163)
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and (cf. Appendix E.3)

Li1

(

m2

m2 − s

)

= − ln

(

1 − m2

m2 − s

)

= − ln
(

s

s−m2

)

= ln

(

1 − m2

s

)

(4.164)

one obtains

1

2πi
DiscF

(

m2

m2 − s

)

= −4 Li2

(

m2

m2 − s

)

− 2 ln

(

1 − m2

s

)

ln
(

s

m2
− 1

)

. (4.165)

Therefore, one ends up with

ρV (1, 1, 1, 1, 1; s/m2) =

=
(

− s

m2

)−1
(

4 Li2

(

m2

m2 − s

)

+ 2 ln

(

1 − m2

s

)

ln
(

s

m2
− 1

)

)

=

= −m
2

s

(

4 Li2

(

m2

m2 − s

)

+ 2 ln

(

1 − m2

s

)

ln
(

s

m2
− 1

)

)

. (4.166)

With z = m2/s one obtains

ρV (1, 1, 1, 1, 1; 1/z) = −z
(

4 Li2

(

z

z − 1

)

+ 2 ln(1 − z) ln
(

1

z
− 1

))

. (4.167)

Now the dilogarithm identity

Li2

(

z

z − 1

)

= −Li2(z) −
1

2
ln2(1 − z) (4.168)

can be used to obtain

ρV (1, 1, 1, 1, 1; 1/z) = z
(

4 Li2(z) + 2 ln2(1 − z) − 2 ln(1 − z) (ln(1 − z) − ln z)
)

=

= z (4 Li2(z) + 2 ln(1 − z) ln z) . (4.169)

In the final representation the prototype reads

ρ̂V (1, 1, 1, 1, 1; z) = zD−5ρV (1, 1, 1, 1, 1; 1/z) = z−1−2ερV (1, 1, 1, 1, 1; 1/z) =

= 4
(

Li2(z) +
1

2
ln(1 − z) ln z

)

+O(ε). (4.170)

The prototype ρ̂V (1, 1, 1, 1, 0; z) (spectacle)

Switching to the Euclidean domain, the first (naive) approach to this prototype on the
correlator level is given by

(m2)1−ε

(4π)D/2
V (1, 1, 1, 1, 0, 1; q2/m2) =

=
∫ dDp

(2π)D
1

(q − p)2
V (1, 1; p2/m2)V (1, 1; p2/m2) =

=
∫

dDp

(2π)D
1

(q − p)2

∫

ρV (1, 1; s1/m
2)

s1 + p2
ds1

∫

ρV (1, 1; s2/m
2)

s2 + p2
ds2 =

=
∫

λ̃(q2, s1, s2)ρV (1, 1; s1/m
2)ρV (1, 1; s2/m

2)ds1ds2 (4.171)
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where the entry 1 attached to the arguments indicates the explicit propagator. However,
the convolution function will lead to an explicite infrared divergence. This cannot be seen
in the two-fold integral but will emerge at the end. In order to avoid this one can use the
subtraction at the point p2 = −m2 by writing

V (1, 1; p2/m2) =
∫ ρV (1, 1; s/m2)ds

s+ p2
= V (1, 1;−1) −

∫ (p2 +m2)ρV (1, 1; s/m2)

(s−m2)(s+ p2)
ds.

(4.172)
Therefore, one ends up with three contributions,

(m2)1−ε

(4π)D/2
V (1, 1, 1, 1, 0, 1; q2/m2) = (4.173)

=
∫

dDp

(2π)D
V (1, 1;−1)2

(q − p)2
− 2

∫

dDp

(2π)D
V (1, 1;−1)

(q − p)2

∫

(p2 +m2)ρV (1, 1; s1/m
2)

(s1 −m2)(s1 + p2)
ds1 +

+
∫

dDp

(2π)D
1

(q − p)2

∫

(p2 +m2)ρV (1, 1; s1/m
2)

(s1 −m2)(s1 + p2)
ds1

∫

(p2 +m2)ρV (1, 1; s2/m
2)

(s2 −m2)(s2 + p2)
ds2 =

=
∫

λ̃a(q
2, s1)ρV (1, 1; s1/m

2)ds1 +
∫

λ̃b(q
2, s1, s2)ρV (1, 1; s1/m

2)ρV (1, 1; s2/m
2)ds1ds2

where the first term vanishes. One again has an algebra of convolution functions which
can be constructed within the Euclidean domain as

λ̃n(q
2, s) =

∫

dDp

(2π)D
(p2 +m2)n

(s−m2)n(s+ p2)(q − p)2
= (−1)nλ̃0(q

2, s), (4.174)

λ̃0(q
2, s) =

∫ dDp

(2π)D
1

(s+ p2)(q − p)2
=

1

(4π)D/2
V (1, 1; q2/s). (4.175)

The convolution function for the remaining first (mixed) part is then given by

λ̃a(q
2, s1) = −2V (1, 1;−1)

∫

dDp

(2π)D
p2 +m2

(s1 −m2)(s1 + p2)(q − p)2
=

= −2V (1, 1;−1)λ̃1(q
2, s1) = 2V (1, 1;−1)λ̃0(q

2, s1), (4.176)

λa(s, s1) = 2V (1, 1;−1)λ0(s, s1) (4.177)

while for the last (bilinear) part one needs more effort. First, one can perform a partial
fractioning for the integrand to obtain

λ̃b(q
2, s1, s2) =

∫

dDp

(2π)D
(p2 +m2)2

(s1 −m2)(s2 −m2)(s1 + p2)(s2 + p2)(q − p)2
=

=
1

(s1 −m2)(s2 −m2)(s2 − s1)

∫

dDp

(2π)D

(

(p2 +m2)2

(s1 + p2)(q − p)2
− (p2 +m2)2

(s2 + p2)(q − p)2

)

=

=
(s1 −m2)2λ̃2(q

2, s1) − (s2 −m2)2λ̃2(q
2, s2)

(s1 −m2)(s2 −m2)(s2 − s1)
=

=
(s1 −m2)2λ̃0(q

2, s1) − (s2 −m2)2λ̃0(q
2, s2)

(s1 −m2)(s2 −m2)(s2 − s1)
. (4.178)

Therefore, one has

λb(s, s1, s2) =
(s1 −m2)2λ0(s, s1) − (s2 −m2)2λ0(s, s2)

(s1 −m2)(s2 −m2)(s2 − s1)
. (4.179)
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Second, one uses the symmetry of this expression with respect to the interchange of s1 and
s2 and performs the integration over s2 with the spectral density ρV (1, 1, s2/m

2) explicitly,
obtaining an effective convolution function

λb(s, s1) = 2λ0(s, s1)
∫ ∞

m2

s1 −m2

s2 −m2
Prin

(

1

s2 − s1

)

(

1 − m2

s2

)

ds2 =

= 2λ0(s, s1) Prin
∫ ∞

m2

s1 −m2

s2(s2 − s1)
ds2 =

= 2λ0(s, s1)
s1 −m2

s1

Prin
∫ ∞

m2

(

1

s2 − s1

− 1

s2

)

ds2 =

= 2λ0(s, s1)
s1 −m2

s1

lim
s0→∞

lim
ǫ→0

{

∫ s1−ǫ

m2

ds2

s2 − s1

+
∫ s0

s1+ǫ

ds2

s2 − s1

−
∫ s0

m2

ds2

s2

}

=

= 2λ0(s, s1)
s1 −m2

s1
lim
s0→∞

{

ln
(

s0

s1 −m2

)

− ln
(

s0

m2

)

}

=

= −2λ0(s, s1)
s1 −m2

s1
ln

(

s1 −m2

m2

)

. (4.180)

The principal value integration necessary here works fine, in contrast to the unsubtracted
case. One then can collect both contributions to obtain an effective convolution function

λ(s, s1) = λa(s, s1) + λb(s, s1) = 2λ0(s, s1)

(

V (1, 1;−1) −
(

1 − m2

s1

)

ln
(

s1

m2
− 1

)

)

.

(4.181)
If one inserts this into the integrand of Eq. (4.173) and takes the discontinuity, one obtains

(m2)1−ε

(4π)D/2
ρV (1, 1, 1, 1, 0, 1; s/m2) =

=
∫

2λ0(s, s1)

(

V (1, 1;−1) −
(

1 − m2

s1

)

ln
(

s1

m2
− 1

)

)

ρV (1, 1; s1/m
2)ds1. (4.182)

Therefore, one can also extract a two-loop spectral density which is given by

ρV (1, 1, 1, 1, 0; 1/z) = 2
(

V (1, 1;−1) − (1 − z) ln
(

1

z
− 1

))

ρV (1, 1; 1/z), (4.183)

and which is transformed to

ρ̂V (1, 1, 1, 1, 0; z) = zD−4ρV (1, 1, 1, 1, 0; 1/z) =

= 2z−2ε
(

V (1, 1;−1) − (1 − z) ln
(

1

z
− 1

))

ρV (1, 1; 1/z) =

= 2z−ε
(

V (1, 1;−1) − (1 − z) ln
(

1

z
− 1

))

ρ̂V (1, 1; z) =

= 2
G

ε
z−ερ̂V (1, 1; z) + 2(1 − z)2 (ln(1 − z) − ln z) . (4.184)

The prototype ρ̂V (1, 1, 0, 1, 1; z) and other prototypes of that kind

Prototypes with the entries n1 = n2 = n5 = 1 and one of the other entries vanishing or
negative reduce to the nested integrals or the vector integral. The first two are easily
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obtained using

1

(4π)D
(m2)D−3−n4V (1, 1, 0, n4, 1) =

=
∫

dDk

(2π)D
dDl

(2π)D
1

(k2 +m2)(l2 +m2)((p− l)2)n4(k − l)2
=

=
∫

dDl

(2π)D
1

(l2 +m2)((p− l)2)n4

∫

dDk

(2π)D
1

(k2 +m2)(l − k)2
= (4.185)

=
1

(4π)D/2
(m2)D/2−2

∫ dDl

(2π)D
V (1, 1; l2/m2)

(l2 +m2)((p− l)2)n4
=

(m2)D−3−n4

(4π)D
V ε(1, n4; p

2/m2)

so simply ρ̂V (1, 1, 0, n4, 1; z) = ρ̂εV (1, n4; z) and therefore

ρ̂V (1, 1, 0, 1, 1; z) = ρ̂εV (1, 1; z) = z−εV (1, 1;−1)ρ̂V (1, 1; z) + 1 − z + ln z,

ρ̂V (1, 1, 0, 0, 1; z) = ρ̂εV (1, 0; z) = 0. (4.186)

For the last member of this family one has to calculate more,

1

(4π)D
(m2)D−3V (1, 1,−1, 1, 1; p2/m2) =

=
∫

dDk

(2π)D
dDl

(2π)D
(p− k)2

(k2 +m2)(l2 +m2)(p− l)2(k − l)2
=

=
∫ dDk

(2π)D
dDl

(2π)D
(p2 −m2) + (k2 +m2) − 2pk

(k2 +m2)(l2 +m2)(p− l)2(k − l)2
=

= (p2 −m2)
∫

dDk

(2π)D
dDl

(2π)D
1

(k2 +m2)(l2 +m2)(p− l)2(k − l)2
+

−2pµ

∫

dDk

(2π)D
dDl

(2π)D
kµ

(k2 +m2)(l2 +m2)(p− l)2(k − l)2
=

= (p2 −m2)
1

(4π)D
(m2)D−4V (1, 1, 0, 1, 1; p2/m2) +

− 2

(4π)D/2
(m2)D/2−2pµ

∫

dDl

(2π)D
lµV ′(1, 1; l2/m2)

(l2 +m2)(p− l)2
(4.187)

where the vector integral came in. In using Eq. (4.155) one continues with

1

(4π)D
(m2)D−3

(

V (1, 1,−1, 1, 1; p2/m2) +

(

1 − p2

m2

)

V (1, 1, 0, 1, 1; p2/m2)

)

=

= − 2

(4π)D/2
(m2)D/2−2V ′(1, 1;−1)pµ

∫

dDl

(2π)D
lµ

(l2 +m2)(p− l)2
+

+
2

(4π)D/2
(m2)D/2−2

∫

dDl

(2π)D
pl

(p− l)2

∫

ρ′V (1, 1; s/m2)

(s+ l2)(s−m2)
ds =

= − 2

(4π)D
(m2)D/2−4V ′(1, 1;−1)p2V ′(1, 1; p2/m2) +

+
2

(4π)D/2
(m2)D/2−2

∫ ∞

m2

ρ′V (1, 1; s/m2)

s−m2
ds
∫ dDl

(2π)D
pl

(s + l2)(p− l)2
=
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= − 2

(4π)D
(m2)D/2−4p2V ′(1, 1;−1)V ′(1, 1; p2/m2) +

+
2

(4π)D
(m2)D−4p2

∫ ∞

m2

ρ′V (1, 1; s/m2)

s−m2
V ′(1, 1; p2/s)ds (4.188)

and thus

V (1, 1,−1, 1, 1; p2/m2) +

(

1 − p2

m2

)

V (1, 1, 0, 1, 1; p2/m2) =

= −2
p2

m2
V ′(1, 1;−1)V ′(1, 1; p2/m2) + 2

p2

m2

∫ ∞

m2

ρ′V (1, 1; s/m2)

s−m2
V ′(1, 1; p2/s)ds. (4.189)

For the spectral density one therefore obtains

ρV (1, 1,−1, 1, 1; s/m2) +
(

1 +
s

m2

)

ρV (1, 1, 0, 1, 1; s/m2) =

=
2s

m2
V ′(1, 1;−1)ρ′V (1, 1; s/m2) − 2s

m2

∫ s

m2

ρ′V (1, 1; s1/m
2)

s1 −m2
ρ′V (1, 1; s/s1)ds1 (4.190)

or

ρV (1, 1,−1, 1, 1; 1/z) +
(

1 +
1

z

)

ρV (1, 1, 0, 1, 1; 1/z) =

=
2

z
V ′(1, 1;−1)ρ′V (1, 1; 1/z) − 2

z

∫ m2/z

m2

ρ′V (1, 1; s1/m
2)

s1 −m2
ρ′V (1, 1;m2/s1z)ds1 =

=
1

z
(1 + z)V ′(1, 1;−1)ρV (1, 1; 1/z) − 2

z

∫ 1

z

ρ′V (1, 1; 1/z1)

z1(1 − z1)
ρ′V (1, 1; z1/z)dz1. (4.191)

Finally, in using the hat notation,

ρ̂V (1, 1,−1, 1, 1; z) + (1 + z)ρ̂V (1, 1, 0, 1, 1; z) =

= (1 + z)V ′(1, 1;−1)z−ερ̂V (1, 1; z) − 2
∫ 1

z

ρ̂′V (1, 1; z1)

z1(1 − z1)
ρ̂′V (1, 1; z/z1)dz1. (4.192)

The integral in the last expression can be calculated, one obtains
∫ 1

z

ρ̂′V (1, 1; z1)

z1(1 − z1)
ρ̂′V (1, 1; z/z1)dz1 =

1

4

∫ 1

z

(1 − z2
1)

z1(1 − z1)

(

1 − z2

z2
1

)

dz1 =

=
1

4

∫ 1

z

1 + z

z

(

1 − z2

z2
1

)

dz1 =
1

8

(

1 − 4z + 3z2 − 2 ln z
)

(4.193)

and therefore

ρ̂V (1, 1,−1, 1, 1; z) = −(1 + z)ρV (1, 1, 0, 1, 1; z) +

+(1 + z)V ′(1, 1;−1)z−ερ̂V (1, 1; z) − 1

4
+ z − 3

4
z2 +

1

2
ln z =

= −(1 + z)ρV (1, 1, 0, 1, 1; z) +

+
1

2
(1 + z)

G

ε
z−ερ̂V (1, 1; z) +

1

2
(1 + z)(1 − z) − 1

4
+ z − 3

4
z2 +

1

2
ln z =

= −(1 + z)ρV (1, 1, 0, 1, 1; z) +
1

2
(1 + z)

G

ε
z−ερ̂V (1, 1; z) +

1

4
+ z − 5

4
z2 +

1

2
ln z =

= −1

2
(1 + z)

G

ε
z−ερ̂V (1, 1; z) − 3

4
+ z − 1

4
z2 −

(

1

2
+ z

)

ln z. (4.194)
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The prototype ρ̂V (1, 1, 1, 1,−1; z)

For this prototype one obtains

1

(4π)D
(m2)D−3V (1, 1, 1, 1,−1; p2/m2) =

=
∫

dDk

(2π)D
dDl

(2π)D
(k − l)2

(k2 +m2)(l2 +m2)(p− k)2(p− l)2
=

=
∫

dDk

(2π)D
dDl

(2π)D
(k2 +m2) + (l2 +m2) − 2kl − 2m2

(k2 +m2)(l2 +m2)(p− k)2(p− l)2
=

= −2m2
∫ dDk

(2π)D
dDl

(2π)D
1

(k2 +m2)(l2 +m2)(p− k)2(p− l)2
+

−2
∫

dDk

(2π)D
dDl

(2π)D
kl

(k2 +m2)(l2 +m2)(p− k)2(p− l)2
=

= −2m2 1

(4π)D
(m2)D−4V (1, 1, 1, 1, 0; p2/m2) +

−2
1

(4π)D
(m2)D−4pµp

µV ′(1, 1; p2/m2)V ′(1, 1; p2/m2), (4.195)

so

V (1, 1, 1, 1,−1; p2/m2) = −2V (1, 1, 1, 1, 0; p2/m2) − 2
p2

m2
V ′(1, 1; p2/m2)2. (4.196)

Next one subtracts the divergence by taking

V ′(1, 1; p2/m2) = V ′(1, 1;−1) + ∆V ′(1, 1; p2/m2), (4.197)

where

∆V ′(1, 1; p2/m2) = V ′(1, 1; p2/m2) − V ′(1, 1;−1) = (4.198)

= −(p2 +m2)
∫ ∞

m2

ρ′V (1, 1; s/m2)

(s+ p2)(s−m2)
ds = −1

2
(p2 +m2)

∫ ∞

m2

(1 −m4/s2)ds

(s + p2)(s−m2)
=

= −1

2
(p2 +m2)

∫ 1

0

(1 − z2)dz

(m2 + p2z)(1 − z)
= −1

2

(

1 +
m2

p2

)(

1 +

(

1 − m2

p2

)

ln

(

1 +
p2

m2

))

.

Here the result for ρ′V (1, 1; s/m2) in Eq. (4.154) in D = 4 space-time dimensions has been
used. The squared expression is

(

∆V ′(1, 1; p2/m2)
)2

= (4.199)

=
1

4

(

1 +
m2

p2

)2


1 + 2

(

1 − m2

p2

)

ln

(

1 +
p2

m2

)

+

(

1 − m2

p2

)2

ln2

(

1 − p2

m2

)



 .

With

1

2πi
Disc ln

(

1 − s

m2

)

= −1,
1

2πi
Disc ln2

(

1 − s

m2

)

= −2 ln
(

s

m2
− 1

)

(4.200)
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one obtains

1

2πi
Disc ∆V ′(1, 1;−s/m2) =

=
1

2

(

1 − m2

s

)(

1 +
m2

s

)

=
1

2

(

1 − m4

s2

)

= ρ′V (1, 1; s/m2),

1

2πi
Disc

(

∆V ′(1, 1;−s/m2)
)2

=

=
1

4

(

1 − m2

s

)2


−2

(

1 +
m2

s

)

− 2

(

1 +
m2

s

)2

ln
(

s

m2
− 1

)



 =

= −1

2

(

1 − m2

s

)2 (

1 +
m2

s

)(

1 +

(

1 +
m2

s

)

ln
(

s

m2
− 1

)

)

. (4.201)

The first result was expected. But because one multiplies this quantity with the divergence
V ′(1, 1;−1), one has to keep the exact expression ρ′V (1, 1; s/m2). Now one has

V (1, 1, 1, 1,−1; p2/m2) + 2V (1, 1, 1, 1, 0; p2/m2) = (4.202)

= −2
p2

m2
V ′(1, 1;−1)2 − 4

p2

m2
V ′(1, 1;−1)∆V ′(1, 1; p2/m2) − 2

p2

m2

(

∆V ′(1, 1; p2/m2)
)2

and therefore

ρV (1, 1, 1, 1,−1; s/m2) + 2ρV (1, 1, 1, 1, 0; s/m2) =

=
4s

m2
V ′(1, 1;−1)ρ′V (1, 1; s/m2) +

− s

m2

(

1 − m2

s

)2 (

1 +
m2

s

)(

1 +

(

1 +
m2

s

)

ln
(

s

m2
− 1

)

)

. (4.203)

or (using ρ′V (1, 1; 1/z) = (1 + z)ρV (1, 1; 1/z)/2)

ρV (1, 1, 1, 1,−1; 1/z) = −2ρV (1, 1, 1, 1, 0; 1/z) + (4.204)

+
2

z
(1 + z)V ′(1, 1;−1)ρV (1, 1; 1/z) − 1

z
(1 − z)2(1 + z)

(

1 + (1 + z) ln
(

1

z
− 1

))

.

Finally, in the hat notation, one arrives at

ρ̂V (1, 1, 1, 1,−1; z) = −2zρ̂V (1, 1, 1, 1, 0; z) + (4.205)

+2(1 + z)V ′(1, 1;−1)z−ερ̂V (1, 1; z) − (1 − z)2(1 + z)
(

1 + (1 + z) ln
(

1

z
− 1

))

=

= −2zρ̂V (1, 1, 1, 1, 0; z) + (1 + z)
G

ε
(1 + ε)z−ερ̂V (1, 1; z) +

−1 + z + z2 − z3 − (1 − 2z2 + z4) (ln(1 − z) − ln z) =

= (1 − 3z)
G

ε
z−ερ̂V (1, 1; z) + z − z3 − (1 − 4z + 6z2 − 4z3 + z4) (ln(1 − z) − ln z) =

= (1 − 3z)
G

ε
z−ερ̂V (1, 1; z) + (1 − z2)z − (1 − z)4 (ln(1 − z) − ln z) . (4.206)
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The prototype ρ̂V (0, 1, 1, 1, 1; z) and other prototypes of that kind

If one of the first two entries vanishes, the massless contribution can be integrated first.
In general one has

1

(4π)D
(m2)D−n2−n3−n4−n5V (0, n2, n3, n4, n5; p

2/m2) =

=
∫

dDk

(2π)D
dDl

(2π)D
1

(l2 +m2)n2((p− k)2)n3((p− l)2)n4((k − l)2)n5
=

=
∫ dDl

(2π)D
1

(l2 +m2)n2((p− l)2)n4

∫ dDk

(2π)D
1

((p− k)2)n3((k − l)2)n5
=

=
1

(4π)D/2
G(n3, n5)

∫

dDl

(2π)D
1

(l2 +m2)n2((p+ l)2)n3+n4+n5−D/2 =

=
1

(4π)D
(m2)D/2−n2−n3−n4−n5+D/2G(n3, n5)V (n2, n3 + n4 + n5 −D/2; p2/m2) (4.207)

and therefore

ρV (0, n2, n3, n4, n5; s/m
2) = G(n3, n5)ρV (n2, n3 + n4 + n5 −D/2; s/m2), (4.208)

ρ̂V (0, n2, n3, n4, n5; z) = G(n3, n5)ρ̂V (n2, n3 + n4 + n5 −D/2; z). (4.209)

For the prototypes in question one obtains

ρ̂V (0, 1, 1, 1, 1; z) = G(1, 1)ρ̂V (1, 1 + ε; z),

ρ̂V (0, 1, 1, 0, 1; z) = G(1, 1)ρ̂V (1, ε; z),

ρ̂V (0, 1, 1,−1, 1; z) = G(1, 1)ρ̂V (1, ε− 1; z). (4.210)

The last member of this family, ρ̂V (−1, 1, 1, 0, 1; z) is more complicated again,

1

(4π)D
(m2)D−2V (−1, 1, 1, 0, 1; p2/m2) =

∫

dDl

(2π)D
1

(l2 +m2)

∫

dDk

(2π)D
k2 +m2

(p− k)2(k − l)2
=

=
∫

dDl

(2π)D
1

(l2 +m2)

∫

dDk

(2π)D
(p− k)2 +m2

k2(p− l − k)2
=

= (p2 +m2)
∫ dDl

(2π)D
1

(l2 +m2)

∫ dDk

(2π)D
1

k2(p− l − k)2
+

−2pµ

∫

dDl

(2π)D
1

(l2 +m2)

∫

dDk

(2π)D
kµ

k2(p− l − k)2
+

+
∫

dDl

(2π)D
1

(l2 +m2)

∫

dDk

(2π)D
1

(p− l − k)2
. (4.211)

The inner integral of the last part vanishes because of the scaling rule, the one in the first
part is proportional to G(1, 1). The vector integral in the second part can be expanded
in the outer momentum (p− l). Therefore, one proceeds with

1

(4π)D
(m2)D−2V (−1, 1, 1, 0, 1; p2/m2) =
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=
1

(4π)D/2
(p2 +m2)G(1, 1)

∫ dDl

(2π)D
1

(l2 +m2)(p− l)2−D/2 +

−
∫

dDl

(2π)D
p2 − pl

(l2 +m2)(p− l)2

∫

dDk

(2π)D
2(p− l)k

k2(p− l − k)2
=

=
1

(4π)D
(m2)D/2−3+D/2(p2 +m2)G(1, 1)V (1, 2 −D/2; p2/m2) +

−
∫ dDl

(2π)D
p2 − pl

(l2 +m2)(p− l)2

∫ dDk

(2π)D
(p− l)2 + k2 − (p− l − k)2

k2(p− l − k)2
=

=
1

(4π)D
(m2)D−2

(

1 +
p2

m2

)

G(1, 1)V (1, 2 −D/2; p2/m2) +

−
∫

dDl

(2π)D
p2 − pl

(l2 +m2)

∫

dDk

(2π)D
1

k2(p− l − k)2
+

−
∫ dDl

(2π)D
p2 − pl

(l2 +m2)(p− l)2

∫ dDk

(2π)D
1

k2
+

+
∫

dDl

(2π)D
p2 − pl

(l2 +m2)(p− l)2

∫

dDk

(2π)D
1

(p− l − k)2
(4.212)

where the last two parts vanish again because of the scaling rule. Again one proceeds
with the first two integrals to obtain

1

(4π)D
(m2)D−2V (−1, 1, 1, 0, 1; p2/m2) =

=
1

(4π)D
(m2)D−2

(

1 +
p2

m2

)

G(1, 1)V (1, 2 −D/2; p2/m2) +

−1

2

∫

dDl

(2π)D
p2 +m2 − (l2 +m2) + (p− l)2

(l2 +m2)

∫

dDk

(2π)D
1

k2(p− l − k)2
=

=
1

(4π)D
(m2)D−2

(

1 +
p2

m2

)

G(1, 1)V (1, 2 −D/2; p2/m2) +

− 1

2(4π)D/2
G(1, 1)

∫

dDl

(2π)D
p2 +m2 − (l2 +m2) + (p− l)2

(l2 +m2)(p− l)2−D/2 =

=
1

(4π)D
(m2)D−2

(

1 +
p2

m2

)

G(1, 1)V (1, 2 −D/2; p2/m2) +

− 1

2(4π)D
G(1, 1)

[

(m2)D/2−3+D/2(p2 +m2)V (1, 2 −D/2; p2/m2) +

−(m2)D/2−2+D/2V (0, 2 −D/2; p2/m2) +

+(m2)D/2−2+D/2V (1, 1 −D/2; p2/m2)

]

=

=
1

(4π)D
(m2)D−2

(

1 +
p2

m2

)

G(1, 1)V (1, 2 −D/2; p2/m2) +

− 1

2(4π)D
(m2)D−2G(1, 1)

[(

1 +
p2

m2

)

V (1, 2 −D/2; p2/m2) +

−V (0, 2 −D/2; p2/m2) + V (1, 1 −D/2; p2/m2)

]

(4.213)
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such that finally

V (−1, 1, 1, 0, 1; p2/m2) = G(1, 1)

[(

1 +
p2

m2

)

V (1, 2 −D/2; p2/m2) +

−1

2

(

1 +
p2

m2

)

V (1, 2 −D/2; p2/m2) − 1

2
V (1, 1 −D/2; p2/m2)

]

=

=
1

2
G(1, 1)

[(

1 +
p2

m2

)

V (1, 2 −D/2; p2/m2) − V (1, 1 −D/2; p2/m2)

]

. (4.214)

The spectral density of this integral is given by

ρV (−1, 1, 1, 0, 1; 1/z) =
1

2
G(1, 1)

((

1 − 1

z

)

ρV (1, ε; 1/z) − ρV (1, ε− 1; 1/z)
)

(4.215)

or

ρ̂V (−1, 1, 1, 0, 1; z) = −1

2
G(1, 1) ((1 − z)ρ̂V (1, ε; z) + ρ̂V (1, ε− 1; z)) (4.216)

The different members of the family can be calculated by using

ρ̂V (1, ε− 1; z) =
1

Γ(ε− 1)Γ(3 − 2ε)

∫ 1

z
(1 − x)2−2εxε−2(x− z)2−2εdx,

ρ̂V (1, ε; z) =
1

Γ(ε)Γ(2 − 2ε)

∫ 1

z
(1 − x)1−2εxε−1(x− z)1−2εdx,

ρ̂V (1, ε+ 1; z) =
1

Γ(1 + ε)Γ(1 − 2ε)

∫ 1

z
(1 − x)−2εxε(x− z)−2εdx. (4.217)

Only the first member of this family contains a singularity. This singularity can be
extracted by a subtraction method. Using G(1, 1) = G/ε, one models the singular part
in the same way as in the previous cases, namely one gets it to be proportional to z−ε,

G(1, 1)ρ̂V (1, ε+ 1; z) =
G

ε
z−ερ̂V (1, 1; z) +

G

ε

(

ρ̂V (1, ε+ 1; z) − z−ερ̂V (1, 1; z)
)

(4.218)

With

ρ̂V (1, 1; z) =
1

Γ(1 − ε)

∫ 1

z
(1 − x)−ε(x− z)−εdx (4.219)

one has (using Γ(1 + ε)Γ(1 − 2ε) = Γ(1 − ε) +O(ε2))

1

ε

(

ρ̂V (1, 1 + ε; z) − z−ερV (1, 1; z)
)

=

=
1

ε

∫ 1

z
(1 − x)−ε(x− z)−ε

(

(1 − x)−εxε(x− z)−ε − z−ε
)

dx+O(ε) =

=
∫ 1

z
(ln z − ln(1 − x) + ln x− ln(x− z)) dx+O(ε) =

= 1 − z + (1 − 2z) ln z − 2(1 − z) ln(1 − z) +O(ε), (4.220)

such that

ρ̂V (0, 1, 1, 1, 1; z) =
G

ε
z−ερ̂V (1, 1; z)+1−z+(1−2z) ln z−2(1−z) ln(1−z)+O(ε). (4.221)
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The complete list of prototypes of this paragraph is given by

ρ̂V (0, 1, 1,−1, 1; z) = G(1, 1)ρ̂V (1, ε− 1; z) = −1

2

∫ 1

z

(1 − x)2(x− z)2

x2
dx =

= −1

2

(

1

3
+ 3z − 3z2 − 1

3
z3 + 2z(1 + z) ln z

)

=: −1

2
f̂1(z), (4.222)

ρ̂V (0, 1, 1, 0, 1; z) = G(1, 1)ρ̂V (1, ε; z) =

=
∫ 1

z

(1 − x)(x− z)

x
dx =

1 − z2

2
+ z ln z =: f̂2(z), (4.223)

ρ̂V (0, 1, 1, 1, 1; z) =
G

ε
z−ερ̂V (1, 1; z) + 1 − z + (1 − 2z) ln z − 2(1 − z) ln(1 − z), (4.224)

ρ̂V (−1, 1, 1, 0, 1; z) = −1

2
(1 − z)f̂1(z) +

1

4
f̂2(z) = −1

6
+ z − 1

2
z2 − 1

3
z3 + z2 ln z

(4.225)

where the finite parts are given up to O(ε0).

4.4.3 Tabulating all prototypes for the fish

Before they will be combined, all prototypes are listed in this subsection, starting from
the most complicated one, the proper fish prototype, to the vanishing ones. One has

ρ̂V (1, 1, 1, 1, 1; z) = 4
(

Li2(z) +
1

2
ln(1 − z) ln z

)

,

ρ̂V (1, 1, 1, 1, 0; z) = 2
G

ε
z−ερ̂V (1, 1; z) − 2(1 − z)2 (ln(1 − z) − ln z) ,

ρ̂V (1, 1, 1, 1,−1; z) = (1 − 3z)
G

ε
z−ερ̂V (1, 1; z) + (1 − z2)z − (1 − z)4 (ln(1 − z) − ln z) ,

ρ̂V (1, 1, 1, 0, 0; z) = V (1, 0;−1)z1−ερ̂(1, 1; z) = −G
ε
z1−ερV (1, 1; z) + (1 − z)z,

ρ̂V (1, 1,−1, 1, 1; z) = −1

2
(1 + z)

G

ε
z−ερ̂V (1, 1; z) − 3

4
+ z − 1

4
z2 −

(

1

2
+ z

)

ln z,

ρ̂V (1, 1, 0, 1, 1; z) =
G

ε
z−ερ̂V (1, 1; z) + 1 − z + ln z,

ρ̂V (0, 1, 1, 1, 1; z) =
G

ε
z−ερ̂V (1, 1; z) + 1 − z + (1 − 2z) ln z − 2(1 − z) ln(1 − z),

ρ̂V (0, 1, 1, 0, 1; z) =
1 − z2

2
+ z ln z,

ρ̂V (0, 1, 1,−1, 1; z) = −1

2

(

1

3
+ 3z − 3z2 − 1

3
z3 + 2z(1 + z) ln z

)

,

ρ̂V (−1, 1, 1, 0, 1; z) = −1

6
+ z − 1

2
z2 − 1

3
z3 + z2 ln z (4.226)

while

ρ̂V (1, 1, 0, 0, 1; z) = ρ̂V (0, 1, 1, 1, 0; z) = ρ̂V (0, 1, 0, 1, 1; z) = ρ̂V (0, 0, 1, 1, 1; z) = 0,

ρ̂V (1, 1, 0, 0, 0; z) = ρ̂V (0, 1, 1, 0, 0; z) = ρ̂V (0, 0, 1, 1, 0; z) = ρ̂V (0, 0, 0, 1, 1; z) = 0,

ρ̂V (0, 1, 0, 0, 1; z) = ρ̂V (0, 1, 0, 1, 0; z) = 0. (4.227)
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The list in terms of dimensional spectral densities

A second representation of the prototypes shall be given in terms of the dimensional
spectral densities ρ̃V (n1, n2, n3, n4, n5; s). Here one has (z = m2/s)

ρ̃V (1, 1, 1, 1, 1; s) =
4

s

(

Li2(z) +
1

2
ln(1 − z) ln z

)

,

ρ̃V (1, 1, 1, 1,−1; s) = −2m2ρ̃V (1, 1, 1, 1, 0; s) +

+(s+m2)ΠB(m2)ρB(s) + s(1 − z2)
(

z − (1 − z2) ln
(

z

1 − z

))

,

ρ̃V (1, 1, 1, 1, 0; s) = 2ΠB(m2)ρB(s) + 2(1 − z)2 ln
(

z

1 − z

)

,

ρ̃V (1, 1, 1, 0, 0; s) = −m2ΠB(m2)ρB(s) +m2(1 − z),

ρ̃V (1, 1, 0, 1, 1; s) = ΠB(m2)ρB(s) + 1 − z + ln z,

ρ̃V (1, 1,−1, 1, 1; s) = −(s+m2)ρ̃V (1, 1, 0, 1, 1; s) +

+
1

2
(s+m2)ΠB(m2)ρB(s) + s

(

1

4
+ z − 5

4
z2 +

1

2
ln z

)

,

ρ̃V (0, 1, 1, 1, 1; s) = ΠB(m2)ρB(s) + 1 − z + (1 − 2z) ln z − 2(1 − z) ln(1 − z),

ρ̃V (0, 1, 1, 0, 1; s) = s
(

1

2
− 1

2
z2 + z ln z

)

,

ρ̃V (0, 1, 1,−1, 1; s) = −1

2
s2
(

1

3
+ 3z − 3z2 − 1

3
z3 + 2z(1 + z) ln z

)

,

ρ̃V (−1, 1, 1, 0, 1; s) = s2
(

−1

6
+ z − 1

2
z2 − 1

3
z3 + z2 ln z

)

(4.228)

and

ρ̃V (1, 1, 0, 0, 1; s) = ρ̃V (0, 1, 1, 1, 0; s) = ρ̃V (0, 1, 0, 1, 1; s) = ρ̃V (0, 0, 1, 1, 1; s) = 0,

ρ̃V (1, 1, 0, 0, 0; s) = ρ̃V (0, 1, 1, 0, 0; s) = ρ̃V (0, 0, 1, 1, 0; s) = ρ̃V (0, 0, 0, 1, 1; s) = 0,

ρ̃V (0, 1, 0, 1, 0; s) = ρ̃V (0, 1, 0, 0, 1; s) = 0. (4.229)

4.5 The general renormalization procedure

It turns out that the method developed for the light contribution and the massive self
energy contribution to extract and combine the singularities in a renormalization factor
also works for the fish contribution. Therefore, it can be used for the whole contribution.
The following considerations will give a general outline of this procedure. One starts with
the assumption that before the convolution is done, the spectral density is given by

ρ̃ = ΠB(−m2)ρ̃s + ρ̃f (4.230)

where the singularity is parametrized by ΠB(−m2), and ρ̃s is called the singular and ρ̃f

the finite part. Note that one has ΠB(−m2)ε = 1 + O(ε2). If the convolution function λ
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is split up into a zeroth and first order term according to λ = λ0 + ελ1, the product of
both results in

λρ̃ = ΠB(−m2)λ0ρ̃s + ΠB(−m2)ελ1ρ̃s + λ0ρ̃f = ΠB(−m2)λ0ρ̃s + λ1ρ̃s + λ0ρ̃f . (4.231)

The integration (convolution) therefore results in

ρ =
∫

λρ̃ = ΠB(−m2)
∫

λ0ρ̃s +
∫

(λ1ρ̃s + λ0ρ̃f ) = ΠB(−m2)ρs + ρf (4.232)

so that
ρs =

∫

λ0ρ̃s, ρf =
∫

(λ1ρ̃s + λ0ρ̃f ). (4.233)

If ρ0 = ρ0
0+ερ1

0 is the leading order spectral density, the bare spectral density to first order
is given by ρB = ρ0+ρ. This quantity has to be renormalized. This is done by multiplying
it with the inverse of the renormalization factor Z = 1 + ΠB(−m2)Z1 to obtain

ρR = Z−1ρB =
(

1 − ΠB(−m2)Z1

) (

ρ0
0 + ερ1

0 + ΠB(−m2)ρs + ρf
)

=

= ρ0
0 − ΠB(−m2)Z1ρ

0
0 − ΠB(−m2)Z1ερ

1
0 + ΠB(−m2)ρs + ρf =

= ρ0
0 + ΠB(−m2)

(

ρs − Z1ρ
0
0

)

+ ρf − Z1ρ
1
0. (4.234)

If the renormalization is multiplicative, the coefficient Z1 is such that Z1ρ
0
0 = ρs, and with

this Z1 one then obtains ρR = ρ0
0 + ρf − Z1ρ

1
0 = ρ0 + ρ1. The renormalization factor can

even be a part of the whole factor (and the coefficient Z1 a part of the sum) if ρ is a part
of the first order correction (e.g. the fish contribution) only.

A more elegant method is possible if the singular part ρ̃s of the first order correction
is proportional to ρ̃0 where ρ0 =

∫

λρ̃0. In this case one can collect for a renormalization
factor,

ρ̃0 + ΠB(−m2)ρ̃s = Zρ̃0. (4.235)

Then the renormalization is already possible before the convolution takes place, the lead-
ing order term need not to be expanded, and the finite first order contribution will not
be changed,

ρ̃B = Zρ̃0 + ρ̃f , ρ̃R = Z−1ρ̃B = ρ̃0 + ρ̃f . (4.236)

Both methods can be compared if one convolutes the latter result with λ. One then has

ρB =
∫

λ(Zρ̃0 + ρ̃f ) = Zρ0 +
∫

λρ̃f = Zρ0 +
∫

λ0ρ̃f , (4.237)

ρR = ρ0 +
∫

λ0ρ̃f
!
= ρ0 +

∫

(λ1ρ̃s + λ0ρ̃f) − Z1ρ
1
0 = ρ0 + ρf − Z1ρ

1
0.

Together with the condition for the vanishing of the singular part one obtains

Z1ρ
0
0 = ρs =

∫

λ0ρ̃s, Z1ρ
1
0 = ρf −

∫

λ0ρ̃f =
∫

λ1ρ̃s ⇒ Z1ρ0 =
∫

λρ̃s. (4.238)

This equality can be checked for the mass part and turns out to be valid. This will be
shown here in the exact ε dependence. The coefficient of the divergence is given by

ρ̃s(m2/z1) = 4(1 − z1) × z−ε1 ρ̂V (1, 1; z1) × (m2/z1)
1−2ε = 4(m2)1−2εG

(1 − z1)
2−2εzε−1

1

Γ(1 − ε)Γ(1 + ε)
(4.239)
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where the different factor (separated by “×”) come from (1) the coefficient of the divergent
part, (2) the divergence itself (up to ΠB(−m2)), and (3) the common factor sD−3

1 = s1−2ε
1

of ρ̃qc21(s1). As next, the convolution function is given by (cf. Eq. (4.88))

λ(s, s1) =
s−ε

2(4π)2−ε

(

s

s1
− 1

)

ρ̂V (1, 1; s1/s) ⇒

λ

(

m2

z
,
m2

z1

)

=
(m2)−εzε

2(4π)2−ε

(

z1
z
− 1

)

ρ̂V (1, 1; z/z1) =

=
(m2)−εzε

2(4π)2−ε

(

z1
z
− 1

)

G

Γ(1 − ε)Γ(1 + ε)

(

1 − z

z1

)1−2ε

=

=
(m2)−εG

2(4π)2−ε
zε−1(z1 − z)2−2εz2ε−1

1

Γ(1 − ε)(1 + ε)
. (4.240)

For the convolution one therefore obtains

ρ(m2/z) =
∫

λ(m2/z, s1)ρ̃
s(s1)ds1 =

∫ 1

z
λ

(

m2

z
,
m2

z1

)

ρ̃s
(

m2

z1

)

dz1
z2
1

=

=
2(m2)2−3εzε−1G2

(4π)2−εΓ(1 + ε)2Γ(1 − ε)2

∫ 1

z
(1 − z1)

2−2εz3ε−4
1 (z1 − z)2−2εdz1. (4.241)

This appears not to be proportional to ρ0. However, one can perform a conformal trans-
formation z1 → z/z1 and obtains

ρ(m2/z) =
2(m2)2−3εzε−1G2

(4π)2−εΓ(1 − ε)2Γ(1 − ε)2

∫ 1

z

(

1 − z

z1

)2−2ε ( z

z1

)3ε−4 ( z

z1
− z

)2−2ε

z
dz1
z2
1

=

=
2(m2)2−3εzε−1+3ε−4+2−2ε+1G2

(4π)2−2εΓ(1 − ε)2Γ(1 + ε)2

∫ 1

z
(z1 − z)2−2ε z−2+2ε+4−3ε−2+2ε−2

1 (1 − z1)
2−2ε dz1 =

=
2(m2)2−3εz2ε−2G2

(4π)2−2εΓ(1 − ε)2Γ(1 + ε)2

∫ 1

z
(z1 − z)2−2εzε−2

1 (1 − z1)
2−2εdz1. (4.242)

This has to be compared with ρ0(s) = ρma1(s),

ρ0(m
2/z) = −2(m2/z)2−2εG

(4π)2−ε C1ĝ1(z) (4.243)

where ĝn(z) and Cn are defined in Eq. (4.38). Now one has

C−1
1 = εΓ(ε− 1)Γ(3 − 2ε) = εΓ(ε− 1)(2 − 2ε)Γ(2 − 2ε) =

= −2ε(ε− 1)Γ(ε− 1)Γ(2 − 2ε) = −2Γ(1 + ε)Γ(2 − 2ε) =

= −2Γ(1 + ε)2Γ(1 − ε)2/G (4.244)

(cf. Eq. (4.5)) and therefore

ρ0(m
2/z) =

(m2/z)2−2εG2

(4π)2−2εΓ(1 + ε)2Γ(1 − ε)2

∫ 1

z
(1 − z1)

2−2εzε−2
1 (z1 − z)2−2εdz1. (4.245)

Therefore, one finally obtains

ρ(m2/z) = 2(m2)−ερ0(m
2/z). (4.246)
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4.5.1 The final result for the mass part

The final result for the mass part reads

ρm(s) =
1

128π4
ρm(s), ρm(s) = s2

{

ρm0 (s)

(

1 +
αs
π

ln

(

µ2

m2

))

+
αs
π
ρm1 (s)

}

(4.247)

where

ρm0 (m2/z) = 1 + 9z − 9z2 − z3 + 6z(1 + z) ln z, (4.248)

ρm1 (m2/z) = 9 +
665

9
z − 665

9
z2 − 9z3 −

(

58

9
+ 42z − 42z2 − 58

9
z3
)

ln(1 − z) +

+
(

2 +
154

3
z − 22

3
z2 − 58

9
z3
)

ln z + 4
(

1

3
+ 3z − 3z2 − 1

3
z3
)

ln(1 − z) ln z +

+12z
(

2 + 3z +
1

9
z2
)(

1

2
ln2 z − ζ(2)

)

+ 4
(

2

3
+ 12z + 3z2 − 1

3
z3
)

Li2(z) +

+24z(1 + z)
(

Li3(z) − ζ(3) − 1

3
Li2(z) ln z

)

. (4.249)

4.5.2 The final result for the momentum part

For the momentum part one has to work harder to come to a final result. The reason
is three-fold. First, the leading order term consists of a combination of two (or three)
fundamental spectral densities. Besides this, however, the light and massive contribution
can be worked on like in the mass part calculation because the unintegrated singular parts
are proportional to the unintegrated leading order contribution. The two other reasons
are related to the fish contributions. First, the vector structure is replaced by the tensor
structure, therefore there are two instead of one contribution which have to be convoluted.
Second and more serious, the unintegrated singular part of the fish is not proportional to
the unintegrated leading order contribution. But one can now profit from the thorough
considerations at the beginning of this section and use the integrated subtraction which
works because the integrated singular part is proportional to the leading order term.

To conclude, the result for the momentum part is given by the same general structure
as for the mass part,

ρq(s) =
1

128π4
ρq(s), ρq(s) = s2

{

ρq0(s)

(

1 +
αs
π

ln

(

µ2

m2

))

+
αs
π
ρq1(s)

}

(4.250)

where

ρq0(s) =
1

4
− 2z + 2z3 − 1

4
z4 − 3z2 ln z, (4.251)

ρq1(s) =
1

4

{

71

12
− 565

9
z − 7

2
z2 +

625

9
z3 − 109

12
z4 +

−1

9

(

49 − 464z + 464z3 − 49z4
)

ln(1 − z) +
(

1 − 68

3
z − 44z2 +

452

9
z3 − 49

9
z4
)

ln z +

+
4

3

(

1 − 8z + 8z3 − z4
)

ln(1 − z) ln z + z2
(

54 + 8z − z2
)

(

2

9
π2 − 2

3
ln2 z

)

+ (4.252)

+
4

3

(

2 − 16z − 54z2 + 8z3 − z4
)

Li2(z) − 16z2 (3 Li3(z) − 3ζ(3) − Li2(z) ln(z))

}

.
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4.6 Comparison with different QCD limits

The results given in Eqs. (4.249) and (4.252) represent the full next-to-leading order solu-
tion. Since the anomalous dimension of the current in Eq. (4.1) is known up to two-loop
order [138], the results shown in Eqs. (4.249) and (4.252) complete the ingredients neces-
sary for an analysis of the correlator in Eq. (4.2) within an operator product expansion
at the next-to-leading order level.

The next step is the analysis Eqs. (4.249) and (4.252). Two limiting cases of general
interest are the near-threshold and the high energy asymptotics. With the result given in
Eqs. (4.249) and (4.252) both limits can be taken explicitly. The asymptotic expressions
can be also obtained in the framework of effective theories which can be viewed as special
devices for such calculations.

4.6.1 The high energy limit

In the high energy (or, equivalently, small mass) limit z → 0 the corrections read

ρm1 (s) = 9 + 83z − 4π2z + 2 ln z + 50z ln z + 12z ln2 z − 24zζ(3) +O(z2),

ρq1(s) =
71

48
+

1

4
ln z − 41

3
z − 6z ln z +O(z2). (4.253)

Therefore one obtains

ρq(s) = ρqmassless(s) = (4.254)

=
s2

4

{

1 +
αs
π

(

ln

(

µ2

s

)

+
71

12

)}

− 2m2
MS

(µ)s

{

1 +
αs
π

(

3 ln

(

µ2

s

)

+
19

2

)}

,

mρm(s) = mMS(µ)ρmmassless(s) = mMS(µ)s2

{

1 +
αs
π

(

2 ln

(

µ2

s

)

+
31

3

)}

(4.255)

where ραmassless(s) (α = m, q) is the result of calculating the correlator in the effective theory
of massless quarks. For the momentum part ρq(s) the O(m2) correction is retained. The
relation between the pole mass m and the MS mass mMS(µ) used here reads

m = mMS(µ)

{

1 +
αs
π

(

ln

(

µ2

m2

)

+
4

3

)}

. (4.256)

Note that the massless effective theory cannot reproduce the mass singularities (terms like
z ln(z) in Eq. (4.253)). These singularities can be parametrized by condensates of local
operators. The first m2 correction in the leading order parts of Eqs. (4.249) and (4.252) as
well as in Eq. (4.253) (or, equivalently, the m3 correction to the expression in Eq. (4.255))
can be found if the perturbative value of the heavy quark condensate 〈0|Ψ̄Ψ|0〉 taken from
the full theory is added [139]. The composite operator (Ψ̄Ψ) should be understood within
a mass independent renormalization scheme such as the MS scheme. This value (pertur-
batively, 〈0|Ψ̄Ψ|0〉 ∼ m3 ln(µ2/m2)) cannot be computed within the effective theory of
massless quarks. It provides the proper matching between the perturbative expressions
for the correlators of the full (massive) and effective (massless) theories. This matching
procedure allows one to restore higher order terms of the mass expansion in the full the-
ory from the effective massless theory with the mass term treated as a perturbation [140].
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Accounting for the mass term as a perturbation in a massless theory is justified at high
energies and greatly simplifies the calculations (see e.g. Ref. [141]). Note that the correc-
tion of order m2/s to ρm(s) can actually be found in this manner because it depends only
on one local operator (Ψ̄Ψ) and, therefore, the calculation is technically feasible. In case
of the function ρq(s) the situation is different because there is no gauge invariant operator
of dimension two in the effective massless theory. Therefore, the mass singularities of the
form m2 log(m2/s) should not appear in the expansion for ρq(s) at large energies. The
result in Eq. (4.254) shows this explicitly. Note that the absence of such singularities is
one of the checks for the correctness of the calculation.

4.6.2 The near-threshold limit

In the near-threshold limit E → 0 with s = (m+ E)2 one explicitly obtains

ρmthr(m,E) =
16E5

5m

{

1 +
αs
π

ln

(

µ2

m2

)

+ (4.257)

+
αs
π

(

54

5
+

4π2

9
+ 4 ln

(

m

2E

)

)}

+O

(

E6

m2

)

.

The invariant function ρm(s) suffices to determine the complete leading HQET behaviour
since one has q/ρq +mρm → (v/ +1)ρHQET for the leading term. This relation was explictly
checked. In this region the appropriate device to compute the limit of the correlator is
HQET (see e.g. Refs. [142, 143]). Writing

mρmthr(m,E) = C(m/µ, αs)
2ρHQET(E, µ) (4.258)

one obtains the known result for ρHQET(E, µ) [144]

ρHQET(E, µ) =
16E5

5

{

1 +
αs
π

(

182

15
+

4π2

9
+ 4 ln

µ

2E

)}

+O(E6) (4.259)

with the matching coefficient C(m/µ, αs) given by [145]

C(m/µ, αs) = 1 +
αs
π

(

1

2
ln

(

m2

µ2

)

− 2

3

)

. (4.260)

The matching procedure allows one to restore the near-threshold limit of the full correlator
starting from the simpler effective theory near the threshold [146]. Note that the higher
order corrections in E/m to Eq. (4.257) can easily be obtained from the explicit result
given in Eqs. (4.249) and (4.252). Indeed, the next-to-leading order corrections in the low
energy expansion read

∆ρmthr(m,E) = −24E6

5m2

{

1 +
αs
π

(

ln

(

µ2

m2

)

+
584

45
+

4π2

9
+

44

9
ln
(

m

2E

)

)}

, (4.261)

∆ρqthr(m,E) = −8E6

m2

{

1 +
αs
π

(

ln

(

µ2

m2

)

+
908

75
+

4π2

9
+

68

15
ln
(

m

2E

)

)}

(4.262)

To obtain this result starting from HQET is a more difficult task requiring the analysis
of contributions of higher dimension operators.
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Figure 4.2: The ratio ρm1 (s)/ρm0 (s) of the next-to-leading correction and the leading order
term in dependence of the energy square s

4.6.3 Discussion of quantitative features

Some quantitative features of the correction given in Eqs. (4.249) and (4.252) will be
discussed as next. Of interest is whether the two limiting expressions (the massless
limit expression as given in Eqs. (4.254) and (4.255) and the HQET limit expression
in Eqs. (4.257) and (4.258)) can be used to characterise the full functionional dependence
for all energies. For this discussion one compares components of the baryonic spectral
function in leading and next-to-leading order. In Figs. 4.2 and 4.3 the ratio ρα1 (s)/ρα0 (s)
is shown for α = m and α = q, respectively. In the following the specific renormaliza-
tion scale value µ = m is used always if it is not written explicitly. One can see that a
simple interpolation between the two limits can give a rather good approximation for the
next-to-leading order correction in the complete region of s.

4.7 Moments of the spectral density

An informative set of observables are moments of the spectral density

Mα
n =

∫ ∞

m2

ρα(s)ds

sn
= m2(3−n)Mα

n (4.263)

where Mα
n are dimensionless quantities. One finds

Mα
n = Mα(0)

n

{

1 +
αs
π

(

ln

(

µ2

m2

)

+ δαn

)}

(4.264)

where

M q(0)
n =

12

(n + 1)n(n− 1)2(n− 2)(n− 3)
, (4.265)

Mm(0)
n =

12

n(n− 1)2(n− 2)2(n− 3)
, (4.266)
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Figure 4.3: The ratio ρq1(s)/ρ
q
0(s) of the next-to-leading correction and the leading order

term in dependence of the energy square s

and

δαn = Aαn +
2π2

9
. (4.267)

The coefficients Aαn are rational numbers, and the closed form expressions for δαn are found
in Appendix D.5. Only the first values for Amn and Aqn are shown in the second column of
Table 4.1.

n Amn δmn − δmn−1 Amq δmq − δmq−1

4 3 9/2
5 13/2 3.500000 22/3 2.833333
6 17/2 2.000000 109/12 1.750000
7 535/54 1.407407 5593/540 1.274074
8 1187/108 1.083333 6133/540 1.000000
9 64093/5400 0.878333 460351/37800 0.821190

10 22691/1800 0.737037 40553/3150 0.695370
11 1167767/88200 0.633878 148574/11025 0.602132
12 2433499/176400 0.555357 2470739/176400 0.530357

Table 4.1: Values for the rational part Aαn of the first moments δαn and their relative
difference δαn − δαn−1

By representing the moments through

Mα
n

M
α(0)
n

=
Mα

N

M
α(0)
N

{

1 +
αs
π

(δαn − δαN)
}

(4.268)

all corrections can be normalized to the moment Mα
N of fixed order N . Note that the

difference δαn − δαN is scheme-independent. This feature can be used in the high precision
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analysis of heavy quark properties within NRQCD (see e.g. Refs. [45, 117, 118, 119, 120,
121, 122]). With Eq. (4.268) one can find the actual (invariant or scheme-independent)
magnitude of the correction. Indeed, for any given N one can find a set of perturbatively
commensurate moments Mα

n with n ∼ N for which the requirement of the chosen precision
is satisfied. In the third column of Table 4.1, therefore, numerical values are presented
only for the differences of the δαn for subsequent orders.

Note that the moments represent massive vacuum bubbles, i.e. diagrams with massive
lines without external momenta. These diagrams have been comprehensively analyzed in
Refs. [111, 110]. The analytical results for the first few moments at three-loop level can
be checked independently with existing computer programs for symbolic calculations in
high energy physics (see e.g. Ref. [147]).

4.7.1 Phenomenological consequences

The presented results have phenomenological applications within the sum rule analysis
of baryon properties (see e.g. Refs. [148, 149, 150] and Chapter 7). As an example the
integral of ρq(s) is calculated up to the energy cut

√
s0,

Mq
0(s0) =

∫ s0

m2
ρq(s)ds (4.269)

which is related to the coupling constant (residue) of a baryon to the current in Eq. (4.1).
In NLO the integral is represented by

Mq
0(s0) = Mq(0)

0 (s0)

(

1 +
αs
π

(

ln

(

µ2

m2

)

+ ∆(s0)

))

(4.270)

which leads to the renormalization of the LO result for the residue in the form

Z01
R =

Mq
0(s0)

Mq(0)
0 (s0)

= 1 +
αs
π

(

ln

(

µ2

m2

)

+ ∆(s0)

)

+O(α2
s). (4.271)

For e.g. s0 = 2m2, µ2 = m2 one finds numerically

Z01
R = 1 +

αs
π

∆(2m2) = 1 +
αs
π

15.4117 . . . (4.272)

It is obvious that the NLO correction to the residue in the MS scheme is rather large. For
the numerical value of the coupling constant αs ≈ 0.3 which is a typical value for baryons
containing a c-quark, the NLO correction in the MS scheme reaches the 100% level.

One can see that the corrections to the moments basically reflect the form of the
correction to the spectrum. Even the massless approximation is reasonably good for
relative corrections for the first few moments despite of the unfavourable shape of the
weight function 1/sn. It can be improved by changing the subtraction point µ, i.e. by
switching from the MS scheme to some other renormalization scheme, or by resumming
the integrand [81] which lies beyond the scope of finite order perturbation theory though.
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4.7.2 A word about why the pole mass is used here

As the difference δαn+1 − δαn vanishes like 1/n for high values of n (see Appendix D.5), the
contributions δαn themselves behave like lnn. One may consider the possibility to reduce or
even eliminate this logarithmic increase by the choice of another renormalization scheme,
for instance the MS scheme. As seen earlier, the pole mass m can be expressed by the
MS mass mMS through

m = mMS

(

1 +
αs
π
Am

)

. (4.273)

Inserting this into Eq. (4.263) and using Eq. (4.264) one obtains

Mα
n = m

2(3−n)

MS
Mα(0)

n

{

1 +
αs
π

(

ln

(

µ2

m2
MS

)

+ δαn + 2(3 − n)Am

)}

. (4.274)

However, while the logarithm is now combined with a linear function, the situation does
not improve but actually becomes worse. At the same time it becomes obvious that
the pole mass chosen here in some natural way is the only way for which the difference
δαn+1−δαn actually vanishes for n→ ∞. Therefore, the pole mass is highly preferable here.

4.8 General considerations about the pole mass

In order to prepare the field for the sowing the seed for the last two chapters, the advantage
of the pole mass will be outlined in this section. At least one advantage was already
mentioned just before, namely the improved convergence of the moments. The section
starts with the calculation of contributions to the quark self energy due to the “large
β0 approximation”. This approximation allows for an exact resummation of perturbative
contributions. Even though the approximation contains the resummation of only a small
portion of diagrams, the results obtained by using this approximation are normally used
to argue against the use of the pole mass. In this section these arguments are shown to be
relative, especially depending on the energy region (Euclidean, close to threshold, etc.) in
which the perturbative results are calculated. Weakening the arguments against its use,
the pole mass enters back into the game.

4.8.1 The “large β0 approximation”

β0 is the leading coefficient in the renormalization group equation. In the “large β0

approximation” the self energy correction to arbitrary high order is approximated by the
replacement of the gluon propagator by a chain of gluon propagators and one-loop gluon
self energy diagrams. A single gluon self energy diagram can be expressed in dimensional
regularization as the transverse propagator (see Eq. (H.60)),

Πµν(−k2) =
−ik2C

(−k2)ε

(

gµν −
kµkν
k2

)

,

C =
g2
sΓ(1 + ε)

(4π)2−ε

{

1

ε

(

5

3
CA − 2

3
NL

)

+
31

9
CA − 10

9
NL

}

(4.275)

where CA = 3 and NL is the number of light degrees. The divergence in C is absorbed
into the renormalization of the coupling. Because (gµν − kµkν/k

2) is a projector onto the



200 CHAPTER 4. THE CORRELATOR OF FINITE MASS BARYON CURRENTS

transverse components, all longitudinal components of the gluon propagators

Dµν(−k2) =
−i
k2

(

gµν − (1 − αg)
kµkν
k2

)

(4.276)

vanish. For an n-fold chain one obtains

(DΠD · · ·ΠD)µν(−k2) =
−i
k2

(

C

(−k2)ε

)n (

gµν −
kµkν
k2

)

=: D⊥(n)(−k2)

(

gµν −
kµkν
k2

)

.

(4.277)
Using this short form, one calculates the correlator for the complete quark self energy
diagram,

−iΣ(n)(q2) =

=
∫

dDk

(2π)D
(−igsγµ)

i

/k −m
(−igsγν)D⊥(n)

(

−(q − k)2
)

(
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(q − k)µ(q − k)ν

(q − k)2

)

=

= g2
sC

n
∫

dDk

(2π)D
γµ(/k +m)γν

(k2 −m2)(−(q − k)2)1+nε

(

gµν −
(q − k)µ(q − k)ν

(q − k)2

)

=

= g2
sC

n
∫ dDk

(2π)D

(

γµ(/k +m)γµ
(k2 −m2)(−(q − k)2)1+nε

+
(q/− /k)(/k +m)(q/− /k)

(k2 −m2)(−(q − k)2)2+nε

)

. (4.278)

With

γµ(/k +m)γµ = (2 −D)/k +Dm ⇒
1

4
Tr (γµ(/k +m)γµ) = Dm,

1

4
Tr (q/γµ(/k +m)γµ) = (2 −D)(qk) =

2 −D

2

(

q2 + k2 − (q − k)2
)

,

(q/− /k)(/k +m)(q/− /k) = (q/− /k)/k(q/− /k) +m(q − k)2 ⇒
1

4
Tr ((q/− /k)(/k +m)(q/− /k)) = m(q − k)2,

1

4
Tr (q/(q/− /k)(/k +m)(q/− /k)) = 2(q2 − qk)(qk − k2) − (qk)(q − k)2 =

=
1

2
(q2 − k2)2 − 1

2
(q2 + k2)(q − k)2 (4.279)

one obtains

Σ(n)(q2) = q/Σ(n)
q (q2) +mΣ(n)

m (q2) (4.280)

where

mΣ(n)
m (q2) = ig2

sC
n(D − 1)m

∫ dDk

(2π)D
1

(k2 −m2)(−(q − k)2)1+nε
=

= ig2
sC

n(D − 1)m
−i

(4π)D/2
(m2)D/2−2−nεV (1, 1 + nε;−q2/m2) ⇒

Σ(n)
m (q2) =

g2
s

(4π)2−εC
n(m2)−(n+1)ε(3 − 2ε)V (1, 1 + nε;−q2/m2) (4.281)
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and

q2Σ(n)
q (q2) = ig2

sC
n
∫

dDk

(2π)D

(

(2 −D)(q2 +m2)

2(k2 −m2)(−(q − k)2)1+nε
+

2 −D

2(k2 −m2)(−(q − k)2)nε
+

+
(q2 −m2)2

2(k2 −m2)(−(q − k)2)2+nε
+

q2 +m2

2(k2 −m2)(−(q − k)2)1+nε

)

=

=
g2
s

(4π)D/2
Cn

(

1

2
(q2 −m2)2(m2)D/2−3−nεV (1, 2 + nε;−q2/m2) +

+
3 −D

2
(q2 +m2)(m2)D/2−2−nεV (1, 1 + nε;−q2/m2) +

+
2 −D

2
(m2)D/2−1−nεV (1, nε;−q2/m2)

)

⇒

Σ(n)
q (q2) =

g2
s

(4π)2−εC
n(m2)−(n+1)ε

(

1

2

(

1 − m2

q2

)2
q2

m2
V (1, 2 + nε;−q2/m2) +

−
(

1

2
− ε

)

(

1 +
m2

q2

)

V (1, 1 + nε;−q2/m2) − (1 − ε)
m2

q2
V (1, nε;−q2/m2)

)

.

(4.282)

Note that one can effectively set k2 = m2 because (k2 −m2) and powers of it will cancel
the first numerator factor and therefore will give no contribution (cf. the scaling rule).
Because of

V (n1, n2;−1) =
Γ(n1 + n2 −D/2)

Γ(n1)Γ(n2)

∫ 1

0
(1 − x)D/2−n2−1xn2−1(1 − x)D/2−n1−n2dx =

=
Γ(n1 + n2 −D/2)

Γ(n1)Γ(n2)

∫ 1

0
(1 − x)D−n1−2n2−1xn2−1dx = (4.283)

=
Γ(n1 + n2 −D/2)Γ(D − n1 − 2n2)Γ(n2)

Γ(n1)Γ(n2)Γ(D − n1 − n2)
=

Γ(n1 + n2 −D/2)Γ(D − n1 − 2n2)

Γ(n1)Γ(D − n1 − n2)

one obtains at q2 = m2

V (1, n2 + nε;−1) =
Γ(n2 − 1 + (n + 1)ε)Γ(3 − 2n2 − 2(n+ 1)ε)

Γ(3 − n2 − (n+ 2)ε)
(4.284)

and therefore

Σ(n)
m (m2) = Cn

(

3

ε
+ 3n+ 4 + (3n2 + 10n+ 8)ε+O(ε2)

)

,

Σ(n)
q (m2) = Cn

(

−3

2
n− 1

4
(9n+ 14)nε+O(ε2)

)

(4.285)

where

Cn := g2
sC

n (m2)−(n+1)ε

(4π)2−ε
Γ(1 + (n+ 1)ε)Γ(1 − 2(n+ 1)ε)

(n + 1)Γ(1 − (n+ 2)ε)
. (4.286)

4.8.2 The pole mass defined by a scheme mass

The definition of the pole mass is deeply related to the calculation of the quark self energy.
The (unrenormalized) self energy can be written as

ΣB(q/) = q/ΣB
q (q2) +mBΣB

m(q2). (4.287)
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The singularities contained in Σq and Σm are then absorbed in renormalization factors of
the propagator and the mass. If one calculates the bare propagator by taking the inverse,

SB =
i

q/−mB − ΣB(q/)
=

i

q/(1 − ΣB
q (q2)) −mB(1 + ΣB

m(q2))
=

iZ2

q/− Z−1
m mB

, (4.288)

one can identify

Z−1
2 = 1 − ΣB

q (q2), Z−1
m =

1 + ΣB
m(q2)

1 − ΣB
q (q2)

= 1 + ΣB
m(q2) + ΣB

q (q2) + . . . (4.289)

where the ellipses stand for terms of second order in the coupling. However, the renor-
malization factors cannot depend on the energy square q2. Instead one defines

(ZS
2 )−1 = 1 − ΣBS

q , (ZS
m)−1 =

1 + ΣBS
m

1 − ΣBS
q

= 1 + ΣBS
m + ΣBS

q + . . . (4.290)

where ΣBS
i are the singular parts of the bare quantities ΣB

i (q2) together with a (constant)
finite part, depending on the chosen scheme (the additional index “S” stands for the
particular renormalization scheme). One is therefore left with finite (and generally q
dependent) parts,

SS =
i

q/(1 − ΣS
q (q

2)) −mS(1 + ΣS
m(q2))

=
i(q/(1 − ΣS

q (q
2)) +mS(1 + ΣS

m(q2)))

q2(1 − ΣS
q (q

2))2 −m2
S(1 + ΣS

m(q2))
. (4.291)

Now the pole mass is defined as pole of this function with respect to
√
q2, so implicitly

m = mS
1 + ΣS

m(q2)

1 − ΣS
q (q

2)

∣

∣

∣

∣

∣

q2=m2

= mS

(

1 + ΣS
m(m2) + ΣS

q (m
2) + . . .

)

(4.292)

This implicit equation is highly depending on the renormalization scheme S. For a choice
not adequate to the problem the perturbation series on the right hand side can be diver-
gent. Taking for instance the “large β0 approximation”, i.e. the results just calculated
within the MS scheme, one obtains

m = mS

{

1 − Cn

(

3

ε
+

3

2
n + 4 +

1

4
(3n2 + 26n+ 32)ε+O(ε2)

)}

. (4.293)

However, one might raise the two following questions:

1. Is the “large β0 approximation” sufficient for an estimate of convergence?

2. Is the divergence of the series a relative item, namely that a mass at threshold (the
pole mass concept) and a renormalization scheme developed for Euclidean regions
(the MS scheme) are not compatible with each other? Could this phenomenon also
occur for quantities defined at any pair of values for q2 far away from each other?
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4.8.3 The pole mass renormalization

Especially the last question shall be answered in the following by the construction of a
scheme independent renormalization for the pole mass. Even if not yet renormalized, the
pole mass can be expressed by

m = mB
1 + Σm(q2)

1 − Σq(q2)

∣

∣

∣

∣

∣

q2=m2

. (4.294)

Σm(q2) and Σq(q
2) are both parametrized by q2 as well as by the bare mass mB. While the

bare mass can be replaced by the pole mass in the first order approximation, Eq. (4.294)
is in general an implicit equation which can be solved iteratively for m, even if the diver-
gences are not yet being subtracted. The solution is given by

m = Z−1
m mB (4.295)

where Zm is the renormalization factor for the pole mass. Therefore, a method has
been found to determine the mass renormalization factor totally independent of specific
schemes. This renormalization factor of course contains logarithms of masses. If one
relates masses for different schemes by equating the bare masses,

ZS
mmS = mB = Zmm ⇔ m =

ZS
m

Zm
mS, (4.296)

for example for S = MS, the ratio as expanded in a series does not converge in general
because of these logarithms if the scales are quite different. This is the case if one uses
a scheme far from threshold. But for the definition of the pole mass itself this does not
matter at all. Therefore, the argument against the pole mass is shown to be irrelevant.



Chapter 5

New developments in HQET

The heavy quark effective theory (HQET) [151] allows one to study the properties of
heavy hadrons in a systematic 1/mQ expansion where mQ is the mass of the heavy quark
included in this hadron (see e.g. Ref. [152]). The leading term of this expansion gives rise
to the spin-flavour symmetry, also known as heavy quark symmetry (HQS) (for a detailed
introduction to HQS see e.g. Ref. [143]).

Among the well-known predictions of HQS are for instance the relations between differ-
ent heavy hadron transition form factors. As an example, the six form factors describing
the transition Λb → Λc are reduced to one universal Isgur-Wise function in the HQS
limit [142, 153, 154]. Even then one still remains with many non-perturbative parame-
ters characterizing the process and the heavy baryons participating in it. These concern
the functional behaviour of the Isgur-Wise function itself, the masses and residues of the
heavy baryons, and, at next-to-leading order in the heavy mass expansion, the average
kinetic and chromomagnetic energy of the heavy quark in the heavy baryon. All these
non-perturbative parameters can be determined by using non-perturbative methods as
e.g. lattice calculations (see Chapter 6), QCD sum rule methods [155] (see Chapter 7) or,
in a less fundamental approach, by using potential models. While the first part of this
chapter deals with the HQET itself, HQET is applied in the second part by calculating
the one-loop corrections to the baryonic Isgur–Wise function. This work is not yet com-
pleted, as the recurrence algebra for the necessary integrals has not been solved to get to
a final result. Therefore, only the concepts and the calculational steps are presented.

In order to be able to use HQET also to higher orders in 1/mQ, the coefficients of the
expansion have to be matched to QCD. An two-loop adjustment of the so-called electric
and magnetic form factors is done in the first part of this chapter. For this purpose a large
amount of QCD diagrams correcting the interaction vertex of the heavy quark and an
external gluon had to be calculated and assembled. This calculation extends the known
results by including one more loop order.

HQET and the nonrelativistic QCD (NRQCD) [156, 157] are two effective theories that
describe the interactions of hadrons containing almost on-shell heavy quarks. The HQET
is mainly applied to hadrons containing a single heavy quark, such as a B meson, while
the NRQCD describes the interactions between nonrelativistic quarks and is typically
applied to Q̄Q bounded states like Υ. Applications of NRQCD can be found for instance
in lattice QCD, as dealt with in Chapter 6.

204
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5.1 HQET coefficients and their matching

Starting from the QCD Lagrangian for the heavy quark,

Lh = q̄h(i/D −mQ)qh, Dµ = ∂µ + igAaµTa, (5.1)

the effective Lagrangian can be constructed in a straightforward manner. The first step
is to partition the covariant derivative into a parallel and an orthogonal part,

Dµ
‖ = vµ(v ·D), Dµ

⊥ = Dµ −Dµ
⊥ (5.2)

with v2 = 1. Considering the rest frame of the heavy hadron where v = (1; 0, 0, 0),
the parallel component is combined with γ0 in /D‖ which is a block diagonal matrix for
the high energy representation of the Dirac matrices. A separation of the spinor qh into
a “large” and a “small” component decouples, if the other part /D⊥ is absent. This
is of course not the case but can be accomblished by a transformation of the spinors
using unitary matrices. This transformation is known from QED and is called Foldy–
Wouthuysen transformation.

5.1.1 The Foldy–Wouthuysen transformation

The application of the Foldy–Wouthuysen transformation to the QCD is introduced in
Ref. [158] and will be explained here in detail. The first step consists in the replacement
of qh by

q′h = Uqh, q′†h = q†hU
−1 ⇒ q̄′h = q̄hγ0U

−1γ0 (5.3)

where the unitary transformation matrix is given by

U = exp

(

− i/D⊥
2mQ

)

(5.4)

with

γ0Uγ0 = exp

(

−iγ0/D⊥γ0

2mQ

)

= exp

(

iγ2
0 /D⊥

2mQ

)

= exp

(

i/D⊥
2mQ

)

= U−1 (5.5)

(this identity, in this form valid only in the heavy hadron rest frame, can be generalized
to a moving frame). The Lagrangian can be rewritten as

L = q̄h(i/D‖ + i/D⊥ −mQ)qh = q̄′hU
−1(i/D‖ + i/D⊥ −mQ)U−1q′h. (5.6)

An expansion in 1/mQ of the unitary matrix results in

U−1(i/D‖ + i/D⊥ −mQ)U−1 =

≈
(

1 +
i/D⊥
2mQ

− /D2
⊥

8m2
Q

)

(i/D‖ + i/D⊥ −mQ)

(

1 − i/D⊥
2mQ

− /D2
⊥

8m2
Q

)

=

= i/D‖ + i/D⊥ −mQ − 1

2mQ

/D⊥/D‖ −
1

2mQ

/D2
⊥ − i

2
/D⊥ +

1

8mQ

/D2
⊥ +

− 1

2mQ

/D‖/D⊥ − 1

2mQ

/D2
⊥ − i

2
/D⊥ +

1

8mQ

/D2
⊥ +

1

4mQ

/D2
⊥ +O

(

1

m2
Q

)

= (5.7)

= i/D⊥ −mQ − 1

2mQ

(

/D⊥/D‖ + /D‖/D⊥
)

− 1

2mQ

/D2
⊥ +O

(

1

m2
Q

)

=: i/D′‖ + i/D′⊥ −mQ
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where

i/D′‖ = i/D‖ −
1

2mQ
/D2
⊥, i/D′⊥ =

1

2mQ

(

/D⊥/D‖ + /D‖/D⊥
)

. (5.8)

/D′‖ is again block-diagonal while /D′⊥ is off-diagonal. Note that the leading term /D⊥ van-
ishes. The remaining expression is proportional to 1/mQ. The next step is the analogous
replacement

q′′h = U ′q′h with U ′ = exp

(

− i/D′⊥
2mQ

)

. (5.9)

The iterative transformation performed by repeating this procedure will be completed by
a final transformation. After n steps for instance this final transformation is given by

q
(n)
h = e−imQv·xqv (5.10)

therefore
i/D‖q

(n)
h = e−imQv·x(mQv/ + i/D‖)qv (5.11)

removing the pivotal point given by mQ. The whole procedure was done do decouple the
so-called “big” and “small” components of the spinor. Using the high energy representa-
tion of the Dirac matrices and considering the heavy hadron rest frame, these components
are given by the upper and lower part of the spinor. This goal is reached up to the order
1/mn

Q because in the heavy hadron rest frame, the operator /D‖ is block-diagonal, while
the (off-diagonal) operator /D⊥ is of the order 1/mn

Q. In a more general frame the two
spinor components can be obtained by applying the projectors P+ and P−, defined by

P± :=
1

2
(1 ± v/ ), q±v := P±qv, v/ q±v = ±q±v . (5.12)

Using these two spinors, the Lagrangian can be reformulated according to [143]

L = q̄
(n)
h

(

i/D
(n)
‖ + i/D

(n)
⊥ −mQ

)

q
(n)
h =

= q̄+
v i/D

(n)
‖ q+

v + q̄−v
(

i/D
(n)
‖ − 2mQ

)

q−v + q̄+
v i/D

(n)
⊥ q−v + q̄−v i/D

(n)
⊥ q+

v (5.13)

(note that /D‖ occurs in all /D‖
′, /D‖

′′, . . . , /D‖
(n). Therefore, Eq. (5.11) can be applied). The

two last (nondiagonal) parts in the Lagrangian are of order 1/mn
Q and can be neglected

for the consideration of lower order contributions. The second part describes the heavy,
highly fluctuating degrees of freedom which will be eliminated. Only the first part of the
Lagrangian is of interest, and using Q = q+

v this part constitutes the Lagragian of HQET,

LHQET = Q̄i/D
(n)
‖ Q =

= Q̄

{

i/D‖ −
1

2mQ
/D2
⊥ − i

4m2
Q

(

1

2
/D‖/D

2
⊥ + /D⊥/D‖/D⊥ +

1

2
/D2
⊥/D‖

)

+ (5.14)

+
1

8m3
Q

(

/D‖/D⊥/D‖/D⊥ + /D‖/D
2
⊥/D‖ + /D⊥/D

2
‖/D⊥ + /D⊥/D‖/D⊥/D‖ + /D4

⊥
)

+ . . .

}

Q,

where

Q = P+eimQv·xq
(n)
h = P+eimQv·xU (n−1) · · ·U ′Uqh, v/Q = Q. (5.15)



5.1. HQET COEFFICIENTS AND THEIR MATCHING 207

This calculation is done automatically and published in Ref. [158] up to order 1/m12
Q .

There is a second which avoids the use of the Fouldy–Wouthuysen method, but this
approach needs field redefinitions [162]. A final note is in order here about the structure
of the higher order terms. Calculated in the heavy hadron rest frame, one obtains

{/D⊥, /D‖} =

{

3
∑

i=1

γiDi, γ
0D0

}

=
3
∑

i=1

(

γiγ0DiD0 + γ0γiD0Di

)

=

=
3
∑

i=1

γiγ0(DiD0 −D0Di) =
3
∑

i=1

γiγ0[Di, D0] = −igGi0γ
iγ0 (5.16)

([Dµ, Dν ] = igsGµν), in general

{/D⊥, /D‖} = igsGµνγ
µvν . (5.17)

With this result the expression

1

2
/D‖/D

2
⊥ + /D⊥/D‖/D⊥ +

1

2
/D2
⊥/D‖ =

1

2

(

{/D‖, /D⊥}/D⊥ + /D⊥{/D‖, /D⊥}
)

(5.18)

like all higher orders does not contain any explicit /D‖, i.e. no time derivative in the heavy
hadron rest frame. The consequence is that a later mixing of orders 1/mQ is excluded,
the result presented here is therefore the appropiate power expansion in 1/mQ.

5.1.2 The kinetic term and the Fermi term

Even though the representation chosen in Eq. (5.14) is the shortest one, for practical
calculations this short form has to be resolved again. Looking at the first order term, one
obtains

/D2
⊥ = (/D − /D‖)

2 = /D2 − /D/D‖ − /D‖/D + /D‖/D‖. (5.19)

In the following a distinction between operators of the first and second class is of use here.
The application of operators of the second class to the spinor results in zero, the simplest
of these operators therefore result in the equations of motion. In the present case one
has /D‖Q = 0. The first and last term in Eq. (5.19) are operators of the first class, the
remaining ones are operators of the second class. In Ref. [159] a systematic procedure has
been developed to remove operators of the second class. An operator of the second class
of order 1/mn

Q can be generally written as

OII =
1

mn
Q

Q̄(i/D‖A + Āi/D‖)Q (5.20)

where A is a general operator, Ā = γ0A
†γ0. Using the replacement

Q→
(

1 − 1

mn
Q

P+A

)

Q ⇒ Q̄→ Q̄

(

1 − 1

mn
Q

ĀP+

)

(5.21)

with Q̄i/D‖Q as pivotal point, one obtains

Q̄i/D‖Q→ Q̄i/D‖Q− 1

mn
Q

Q̄(i/D‖P
+A+ ĀP+i/D‖)Q. (5.22)
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The projector P+ is used in order to make sure that v/Q = Q is still valid for the redefined
spinor. Because P+ commutes with i/D‖, the subtraction term for the operator OII can
be found. Applying this to A = /D results in the removal of the operators of the second
class in Eq. (5.19). For the remaining operators of the first class the general relation
a/ a/ = a2 − iσµν [aµ, aν ]/2 is used,

/D2 = D2 − i

2
σµν [Dµ, Dν ] = D2 +

1

2
gsσ

µνGµν ,

/D2
‖ = D2

‖, D2 = D2
‖ +D2

⊥, σµν =
i

2
[γµ, γν ], (5.23)

the result reads

LHQET = Q̄

{

iD‖ −
1

2mQ
D2
⊥ − gs

4mQ
σµνGµν +O

(

1

m2
Q

)}

Q. (5.24)

The two terms of order 1/mQ are called the kinetic term (proportional to D2
⊥) and the

Fermi term. Note in this context that the Lagrangians of HQET and NRQCD look similar
at this stage. However, the order of terms is counted differently. For HQET the expansion
parameter is p/mQ where the momentum transfer p is at the same order as the QCD scale,
p ∼ ΛQCD. Therefore, the first term is of order ΛQCD while the second (kinetic) term is
of order Λ2

QCD/mQ. For NRQCD, the expansion parameter is the three-velocity ~v. Then
both terms are of the same order mQ~v

2.

5.1.3 Loop corrections

The expressions in Eqs. (5.14) and (5.24) are pure tree-level results. If loop corrections
are included, all the different terms are accompanied by a corresponding coefficient, the
effective Lagrangian up to order 1/m3

Q reads [160]

LHQET = Q̄

{

iD‖ −
ck

2mQ
D2
⊥ − cfg

4mQ
σαβG

αβ − cdg

8m2
Q

vα[Dβ
⊥Gαβ] +

+
icsg

8m2
Q

vλσαβ{Dα
⊥, G

λβ} +
ck2

8m3
Q

D4
⊥ +

cw1g

16m3
Q

{D2
⊥, σµνG

µν} +

− cw2g

8m3
Q

D⊥ρσµνG
µνDρ

⊥ +
cp′pg

8m3
Q

(σµν(D⊥ρG
ρµDν

⊥ +Dν
⊥G

ρµD⊥ρ −D⊥ρG
µνDρ

⊥)) +

− icmg
8m3

Q

(D⊥µ[D⊥νG
µν ] + [D⊥νG

µν ]D⊥µ) +
ca1g

2

16m3
Q

GµνG
µν +

ca2g
2

16m3
Q

vµvνGρ
µGρν +

+
ca3g

2

16m3
Q

Tr(GµνG
µν) +

ca4g
2

16m3
Q

Tr(vµvνGρ
µGρν) +

− icb1g
2

16m3
Q

σµν [Gρ
µ, Gρν ] − icb2g

2

16m3
Q

vµvνσρλ[G
ρµ, Gλν ]

}

Q (5.25)

where square brackets indicate that these expressions do not act on Q. The indices k, f , d
and s stand for the kinetic, Fermi , Darwin and spin-orbit term, resp. There are of course
also interactions between the heavy and a light quark. These will be discussed later.
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5.1.4 The matching procedure

Before starting the matching procedure to match the coefficients to the full QCD result,
an ambiguity has to be mentioned that relates the coefficients to all orders of perturba-
tion theory. This ambiguity is known as reparametrization invariance [161]. Although
the effective theories are of non-relativistic character, there is a freedom concerning the
velocity v (see e.g. Ref. [143]). If this velocity is changed by an amount δv ∼ ΛQCD/mQ,
the Lagrangian has to be the same. This symmetry leads to relations between coefficients
of different orders in the 1/mQ expansion which are valid to all orders of perturbation
theory. The first two of them are

ck = 1, cs = 2cf + 1. (5.26)

For this reason not all of the coefficients have to be matched perturbatively. In order to
match the coefficients, the effective vertex of a heavy QCD quark and a single gluon is
considered,

Γµ(p, q) = igsū(p+ q)

{

F1(q
2)γµ + F2(q

2)
iσµνqν
2mQ

}

u(p) (5.27)

where p = mQv + k and p+ q = mQv + k + q are the
momenta of the incoming and outgoing quark, and
q is the momentum transfer, carried by the incoming
gluon. k and k+q, the quark momenta up to a general
momentum mQv, are known as residual momenta.
The situation in terms of the effective vertex diagram
is depicted in Fig. 5.1. By using

ū(p+ q)iσµνqνu(p) =
1

2
ū(p+ q)[q/, γµ]u(p) =

= ū(p+ q)(2mQγ
µ − (2p+ q)µ)u(p), (5.28)

this effective vertex can be written alternatively as

p p+q

q

Γ µ(p,q)

Figure 5.1: effective vertex dia-
gram for the adjustment of the
electric and magnetic form factor

Γµ(p, q) = igsū(p+ q)

{

ε(q2)
(2p+ q)µ

2mQ
+ µ(q2)

[q/, γµ]

4mQ

}

u(p) (5.29)

where ε(q2) = F1(q
2) is the electric and µ(q2) = F1(q

2) + F2(q
2) is the magnetic form

factor . The connection between the QCD spinor u(p) and the HQET spinor Q can easily
be worked out. Starting from the effective vertex, all transformations via unitary matrices
performed in the first part of the Foldy–Wouthuysen transformation are trivial. The only
non-trivial transformation is the projection with P+. Therefore, Q = P+u(p). Using the
Dirac equation (p/−mQ)u(p) = 0, one can write

2mQu(p) = mQu(p) + (mQv/ + /k)u(p) = (mQ(1 + v/ ) + /k) u(p) =

= 2mQP
+u(p) + /ku(p) = 2mQQ+ /ku(p) (5.30)

and therefore

u(p) =

(

1 − /k

2mQ

)−1

Q =

(

1 +
/k

2mQ

+
k2

4m2
Q

+ . . .

)

Q. (5.31)
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Inserting this expansion into the effective vertex leads to

Γµ(p, q) = igsQ̄

{

ε(q2)

(

vµ +
(2k + q)µ

2mQ
− q2 + [/k, q/]

8m2
Q

vµ + . . .

)

+

+µ(q2)

(

[q/, γµ]

4mQ

+
q2 + [/k, q/]

4m2
Q

+ . . .

)}

Q. (5.32)

Finally, the expansion

ε(q2) = ε(0) + ε′(0)
q2

m2
Q

+ . . . , µ(q2) = µ(0) + µ′(0)
q2

m2
Q

+ . . . (5.33)

of the electric and magnetic form factor leads to a result that has to be compared with
the expression coming from the HQET Lagrangian,

igsQ̄

(

vµ + ck
(2k + q)µ

2mQ
+ cf

[q/, γµ]

4mQ
+ cd

q2

8m2
Q

vµ + cs
[/k, q/]

8m2
Q

vµ + . . .

)

Q. (5.34)

The comparison results in

ck = ε(0), cd = 8ε′(0) + 2µ(0) − ε(0),

cf = µ(0), cs = 2µ(0) − ε(0). (5.35)

The equality ε(0) = 1 is a consequence of the reparametrization invariance and hence is
valid to all orders of perturbation theory. It expresses the conservation of the chromo-
electric charge, while the chromomagnetic charge need not be conserved.

5.1.5 Regularization and matching

As shown in Ref. [160], using dimensional regularization, for the HQET expression there
are no finite parts for loop diagrams while the infrared (IR) and ultraviolet (UV) diver-
gences cancel each other. Therefore, the only finite part that can occur is the matching
coefficient CHQET of the full QCD calculation (like ck, cd, cf , and cs). The HQET contri-
bution for the radiative correction of a specific term of the Lagrangian is given by

FHQET = AHQET

(

1

εUV
− 1

εIR

)

+ CHQET. (5.36)

On the other hand, the QCD result will have the general structure

FQCD = A

(

1

εUV

+ ln

(

µ

mQ

))

+B

(

1

εIR

+ ln

(

µ

mQ

))

+ C. (5.37)

While the UV divergences are absorbed in the renormalization factors of HQET and QCD,
resp., the remaining parts are used to write down the matching condition

−AHQET
1

εIR

+ CHQET = B
1

εIR

+ (A+B) ln

(

µ

mQ

)

+ C, (5.38)

therefore AHQET = −B and

CHQET = (A+B) ln

(

µ

mQ

)

+ C. (5.39)

Here one only has to know the sum A+B and thus does not have to distinguish between
UV and IR divergences at all. Therefore, dimensional regularization is an appropiate tool.
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(a1) (a2) (b1)+ (b2)

(c1) (c2)+ (c3)

(d1) (d2)+ (d3)+ (d4)

(e1) (e2)+ (e3)+ (e4)

(f1)+ (f2) (f3) (f4)

(g1)+ (g2) (g3)+

(h1)+ (h2)+ (h3) (h4)

Figure 5.2: vertex diagrams. The “+” indicates an additional mirrored diagram
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5.2 Two-loop matching of the second order terms

While the coefficients ck and cs are fixed due to reparametrization invariance, several
attempts have been made to match the other coefficients. The one-loop matching of the
Fermi coefficient cf has been done in Refs. [163, 164]. In Refs. [165, 166] the anomalous
dimension of the corresponding operator was calculated, the two-loop matching was done
in Ref. [166], a resummation of all orders perturbation theory in the large β0 limit was
presented in Ref. [167]. All coefficients up to order 1/m3

Q were matched in Ref. [160]
up to one-loop order. In the work presented here the electric and magnetic form factor
are determined up to two-loop order and to order q2/m2 in order to match the 1/m2

coefficients cd and cs (see Eq. (5.35)).

The diagrams which have to be calculated are shown in Fig. 5.2. The calculation was
done using a general covariant gauge and the background field method [168] and made
use of the package recursor written by David Broadhurst and Andrey Grozin [169] to
handle the enormeous amount of two-loop integrals. In order to give an estimate about
the complexity of the calculations one should note that each expansion in q to second
order replaces the propagator containing this momentum by six propagators. The general
covariant gauge replaces each of the gluon propagators by two terms. And the background
field method applied to a three-gluon vertex also enlarges the number of terms by a factor
between 1 and 2. The calculation was done in independent packages (in reduce and
MATHEMATICA, resp.), where full agreement was obtained in the end.

5.2.1 The background field method

An off-shell gluon like the one considered in the vertex diagrams is given by a gauge
dependent operator. Therefore, the calculated radiative corrections are not expected to
be gauge independent as well. But there is a way out. On the level of one-loop integrals
Bryce DeWitt developed the background field method in 1967 [170]. This method was
later on extended to multiloop calculations by ’t Hooft, DeWitt, Boulware and Abbott
(for an overview see the paper of Laurence Abbott, Ref. [168]). The idea of this method
is based on the introduction of an additional external gauge field. The starting point on
the level of generating functionals and actions can already be understood for non-gauge
theories and will be shown here. The generating functional is given by

Z[J ] =
∫

[dA] exp {i(Scl[A] + J · A)} (5.40)

where Scl[A] is the classical action and J · A =
∫

JµA
µd4x. In addition to the field A a

background field B is introduced. The modified generating functional reads

Z[J,B] =
∫

[dA] exp {i(Scl[A +B] + J ·A)} . (5.41)

For the moment being, B is only an additional parameter. Therefore, all calculations in
the functional calculus are the same as in the case where B is absent,

W [J,B] = −i lnZ[J,B] ⇒ Ā =
δ

δJ
W [J,B] ⇒ Seff [Ā, B] = W [J,B] − J · Ā.

(5.42)
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It can easily be seen that Seff [Ā, B] = Seff [Ā + B] where the latter expression is the
non-modified effective action at Ā+B, therefore one can set Ā = 0 and obtains [168]

Seff [0, B] = Seff [B]. (5.43)

1

2

3

Figure 5.3: modification of the
three-gluon vertex for the back-
ground field method. The cross
represents the background field,
the arrows show the momentum
directions, and the numbers label
the indices at the three ends of
this Feynman diagram element.

The procedure explained here can be generalized to
gauge theories like QCD with the same result. The
great advantage of the background field method is
that it retains explicit gauge invariance. There exists
a choice for the gauge fixing term −GaG

a/2αg occur-
ing in the generating functional for which the effective
action Seff [0, B] is a gauge invariant functional of B.
This gauge choice is given by the QCD field strength
tensor

Ḡa = ∂µA
µ
a + igfabcA

µbBc
µ. (5.44)

This choice has consequences for the Feynman rules.
Relevant in the actual application are only Feynman
rules including up to one background field. While the
four-gluon vertex remains unchanged, the three-gluon
vertex is changed. The three-gluon vertex between
internal gluon lines reads

gsfa1a2a3 {(k2 − k3)µ1gµ2µ3 + (k3 − k1)µ2gµ3µ1 + (k1 − k2)µ3gµ1µ2} (5.45)

while for the first gluon coupled to a background field as for the situation shown in Fig. 5.3,
the three-gluon vertex is modified to

gsfa1a2a3







(k2 − k3)µ1gµ2µ3 +

(

k3 − k1 +
k2

αg

)

µ2

gµ3µ1 +

(

k1 − k2 −
k3

αg

)

µ3

gµ1µ2







. (5.46)

A further consequence of the background field method is that the relation between the
renormalization factors of coupling (Zg) and gauge field (Z1g) reads Z1gZg = 1. This is a
consequence of the requirement that the renormalization of the field strength tensor

Gb
µν =

(

∂µA
b
ν − ∂νA

b
µ − igb[Abµ, A

b
ν ]
)

=

= (∂µZ1gAν − ∂νZ1gAµ − iZgg[Z1gAµ, Z1gAν ]) =

= Z1g (∂µAν − ∂νAµ − iZgZ1g[Aµ, Aν ])
!
= Z1gGµν (5.47)

is gauge invariant. Because of this relation, the Slavnov-Taylor identities are replaced
by Ward identities. Therefore, all divergences along quark lines can be removed by a
renormalization procedure using renormalization factors (multiplicative renormalization).

5.2.2 Projectors for the electric and magnetic form factor

In order to distinguish between the electric and the magnetic form factor in the result
obtained for the vertex correction Γµ(p, q) from the calculation of the set of diagrams
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presented in the beginning of this section, one has to find projectors on these components.
The general ansatz for this is given by

Tr (Bµ(p/ + q/+mQ)Γµ(p, q)(p/+mQ)) =

= Tr

(

Bµ(p/+ q/+mQ)

(

ε(q2)
(2p+ q)µ

2mQ

+ µ(q2)
[q/, γµ]

4mQ

)

(p/+mQ)

)

. (5.48)

where Γµ is the result obtained by calculating the diagrams, and (p + q)2 = p2 = m2
Q

(therefore, 2pq = −q2). In order that the Ward identity is valid, Bµ must satisfy

Tr (Bµ(p/+ q/+mQ)qµ(p/+mQ)) = 0. (5.49)

The two linearly independent possibilities to satisfy this equation are given by Bµ = γµ
and Bµ = 2pµ + qµ. Therefore, Bµ have to be built up by these two elements. But on
the other hand, the problem to solve Eq. (5.48) for ε and µ is unique. One obtains the
system of equations

Tr (γµ(p/+ q/+mQ)Γµ(p, q)(p/+mQ)) =

= Tr

(

γµ(p/ + q/+mQ)

(

ε(q2)
(2p+ q)µ

2mQ
+ µ(q2)

[q/, γµ]

4mQ

)

(p/+mQ)

)

=

= −2ε(q2)(q2 − 4m2
Q) + 2(D − 1)µ(q2)q2,

2mQTr ((2p+ q)µ(p/ + q/+mQ)Γµ(p, q)(p/+mQ)) =

= 2mQTr

(

(2p+ q)µ(p/+ q/+mQ)

(

ε(q2)
(2p+ q)µ

2mQ
+ µ(q2)

[q/, γµ]

4mQ

)

(p/ +mQ)

)

=

= 2ε(q2)(q2 − 4m2
Q)2 − 2µ(q2)(q2 − 4m2

Q)q2 (5.50)

which can be solved for ε(q2) and µ(q2),

2(D − 2)q2µ(q2) = Tr

((

γµ +
2mQ(2p+ q)µ
q2 − 4m2

Q

)

(p/ + q/+mQ)Γµ(p, q)(p/+mQ)

)

,

2(D − 2)(q2 − 4m2
Q)ε(q2) =

= Tr

((

γµ +
2mQ(D − 1)(2p+ q)µ

q2 − 4m2
Q

)

(p/+ q/ +mQ)Γµ(p, q)(p/+mQ)

)

. (5.51)

The projections are given by the prescription to take the contaction and trace with

PE
µ (p, q) =

p/ +mQ

2(D − 2)(q2 − 4m2
Q)

(

γµ +
2mQ(D − 1)(2p+ q)µ

q2 − 4m2
Q

)

(p/ + q/+mQ),

PM
µ (p, q) =

p/+mQ

2(D − 2)q2

(

γµ +
2mQ(2p+ q)µ
q2 +m2

Q

)

(p/+ q/+mQ). (5.52)

Because the quark is on-shell (a condition that has already been used), one can replace
p = mQv and write Γµ(q) = Γµ(p, q). The only remaining momentum is the gluon
momentum q, and the expansion of the vertex in this momentum up to second order is
given by

Γµ(q) = Γµ + Γµαq
α + Γµαβq

αqβ +O(q3). (5.53)
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Expanding also the projectors in powers of q, one obtains

PE
µ (q) =

mQ(1 + v)

2(D − 2)(q2 − 4m2
Q)

{

γµ +
2mQ(D − 1)(2mQv + q)µ

q2 − 4m2
Q

}

(mQ(1 + v/ ) + q/) =

=
−(1 + v/ )

8(D − 2)mQ

(

1 +
q2

4m2
Q

)

×

×
{

γµ −
D − 1

2mQ

(

1 +
q2

4m2
Q

)

(2mQv + q)µ

}

(mQ(1 + v/ ) + q/) +O(q3) =

=
−(1 + v/ )

8(D − 2)mQ

{

(γµ − (D − 1)vµ)mQ(1 + v/ ) +

−D − 1

2mQ
qµmQ(1 + v/ ) + (γµ − (D − 1)vµ) q/ +

−D − 1

2mQ
qµq/+

q2

4m2
Q

(γµ − 2(D − 1)vµ)mQ(1 + v/ ) +O(q3)

}

, (5.54)

PM
µ (q) =

mQ(1 + v/ )

2(D − 2)q2

{

γµ +
2mQ(2mQv + q)µ

q2 − 4m2
Q

}

(mQ(1 + v/ ) + q/) =

=
mQ(1 + v/ )

2(D − 2)q2

{

γµ −
(

vµ +
qµ

2mQ

)(

1 +
q2

4m2
Q

)}

(mQ(1 + v/ ) + q/) +O(q3) =

=
mQ(1 + v/ )

2(D − 2)q2

{

(γµ − vµ)mQ(1 + v/ ) − qµ
2mQ

mQ(1 + v/ ) + (γµ − vµ)q/ +

− qµ
2mQ

q/− q2

4m2
Q

vµmQ(1 + v/ ) +O(q3)

}

. (5.55)

The projectors which project out the different q dependencies of Γµ(q) can be constructed
by a comparison using the Passarino–Veltman method (the factor 1/4 is by convention),

1

4
Tr(P i

µΓ
µ) := Tr(P i

µ(q)Γ
µ) = Ai +Bi

ρq
ρ + Ci

ρσq
ρqσ +O(q3),

1

4
Tr(P i

µαΓ
µα) := Tr(P i

µ(q)Γ
µ
αq

α) = Di
ρq
ρ + Ei

ρσq
ρqσ +O(q3),

1

4
Tr(P i

µαβΓ
µαβ) := Tr(P i

µ(q)Γ
µ
αβq

αqβ) = F i
ρσq

ρqσ +O(q3) (i = E,M) (5.56)

(where Bi
ρ = Bivρ, C

i
ρσ = Cigρσ + C̃ivρvσ etc. ) which results in

PE
µ (q2) = (1 + v/ )vµ +O(q4),

PE
µα(q

2) =
q2

2mQ

(1 + v/ )

{

gµα + vµγα
D − 2

− γµ(γα + vα)

(D − 1)(D − 2)
− (D + 1)vµvα

D − 1

}

+O(q4),

PE
µαβ(q

2) = q2(1 + v/ )vµ
gαβ − vαvβ
D − 1

+O(q4),

PM
µ (q2) = (1 + v/ )

{

γµ − vµ
D − 1

}

+O(q2),

PM
µα(q

2) =
−2mQ

(D − 1)(D − 2)
(1 + v/ ) {gµα − (γµ − vµ)γα − γµvα} +O(q2),

PM
µαβ(q

2) = O(q2). (5.57)



216 CHAPTER 5. NEW DEVELOPMENTS IN HQET

Using these definitions, one can find ε(0), ε′(0), and µ(0) by comparing powers of q2,

ε(q2) = Tr
(

PE
µ (q)Γµ(q)

)

=

= Tr
(

PE
µ (q)Γµ

)

+ Tr
(

PE
µ (q)Γµαq

α
)

+ Tr
(

PE
µ (q)Γµαβq

αqβ
)

+O(q4) =

=
1

4
Tr
(

PE
µ (q2)Γµ

)

+
1

4
Tr
(

PE
µα(q

2)Γµα
)

+
1

4
Tr
(

PE
µαβ(q

2)Γµαβ
)

+O(q4) =

= ε(0) + ε′(0)
q2

m2
Q

+O(q4/m4
Q), (5.58)

µ(q2) = Tr
(

PM
µ (q)Γµ(q)

)

=

= Tr
(

PM
µ (q)Γµ

)

+ Tr
(

PM
µ (q)Γµαq

α
)

+ Tr
(

PM
µ (q)Γµαβq

αqβ
)

+O(q2) =

=
1

4
Tr
(

PM
µ (q2)Γµ

)

+
1

4
Tr
(

PM
µα(q

2)Γµα
)

+
1

4
Tr
(

PM
µαβ(q

2)Γµαβ
)

+O(q2) =

= µ(0) +O(q2/m2
Q). (5.59)

5.2.3 One-loop results

At this moment only some of the results will be presented here. As being work in progress,
subsets of contributing diagrams have been completed but not the complete set. Only
partial (though gauge independent) results for the two-loop diagrams will be given in the
following subsections while the results for the one-loop diagrams (a1) and (a2) in Fig. 5.2
are subject of this subsection. The result is written in an intermediate step in terms of
dimensionless integrals M(n1, n2; 1/z) which are defined by

∫ dDk

(2π)D
1

(

−k2 +m2
Q

)n1

(−(p− k)2)n2
=:

i

(4π)D/2
(m2

Q)D/2−n1−n2M(n1, n2;−p2/m2
Q).

(5.60)
The final results for diagram (a1) (in case of mQ = µ) read

1

4
Tr
(

PE
µ (q2)Γµa1

)

=
αs

4πNc
Γ(1 + ε)

D − 1

(D − 4)(D − 3)
,

1

4
Tr
(

PE
µα(q

2)Γµαa1
)

=
αs

4πNc

(

q2

m2
Q

)

Γ(1 + ε)
3D2 − 27D + 52 + 4αg

4(D − 5)(D − 4)(D − 3)
,

1

4
Tr
(

PE
µαβ(q

2)Γµαβa1

)

= − αs
4πNc

(

q2

m2
Q

)

Γ(1 + ε)
3D3 − 25D2 + 50D − 24 + 12αg

12(D − 5)(D − 4)(D − 3)
,

1

4
Tr
(

PM
µ (q2)Γµa1

)

=
αs

4πNc

Γ(1 + ε)
αg

(D − 4)(D − 3)
,

1

4
Tr
(

PM
µα(q

2)Γµαa1
)

=
αs

4πNc
Γ(1 + ε)

D2 − 8D + 19 − αg
(D − 4)(D − 3)

(5.61)

With this one obtains the gauge independent results

εa1(0) =
αs

4πNc
Γ(1 + ε)

D − 1

(D − 4)(D − 3)
=

αs
4πNc

(

− 3

2ε
− 2

)

,
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ε′a1(0) = − αs
4πNc

Γ(1 + ε)
3D2 + 19D + 36

12(D− 4)(D − 3)
=

αs
4πNc

(

1

3ε
+

1

4

)

,

µa1(0) =
αs

4πNc
Γ(1 + ε)

D2 − 8D + 19

(D − 4)(D − 3)
=

αs
4πNc

(

− 3

2ε
− 3

)

. (5.62)

For diagram (a2) one obtains

1

4
Tr
(

PE
µ (q2)Γµa2

)

= −αsNc

4π
Γ(1 + ε)

D − 1

(D − 4)(D − 3)
,

1

4
Tr
(

PE
µα(q

2)Γµαa2
)

= −αsNc

4π

(

q2

m2
Q

)

Γ(1 + ε)
D2 − 8D + 15 + 2αg

2(D − 5)(D − 4)(D − 3)
,

1

4
Tr
(

PE
µαβ(q

2)Γµαβa2

)

=
αsNc

4π

(

q2

m2
Q

)

Γ(1 + ε)
D2 − 7D + 8 + 2αg

2(D − 5)(D − 4)(D − 3)
,

1

4
Tr
(

PM
µ (q2)Γµa2

)

= −αsNc

4π
Γ(1 + ε)

αg
(D − 4)(D − 3)

,

1

4
Tr
(

PM
µα(q

2)Γµαa2
)

= −αsNc

4π
Γ(1 + ε)

5 − αg
(D − 4)(D − 3)

, (5.63)

therefore

εa2(0) = −αsNc

4π
Γ(1 + ε)

D − 1

(D − 4)(D − 3)
=

αsNc

4π

(

3

2ε
+ 2

)

,

ε′a2(0) =
αsNc

4π
Γ(1 + ε)

D − 7

2(D − 5)(D − 4)(D − 3)
=

αsNc

4π

(

− 3

4ε
− 1

2

)

,

µa2(0) = −αsNc

4π
Γ(1 + ε)

5

(D − 4)(D − 3)
=

αsNc

4π

(

5

2ε
+ 5

)

. (5.64)

Both results can be combined using the colour factors

CF =
N2
c − 1

2Nc
, CA = Nc ⇒ CF − CA =

−1

2Nc
(5.65)

which gives the corrections to ε(0), ε′(0) and µ(0) up to one-loop order,

ε(0) = 1 +
αs
4π

(CF − CA)
(

3

ε
+ 4

)

+
αs
4π
CA

(

3

2ε
+ 2

)

+O(α2
s) =

= 1 +
αs
4π

(

CF − 1

2
CA

)(

3

ε
+ 4

)

+O(α2
s),

ε′(0) = −αs
4π

(CF − CA)
(

2

3ε
+

1

2

)

− αs
4π
CA

(

3

4ε
+

1

2

)

+O(α2
s) =

= −αs
4π
CF

(

2

3ε
+

1

2

)

− αs
4π
CA

(

1

12ε

)

+O(α2
s),

µ(0) = 1 +
αs
4π

(CF − CA)
(

3

ε
+ 6

)

− αs
4π
CA

(

5

2ε
+ 5

)

+O(α2
s) =

= 1 +
αs
4π

(

3CF − 1

2
CA

)(

1

ε
+ 2

)

+O(α2
s). (5.66)

The contribution to ε(0) is absorbed by the renormalization factor, so that the renormal-
ized coefficient is ε(0) = 1. The results presented here coincide with those obtained in
Ref. [160] (note that in Ref. [160] D = 4 − ε is used instead of D = 4 − 2ε).
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5.2.4 Details on the two-loop calculation

The diagram (c2) as shown in Fig. 5.4 can serve as
an example to explain the necessary steps in order
to calculate two-loop diagrams of this form in full
QCD, as it is done by the MATHEMATICA pack-
age written for this purpose in a complete automatic
way. As input for the package only the specification
of the propagators is necessary and the choice for the
form factor and the order in q. A typical element is
the massive quark line symbol massiline[a,k+p,b]
where a and b represent the two end points of the
propagator and k+p is the momentum of the line.

p k+p p+q

q

k

l

l-k

k

k-q

Figure 5.4: The diagram (c1)
with momenta indicated

The horizontal line in Fig. 5.4 is called the base line of the diagram. The fermion lines are
closed by final elements massiend[a]. The variable a, changed internally to a variable
according to the programming systematics, is used for all “characters” of this vertex, i.e.
the Lorentz index, the Dirac structure element, and the colour index. The propagators
and associated vertex factors are combined by the package according to the usual QCD
Feynman rules (see e.g. Ref. [171]). In case of diagram (c2) one obtains

∫

dDk

(2π)D
dDl

(2π)D
ig(Tb)i

jγβ

(

i

/k + p/−mQ

)

ig(Ta)j
kγαTr

(

igTsγσ
i

/l − /k
igTrγρ

i

/l

)

×

× −iδbl
(k − q)2

(

gβλ − (k − q)β(k − q)λ

(k − q)2

)

−iδns
k2

(

gνσ − kνkσ

k2

)

−iδra
k2

(

gρα − kρkα

k2

)

×

× gfmnl

(

gµν(k + q − 1

αg
(k − q)) + gνλ(q − 2k)µ + gλµ(k − 2q − 1

αg
k)ν

)

(5.67)

The structure of this expression is already rather complicated. The structure becomes
even more complicated when expanded in powers in q and projected. But the expression
can be decomposed into different structural units which are dealt with separately in the
package.

The colour structure

The colour structure is expressed by the Gell–Mann matrices Ta, the structure constants
fabc, and the Kronecker symbols δab. Only when the four-gluon vertex appears, the fac-
torization of the colour structure is no longer possible and one has to split the calculation
into three separate blocks. The calculation of the colour structure leads to the colour
factors

CA = Nc, CF =
N2
c − 1

2Nc

and CB =
Nc − 1

2Nc

(5.68)

where Nc is the number of colours.

The Dirac structure

The Dirac structure of diagram (c2) is given by the massive quark line and the massless
quark loop (in the final result this massless quark loop is amended by the massive quark
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loop where the mass of this loop is the same as the mass of the base line). The Dirac
structure for (c2) is given by

γβ(/k + p/ +mQ)γα × Tr(γσ(/l − /k)γρ/l), (5.69)

including the Dirac factors from the projector. The Dirac structure is an intermediate
object because the trace is taken in the end. The package, however, gives the option
to keep the structure up to the end. This is of interest especially in those cases where
general vertex factors are considered. In the actual case, however, the Dirac structure
will be attached to the momentum structure which is explained next.

The momentum structure

In order to extract the momentum structure, a common denominator is chosen for the
propagators. In case that the gluon momentum q appears, this factor has to be expanded.
The maximum degree of this expansion depends on the choice for the projector. The
expansion is a geometric series expansion,

1

(k − q)2
=

1

k2



1 +
2kq − q2

k2
+

(

2kq − q2

k2

)2

+ . . .



 . (5.70)

A common denominator is chosen again, and only those parts are used which have the
selected power of q. After the projection the momentum structure is resolved for this
scalar integral to scalar products of the inner and outer momenta.

The initial integral

The initial integral is the integral over scalar propagators with the maximally necessary
power of denominator factors. It can be identified by two different kinds of integral types
(denoted by capital M and N) [169],

∫

dDk

(2π)D
dDl

(2π)D
×

× 1

(−k2)n1(−l2)n2(−(k + p)2 +m2
Q)n3(−(l + p)2 +m2

Q)n4(−(k − l)2)n5
=

=:
−1

(4π)D
(m2

Q)D−n1−n2−n3−n4−n5M(n1, n2, n3, n4, n5;−p2/m2
Q), (5.71)

∫

dDk

(2π)D
dDl

(2π)D
×

× 1

(−k2)n1(−l2)n2(−(k + p)2 +m2
Q)n3(−(l + p)2 +m2

Q)n4(−(k + l + p)2 −m2
Q)n5

=

=:
−1

(4π)D
(m2

Q)D−n1−n2−n3−n4−n5N(n1, n2, n3, n4, n5;−p2/m2
Q). (5.72)



220 CHAPTER 5. NEW DEVELOPMENTS IN HQET

"recursor.red"

colour factors,
Euler’s Gamma functions,
non−analytic integral I

Input
Unit

colour structure

Dirac structure

total structure

operator action (ε)

momentum structure

quarks
light heavy

quarks
gluons ghosts

initial integral

Figure 5.5: algorithmical structure of the MATHEMATICA package

First assembly

Looking at Fig. 5.5, one can see that after the treatment of these five structure elements
an assembly is possible. An intermediate step is the assembly of expressions like

{< factor >,< momenta >,< products >,< Dirac structure >,< initial integral >}
(5.73)

where in this case the second and fourth entry remains empty because there is no Dirac
structure left and no momenta coupled to it.

Operation on the entries

The scalar products occuring in the third entry can reduce the powers of the denominator
factors and therefore change the entries ni of the initial integrals according to rules as

2k · l = k2 + l2 − (k − l)2 ∼ 1− + 2− − 5−. (5.74)

For this reason the momentum structure is changed to an operator structure which acts on
the initial integral and decreases its entries ni (see later on). The operator action does not
lead out of the set of integral types M or N . Therefore, the diagrams (cx) with massive
loop (called (mx)) and the diagrams (gx) result in integrals of type N . The remaining
diagrams result in diagrams of type M .



5.2. TWO-LOOP MATCHING OF THE SECOND ORDER TERMS 221

bm1d
bm2u
bm2d
bm3u
bm4u
bm4d
bm5d
bm6u
bm6d

bm
bnm3
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bnm bn

bn1d
bn2u
bn4d
bn5d

bt1
=−Ι0

2

bm1
=−Ι1

nsbt1

=−Ι
bn1

2

ΝΜ

gm gs

Figure 5.6: algorithmical scheme for the module recursor.red

The recursion

The integrals of the two types can be reduced to three basic integrals I2
0 , I1 and I2 which

again are expressible in term of Euler’s gamma functions and a single non-analytic integral
I(ε),

I0 = im−2ε
Q M(0, 1) =

=
1

πD/2

∫

dDk

−(k + p)2 +m2
Q

=
2Γ(ε)

D − 2
,

where M(0, 0, 0, 1, 1) = M(0, 1)2,

I1 = −m−4ε
Q M(1, 0, 0, 1, 1) =

=
1

πD

∫

dDk dDl

(−k2)(−(k − l)2)(−(l + p)2 +m2
Q)

=

=
4(2D − 7)

(D − 3)(3D − 8)(3D − 10)

Γ2(1 − ε)Γ(1 + 2ε)Γ(1 − 4ε)

Γ(1 + ε)Γ(1 − 2ε)Γ(1 − 3ε)
Γ2(ε),

I2 = −m−4εN(0, 0, 1, 1, 1) =

=
1

πD

∫

dDk dDl

(−(k + p)2 +m2
Q)(−(l + p)2 +m2

Q)(−(k + l + p)2 +m2
Q)

= (5.75)

=
3(D − 2)2(5D − 18)

2(D − 3)(3D − 8)(3D − 10)
I2
0 − 2(D − 4)

2D − 7
I1 −

16(D − 4)2

(3D − 8)(3D − 10)
I(ε).

For the concise calculation the package recursor.red for the recursive calculation of
general three-loop integrals [83] running under reduce has been translated to MATHE-
MATICA by the author and used in the own computer package. The algorithmic structure
of this package is shown in Fig. 5.6 without going into detail.
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5.2.5 Results for the two-loop calculation

At this point a preliminary results can be shown, as it is given by the contribution for the
diagram (c2). The result is given by

εc2(0) = −g
4
sCANlTF
(4π)4

[

2(D − 3)(D − 2)

(2D − 7)

]

I1,

ε′c2(0) = −g
4
sCANlTF
(4π)4

[

(D − 2)(8D3 − 79D2 + 240D − 212 + 2(3D − 8)αg)

4(D − 1)(2D − 7)(2D − 9)
+

−2(D − 2)(3D3 − 27D2 + 69D − 44 + (3D − 8)αg)

4(D − 1)(2D − 7)(2D − 9)

]

I1, (5.76)

µc2(0) =
g4
sCANlTF
(4π)4

[

(D − 2)(D − 4 − (3D − 8)αg)

2(D − 1)(2D − 7)
− (D − 2)(3D − 8)(5 − αg)

2(D − 1)(2D − 7)

]

I1

where the two contributions in the square brackets come from the two projections for
the resp. order in q2/m2

Q. It is easy to see that the gauge dependence cancels out. The
contribution is gauge invariant. This is a good test for the reliability of the calculations
already at this preliminary level because (c2) is the only diagram that has this specific
colour factor. Therefore, a possible gauge dependence cannot be changed by another
contribution.

5.2.6 Feynman rules for HQET

At this point the Feynman rules for HQET up to O(1/mQ) shall be listed [159],

heavy quark propagator:
1 + v/

2

i

p · v + i0

heavy quark one-gluon vertex: igsTav
µ

heavy quark no-gluon kinetic vertex:
i

2mQ
p2

heavy quark one-gluon kinetic vertex:
igs

2mQ
(2p− k)µTa

heavy quark two-gluon kinetic vertex:
ig2
s

2mQ
{Ta, Tb}gµν

heavy quark one-gluon Fermi vertex:
−gs
2mQ

σµνkνTa

heavy quark two-gluon Fermi vertex:
ig2
s

2mQ

σµνfabdTd (5.77)

where v is the velocity of the hadron, k is the incoming momentum of the gluon, and
p is the outgoing heavy quark residual momentum at the corresponding vertex. These
Feynman rules are given here for the use in the following sections.
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5.3 A threshold mass definition

The masses of fermions and bosons are input parameters of the Standard Model. In
case of heavy hadrons, an exact determination of the heavy quark mass, therefore, is
mandatory for precision tests of the Standard Model. Although it is widely accepted
that the quark masses are generated due to the Higgs mechanism, the value of the mass
cannot be calculated from the Standard Model itself. Instead, quark masses have to be
determined from the comparison of theoretical predictions and experimental data.

It is important to stress that there is no unique definition of the quark mass, as it
might be suggested by the notation mQ used up to now. As in solid state physics, the
quark mass can be screened and modified by the neighbourhood of the quark and its
state. If the quark is very energetic, the pole mass mpole, defined as the pole of the quark
propagator, is an appropiate parameter to describe the mass properties of the quark.
However, if the quark is in rest relative to the hadron, the spectator quarks have to be
taken into account insofar as they build up an effective potential V (r) for the heavy quark.
Only the pole mass in combination with this potential turns out to be a sensible quantity
to be considered. This is expressed by the fact that only the combination 2mpole + V (r)
is free of infrared ambiguities which describe long-distant interactions [172, 173] (see also
Refs. [174, 175]).

The combination 2mpole+V (r), however, includes the light degrees of freedom. In order
to find a definition for the heavy quark mass independent of the light spectator quarks,
different concepts for the so-called threshold masses have been introduced. Among these
are the low scale (LS) mass [173], the potential subtracted (PS) mass [174], ore one half
of the perturbative mass of a fictious 13S1 ground state (called 1S mass) [121] (for a
review see e.g. Ref. [117]). In the work shown here a further mass concept is presented,
the modified potential subtracted (PS) mass [176]. Even though developed by employing
different concepts, the results of Ref. [174] are recovered in the static limit. The definition
of the PS is given by

mPS = mpole − δmPS with δmPS = Σsoft(p/)
∣

∣

∣

p/=m
(5.78)

where Σsoft is the soft part of the heavy quark self energy. This definition is “natural”
in the sense that the regular change of the mass due to the resummation of self energy
contributions is modified insofar, as only the soft part of the radiative corrections are taken
into account which contain the infrared ambiguity. In order to introduce the concept of
soft regions, the next subsection deals with consequences from taking one of the gluons
as soft, while a more general concept is developed thereafter.

5.3.1 Soft regions and effective potentials

The bulk of diagrams to be considered for the two-loop one-particle irreducible radiative
corrections to the quark propagator are shown in Fig. 5.7. The consideration of the soft
part of these diagrams means that at least one of the gluons should be soft, and therefore
close to on-shell. For this reason, the diagrams (a) and (c) in Fig. 5.7 can be considered as
one-loop diagrams where one of the vertices is given by an effective vertex. The effective
vertex then includes the one-loop radiative corrections for particles which are close to
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7: Two-loop contributions to the quark self energy

on-shell. A first approach to this calculation is found in Appendix H. However, a more
general concept for the calculation is found which will be presented here.

p p1 pN p

S

Figure 5.8: The general structure of the self energy diagram of a quark

The starting point of the considerations is an on-shell quark with mass m and momen-
tum p (i.e. p2 = m2) which is considered to be at rest, p = (m,~0). This quark interacts
with a number of gluons. The subdiagram S displayed in Fig. 5.8 describes the interaction
between the gluons. In general the quark lines between the interaction points represent
virtual quark states. However, if the virtual quark comes very close to the mass shell and
the total momentum of the cloud of virtual gluons becomes soft, this situation gives rise
to long-distance nonperturbative QCD interactions. The described (virtual) contributions
result in the soft part of the self energy, Σsoft. For a precise definition one starts with a
general self energy diagram as shown in Fig. 5.8,

−iΣ(p/) =
∫ M
∏

m=1

d4lm
(2π)4

S
{an}
{αn}({lm})

(

−igsγαN+1TaN+1

)

1
∏

n=N

i

p/n −m
(−igsγαnTan

) (5.79)

where the last factor is a non-commutative product with decreasing index n. The line
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momenta kn are linear combinations of the gluon loop momenta lm. The particular rep-
resentation is specified by the structure S. The symbol {lm} means the set of all these
loop momenta. The same symbol is used for the Lorentz and colour indices. In general
one has M ≤ N which means that line momenta can be correlated. The momenta of the
virtual quark states are given by pn = p+kn. Taking this as the starting point one defines

−iΣsoft(p/) =
N
∑

i=1

∫ M
∏

m=1

d4lm
(2π)4

S
{an}
{αn}({lm})

(

−igsγαN+1TaN+1

)

i+1
∏

n=N

i

p/n −m
(−igsγαnTan

) ×

× i(p/i +m)
(

−iπδ(p2
i −m2)

)

(−igsγαiTai
)

1
∏

n=i−1

i

p/n −m
(−igsγαnTan

) . (5.80)

This equation is the definition of the soft part of the quark self energy. One can derive
this expression from Eq. (5.79) by using the identity

1

p2 −m2 + iǫ
= −iπδ(p2 −m2) + Prin

(

1

p2 −m2

)

(5.81)

and the fact that the principal value integral does not give any infrared sensitive contribu-
tion. The delta function can be used to remove the integration over the zero component
of ki. In order to parametrize the softness of the gluon cloud one imposes a cutoff on
the spatial component, |~ki| < µf , and indicates this by a label µf written at the upper
limit of the three-dimensional integral. This cutoff µf is also known as factorization scale.
Therefore, one can rewrite Eq. (5.80) as

Σsoft(p/, µf) = −1

2

N
∑

i=1

∫ µf d3ki
(2π)3

V (~ki, p) (5.82)

where

V (~ki, p) := −
∫ M−1
∏

m=1

d4lm
(2π)4

S
{an}
{αn}({lm})

(

−igsγαN+1TaN+1

)

i+1
∏

n=N

i

p/n −m
(−igsγαnTan

) ×

× p/i +m

2p0
i

(−igsγαiTai
)

1
∏

n=i−1

i

p/n −m
(−igsγαnTan

) . (5.83)

The range of the indexm is reduced by one which indicates that one of the loop momenta is
extracted as line momentum of the i-th line. In the following the different implemetations
of this compact expression are dealt with. As one will see explicitly, the function V (~k, p)
occurring as integrand can be considered as quark-antiquark potential where one has
summed over the spin of the tensor product of the spinors of a final state and an initial
state. Because the static quark-antiquark potential is used in a similar way in Ref. [174],
one recovers the result of Ref. [174] in the static limit. However, there is no kind of
hierarchical order between both concepts because both solve the afore mentioned problems
with non-perturbative uncertainties of the order O(ΛQCD). The role of non-perturbative
effects of the order 1/m have to be studied at a later time.

5.3.2 The leading order perturbative contribution

The leading order contribution to the self energy of the quark is given by

Σ(p/) = i
∫ d4k

(2π)4
(−igsγαTa)

i

p/+ /k −m
(−igsγαTa)

−i
k2

(5.84)
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(a) (b)

=

(c)

+

(d)

Figure 5.9: Leading order contribution to the quark self energy (a) and to the quark-
antiquark potential (b). The cross indicates the point where the quark line is cut by
imposing an on-shell condition to the virtual quark state. The gluon propagator can be
decomposed in a Coulomb propagator (c) and a transverse propagator (d).

where the Feynman gauge is used for the gluon. The soft contribution thus reads

Σsoft(p/) = −ig2
sCF

∫

d4k

(2π)4k2
γα(p/ + /k +m)γα

(

−iπδ
(

(p+ k)2 −m2
))

=

= −πg2
sCF

∫

d4k

(2π)4k2
(−2(p/ + /k) + 4m) δ

(

(p+ k)2 −m2
)

. (5.85)

The fact that the self energy correction is located between on-shell quark states leads to
simplifications which remove the Dirac structure of the integrand, because

ū(p)p/u(p) = ū(p)mu(p) ⇒ p/→ m,

ū(p)m/ku(p) =
1

2
ū(p)(p//k + /kp/)u(p) = (kp)ū(p)u(p) ⇒ /k → kp

m
= k0 (5.86)

The last identity is valid in the quark rest frame. One obtains

Σsoft(p/) = −πg2
sCF

∫

d4k

(2π)4k2
2(m− k0)δ

(

(p+ k)2 −m2
)

. (5.87)

In terms of the zero component of the momentum k the Dirac delta function has two
zeros k0 = k+ and k0 = k− with

k± := ±
√
κ2 +m2 −m (5.88)

where κ = |~k|. The delta function is therefore written as

δ
(

(p+ k)2 −m2
)

=
1

2
√
κ2 +m2

(δ(k0 − k+) + δ(k0 − k−)) . (5.89)

The procedure which is done here is illustrated in Fig. 5.9(a–b). The cross indicates that
one cuts the line at this point by imposing the on-shell condition to the corresponding
(virtual) momentum. The diagram then proceeds to a quark-antiquark interaction dia-
gram where the crosses have been kept to indicate the position of the cut line. This line
carries the momentum p + k while the other two external lines carry the momentum p.
Accordingly one obtains

Σsoft(p/, µf) = −1

2

∫ µf d3k

(2π)3
V (~k, p), V (~k, p) = V+(~k, p) + V−(~k, p) (5.90)
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where

V±(~k, p) = g2
sCF

m− k±√
m2 + κ2(k2

± − κ2)
=

g2
sCF (

√
m2 + κ2 ∓ 2m)

2m
√
m2 + κ2(

√
m2 + κ2 ∓m)

. (5.91)

These are radially symmetric potentials. For m ≪ µf the restriction of the three-dimen-
sional integral by the radial bound µf allows for an expansion in κ/m. One obtains

V+(~k, p) = −4παsCF

{

1

κ2
− 3

4m2
+O

(

κ2

m4

)}

,

V−(~k, p) = −4παsCF

{

− 3

4m2
+O

(

κ2

m4

)}

(5.92)

and therefore

V (~k, p) = −4παsCF

{

1

κ2
− 3

2m2
+O

(

κ2

m4

)}

. (5.93)

The first term in Eq. (5.93) is the Coulomb potential for a quark-antiquark interaction.
The second term can be related to the Breit-Fermi potential of the quark-antiquark inter-
action [177] by summing over the spin states of the tensor product of the final quark and
the final antiquark spinor and using the same kinematic constraints. Moreover, one can
identify V+(~k, p) with the scattering potential and V−(~k, p) with the annihilation potential .

Employing (
√
m2 + κ2 ±m)(

√
m2 + κ2 ∓m) = κ2 and the substitution

κ =
m

2t
(t2 − 1) ⇒

√
m2 + κ2 =

m

2t
(1 + t2), dκ =

m

2t2
(1 + t2)dt, (5.94)

the potentials given in Eq. (5.91) can be integrated exactly up to the cut µf ,

∫ µf d3k

(2π)3
V±(~k, p) =

g2
sCF
2π2

∫ µf

0

(
√
m2 + κ2 ±m)(

√
m2 + κ2 ∓ 2m)

2m
√
m2 + κ2

dκ = (5.95)

=
g2
sCF
2π2

∫ µf

0

κ2 −m2 ∓m
√
m2 + κ2

2m
√
m2 + κ2

dκ =
g2
sCF
2π2

∫ µf

0

(

κ2 −m2

2m
√
m2 + κ2

∓ 1

2

)

dκ =

=
g2
sCFm

16π2

∫ τ

1

t4 − 6t2 + 1

8t3
dt∓ g2

sCFµf
4π2

=
g2
sCFm

16π2

(

τ 2

2
− 1

2τ 2
− 6 ln τ

)

∓ g2
sCFµf
4π2

where τ = (µf +
√

m2 + µ2
f)/m (see also Appendix I). One obtains

Σsoft(µf) =
αsCF
2π

m







3 ln





µf
m

+

√

µ2
f

m2
+ 1



− µf
m

√

µ2
f

m2
+ 1







. (5.96)

The expansion of this expression in small values of µf/m results in

Σsoft(µf) =
αsCF
π

µf

{

1 − µ2
f

2m2

}

. (5.97)

The first term reproduces the result given in Ref. [174] to leading order in αs while the
second term is the recoil correction to the static limit in this order of perturbation theory.
This second term is related to the Breit-Fermi potential but does not coincide with it.
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Figure 5.10: Diagrams which cancel due to the classical Ward identity

(a) (b) (c)

Figure 5.11: Diagrams which contribute to order O(µ2
f/m

2)

5.3.3 Two-loop contributions

To take a step beyond the leading order perturbation theory, the two-loop diagrams for
the heavy quark self energy in Fig. 5.7 are considered. They are calculated in Coulomb
gauge, even though it is shown that the final result is gauge invariant (cf. Appendix I.3).
The gluon propagator in Coulomb gauge is given by

Gab
00(k) =

iδab

~k 2
, Gab

ij (k) =
iδab

k2

(

δij −
kikj
~k 2

)

, i, j = 1, 2, 3. (5.98)

The use of Coulomb gauge splits up the gluon propagators into a Coulomb term (Coulomb
gluon) and a transverse term (transverse gluon) where the first one couples to the quark
via the time components only. This splitting is shown in Fig. 5.9(b–d).

5.3.4 The abelian diagrams

The analysis of two-loop diagrams starts with the abelian diagrams shown in Figs. 5.7(a)
and (b). In cutting the quark line in all possible ways one obtains many diagrams.
However, it is found that the final contribution of these diagrams to the soft part of the
self energy are suppressed by µ2

f/m
2. There are different arguments for this suppression.

First, in applying the classical Ward identity, the QED diagrams shown in Fig. 5.10 cancel
exactly at |~k| → 0. The remaining contribution is of order O(~k2/m2). One should note
that the Ward identity for the interaction vertex of a Coulomb gluon with the quark holds
even in non-abelian theories [178]. A second argument is that the interaction between
a transverse gluon and a non-relativistic quark as shown in Fig. 5.11(a) is suppressed
by µf/m, leading to an overall µ2

f/m
2 suppression. In addition, the box diagrams in

Figs. 5.11(b) and (c) are either suppressed by a factor µ2
f/m

2 or give an iteration of
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the leading order potential. To summarize, the diagrams in Figs. 5.7(a) and (b) give
contributions only of the order g4

sµ
2
f/m

2.

5.3.5 The vacuum polarization of the gluon

The only abelian diagrams which can give a non-suppressed contribution to the soft part
of the quark self energy are the diagrams containing the vacuum polarization of the gluon
as shown in Fig. 5.7(d–f). The simple calculation of these diagrams within the MS scheme,
accounting only for Nf light fermion loops, gluon loop (and ghost loop if Feynman gauge
is used) results after renormalization (cf. Appendix H) in

ΣA
soft = −1

2

∫ µ d3k

(2π)3

(

−4παs(µ)CF

|~k|2

)

×

×






1 +
αs(µ)

4π





31CA
9

− 20TFNf

9
−
(

11CA
3

− 4TFNf

3

)

ln





|~k|2
µ2















=
αS(µ)CF

π
µf

{

1 +
αs(µ)

4π

(

a1 − β0 ln

(

µ2
f

µ2

))}

. (5.99)

This result has been anticipated because the expression in the curly brackets of the inte-
grand reproduces the next-to-leading order correction to the QCD Coulomb potential.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5.12: The non-abelian self energy diagram in Coulomb gauge; displayed are
Coulomb gluons (wiggles) and transverse gluons (dashed lines)

5.3.6 The non-abelian diagrams

In this subsection the non-abelian diagram shown in Fig. 5.7(c) is calculated. In Coulomb
gauge this diagram gives rise to seven two-loop diagrams which are shown in Fig. 5.12.
Direct calculations show that only the diagram in Fig. 5.12(b) gives a contribution of
order g4

sµf/m while the other diagrams are of order g4
sµ

2
f/m

2 or vanish to this order
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in the coupling after applying the renormalization procedure (see e.g. Ref. [179] and
Appendix J). The calculation of the diagram in Fig. 5.12(b) is simple and will be shown
in detail. The contribution of this diagram to the self energy is given by

−iΣ6b(p/) =
∫

d4k1

(2π)4

d4k2

(2π)4

i

~k2
1

i

~k2
2

i

(k1 − k2)2

(

δij −
(k1 − k2)i(k1 − k2)j

(~k1 − ~k2)2

)

×

× gsfabc(k1 + k2)
jg00(−igsγ0Ta)

i

p/+ /k2 −m
(−igsγiTb)

i

p/+ /k1 −m
(−igsγ0Tc). (5.100)

Here the Lorentz structure of the three-gluon vertex is reduced to k1 + k2. If considered
in the quark rest frame between on-shell states, represented by projectors P+ = (1+v/ )/2
on the left and the right, the Dirac structure of the integrand can be simplified to

P+
{

−(2m+ k20)γ
i~k1~γ − ~k2~γγ

i(2m+ k10)
}

. (5.101)

The remaining diagrams are symmetric with respect to the interchange of the two line
momenta k1 and k2. This provides a further simplification of the Dirac structure. The
self energy reduces to

Σ6b(p/) = g4
sCFCA

∫

d4k1

(2π)4

d4k2

(2π)4

(4m+ k10 + k20)
(

~k2
1
~k2

2 − (~k1
~k2)

2
)

~k2
1
~k2

2(~k1 − ~k2)2(k1 − k2)2((p+ k1)2 −m2)((p+ k2)2 −m2)
(5.102)

where TaTbTcfabc = iCFCA/2 has been used. One now employs the substitutions

1

(p+ k1)2 −m2
→ −iπδ((p+ k1)

2 −m2),
1

(p+ k2)2 −m2
→ −iπδ((p + k2)

2 −m2)

(5.103)
i.e. one cuts the two intermediate quark lines separately to obtain the two parts Σ6b

soft1

and Σ6b
soft2 of the soft contribution Σ6b

soft of the self energy, as shown in Fig. 5.12. Taking
the first cut, the delta function removes the integration over k10. At the same time the
definition of the soft contribution imposes a restriction |~k1| < µf on the space components
of the first line momentum. The delta function

δ
(

(p+ k1)
2 −m2

)

=
1

2
√

m2 + ~k2
1

(δ(k10 − k1+) + δ(k10 − k1−)) (5.104)

with

k1± = ±
√

m2 + ~k2
1 −m (5.105)

results in two contributions which are known as scattering and annihilation amplitude
(according to k1+ and k1−, resp.). The integration over k20 is done by using the residue
theorem. Actually there are only two denominator factors which can contribute to poles
of the integrand, namely (k1 − k2)

2 and ((p+ k2)
2 −m2) (for the details of the calculation

see Appendix J). In summing up the four contributions from the integration over k20 and
k10 one ends up with two three-dimensional integrals over the space components of the
two line momenta where the first integral is restricted by |~k1| < µf as mentioned earlier.

One now imposes the restriction |~k1| < µf on the integrand to simplify it and obtains

Σ6b
soft1 =

g4
sCFCA
4m

∫ µf d3k1

(2π)3

∫

d3k2

(2π)3

~k2
1
~k2

2 − (~k1
~k2)

2

~k2
1(~k

2
2)

2(~k1 − ~k2)2
. (5.106)
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(a)

(b)

(c)

Figure 5.13: The soft part of the non-abelian diagram under consideration

The integral over the space components of k2 can be easily done by performing the angular
integration followed by the radial integration. One obtains

∫

d3k2

(2π)3

~k2
1
~k2

2 − (~k1
~k2)

2

~k2
1(~k

2
2)

2(~k1 − ~k2)2
=

1

16|~k1|
(5.107)

and therefore, finally

Σ6b
soft1 =

α2
sCFCA
16m

µ2
f . (5.108)

Symmetry considerations show that Σ6b
soft2 gives exactly the same contribution. As men-

tioned before, there are no other non-abelian contributions, therefore one ends up with

ΣNA
soft =

α2
sCFCA
8m

µ2
f . (5.109)

This result has been anticipated, too, to be minus one half of the non-abelian correction to
the QCD Coulomb potential, which is known in the literature (see for example Refs. [180,
181]),

ΣNA
soft = −1

2

∫ µf d3k

(2π)3

{

−π
2α2

sCFCA

m|~k|

}

=
α2
sCFCA
8m

µ2
f . (5.110)

This calculation concludes the considerations of the two-loop diagrams shown in Fig. 5.7.

5.3.7 The final result

Summarizing all contribution up to NNLO accuracy, one obtains

mPS(µf) −m = −αsCF
π

µf

{

1 + C ′0
µf
m

+ C ′′0
µ2
f

m2
+
αs
4π

(

C1 + C ′1
µf
m

)

+ C2

(

αs
4π

)2
}

(5.111)
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where m is the pole mass, µ is the renormalization scale, and αs = αs(µ). This result is
of the order O(α2

s) because one presumes that the ratio µf/m is typically of the order of
αs or smaller. The scale µf is the factorization scale, and

C0 = 1, C ′0 = 0, C ′′0 = −1

2
,

C1 = a1 − 2β0 ln

(

µf
µ

)

, C ′1 = CA
π2

2
,

C2 = a2 − 2(2a1β0 + β1)

(

ln

(

µf
µ

)

− 1

)

+ 4β2
0

(

ln2

(

µf
µ

)

− 2 ln

(

µf
µ

)

+ 2

)

. (5.112)

While β0 and β1 are the two first coefficients of the QCD β-function,

β0 =
11

3
CA − 4

3
TFNf , β1 =

34

3
C2
A − 20

3
CATFNf − 4CFTFNf (5.113)

(cf. Eq. (2.20) in Chapter 2), the coefficients a1 and a2 were calculated in Refs. [182]
and [183, 184], respectively, and are given by

a1 =
31

9
CA − 20

9
TFNf ,

a2 =

(

4343

162
+ 4π2 − π4

4
+

22

3
ζ3

)

C2
A −

(

1798

81
+

56

3
ζ3

)

CATFNf

+
(

20

9
TFNf

)2

−
(

55

3
− 16ζ3

)

CFTFNf . (5.114)

The coefficients C1 and C2 have been derived in Ref. [174] by using known corrections to
the QCD potential. In the work presented here the new coefficients C ′0, C

′′
0 , and C ′1 have

been derived [176]. Note that the result can be represented in a condensed form as

mPS(µf) −m = −1

2

∫ µf d3k

(2π)3

(

VC(|~k|) + VR(|~k|) + VNA(|~k|)
)

(5.115)

where the first term VC is the static Coulomb potential, VR is the relativistic correction
(which is related to the Breit-Fermi potential but does not coincide with it), and VNA is
the non-abelian correction.

5.3.8 Application of the result

In Ref. [176] the results obtained in this section are applied to the determination of the
top quark production near the production threshold. In order to determine the relative
cross section Re+e− in this threshold region, the non-relativistic Schrödinger equation has
to be solved. It turns out that the use of threshold masses stabilizes the determination
of the threshold in dependence on the renormalization scale as well as in dependence on
the order of the perturbative expansion for the effective potential used in the Schrödinger
equation [119]. The details of these arguments can be found in the literature [117, 176].
Note that the use of a one-scale running of the coupling is a second large step in stabilizing
the threshold region (see e.g. Refs. [185, 186]). It remains as work for the future to test
the consequences of the use of the PS mass in one-scale running.
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5.4 The baryonic Isgur–Wise function

After having presented calculations in connection to the HQET in the previous sections,
starting with this section the HQET is used – especially the Heavy Quark Symmetry
(HQS) as limiting case. In this limit of infinite heavy quark masses, the form factors
for the weak decay describing semileptonic transitions H(v) → H ′(v′) + ℓ + νℓ between
ground-state hadrons including one heavy quark are described by an universal form factor
ξ(v ·v′), known as Isgur–Wise function [151]. The surprising fact that such transitions can
be described by a single function of one variable, namely the velocity transfer y = v · v′,
is a consequence of the HQS [187]. At y = 1, the zero recoil point where the initial and
final hadron have the same velocity, this function is normalized to ξ(1) = 1.

Being a nonperturbative quantity describing the cloud of light quarks and gluons
surrounding the heavy quark, this function can only be determined by nonperturbative
methods, as for instance in QCD sum rules [155] (see also Chapter 7). The precision
of the QCD sum rule method can be improved by taking radiative corrections for the
perturbative parts into account. After the incorporation of the leading logarithmic ap-
proximation [188], the full next-to-leading order corrections to the Isgur–Wise function
for mesons was obtained in Ref. [189]. However, corresponding calculations for the case of
baryons are still missing. The starting steps presented here for the calculation of two-loop
corrections for the baryonic Isgur–Wise function shall fill this gap.

The first step is the calculation of the next-to-leading order corrections to the HQET
three-point diagrams. This will be done in this section, employing configurations space
methods which come in via integral transforms. However, the integrals turn out not to be
analytically calculable. In order to obtain analytic results, in the section that follows the
limit y ≈ 1 is considered. The integrals can then be decomposed into standard integrals
which are reducible to known functions by using the integration-by-parts technique [169].

5.4.1 The leading order diagram

-k1-k2 -k1-k2

k1

k2

Figure 5.14: Leading
order diagram where
only the residual mo-
menta are shown

To explain the main features of the method, one starts with the
leading order diagram shown in Fig. 5.14. The heavy line which
is denoted by the double line carries a momentum −k1−k2 while
the light lines carry the momenta k1 and k2. The cross on the top
of the diagram indicates the place where the velocity is changed
from v (on the left) to v′ (on the right). The first step consists
in performing a Wick rotation. The next step is to replace the
light propagators according to

1

(k2)α
=

Γ(D/2 − α)

4απD/2Γ(α)

∫ eikxdDx

(x2)D/2−α
. (5.116)

One thus obtains

Π0 =
∫

dDk1

(2π)D
dDk2

(2π)D
Tr

(

Γ̄
i

/k1
Γ
i

/k2

)(

i

ω − (k1 + k2)v

)(

i

ω′ − (k1 + k2)v′

)

=

= Tr(Γ̄γµΓν)
∫ idDkE1

(2π)D
idDkE2
(2π)D

(kE1 )µ(kE2 )ν

(kE1 )2(kE2 )2(ω − i(kE1 + kE2 )v)(ω′ − i(kE1 + kE2 )v′)
=
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= −Tr(Γ̄γµΓγν)
∫

dDk1

(2π)D
dDk2

(2π)D

(

−iΓ(D/2)

2πD/2
eik1x1

xµ1d
Dx1

(x2
1)
D/2

)

× (5.117)

×
(

−iΓ(D/2)

2πD/2
eik2x2

xν2d
Dx2

(x2
2)
D/2

)

1

(ω − i(k1 + k2)v)(ω′ − i(k1 + k2)v′)

where the index E indicating the Euclidean metric have been omitted. In addition

kµ

(k2)α+1
= − 1

2α

∂

∂kµ

1

(k2)α
= − iΓ(D/2 − α)

4α2πD/2Γ(α+ 1)

∫

xµeikxdDx

(x2)D/2−α
. (5.118)

has been used. The heavy quark propagators can be transformed into an exponential
function by employing

1

Aα
=

(−1)α

Γ(α)

∫ ∞

0
λα−1eλAdλ for ReA < 0. (5.119)

Applying this to A = ω − i(k1 + k2)v and the primed version of it, one ends up with

Π0 = Tr(Γ̄γµΓγν)
Γ2(D/2)

4πD

∫ dDk1

(2π)D
dDk2

(2π)D
xµ1x

ν
2d

Dx1d
Dx2

(x2
1)
D/2(x2

2)
D/2

dλ dλ′ ×

× exp(ik1x1 + ik2x2 + λ(ω − i(k1 + k2)v) + λ′(ω′ − i(k1 + k2)v
′)). (5.120)

In this situation one can perform the integrations over the inner momenta k1 and k2.
These will result in x1 = λv + λ′v′ = x2. Thus the xi-integrations vanish. One obtains

Π0 = Tr(Γ̄γµΓγν)
Γ2(D/2)

4πD

∫

xµxνdλ dλ′

(x2)D
eλω+λ′ω′

(5.121)

where x = vλ + v′λ′. Finally, the quantity needed for the sum rule analysis is the one
which is Borel transformed both with respect to ω and ω′ [188]. The direct application
of the Borel transformation to the final expression is somewhat difficult. Therefore one
makes a comparison in applying the Borel transformation both to the left and to the right
hand side of Eq. (5.119), obtaining

e−ikv/T = −B̂(ω)
T

(

1

ω − ikv

)

= B̂
(ω)
T

∫ ∞

0
eλ(ω−ikv)dλ =

∫ ∞

0
B̂

(ω)
T (eλω)e−ikvλdλ (5.122)

and states that B̂
(ω)
T (eλω) = δ(λ−1/T ). The direct proof using the definition of the Borel

transformation is given by

B̂
(ω)
T (eλω) = lim

−ω,n→∞
(−ω)n+1

n!

dn

dωn
eλω = lim

−ω,n→∞
(−ω)n+1

n!
λneλω =

= lim
n→∞

(nT )n+1

n!
λne−nλT = (where ω = −nT, T fixed)

= lim
n→∞

nT√
2πn

(

enT

n

)n

λne−nλT = (using n! ≈
(

n

e

)n√
2πn)

= lim
n→∞

nT√
2πn

(

eTe−λTλ
)n

=
T√
2π

lim
n→∞

√
n
(

λTe1−λT
)n
. (5.123)

One knows that
|xe1−x| ≤ 1, xe1−x = 1 for x = 1. (5.124)
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Therefore, the power takes the limit value 1 only in the case λT = 1 while it gives 0 in
all other cases. Because of the additional factor of

√
n it is probable that the expression

B̂
(ω)
T (eλω) turns out to be a Dirac delta function. This is checked numerically. Instead of

the Borel parameter one takes t = 1/T and therefore obtains

ΠB
0 := B̂

(ω)
1/t B̂

(ω)
1/t′Π0 = Tr(Γ̄γµΓγν)

Γ2(D/2)

4πD
aµaν

(a2)D
=

Tr(Γ̄a/Γa/ )

4πD(a2)D
Γ2(D/2) (5.125)

where a = tv + t′v′ and a2 = t2 + 2tt′(v · v′) + t′2.
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Figure 5.15: next-to-leading order self-energy diagrams

5.4.2 The massive self energy diagram

One now can proceed to the calculation of the first next-to-leading order diagrams shown
in Fig. 5.15. The diagram on the left hand side is the massive self energy diagram which
shall be calculated first. It is given by

Π1 =
∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
Tr

(

Γ̄
i

/k1

Γ
i

/k2

)

i

ω′ − (k1 + k2)v′
×

× i

ω − (k1 + k2)v
(−igsvα)

i
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i
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(−i
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)

=

= −ig2
sTr(Γ̄γµΓγν)

∫

idDkE1
(2π)D
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(2π)D
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×

× 1

ω′ − i(kE1 + kE2 )v′

(

1

ω − i(kE1 + kE2 )v

)2
1

ω − i(kE1 + kE2 + kE)v
(5.126)

where again the Wick rotation to Euclidean metric was performed. Skipping this index
E and inserting the configuration space representations for the different propagators, one
obtains

Π1 = −g2
sTr(Γ̄γµΓγν)

∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D

(

−iΓ(D/2)

2πD/2
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xµ1d
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(x2
1)
D/2

)

×

×
(

−iΓ(D/2)

2πD/2
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xν2d
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(x2
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)(

Γ(D/2 − 1)

4πD/2
eikx3

dDx3

(x2
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× (5.127)

×
(

−e(ω−i(k1+k2+k)v)λ1dλ1

) (

λ2e
(ω−i(k1+k2)v)λ2dλ2

) (

−e(ω′−i(k1+k2)v′)λ3dλ3

)

.
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The first step to simplify this integral is to perform the integrations over k1, k2 and k.
These give rise to

x1 = v(λ1 + λ2) + v′λ3 = x2, x3 = vλ1. (5.128)

Finally, the Borel transformations for ω and ω′ are performed, resulting in λ2 = t − λ1,
λ3 = t′ which leaves one free parameter λ1 ∈ [0, t]. With

x1 = x2 = vt+ v′t′ = a, x3 = vλ1, (5.129)

one obtains

ΠB
1 = g2

sTr(Γ̄γµΓγν)
Γ2(D/2)Γ(D/2− 1)

16π3D/2

aµ

(a2)D/2
aν

(a2)D/2

∫ t

0

(t− λ1)dλ1

((vλ1)2)D/2−1
=

=
g2
sTr(Γ̄a/Γa/ )

4π3D/2(a2)D
Γ2(D/2)Γ(D/2− 1)

∫ t

0

(t− λ1)dλ1

λD−2
1

(because v2 = 1). (5.130)

The integral can be calculated,

∫ t

0

(t− λ1)dλ1

λD−2
1

=
−t2ε

2ε(1 − 2ε)
=

−t2ε
2ε

(1 + 2ε) +O(ε) = − 1

2ε
− 1 − ln t+O(ε), (5.131)

the result is therefore given by

ΠB
1 =

−g2
sTr(Γ̄a/Γa/ )

16π6−3ε(a2)4−2ε
Γ2(2 − ε)Γ(1 − ε)

(

1

2ε
+ 1 + ln t

)

. (5.132)

A corresponding diagram is given by the exchange (v, t) ↔ (v′, t′).

5.4.3 The broken massive self energy diagram

As next the diagram in the middle of Fig. 5.15 is considered. Performing all the steps
described above, one obtains

Π2 =
∫ dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
Tr

(

Γ̄
i

/k1
Γ
i

/k2

)

i

ω − (k1 + k2)v
(−igsvα)

i

ω − (k1 + k2 + k)v
×

× i

ω′ − (k1 + k2 + k)v′
(−igsvα)

i

ω′ − (k1 + k2)v′

(−i
k2

)

=

= −ig2
sTr(Γ̄γµΓγν)

∫

idDkE1
(2π)D

idDkE2
(2π)D

idDkE

(2π)D
(kE1 )µ(kE2 )ν

(kE1 )2(kE2 )2(kE)2

(

1

ω − i(kE1 + kE2 )v

)

×

×
(

1

ω − i(kE1 + kE2 + kE)v

)(

1

ω′ − i(kE1 + kE2 + kE)v′

)(

1

ω′ − i(kE1 + kE2 )v′

)

=

= −g2
sTr(Γ̄γµΓγν)

∫ dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D

(

−iΓ(D/2)

2πD/2
eik1x1

xµ1d
Dx1

(x2
1)
D/2

)

×

×
(

−iΓ(D/2)

2πD/2
eik2x2

xν2d
Dx2

(x2
2)
D/2

)(

Γ(D/2 − 1)

4πD/2
eikx3

dDx3

(x2
3)
D/2−1

)

×

×
(

−e(ω−i(k1+k2)v)λ1dλ1

) (

−e(ω−i(k1+k2+k)v)λ2dλ2

)

×
×
(

−e(ω′−i(k1+k2+k)v′)λ3dλ3

) (

−e(ω′−i(k1+k2)v′)λ4dλ4

)

. (5.133)
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The integration over k1, k2 and k results in

x1 = v(λ1 + λ2) + v′(λ3 + λ4) = x2, x3 = vλ2 + v′λ3, (5.134)

The Borel transformation leads to λ1 + λ3 = t and λ3 + λ4 = t′. Therefore, λ1 = t − λ2

and λ4 = t′ − λ3 can be eliminated and one obtains x1 = vt+ v′t′ = x2 = a and

Π2 =
g2
sTr(Γ̄a/Γa/ )

16π3D/2(a2)D
Γ2(D/2)Γ(D/2 − 1)

∫ t

0
dλ2

∫ t

0
dλ3

1

((vλ2 + v′λ3)2)D/2−1
. (5.135)

5.4.4 The light self energy diagram

For the light self energy diagram (right hand side of Fig. 5.15) one starts with

Π3 =
∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
Tr

(

Γ̄
i

/k1
(−igsγα)

i

/k1 − /k
(−igsγα)

i

/k1
Γ
i

/k2

)

×

× i

ω − (k1 + k2)v

(−i
k2

)

i

ω′ − (k1 + k2)v′
=

= −ig2
sTr(Γ̄γµγαγνγ

αγρΓγσ)
∫

idDkE1
(2π)D

idDkE2
(2π)D

idDk

(2π)D
×

× (kE1 )µ(kE1 − kE)ν(kE1 )ρ(kE2 )σ

(kE1 )2(kE1 − kE)2(kE1 )2(kE2 )2

(

1

ω − (kE1 + kE2 )v

)

1

(k2)E

(

1

ω′ − (kE1 + kE2 )v′

)

=

= −g2
s (2 −D)Tr(Γ̄γµγνγρΓγσ)

∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
×

×
(

−iΓ(D/2)

2πD/2
eik1x1

xµ1d
Dx1

(x2
1)
D/2

)(

−iΓ(D/2)

2πD/2
ei(k1−k)x2

xν2d
Dx2

(x2
2)
D/2

)

×

×
(

−iΓ(D/2)

2πD/2
eik1x3

xρ3d
Dx3

(x2
3)
D/2

)(

−iΓ(D/2)

2πD/2
eik2x4

xσ4d
Dx4

(x2
4)
D/2

)

×

×
(

Γ(D/2 − 1)

4πD/2
eikx5

dDx5

(x2
5)
D/2−1

)

(

−e(ω−(k1+k2)v)λ1dλ1

) (

−e(ω′−(k1+k2)v′)λ2dλ2

)

.

(5.136)

After integration over k1, k2 and k one obtains

x1 + x2 + x3 = x4 = vλ1 + v′λ2, x2 − x5 = 0. (5.137)

while the Borel transformation leads to λ1 = t and λ2 = t′. Thus the result is given by

Π3 =
−g2

s (2 −D)

64π5D/2(a2)D/2
Tr(Γ̄γµγνγρΓa/ )Γ

4(D/2)Γ(D/2− 1) ×

×
∫

xµ1 (a− x1 − x3)
νxρ3d

Dx1d
Dx3

(x2
1)
D/2((a− x1 − x3)2)D−1(x2

3)
D/2

. (5.138)

Note that the tensor integral is symmetric in µ, ν, and ρ, the only outer momentum is a.
Therefore it can be expressed by Aaµaνaρ +B(aµgνρ + aνgµρ + aρgµν).
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-k1-k2 -k1-k2

k1 k1+k

k2 k2-k
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k
-k1-k2-k

k1 k1+k

k2

Figure 5.16: next-to-leading order fish diagrams

5.4.5 The light fish diagram

As in Chapter 4, fish diagrams are diagrams with a gluon propagator connecting two
lines. The light fish diagram is shown in Fig. 5.16 on the left hand side. The contribution
of this diagram is given by

Π4 =
∫ dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
Tr

(

Γ̄
i

/k1 + /k
(−igsγα)

i

/k1
Γ
i

/k2
(−igsγα)

i

/k2 − /k

)

×

×
(

i

ω − (k1 + k2)v

)

−i
k2

(

i

ω′ − (k1 + k2)v′

)

=

= −ig2
sTr(Γ̄γµγαγνΓγργ

αγσ)
∫

idDkE1
(2π)D

idDkE2
(2π)D

idDkE

(2π)D
×

× (kE1 + kE)µ(kE1 )ν(kE2 )ρ(kE2 − kE)σ

(kE1 + kE2 )2(kE1 )2(kE2 )2(kE2 − kE)

i

ω − i(kE1 + kE2 )v

(

−i
(kE)2

)

i

ω′ − i(kE1 + kE2 )v′
=

= −g2
sTr(Γ̄γµγαγνΓγργ

αγσ)
∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
×

×
(

−iΓ(D/2)

2πD/2
ei(k1+k)x1

xµ1d
Dx1

(x2
1)
D/2

)(

−iΓ(D/2)

2πD/2
eik1x2

xν2d
Dx2

(x2
2)
D/2

)

×

×
(

−iΓ(D/2)

2πD/2
eik2x3

xρ3d
Dx3

(x2
3)
D/2

)(

−iΓ(D/2)

2πD/2
ei(k2−k)x4

xσ4d
Dx4

(x2
4)
D/2

)

× (5.139)

×
(

Γ(D/2 − 1)

4πD/2
eikx5

dDx5

(x2
1)
D/2−1

)

(

−e(ω−i(k1+k2)v)λ1dλ1

) (

−e(ω′−i(k1+k2)v′)λ2dλ2

)

.

The integration over k1, k2 and k results in

x1 + x2 = x3 + x4 = vλ1 + v′λ2, x1 − x4 + x5 = 0, (5.140)

the Borel transformation gives λ1 = t and λ2 = t′. One eliminates x1 = a−x3, x4 = a−x2

and x5 = x4 − x1 = x2 − x3 and obtains

Π4 = −g2
sTr(Γ̄γνγαγνΓγργ

αγσ)
Γ4(D/2)Γ(D/2− 1)

64π5D/2
×

×
∫

(a− x2)
µxν2x

ρ
3(a− x3)

σdDx2d
Dx3

((a− x2)2)D/2(x2
2)
D/2(x2

3)
D/2((a− x3)2)D/2((x2 − x3)2)D/2−1

. (5.141)

Note that the integral is symmetric under simultaneous pair exchange of µ, ν, ρ, and σ.
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5.4.6 The semi-massive fish diagram

The contribution of the diagram on the right hand side of Fig. 5.16 is given by

Π5 =
∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D
Tr

(

Γ̄
i

/k1 + /k
(−igsγα)

i

/k1

Γ
i

/k2

)

(−i
k2

)

×

× i

ω′ − (k1 + k2 + k)v′
i

ω − (k1 + k2 + k)v
(−igsvα)

i

ω − (k1 + k2)v
=

= −ig2
sTr(Γ̄γµv/ γνΓγρ)

∫

idDkE1
(2π)D

idDkE2
(2π)D

idDkE

(2π)D
(kE1 + k)µ(kE1 )ν(kE2 )ρ

(kE1 + kE)2(kE1 )2(kE2 )2(kE)2
×

× 1

ω′ − i(kE1 + kE2 + kE)v′
1

ω − i(kE1 + kE2 + kE)v

1

ω − i(kE1 + kE2 )v
=

= −g2
sTr(Γ̄γµv/ γνΓγρ)

∫

dDk1

(2π)D
dDk2

(2π)D
dDk

(2π)D

(

−iΓ(D/2)

2πD/2
ei(k1+k)x4

xµ4d
Dx4

(x2
4)
D/2

)

×

×
(

−iΓ(D/2)

2πD/2
eik1x1

xν1d
Dx1

(x2
1)
D/2

)(

−iΓ(D/2)

2πD/2
eik2x2

xρ2d
Dx1

(x2
2)
D/2

)

×

×
(

Γ(D/2 − 1)

4πD/2
eikx3

dDx3

(x2
3)
D/2−1

)

(

−e(ω−i(k1+k2)v)λ1dλ1

)

×

×
(

−e(ω−i(k1+k2+k)v)λ2dλ2

) (

−e(ω′−i(k1+k2+k)v′)λ3dλ3

)

. (5.142)

Note that there is one more variable x4. It will remain as integration variable, too. The
integration over the three inner momenta result in

x1 + x4 = x2 = v(λ1 + λ2) + v′λ3, x3 + x4 = vλ2 + v′λ3, (5.143)

The Borel transformation gives λ2 = t− λ1, λ3 = t′ such that

x1 + x4 = x2 = vt+ v′t′ = a, x3 + x4 = vt+ v′t′ − λ1v = a− λ1v. (5.144)

Therefore, one ends up with the Borel transformed integral

ΠB
5 =

−ig2
s

32π2D
Tr(Γ̄γµv/ γνΓγρ)Γ

3(D/2)Γ(D/2 − 1) ×

×
∫

xµ4 (a− x4)
νaρdDx4

(x2
4(a− x4)2)D/2

∫ t

0

dλ1

((a− λ1v − x4)2)D/2−1
= (5.145)

=
g2
s

32π2D
Γ3(D/2)Γ(D/2 − 1)

∫ Tr(Γ̄x/ 4v/ (a/ − x/ 4)Γa/ )

(x2
4(a− x4)2)D/2

dDx4

∫ t

0

dλ1

((a− λ1v − x4)2)D/2−1
.

The solution of the integral in Eq. (5.145) is pending. It is extremely difficult to imagine
that by standard techniques this integral could be reduced to an analytical expression.
Probably the angular dependence between a, v and x4 can be integrated out. But the
two-fold integral over λ1 and |x4| can then only be treated numerically. For this reason,
the calculations are started again in the following section for the case where the Isgur–
Wise function is considered close to the zero recoil point – a situation which is used in
Ref. [189] as well.



240 CHAPTER 5. NEW DEVELOPMENTS IN HQET

5.5 The Isgur–Wise function close to zero recoil

As in the previous section, the baryonic three-point function is given by

Γ̃(ω, ω′, v · v′)(v + v′)µ = i2
∫

〈0|T{JΓ̄(x)V µ(0)JΓ(y)}|0〉eipx−ip′yd4x d4y (5.146)

where p and p′ are the residual momenta of the ingoing and outgoing heavy quarks, resp.,
v and v′ are the velocities of the baryons, ω = p · v, ω′ = p′ · v′ with v2 = v′2 = 1, and the
currents are given by

JΓ = [(q1)
iTCΓτ(q2)

j ]Γ′(hv)
kεijk, V µ = h̄vγ

µhv′ , (5.147)

q1, q2 and hv being the light and heavy quark fields, respectively. The calculational tools
will be demonstrated in the following by using a special case, namely the heavy-to-light
gluon exchange diagram.

5.5.1 The semimassive fish diagram

The diagram to be calculated is the heavy-to-light gluon ex-
change diagram, known from the last section as semimassive
fish diagram (cf. Fig. 5.16 (right)) which is shown with new
momentum conventions in Fig. 5.17 on the right. It is a three-
loop diagram, so it contains three internal momenta k, l and
p. The last momentum is attached to the light line not con-
nected to the others by a gluon. As usual one can express the
integral in terms of light and heavy propagators

i

/k

i

ω(′) + k · v(′) (5.148)

p+k

p+l
υ

p+l

υ’

-k -l

-p

Figure 5.17: semimassive
fish diagram

with internal (residual) momentum k, ω(′) = v(′)p, and gluon vertices to the light and
heavy lines, given by −igsγα and −igsvα (cf. Eq. (5.77)). Leaving out the colour factor
for the moment, the contribution of this diagram is given by

I =
∫ dDk

(2π)D
dDl

(2π)D
dDp

(2π)D
Tr

(

Γ′
i

−p/Γ
i

−/k (−igsγα)
i

−/l

)(

−i
(k − l)2

)

×

×
(

i

ω + pv + kv

)

(−igsvα)
(

i

ω + pv + lv

)(

i

ω′ + pv′ + lv′

)

=

= ig2
sTr(Γ′γµΓγνv/ γρ)

∫

dDk

(2π)D
dDl

(2π)D
dDp

(2π)D
pµkνlρ

(

−1

p2

)

(−1

k2

)(−1

l2

)

(

−1

(k − l)2

)

×

×
(

1

ω + pv + kv

)(

1

ω + pv + lv

)(

1

ω′ + pv′ + lv′

)

. (5.149)

While the colour factor is given by

εijk(T
a)ii′(T

a)jj′ε
i′j′k′ = . . . = −Nc + 1

2Nc
εijkε

ijk = −CBNc!, (5.150)

there are several steps necessary to calculate this integral.
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Iterating the integrals

The integrals can be “iterated” which means that there are two integrations (namely those
over k and l) that can be performed before performing the integration over p. The inner
integral can be defined as

Iµ(p, ω, ω
′) = ig2

sTr(Γ′γµΓγνv/ γρ)
∫

dDk

(2π)D
dDl

(2π)D
kνlρ

(−1

k2

)(−1

l2

)

(

−1

(k − l)2

)

×

×
(

1

ω + pv + kv

)(

1

ω + pv + lv

)(

1

ω′ + pv′ + lv′

)

=

= Iµ(0, ω + pv, ω′ + pv′). (5.151)

The last equality shows that this integral does not depend explicitly on the momentum
vector p but is implicitly shifted by it. This integral Iµ is a vector integral. This integral
may therefore be expressed in terms of the outer vectors. The only one which can be used
are the velocities v and v′ or linear combinations of them. For reasons that will be seen
later on the expansion is not done in terms v and v′ itself but in the orthonormal basis

v± :=
v ± v′

2c±
⇔ v = c+v+ + c−v−, v′ = c+v+ − c−v− (5.152)

where

c± :=

√

y ± 1

2
, y := v · v′. (5.153)

This basis is (pseudo)orthonormal because of v2
+ = −v2

− = 1 and v+v− = 0. The expansion
of Iµ(0, ω, ω

′) in this basis is given by

Iµ(0, ω, ω
′) = v+Ĩ

+(ω, ω′) + v−Ĩ
−(ω, ω′) (5.154)

and leads to

I =
∫ dDp

(2π)D
pµ
(

−1

p2

)

Iµ(p, ω, ω
′) =

∫ dDp

(2π)D
pµ
(

−1

p2

)

Iµ(0, ω + pv, ω′ + pv′) =

=
∫

dDp

(2π)D

(

−1

p2

)

(

(pv+)Ĩ+(ω + pv, ω′ + pv′) + (pv−)Ĩ−(ω + pv, ω′ + pv′)
)

(5.155)

for the original expression.

Separating the Dirac structure

As the next step the Dirac structure of the integrals Ĩ±(ω, ω′) given by the trace factor is
separated, and the remaining tensor integrals are expanded in terms of covariants. Here
the integral Ĩ+(ω, ω′) is considered which can be written as

Ĩ+(ω, ω′) = ig2
sTr (Γ′v/ +Γγµ(c+v/ + + c−v/ −)γν) I

µν(ω, ω′). (5.156)

The expansion is given by

Iµν(ω, ω′) = Agg
µν + A++v

µ
+v

ν
+ + A+−v

µ
+v

ν
− + A−+v

µ
−v

ν
+ + A−−v

µ
−v

ν
− (5.157)
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and the integral Ĩ+(ω, ω′) thus reads

Ĩ+(ω, ω′) = ig2
s

[

AgTr(Γ′v/ +Γγµ(c+v/ + + c−v/ −)γµ) +

+A++Tr(Γ′v/ +Γv/ +(c+v/ + + c−v/ −)v/ +) + A+−Tr(Γ′v/ +Γv/ +(c+v/ + + c−v/ −)v/ −) +

+A−+Tr(Γ′v/ +Γv/ −(c+v/ + + c−v/ −)v/ +) + A−−Tr(Γ′v/ +Γv/ −(c+v/ + + c−v/ −)v/ −)
]

=

= ig2
s

[

(c+((2 −D)Ag + A++ −A−−) + c−(A+− + A−+))Tr(Γ′v/ +Γv/ +) +

+(c+(A+− + A−+) + c−((2 −D)Ag −A++ + A−−))Tr(Γ′v/ +Γv/ −)
]

(5.158)

where one uses

γµ(c+v/ + + c−v/ −)γµ = (2 −D)(c+v/ + + c−v/ −),

v/ +(c+v/ + + c−v/ −)v/ + = c+v/ + + c−v/ +v/ −v/ + = c+v/ + − c−v/ −,

v/ +(c+v/ + + c−v/ −)v/ − = c+v/ − − c−v/ +,

v/ −(c+v/ + + c−v/ −)v/ + = c+v/ − − c−v/ +,

v/ −(c+v/ + + c−v/ −)v/ − = c+v/ −v/ +v/ − + c−v/ − = c+v/ + + c−v/ −. (5.159)

By contracting with the dual basis given gµν and products of vµ± and vν± one obtains

DAg + A++ − A−− = Ig(ω, ω
′) = gµνI

µν(ω, ω′),

Ag + A++ = I++(ω, ω′) = (v+)µ(v+)νI
µν(ω, ω′),

−Ag + A−− = I−−(ω, ω′) = (v−)µ(v−)νI
µν(ω, ω′), (5.160)

−A+− = I+−(ω, ω′) = (v+)µ(v−)νI
µν(ω, ω′),

−A−+ = I−+(ω, ω′) = (v−)µ(v+)νI
µν(ω, ω′).

While the two last equations are already solved, the first three need to be inverted, the
result reads

Ag =
Ig − I++ + I−−

D − 2
, A++ = I++ −Ag, A−− = I−− + Ag. (5.161)

In the following one concentrates again on one of these integrals, e.g. Ig(ω, ω
′).

Expanding the heavy propagators

The integral one looks at is given by

Ig(ω, ω
′) =

∫

dDk

(2π)D
dDl

(2π)D
(kl)

(−1

k2

)(−1

l2

)

(

−1

(k − l)2

)

(

1

ω + kv

)(

1

ω + lv

)(

1

ω′ + lv′

)

.

(5.162)
Some word about the momentum factor (kl) are in order here. This factor and other
factors resulting from the covariant expansion of the tensor integral can be expanded
in terms of scalar products occuring in the denominator of the integrand and therefore
cancel some of the propagator factors. This procedure can also be expressed in terms of
operators on the powers of propagators. This technique is considered in a later step. Here
the term is left as it is. Care is taken instead on the heavy quark propagators which give
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the integral a non-integrable form. By assuming that the recoil parameter y = v · v′ is
not very different from 1 one can express v and v′ in the denominators by v+ and v− and
expand the resulting expressions in the small parameter

c :=
c−
c+

=

√

y − 1

y + 1
=

√
r where r :=

y − 1

y + 1
. (5.163)

But before doing so, the momenta k and l are rescaled by c+,

c+k → k, c+l → l ⇒ dDk

(2π)D
→ c−D+

dDk

(2π)D
,

dDl

(2π)D
→ c−D+

dDl

(2π)D
. (5.164)

Then one has

1

ω + kv
=

1

ω + c+kv+ + c−kv−
→ 1

ω + kv+ + ckv−
=
∞
∑

n=0

n!(−ckv−)n

(ω + kv+)n+1
,

1

ω + lv
=

1

ω + c+lv+ + c−lv−
→ 1

ω + lv+ + clv−
=
∞
∑

n=0

n!(−clv−)n

(ω + lv+)n+1
, (5.165)

1

ω′ + lv′
=

1

ω′ + c+lv+ − c−lv−
→ 1

ω′ + lv+ − clv−
=
∞
∑

n=0

n!(clv−)n

(ω′ + lv+)n+1
.

Therefore, one obtains

Ig(ω, ω
′) = c4−2D

+

∫

dDk

(2π)D
dDl

(2π)D
(kl)

(−1

k2

)(−1

l2

)

(

−1

(k − l)2

)

×

×
∞
∑

n1,n2,n3=0

cn1+n2+n3n1!(−kv−)n1n2!(−lv−)n2n3!(lv−)n3 ×

× 1

(ω + kv+)n1+1

1

(ω + lv+)n2+1

1

(ω′ + lv+)n3+1
. (5.166)

In expanding this expression up to the second order in r, the factor cn1+n2+n3 allows one
to restrict the sum up to the fourth order. And there is still another restriction possible.
If one extracts the vectors v− from the integral, one ends up with a tensor integral of high
rank. This can only be covariantly represented by the vector v+ and the metric tensor.
But by inserting this covariant representation back again, all scalar products v− ·v+ vanish
and only coefficients with containing pure metric tensor components remain. This allows
one to skip all terms in the sum from the very beginning for which n1 + n2 + n3 is odd.

Partial fraction decomposition

The last step consists of a partial fraction decomposition of products of heavy propagators
with the same residual momentum but different scalars ω and ω′. This will be done in
order that the different parts shall fall into the two integral classes given in Ref. [190]. In
the case considered here, the partial fraction decomposition is necessary for the product

1

(ω + lv+)n2+1

1

(ω′ + lv+)n3+1
. (5.167)
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Again, the partial fraction decomposition will be shown for one specific example, namely
the case n2 = 1 and n3 = 0. In this case one has

1

(ω + lv+)2(ω′ + lv+)
=

A1

ω + lv+
+

A2

(ω + lv+)2
+

B1

ω′ + lv+
(5.168)

which results in

1
!
= A1(ω

′ + lv+)(ω + lv+) + A2(ω
′ + lv+) +B1(ω + lv+)2 =

= A1ω
′ω + A1(ω

′ + ω)(lv+) + A1(lv+)2 + A2ω
′ + A2(lv+) +

+B1ω
2 + 2B1ω(lv+) +B1(lv+)2. (5.169)

A comparison of coefficients in this example leads us to

A1 =
−1

(ω′ − ω)2
, A2 =

1

ω′ − ω
, B1 =

1

(ω′ − ω)2
(5.170)

In general, one writes

1

(ω + lv+)n2+1

1

(ω′ + lv+)n3+1
=

n2+1
∑

m2=1

Am2

(ω + lv+)m2
+

n3+1
∑

m3=1

Bm3

(ω′ + lv+)m3
(5.171)

and finally obtains

Ig(ω, ω
′) = c4−2D

+

∫

dDk

(2π)D
dDl

(2π)D
(kl)

(−1

k2

)(−1

l2

)

(

−1

(k − l)2

)

×

×
n1+n2+n3≤4, even

∑

n1,n2,n3=0

cn1+n2+n3n1!(−kv−)n1n2!(−lv−)n2n3!(lv−)n3 ×

× 1

(ω + kv+)n1+1





n2+1
∑

m2=1

Am2

(ω + lv+)m2
+

n3+1
∑

m3=1

Bm3

(ω′ + lv+)m3



 . (5.172)

5.5.2 The recurrence algebra for the integrals I ′

While the recurrence of the integrals I is already implemented in the procedure recursor,
the implementation of the recurrence of the integrals I ′ is still an outstanding task.
Ref. [188] provides one with a calculation of these integrals under Borel transformation.
But here at least the attempt will be made to find a recurrence algebra for these integrals
in order to fill the gap mentioned in Ref. [169].

Generating a set of operator equations

The basis of each recurrence algebra is a set of operator equations. The operators are
understood as acting on the entries of the integrals which on the other hand indicate the
powers of the propagators contained in the integral. The most general two-loop integral
considered here is given by

−1

(4π)D
(−2ω)2D−2a−2bI ′(a, b, c, p, q;ω′/ω) =

=
∫

dDk

(2π)D
dDl

(2π)D

(−1

k2

)a (−1

l2

)b
(

−1

(k − l)2

)c (
ω

ω + kv

)p
(

ω′

ω′ + lv

)q

. (5.173)
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In order to obtain the operator equations which are a consequence of a integration by
parts, one first calculates the contributions of the different terms,

∂

∂k

(−1

k2

)a

= (−1)a
∂

∂k
(k2)−a = (−1)a(−2ak)(k2)−a−1 =

= 2ak(−1)a+1(k2)−a−1 = 2ak
(−1

k2

)a+1

,

∂

∂l

(−1

l2

)b

= 2bl
(−1

l2

)b+1

,

∂

∂k

(

−1

(k − l)2

)c

= 2c(k − l)

(

−1

(k − l)2

)c+1

,

∂

∂l

(

−1

(k − l)2

)c

= 2c(l − k)

(

−1

(k − l)2

)c+1

,

∂

∂k

(

ω

ω + kv

)p

= ωp
∂

∂k
(ω + kv)−p = ωp(−pv)(ω + kv)−p−1 =

= −pv
ω

(

ω

ω + kv

)p+1

,

∂

∂l

(

ω′

ω′ + lv

)q

= −qv
ω′

(

ω′

ω′ + lv

)q+1

. (5.174)

All these derivatives increase the corresponding entry by one. This will be used to define
operators A+, B+, C+, P+, and Q+ acting on the integral and increasing the corre-
sponding entry. The first equation to be constructed is the one corresponding to the
operator,

k
∂

∂k
: −

∫

k
∂

∂k
f(k, l) =

∫

f(k, l)
∂

∂k
k = D

∫

f(k, l) (5.175)

where a fairly symbolic but obvious notation is used. The surface term always vanishes.
To obtain the left hand side one has to multiply the calculated derivatives by the vector
k. In the first derivative, the produced k2 cancels one denominator factor and produces
a minus sign. This derivative, therefore, is connected with an operator −A−. If one
multiplies the third listed derivative with k, one has to deal with the product k(k − l) =
(k2− l2 +(k− l)2)/2. Therefore, this derivative will result in an operator −A−+B−−C−.
The multiplication of the fifth equation with k, finally, results in

kv

ω
=
ω + kv

ω
− 1 (5.176)

and therefore results in an operator P− − 1. Combining this with the right hand side of
Eq. (5.175), one obtains

2aA+A− + cC+(A− −B− + C−) + pP+(P− − 1) = D, (5.177)

assuming that this operator acts on I ′(a, b, c, p, q;ω′/ω). One can of course also make use
of A+A− = C+C− = P+P− = 1 and shift all these parts to the right hand side. Then
one ends up with

cC+(A− − B−) − pP+ = D − 2a− c− p. (5.178)
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This equation is the first of the operator equations. For the second equation, considering

l
∂

∂k
: −

∫

l
∂

∂k
f(k, l) =

∫

f(k, l)
∂

∂k
l = 0, (5.179)

one has to calculate

2lk = k2 + l2 − (k − l)2 ⇒ −(A− + B− −C−),

2l(k − l) = k2 − l2 − (k − l)2 ⇒ −(A− −B− − C−),

lv

ω
=

ω′

ω

(

ω′ + lv

ω′
− 1

)

⇒ ω′

ω
(Q− − 1). (5.180)

Therefore, one obtains

aA+(A− + B− −C−) + cC+(A− − B− −C−) +
ω′

ω
pP+(Q− − 1) = 0

or aA+(B− −C−) + cC+(A− − B−) +
ω′

ω
pP+(Q− − 1) = c− a. (5.181)

The next operator equation is the one related to

k
∂

∂l
: −

∫

k
∂

∂l
f(k, l) =

∫

f(k, l)
∂

∂l
k = 0. (5.182)

Here one has to calculate

2kl = k2 + l2 − (k − l)2 ⇒ −(A− + B− − C−),

2k(l − k) = −k2 + l2 − (k − l)2 ⇒ A− −B− + C−,

kv

ω′
=

ω

ω′

(

ω + kv

ω
− 1

)

⇒ ω

ω′
(P− − 1) (5.183)

and obtains

bB+(A− + B− − C−) − cC+(A− − B− + C−) +
ω

ω′
qQ+(P− − 1) = 0

or bB+(A− − C−) − cC+(A− −B−) +
ω

ω′
qQ+(P− − 1) = c− b. (5.184)

Finally, for

l
∂

∂l
: −

∫

l
∂

∂l
f(k, l) =

∫

f(k, l)
∂

∂l
l = D

∫

f(k, l) (5.185)

one calculates

2l2 = 2l2 ⇒ −2B−,

2l(l − k) = −k2 + l2 + (k − l)2 ⇒ A− − B− − C−,

lv

ω′
=

ω′ + lv

ω′
− 1 ⇒ Q− − 1. (5.186)
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Therefore, the last operator equation reads

2bB+B− − cC+(A− −B− − C−) + qQ+(Q− − 1) = D

or − cC+(A− −B−) − qQ+ = D − 2b− c− q. (5.187)

To summarize, the operator equations are given by

cC+(A− − B−) − pP+ = D − 2a− c− p, (5.188)

aA+(B− − C−) + cC+(A− −B−) +
ω′

ω
pP+(Q− − 1) = c− a, (5.189)

bB+(A− −C−) − cC+(A− −B−) +
ω

ω′
qQ+(P− − 1) = c− b, (5.190)

−cC+(A− −B−) − qQ+ = D − 2b− c− q. (5.191)

The first two equations resp. the last two equations can be combined in the form described
in the literature. This combination avoids the pure increase of one entry (p or q),

c− a− ω′

ω
(D − 2a− c− p) = aA+(B− −C−) +

(

1 − ω′

ω

)

cC+(A− − B−) +
ω′

ω
pP+Q−,

(5.192)

c− b− ω

ω′
(d− 2b− c− q) = bB+(A− −C−) −

(

1 − ω

ω′

)

cC+(A− −B−) +
ω

ω′
qQ+P−.

(5.193)

On the way to a recursion that works

In order to obtain an algorithm to reduce the integrals to those with one vanishing entry
one should not use Eqs. (5.192) and (5.193). The reason is that they contain a seesaw
mechanism. Looking e.g. at Eq. (5.192), the operators A+C− and C+A− appear both
in the operator equation which means that this operation will keep on doing an infinite
circle in changing these two entries forth and back which is not very helpful to get to an
end. Instead of this one should take Eqs. (5.188) to (5.191) and try to eliminate as many
operations as one can in order to “direct” the action of these operations. One can for
instance combine the first and the second equation to eliminate the term proportional to
C+, obtaining

aA+(B− − C−) + pP+

(

1 +
ω′

ω
(Q− − 1)

)

= a+ 2c+ p−D, (5.194)

and in the same manner combine the third and fourth equation to obtain

bB+(A− −C−) + qQ+
(

1 +
ω

ω′
(P− − 1)

)

= b+ 2c+ q −D. (5.195)

But one can alternatively combine the first and the third equation, resulting in

bB+(A− − C−) − pP+ +
ω

ω′
qQ+(P− − 1) = D − 2a− b− p, (5.196)

and the second and fourth, obtaining

aA+(B− − C−) − qQ+ +
ω′

ω
pP+(Q− − 1) = D − a− 2b− q. (5.197)
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One can now rearrange these and the previous equations, keeping in mind that the action
of A+ on such an operator equation will lead to the replacement a → a + 1 while the
action of A− does the opposite, a→ a− 1. With this one obtains

a− 1 = (a− 1)C+B− + (D − (a− 1) − 2(c+ 1) − p)C+A− +

+pP+C+A−
(

1 +
ω′

ω

(

Q− − 1
)

)

, (5.198)

b− 1 = (b− 1)C+A− + (D − (b− 1) − 2(c+ 1) − q)C+B− +

+qQ+C+B−
(

1 +
ω

ω′

(

P− − 1
)

)

, (5.199)

p− 1 = cC+P−(A− − B−) − (D − 2a− c− (p− 1))P−, (5.200)

q − 1 = cC+Q−(B− −A−) − (D − 2b− c− (q − 1))Q−, (5.201)

c− 1 = (c− 1)A+B− − (D − 2b− (c− 1) − q)A+C− + qQ+A+C−, (5.202)

These equations can be used to reduce the entries a, b, p, q, and c down to the value 1.
But this does not end the recursion. Instead one observes that starting with an integral
I ′(1, 1, c, 1, 1;ω′/ω), one ends up with integrals with at least one vanishing entry and
again the same integral I ′(1, 1, c, 1, 1;ω′/ω). Therefore, the final step for the method is
to solve the equation for I ′(1, 1, c, 1, 1;ω′/ω) in order to obtain an explicit expression. In
considering the already working recurrence procedures for the unprimed integrals, one
can can learn much for the construction of a precisealgorithms for the primed integrals.
The first two equations used for the unprimed integrals are given by

D − a− 2c− p− q + 1 = (2(D − a− b− c) − p− q + 1)Q− − aA+(B− − C−) (tI5)

2(D − a− b− c) − p− q = (D − a− 2c− p− q)Q+ + aA+(B− − C−)Q+ (qI5)

which are actually the same equation (the labels are taken from the recursion program).
(tI5) is applied for b, c, q > 0 while (qI5) for q < 0. The next equation is

a− 1 = (a− 1)B−C+ − (2(D − a− b− c) − p− q + 1)Q−A−C+ +

+(D − a− 2c− p− q)A−C+ (cI5)

which is used for c < 0 and a > 1. For one of the last entries one has

p− 1 = cC+(A− −B−)P− − (D − 2a− c− p+ 1)P− (pI5)

which is used for c < 0 and p > 1. Finally, for c < 0 one uses

I(1, 1, c, 1, 1) =
(

D

2
− 2 − c

)

I(1, 1, c+ 1, 1, 1)

D − 3 − c
. (5.203)

The final ends of the recursion

The recursion terminates if one of the entries vanishes. This paragraph contains these
final expressions. The easiest case is the one where the entry c vanishes. In this case,
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the two momenta are no longer connected and one ends up with a product of one-loop
integrals,

I ′(a, b, 0, p, q;ω′/ω) =
∫

dDk

(2π)D
dDl

(2π)D

(−1

k2

)a (−1

l2

)b ( ω

ω + kv

)p
(

ω′

ω′ + lv

)q

=

=
∫

dDk

(2π)D

(−1

k2

)a ( ω

ω + kv

)p

×
∫

dDl

(2π)D

(−1

l2

)b
(

ω′

ω′ + lv

)q

=

=
−1

(4π)D
(−2ω)D−2a(−2ω′)D−2bI(a, p)I(b, q). (5.204)

The next-to-simplest cases are those where one of the heavy entries p or q vanishes. For
instance, for q = 0 one obtains

I ′(a, b, c, p, 0;ω′/ω) =
∫

dDk

(2π)D
dDl

(2π)D

(−1

k2

)a (−1

l2

)b
(

−1

(k − l)2

)c (
ω

ω + kv

)p

=

=
∫

dDk

(2π)D

(−1

k2

)a ( ω

ω + kv

)p ∫ dDl

(2π)D

(−1

l2

)b
(

−1

(k − l)2

)c

. (5.205)

The innermost integral is a massless one-loop integral with outer momentum k,

∫ dDl

(2π)D

(−1

l2

)b
(

−1

(k − l)2

)c

=
i

(4π)D/2
(−k2)D/2−b−cG(b, c). (5.206)

Therefore, one continues with

I ′(a, b, c, p, 0;ω′/ω) =
i

(4π)D/2
G(b, c)

∫ dDk

(2π)D

(−1

k2

)a+b+c−D/2 ( ω

ω + kv

)p

=

=
−1

(4π)D
(−2ω)D−2(a+b+c−D/2)G(b, c)I(a+ b+ c−D/2, p) =

=
−1

(4π)D
(−2ω)2(D−a−b−c)G(b, c)I(a+ b+ c−D/2, p). (5.207)

A corresponding result is obtained for p = 0,

I ′(a, b, c, 0, q;ω′/ω) =
−1

(4π)D
(−2ω′)2(D−a−b−c)G(a, c)I(a+ b+ c−D/2, q). (5.208)

The most complicated final expression results for a = 0 and b = 0, resp. In these cases
one has to use hypergeometric functions. For a = 0 one starts with

I ′(0, b, c, p, q;ω′/ω) =
∫ dDk

(2π)D
dDl

(2π)D

(−1

l2

)b
(

−1

(k − l)2

)c (
ω

ω + kv

)p
(

ω′

ω′ + lv

)q

=

=
∫

dDk

(2π)D
dDl

(2π)D

(−1

l2

)b (−1

k2

)c ( ω

ω + kv + lv

)p
(

ω′

ω′ + lv

)q

= (k → k + l)

=
∫ dDk

(2π)D
dDl

(2π)D

(−1

l2

)b (−1

k2

)c
(

ω + lv

ω + kv + lv

)p (
ω

ω + lv

)

(

ω′

ω′ + lv

)q

=

=
∫

dDl

(2π)D

(−1

l2

)b ( ω

ω + lv

)p
(

ω′

ω′ + lv

)q
∫

dDk

(2π)D

(−1

k2

)c
(

ω + lv

ω + lv + kv

)p

. (5.209)
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The innermost integral is a heavy one-loop integral with shifted energy,

∫

dDk

(2π)D

(−1

k2

)c
(

ω + lv

ω + lv + kv

)p

=
i

(4π)D/2
(−2(ω + lv))D−2c I(c, p) =

=
i

(4π)D/2
(−2ω)D−2c

(

ω

ω + lv

)2c−D
I(c, p). (5.210)

Therefore, one continues with

I ′(0, b, c, p, q;ω′/ω) =
i(−2ω)D−2c

(4π)D/2
I(c, p)

∫

dDl

(2π)D

(−1

l2

)b ( ω

ω + lv

)2c+p−D ( ω′

ω′ + lv

)q

=

= − 1

(4π)D/2
(−2ω)D−2c(−2ω′)D−2b

(

ω

ω′

)2c+p−D Γ(2b+ 2c+ p+ q − 2D)Γ(D/2 − b)

Γ(b)Γ(2c + p+ q −D)
×

× 2F1

(

2b+ 2c+ p+ q − 2D, 2c+ p−D; 2c+ p+ q −D; 1 − ω

ω′

)

I(c, p) (5.211)

where for the last step the relation

∫ dDl

(2π)D

(−1

l2

)b ( ω

ω + lv

)p
(

ω′

ω′ + lv

)q

=
i

(4π)D/2
Γ(2a+ p+ q −D)Γ(D/2 − a)

Γ(a)Γ(p+ q)
×

×
(

ω

ω′

)p

(−2ω′)D−2a
2F1

(

p+ q + 2a−D, p; p+ q; 1 − ω

ω′

)

(5.212)

has been used [190]. The corresponding calculation for b = 0 reads

I ′(a, 0, c, p, q;ω′/ω) =
∫

dDk

(2π)D
dDk

(2π)D

(−1

k2

)a
(

−1

(k − l)2

)c (
ω

ω + kv

)p
(

ω′

ω′ + lv

)q

=

=
∫

dDk

(2π)D
dDl

(2π)D

(−1

k2

)a (−1

l2

)c ( ω

ω + kv

)p
(

ω′

ω′ + kv + lv

)q

= (l → k + l)

=
∫

dDk

(2π)D
dDl

(2π)D

(−1

k2

)a (−1

l2

)c ( ω

ω + kv

)p
(

ω′

ω′ + kv

)q (
ω′ + kv

ω′ + kv + lv

)

=

=
i

(4π)D/2
(−2ω′)D−2cI(c, q)

∫

dDk

(2π)D

(−1

k2

)a ( ω

ω + kv

)p
(

ω′

ω′ + kv

)2c+q−D
=

= − 1

(4π)D/2
(−2ω)D−2a(−2ω′)D−2c

(

ω

ω′

)p Γ(2a+ 2c+ p+ q − 2D)Γ(D/2 − a)

Γ(a)Γ(2c+ p+ q −D)
×

× 2F1

(

2a+ 2c+ p+ q − 2D, 2c+ p−D; 2c+ p+ q −D; 1 − ω

ω′

)

I(c, q).

(5.213)

A detailed calculation of these initial integrals is found in Appendix D.2.3. The initial
integrals are important as input integrals for a future recurrence algorithm for the yet
unresolved integrals I ′(a, b, c, d, e;ω′/ω).



Chapter 6

Anisotropic improved quark actions

The simulation of QCD on the lattice is a nonperturbative approach to this theory. Since
its introduction between 1970 and 1980, this approach has lead to many interesting results,
but always had to fight with the limited capacity of available computer facilities. But
lattice QCD in the past, present and future is one of the most important users of more
and more powerful computer systems. Also another idea for possible improvements for
the precision of calculations on the QCD lattice came up rather soon. This idea is indeed
related again to the main topic of this thesis, i.e. the effective theories. The idea was to
improve the precision of calculations by improving the theory itself, in order to be able
to obtain results also on computers which were available at that time.

Possible improvements are given in three areas. A classical improvement can be ac-
comblished by combining extended Wilson loops, i.e. closed paths on the lattice (see for
instance Refs. [191, 192, 193]). Using the tadpole improvement, quantum fluctuations
can be reduced [194]. Finally, the coefficients of the effective theory can be improved by
including radiative corrections into the coefficients. This is just the same concept as for
other effective theories like HQET which was treated in the last chapter. For the lattice
the effective theory is given by the nonrelativistic QCD (NRQCD), and the improvement
just mentioned is called Symanzik improvement (for an overview and known possibilities
to use this improvement see Refs. [194, 195]). In previous publications the currents for
the decay of heavy into light hadrons given by the NRQCD were matched to QCD [196].

The use of anisotropic lattices plays an important role in the development of the QCD
on the lattice [195]. It was noted that the difference between signal and noise decreases
exponentially when the lattice is subdivided in the time direction while such an effect is
not observed for the subdivision in spatial direction. This allows one to keep a coarse
spatial lattice. Therefore, it is worthwile to apply the Symanzik improvement to the
anisotropic lattice as well. Examples of a successful employment of anisotropic lattices in
lattice QCD simulations have been increasing lately. They include extensive studies of the
glueball spectrum [197], investigations of heavy hybrid states [198, 199] and calculations
of the quarkonium fine structure [200].

In this chapter radiative corrections are calculated for the anisotropic lattice in order
to establish a Symanzik improvement of the effective action. Such calculations are already
done on the isotropic lattice [201, 202]. The calculation of the self energy of the quark
(see Ref. [203] for the calculations on the isotropic lattice) is the tool to determine an
appropriate energy scale for the running coupling constant (cf. the corresponding section
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in Ref. [194]), calculate the effective mass and the wave function renormalization and
finally calculate also the relative factor between the spatial and temporal derivatives in
the action, being a pure effect of the anisotropy [195].

Two different kinds of actions for the quarks are used in the following. The first
one, applicable for heavy quarks, is an extension of the Wilson action such as the so-
called D234 action. These actions will be described in detail in the following section.
For light quarks the staggered quark action is used where the problematic CP violating
contributions (mirror quarks) is solved by using fattened links. This quark action will be
introduced in Sec. 6.5. For the gluon the naive action is extended by including higher
Wilson loops.

6.1 Link operators, gauge and quark actions

The basic objects for lattice QCD to construct actions are operators which are defined
on the grids or links of the lattice. They depend on the strong charge g, the QCD vector
potential Aµ = TaA

a
µ given at the midst of the link and the lattice spacing. On the

anisotropic lattice a distinction has to be made between lattice spacings in spatial and
temporal direction. Therefore, the lattice spacings aµ are characterized by the Lorentz
index µ. The link operator at the spacetime point x in the µ direction is given by
Uµ(x) := exp(igaµAµ(x + aµ/2)) where aµ is a short form for aµêµ (êµ is the unit vector
in direction of the µ-th coordinate axis). Because the potential Aµ is always accompanied
by the lattice spacing in the same direction, one can absorb this lattice spacing into the
potential component and write

Uµ(x) = exp(igAµ(x+ aµ/2)). (6.1)

This link operator, understood as a link from the spacetime point x to x + aµ, is used
to construct all necessary quantities for the lattice QCD action. As one can show [195],
the concatenation of link operators building a closed loop, the so-called Wilson loop, is a
gauge invariant quantity. The reason why so much care is invested in gauge invariance is
a very practical one. If gauge invariance is not guaranteed, the couplings at the quark-
gluon, three-gluon and four-gluon vertices become independent of each other and have
to be tuned independently. This is much more impractical than the absence of Lorentz
invariance, rotation invariance etc. on the lattice.

6.1.1 The tadpole improvement

Before going into detail about how to construct Wilson loops and how to use them, one has
to deal with a problem that was seen as a big disadvantange of lattice QCD until a solution
was found for the problem in the early 1990’s [204]. Looking for instance at the quark
gluon vertex analogon on the lattice ψ̄Uµγµψ/a, this term contains of course the usual
vertex ψ̄gAµγµψ but in addition vertices with any number of additional powers of agAµ.
For classical fields these additional powers are irrelevant because they are suppressed by
powers of the lattice spacing a. For quantum fields, however, pairs of Lorentz-contracted
fields Aµ generate UV divergent factors of 1/a2 that precisely cancel the powers of a in
these terms. Therefore, the suppression of additional terms is done by g2 instead of a2

which leads to unconfortable large lattice artefacts, called tadpole contributions.
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The simplest way to deal with the tadpole contributions is to cancel them out. Because
tadpole contributions are generally process independent, they can be calculated once and
used for the whole calculation. The tadpole improvement factor u0 is given by the mean
value of Re(Tr(Uµ))/Nc for a Monte Carlo simuation on the lattice. Practical methods to
calculate u0 are given later. This tadpole correction is applied in all cases where the link
operator occurs,

Uµ(x) → Uµ(x)/u0 (6.2)

and in the same manner for the adjoint operators and products. Note, however, that

U †µ(x)Uν(x) → U †µ(x)Uν(x)/u
2
0 but U †µ(x)Uµ(x) → U †µ(x)Uµ(x) = 1. (6.3)

On an anisotropic lattice, different tadpole improvement factors uµ occur which are related
to the Uµ(x) and U †µ(x). For an anisotropy in the time direction the factors read us and ut.

6.1.2 Difference operators

The analogon to differential operators in continuum QCD are the difference operators. The
simplest one, corresponding to the first derivative, acting on a field ψ is given by [204]

∇µψ(x) :=
ψ(x+ aµ) − ψ(x− aµ)

2aµ
. (6.4)

However, this is only a first rough approximation for the derivative. The Taylor expansion
shows that indeed

∇µψ(x) =

(

∂µ +
a2
µ

6
∂3
µ +O(a4

µ)

)

ψ(x) (6.5)

(∂µ = ∂/∂xµ, there is no sum convention). In order to improve the convergence, the
discretization can be improved by using higher difference operators. For the present
example one has

∂µψ(x) = ∇µψ(x) − a2
µ

6
∇3
µψ(x) +O(a4

µ). (6.6)

A short estimate shows that it is fare more efficient to improve the discretization than to
compactify the lattice in order to reduce the finite lattice spacing errors.

In order to formulate difference operators locally, chains of link operators are used to
transfer the field ψ from x to the spacetime point where the difference is taken. Because
of the gauge invariance of the closed Wilson loops, such transfers are gauge independent
as well. The difference operators constructed by doing so are given by

∇(1)
µ ψ(x) = ∇µψ(x) =

1

2uµ

[

Uµ(x)ψ(x+ aµ) − U †µ(x− aµ)ψ(x− aµ)
]

,

∇(2)
µ ψ(x) =

1

uµ

[

Uµ(x)ψ(x+ aµ) + U †µ(x− aµ)ψ(x− aµ)
]

− 2ψ(x),

∇(3)
µ ψ(x) =

1

2u2
µ

[

Uµ(x)Uµ(x+ aµ)ψ(x+ 2aµ) − U †µ(x− aµ)U
†
µ(x− 2aµ)ψ(x− 2aµ)

]

+

− 1

uµ

[

Uµ(x)ψ(x+ aµ) − U †µ(x− aµ)ψ(x− aµ)
]

,
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∇(4)
µ ψ(x) =

1

u2
µ

[

Uµ(x)Uµ(x+ aµ)ψ(x+ 2aµ) + U †µ(x− aµ)U
†
µ(x− 2aµ)ψ(x− 2aµ)

]

+

− 4

uµ

[

Uµ(x)ψ(x+ aµ) + U †µ(x− aµ)ψ(x− aµ)
]

+ 6ψ(x). (6.7)

The action of the difference operators on the link operator Uµ(x) itself is different,

∇(1)
ρ Uµ(x) = ∇ρUµ(x) =

1

2u2
ρ

[

Uρ(x)Uµ(x+ aρ)U
†
ρ(x+ aµ) +

−U †ρ(x− aρ)Uµ(x− aρ)Uρ(x+ aµ − aρ)
]

,

∇(1)
ρ U †µ(x) = ∇ρU

†
µ(x) =

1

2u2
ρ

[

Uρ(x+ aµ)U
†
µ(x+ aρ)U

†
ρ(x) +

−U †ρ(x+ aµ − aρ)U
†
µ(x− aρ)Uρ(x− aρ)

]

,

∇(2)
ρ Uµ(x) =

1

u2
ρ

[

Uρ(x)Uµ(x+ aρ)U
†
ρ(x+ aµ) +

+U †ρ(x− aρ)Uµ(x− aρ)Uρ(x+ aµ − aρ)
]

− 2Uµ(x),

∇(2)
ρ U †µ(x) =

1

u2
ρ

[

Uρ(x+ aµ)U
†
µ(x+ aρ)U

†
ρ(x) +

+U †ρ(x+ aµ − aρ)U
†
µ(x− aρ)Uρ(x− aρ)

]

− 2Uµ(x). (6.8)

The corresponding Wilson loops can easily be con-
structed by taking a grid, indicating a starting
point x and (in these case two) directions given
by aµ and aρ. Uν(y) (ν = µ, ρ) is then represented
by a directed line starting at the grid point y and
going in aν direction to the next one while U †ν(y) is
represented by a directed line in the −aν direction
ending in y. The factors of an operator product
are read from the left to the right to obtain the
Wilson loop. The Wilson loops which are building
blocks in Eqs. (6.8) are shown in Fig. 6.1. Note
that

Uρ(x)

Uµ(x + aρ)

U†
ρ(x + aµ)

U†
ρ(x − aρ)

Uµ(x − aρ)

Uρ(x + aµ − aρ)

Uµ(x)

µ

ρ

Figure 6.1: Wilson loops for the op-
erators in Eqs. (6.8)

∇(1)
µ Uµ(x) = ∇(1)

µ U †µ(x) = ∇(2)
µ Uµ(x) = ∇(2)

µ U †µ(x) = 0. (no summation over µ) (6.9)

Therefore the multiple application of the derivatives can be accomplished rather easily,

(∇ρ)
2Uµ(x) = ∇ρ (∇ρUµ(x)) =

=
1

2u2
ρ

[

Uρ(x) (∇ρUµ(x+ aρ))U
†
ρ(x+ aµ) +

−U †ρ(x− aρ) (∇ρUµ(x− aρ))Uρ(x+ aµ − aρ)
]

=

=
1

4u4
ρ

[

Uρ(x)Uρ(x+ aρ)Uµ(x+ 2aρ)U
†
ρ(x+ aρ + aµ)U

†
ρ(x+ aµ) +

−Uρ(x)U †ρ(x)Uµ(x)Uρ(x+ aµ)U
†
ρ(x+ aµ) +
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−U †ρ(x− aρ)Uρ(x− aρ)Uµ(x)U
†
ρ(x+ aµ − aρ)Uρ(x+ aµ − aρ) +

+U †ρ(x− aρ)U
†
ρ(x− 2aρ)Uµ(x− 2aρ)Uρ(x− 2aρ + aµ)Uρ(x+ aµ − aρ)

]

=

=
1

4u4
ρ

[

Uρ(x)Uρ(x+ aρ)Uµ(x+ 2aρ)U
†
ρ(x+ aρ + aµ)U

†
ρ(x+ aµ) + (6.10)

+U †ρ(x− aρ)U
†
ρ(x− 2aρ)Uµ(x− 2aρ)Uρ(x− 2aρ + aµ)Uρ(x+ aµ − aρ)

]

− 1

2
Uµ(x).

A final remark is in order here before proceeding to the different actions. The lattice is
always considered as an Euclidean lattice which means that the temporal components are
changed to Euclidean components by replacements like A0 → iA4. The index “4” should
indicate the Euclidean character of these components, the consequences of this change
will be dealt on later. However, the temporal direction retains its special meaning on the
anisotropic lattice, as the lattice spacings might be different.

6.1.3 Wilson actions for the lattice quark

The simplest action for a quark on the lattice, the naive quark action, is given by

Snaive0 = Va
∑

x,µ

ψ̄c(x)

{

1

aµ
γµ∇µ +m0

}

ψc(x) =

= a3
sat

∑

x

ψ̄c(x)







1

as

3
∑

j=1

γj∇j +
1

at
γ4∇4 +m0







ψc(x) =

=
∑

x

ψ̄L(x)







1

χ

3
∑

j=1

γj∇j + γ4∇4 + atm0







ψL(x). (6.11)

Here Va = a1a2a3a4 = a3
sat is the volume of the lattice units, ψ(x) is the continuum quark

field which is related to the quark field on the lattice by ψL(x) = a3/2
s ψc(x) making the

quark field dimensionless, m0 is the bare mass and
χ := as/at (6.12)

is the anisotropy parameter which is an essential parameter for anisotropic lattices. In
the following expressions the lattice fields are used in all cases and the index L is dropped
again. Because of the (possible) anisotropy, in

Snaive =
∑

x

ψ̄(x)







c0
χ

3
∑

j=1

γj∇j + γ4∇4 + atm0







ψ(x) (6.13)

a coefficient c0 appears which is 1 at tree level but will obtain contributions higher loop
corrections, as will be shown later. Because of its role as mediator between the tempo-
ral and spatial parts of the action this parameter is eventually called the speed-of-light
coefficient.

Being derived from the NRQCD as an effective theory, the action also contains terms
which do not occur in pure QCD. There is a second derivative and a Pauli coupling to
the external field, and the corresponding action is known as the clover action [205],

Sclover =
∑

x

ψ̄(x)

{

c0
χ

3
∑

j=1

γj∇j + γ4∇4 + atm0 +
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−r
2





1

χ

3
∑

j=1

∇(2)
j + χ∇(2)

4



− i
rCFasat
4aµaν

σµνFµν

}

ψ(x) (6.14)

where σµν = 1
2
[γµ, γν]−. The field strength tensor Fµν is commented on later. However,

because ∇µ/aµ is not the derivative but a difference operator, the coincidence with the
continuum limit is only valid up to the order a2. There occur lattice artefacts which
should be removed. This is done in the same way as described before by using difference
operators of the third and fourth order, obtaining the so-called “D234-action” [192, 206]

SID234 =
∑

x

ψ̄(x)

{

c0
χ

3
∑

j=1

γj
(

∇j −
1

6
c3∇(3)

j

)

+ γ4

(

∇4 −
1

6
c3t∇(3)

4

)

+ atm0 + (6.15)

−r
2





1

χ

3
∑

j=1

(

∇(2)
j − 1

12
c4∇(4)

j

)

+ χ
(

∇(2)
4 − 1

12
c4t∇(4)

4

)



− i
rCFasat
aµaν

σµνF̃µν

}

ψ(x).

The field strength tensor F̃ µν is tadpole improved and will be shown later. Again the
coefficients c3, c3t, c4, and c4t are equal to 1 at tree level, the quark action itself is tree-
level accurate through O(a3

s) and O(a3
t ). In anticipation of working on anisotropic lattices

with at much finer than as, one can drop the higher order improvement terms in the
temporal derivatives by setting c3t = c4t = 0 without loosing accuracy. The action then
reads

SIID234 =
∑

x

ψ̄(x)

{

c0
χ

3
∑

j=1

γj
(

∇j −
1

6
c3∇(3)

j

)

+ γ4∇4 + atm0 +

−r
2





1

χ

3
∑

j=1

(

∇(2)
j − 1

12
c4∇(4)

j

)

+ χ∇(2)
4



− i
rCFasat
aµaν

σµνF̃µν

}

ψ(x). (6.16)

6.1.4 The field strength tensor

The simplest expression one can figure out for the field strength tensor is the construction
of a “clover leaf” glued together from four plaquettes (a fact that gave the name “clover
action” to the action including this field strength tensor),

Ωµν(x) =
1

4u2
µu

2
ν

∑

{(α,β)}µν

Uα(x)Uβ(x+ aα)U−α(x+ aα + aβ)U−β(x+ aβ) (6.17)

µ

ν

(µ,ν)(ν,−ν)

(−µ,−ν) (−ν,µ)

Figure 6.2: Clover leaf construc-
tion, the leafs are taken apart to
see the details.

with {(α, β)}µν = {(µ, ν), (ν,−µ), (−µ,−ν), (−ν, µ)}
for µ 6= ν and U−µ(x + aµ) = U †µ(x). Using this
“clover leaf” as shown in Fig. 6.2 (taken apart in order
to make the different grids more visible), the field
strength tensor is given by its imaginary part,

Fµν(x) =
1

2i

(

Ωµν(x) − Ω†µν(x)
)

. (6.18)

It is not very easy to see that for the continuum limit
aµ → 0 this expression reduces to the field strength
tensor as given by the commutator of the covariant
derivatives, but this will become obvious when the
Fourier transformation is performed.
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An O(a2) improvement of the field strength tensor is obtained by using

F̃µν(x) =

(

4

3
+

1

6u2
µ

+
1

6u2
ν

)

Fµν(x) +

− 1

6u2
µ

(

Uµ(x)Fµν(x+ aµ)U
†
µ(x) + U †µ(x− aµ)Fµν(x− aµ)Uµ(x− aµ)

)

+

+
1

6u2
ν

(

Uν(x)Fνµ(x+ aν)U
†
ν(x) + U †ν(x− aν)Fνµ(x− aν)Uν(x− aν)

)

. (6.19)

6.1.5 Wilson actions for the lattice gluon

The same “clover leaf” construction is used for the action of the lattice gluon. The
simplest lattice action, the Wilson action, is given by

SWilson = −VaNc

g2

∑

x

∑

µ6=ν

(

1

u2
µu

2
ν

P 11
µν(x)

a2
µa

2
ν

− 1

)

= −2VaNc

g2

∑

x

∑

µ<ν

(

1

u2
µu

2
ν

P 11
µν(x)

a2
µa

2
ν

− 1

)

(6.20)
where β = 2Nc/g

2 is used in the following, Nc is the number of colours, and

P 11
µν (x) =

1

Nc
Re
(

Tr
(

Uµ(x)Uν(x+ aµ)U
†
µ(x+ aν)U

†
ν(x)

)

)

. (6.21)

Corrections of lattice artefacts of order a2 are worked in by using an “eight-fold leaf”
constructed from rectangles [192, 206, 194],

SIG = −β
∑

x

3
∑

i<j

1

χ

{

cG0
P 11
ij (x)

u4
s

+ cG1
P 21
ij (x)

u6
s

+ cG1
P 21
ji (x)

u6
s

}

+

−β
∑

x

3
∑

i=1

χ

{

cG0
P 11
i4 (x)

u2
su

2
t

+ cG1
P 21
i4 (x)

u4
su

2
t

+ cG1
P 21

4i (x)

u4
tu2

s

}

(6.22)

where

P 21
µν(x) =

1

Nc

Re
(

Tr
(

Uµ(x)Uµ(x+aµ)Uν(x+2aµ)U
†
µ(x+aµ+aν)U

†
µ(x+aν)U

†
ν(x)

)

)

. (6.23)

The parameters cG0 and cG1 occuring in the action SIG are constrained to satisfy cG0 +8cG1 = 1.
The Symanzik improved gauge action, in which O(a2) errors are removed, corresponds to
cG0 = 5/3 and cG1 = −1/12 [207] whereas cG0 = 3.648 and cG1 = −0.331 (for χ = 1) leads
to one of the renormalization group improved Iwasaki actions [208]. Anticipating again
that at is much finer than as and taking the Symanzik values, the simplified action

SIIG = −β
∑

x

3
∑

i<j

1

χ

{

5

3

P 11
ij (x)

u4
s

− 1

12

P 21
ij (x)

u6
s

− 1

12

P 21
ji (x)

u6
s

}

+

−β
∑

x

3
∑

i=1

χ

{

4

3

P 11
i4 (x)

u2
su

2
t

− 1

12

P 21
i4 (x)

u4
su

2
t

}

(6.24)

can be used.
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6.2 Fourier transform and Feynman rules

All considerations so far are formulated in configuration space. To obtain the usual set of
Feynman rules in momentum space, a Fourier transform is applied to the operators. In
this section functions ξ are constructed in order to phrase this transition [203]. The main
ingredient is of course the Fourier transform of the link operator Uµ(x) and the potential
Aµ(x) contained in it. To start with the last one,

Aµ(x) =
∫

d4q

(2π)4
eiqxÃµ(q), (6.25)

the link operator Uµ(x) can be expanded in the charge g and transformed as well,

Uµ(x) = 1 + igAµ(x+ aµ/2) − g2

2
Aµ(x+ aµ/2)Aµ(x+ aµ/2) +O(g3) =

= 1 + ig
∫

d4q

(2π)4
eixqeiaµqµ/2Ãµ(q) +

−g
2

2

∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiaµq1µ/2Ãµ(q1)e
iaµq2µ/2Ãµ(q2) +O(g3) =

=: ξ(0)(Uµ) + ig
∫

d4q

(2π)4
eixqeiaµqµ/2Ãν(q)ξ

(1)(Uµ; q, ν) + (6.26)

−g2
∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiaµq1µ/2Ãν1(q1)e
iaµq2µ/2Ãν2(q2)ξ

(2)(Uµ; q1, ν1; q2, ν2) +O(g3).

In the last line the ξ functions are defined. The first argument is always the operator
which is transformed. The index (in parantheses) indicates the power in g as well as
the power in Aνi

(qi). Therefore, this index also indicates the number of pairs of entries
occuring in the argument. These pairs (separated by a semicolon) are the momenta and
Lorentz indices related to the potential components. It is easy to see that ξ(0) is the no-
gluon contribution (i.e. a fermion line insertion), ξ(1) is the one-gluon contribution and ξ(2)

is the two-gluon contribution of the operator. Note, finally, that the potentials Aνi
(qi) are

not the classical potentials but still contain the lattice spacing aνi
, and that they are non-

commutative objects, because they contain the generators of SU(3), Aνi
(qi) = Tai

Aai
νi

(qi).
One can extend the pairs of arguments to triples containing the index ai, or one can keep
the order of the potentials. In this work the second possibility is favoured in most of the
cases.

6.2.1 ξ functions for the link operator

In case of the link operator the result written in terms of ξ functions is very simple,

ξ(0)(Uµ) = 1, ξ(1)(Uµ; q, ν) = δµν , ξ(2)(Uµ; q1, ν1; q2, ν2) =
1

2
δµν1δµν2 . (6.27)

The different indices introduced in the ξ function and the momenta make sense only if
one applies the transformation also to the different operators which occured so far.
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6.2.2 ξ functions for ∇(1)
ρ Uµ(x), ∇(2)

ρ Uµ(x), and (∇(1)
ρ )2Uµ(x)

The calculation for the operator ∇(1)
ρ Uµ(x) is given by

2∇(1)
ρ Uµ(x) = Uρ(x)Uµ(x+ aρ)U

†
ρ(x+ aµ) − U †ρ(x− aρ)Uµ(x− aρ)Uρ(x+ aµ − aρ) =

= exp (igAρ(x+ aρ/2)) exp (igAµ(x+ aµ/2 + aρ)) exp (−igAρ(x+ aµ + aρ/2)) +

− exp (−igAρ(x− aρ/2)) exp (igAµ(x+ aµ/2 − aρ)) exp (igAρ(x+ aµ − aρ/2)) =

= 1 − 1 + ig
{

Aρ(x+ aρ/2) + Aµ(x+ aµ/2 + aρ) −Aρ(x+ aµ + aρ/2) +

+Aρ(x− aρ/2) − Aµ(x+ aµ/2 − aρ) −Aρ(x+ aµ − aρ/2)
}

+O(g2) =

= ig
∫

d4q

(2π)4

{

eiqρ/2Ãρ(q) + eiqµ/2+iqρÃµ(q) − eiqµ+iqρ/2Ãρ(q) +

+e−iqρ/2Ãρ(q) − eiqµ/2−iqρÃµ(q) − eiqµ−iqρ/2Ãρ(q)
}

+O(g2) = (6.28)

= ig
∫

d4q

(2π)4

{

2 cos
(

qρ
2

)

Ãρ(q) + 2ieiqµ/2 sin(qρ)Ãµ(q) − 2eiqµ cos
(

qρ
2

)

Ãρ(q)
}

+O(g2) =

= ig
∫ d4q

(2π)4
eixqeiqµ/2

{

2i sin(qρ)Ãµ(q) − 2
(

eiqµ/2 − e−iqµ/2
)

cos
(

qρ
2

)

Ãρ(q)
}

+O(g2) =

= ig
∫ d4q

(2π)4
eixqeiqµ/24iÃν(q)

{

sin
(

qρ
2

)

cos
(

qρ
2

)

δµν − sin
(

qµ
2

)

cos
(

qρ
2

)

δρν
}

+O(g2).

Note that for reasons of simplicity here and in the following the lattice spacings aν are ab-
sorbed in qν which now is a dimensionless quantity. Comparing this result with Eq. (6.26),
one obtains

ξ(0)
(

∇(1)
ρ Uµ

)

= 0,

ξ(1)
(

∇(1)
ρ Uµ; q, ν

)

= 2i cos
(

qρ
2

){

sin
(

qρ
2

)

δµν − sin
(

qµ
2

)

δρν

}

. (6.29)

The calculations for the operator ∇(2)
ρ is quite similar to the previous one. One has

∇(2)
ρ Uµ(x) =

= Uρ(x)Uµ(x+ aρ)U
†
ρ(x+ aµ) + U †ρ(x− aρ)Uµ(x− aρ)Uρ(x− aρ + aµ) − 2Uµ(x) =

= exp (igAρ(x+ aρ/2)) exp (igAµ(x+ aρ + aµ/2)) exp (−igAρ(x+ aρ/2 + aµ)) +

+ exp (−igAρ(x− aρ/2)) exp (igAµ(x− aρ + aµ/2)) exp (igAρ(x− aρ/2 + aµ)) +

−2 exp (igAµ(x+ aµ/2)) =

= ig
{

Aρ(x+ aρ/2) + Aµ(x+ aµ/2 + aρ) −Aρ(x+ aµ + aρ/2) − Aρ(x− aρ/2) +

+Aµ(x+ aµ/2 − aρ) + Aρ(x+ aµ − aρ/2) − 2Aµ(x+ aµ/2)
}

+O(g2) =

= ig
∫

d4q

(2π)4
eixq

{

eiqρ/2Ãρ(q) + eiqµ/2+iqρÃµ(q) − eiqµ+iqρ/2Ãρ(q) +

−e−iqρ/2Ãρ(q) + eiqµ/2−iqρ/2Ãµ(q) + eiqµ−iqρ/2Ãρ(q) − 2eiqµ/2Ãµ(q)
}

+O(g2) =
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= ig
∫

d4q

(2π)4
eixq

{ (

eiqρ/2 − eiqµ+iqρ/2 − e−iqρ/2 + eiqµ−iqρ/2
)

Ãρ(q) +

+
(

eiqµ/2+iqρ − 2eiqµ + eiqµ/2−iqρ
)

Ãµ(q)
}

+O(g2) =

= ig
∫ d4q

(2π)4
eixq

{

(eiqρ/2 − e−iqρ/2)(1 − eiqµ)Ãρ(q) +

+(eiqρ/2 − e−iqρ/2)2eiqµ/2Ãµ(q)
}

+O(g2) =

= ig
∫

d4q

(2π)4
eiqµ/2

{

(eiqρ/2 − e−iqρ/2)(e−iqµ/2 − eiqµ/2)Ãρ(q) +

+(eiqρ/2 − e−iqρ/2)2Ãµ(q)
}

+O(g2) =

= ig
∫ d4q

(2π)4
eixqeiqµ/2Ãν(q)

{

4 sin
(

qρ
2

)

sin
(

qµ
2

)

δρν − 4 sin2
(

qρ
2

)

δµν
}

+O(g2). (6.30)

From this result one obtains ξ(0)(∇(2)
ρ Uµ) = 0 and

ξ(1)
(

∇(2)
ρ Uµ; q, ν

)

= −4 sin
(

qρ
2

){

sin
(

qρ
2

)

δµν − sin
(

qµ
2

)

δρν

}

. (6.31)

The two-fold action of the operator ∇ρ = ∇(1)
ρ is different from the action of the operator

∇(2)
ρ . Therefore, this action on Uµ(x) shall be calculated here as the last detailed calcu-

lation of ξ functions. Actually, a few steps have already been skipped in the calculation

ξ(1)
(

(∇ρ)
2Uµ; q, ν

)

=
1

4

[

eiqµ/2−iqρ/2δρν + e−iqµ/23iqρ/2δρν + e2iqρδµν +

−eiqµ/2+3iqρ/2δρν − eiqµ/2+iqρ/2δρν − e−iqµ/2−iqρ/2δρν +

−e−iqµ/2−3iqρ/2δρν + e−2iqρδµν + eiqµ/2−3iqρ/2δρν + eiqµ/2−iqρ/2δρν
]

=

= sin
(

qρ
2

)

sin
(

qµ
2

)

δρν + sin
(

3qρ
2

)

sin
(

qµ
2

)

δρν +
1

2
cos(2qρ)δµν −

1

2
δµν (6.32)

(ξ(0)((∇ρ)
2Uµ) vanishes again). One then can use

sin
(

3qρ
2

)

= 3 sin
(

qρ
2

)

− 4 sin3
(

qρ
2

)

,

cos(2qρ) = 1 − 8 sin2
(

qρ
2

)

+ 8 sin4
(

qρ
2

)

(6.33)

to obtain

ξ(1)
(

(∇ρ)
2Uµ; q, ν

)

= 4 sin
(

qρ
2

)

sin
(

qµ
2

)

δρν − 4 sin3
(

qρ
2

)

sin
(

qµ
2

)

δρν +

−4 sin2
(

qρ
2

)

δµν + 4 sin4
(

qρ
2

)

δµν =

= 4 sin
(

qρ
2

)(

sin
(

qµ
2

)

δρν − sin
(

qρ
2

)

δµν

)

+

−4 sin3
(

qρ
2

)(

sin
(

qµ
2

)

δρν − sin
(

qρ
2

)

δµν

)

. (6.34)

This compact form will be important for the treatment of staggered quarks in Sec. 6.5.
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6.2.3 New notation for the ξ functions

Because all of the functions ξ(1) calculated up to now have a common structure in terms
of Kronecker delta symbols, a new notation is introduced by

ξ(1) (OρUµ; q, ν) =: ξ
(1)
0 (OρUµ; q) δµν + ξ

(1)
1 (OρUµ; q) δρν (6.35)

where Oρ = ∇(1)
ρ , ∇(2)

ρ , and (∇ρ)
2 are the cases calculated in this subsection. The notation

for the functions ξ(2), though not calculated in this subsection, is given by

ξ(2) (OρUµ; q1, ν1; q2, ν2) =

=: ξ
(2)
00 (OρUµ; q1; q2) δµν1δµν2 + ξ

(2)
01 (OρUµ; q1; q2) δµν1δρν2 +

+ξ
(2)
10 (OρUµ; q1; q2) δρν1δµν2 + ξ

(2)
11 (OρUµ; q1; q2) δρν1δρν2 . (6.36)

Finally, if two operators with different Lorentz indices are applied, the range of values
for the lower indices of the functions ξ(1) and ξ(2) increases, so for instance for two such
operators,

ξ(1) (Oρ1Oρ2Uµ; q1, ν1) = ξ
(1)
0 (Oρ1Oρ2Uµ; q1) δµν +

2
∑

i=1

ξ
(1)
i (Oρ1Oρ2Uµ; q1) δρiν ,

ξ(2) (Oρ1Oρ2Uµ; q1, ν1; q2, ν2) = (6.37)

=: ξ
(2)
00 (Oρ1Oρ2Uµ; q1; q2) δµν1δµν2 +

2
∑

j=1

ξ
(2)
0j (Oρ1Oρ2Uµ; q1; q2) δµν1δρjν2 +

+
2
∑

i=1

ξ
(2)
i0 (Oρ1Oρ2Uµ; q1; q2) δρiν1δµν2 +

2
∑

i,j=1

ξ
(2)
ij (Oρ1Oρ2Uµ; q1; q2) δρiν1δρjν2.

This last notation proofs its usefulness first in Sec. 6.5 for staggered quarks.

6.2.4 The gluon action in ξ functions

To get back to more practical questions, the latter formalism can be used to calculate the
Feynman rules that emerge for the gluon part of the action. The first step is to determine
the unresolved ξ functions for the plaquettes, obtaining

P 11
µν(x) = − 2

β

∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiq1µ/2eiq2µ/2 ×

×
(

sin
(

q1µ
2

)

Ãν(q1) − sin
(

q1ν
2

)

Ãµ(q1)

)

×

×
(

sin
(

q2µ
2

)

Ãν(q2) − sin
(

q2ν
2

)

Ãµ(q2)

)

+O(g3) (6.38)

(β = 2Nc/g
2) and

P 21
µν(x) = − 8

β

∫ d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiq1µ/2eiq2µ/2 cos
(

q1µ
2

)

cos
(

q2µ
2

)

×
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×
(

sin
(

q1µ
2

)

Ãν(q1) − sin
(

q1ν
2

)

Ãµ(q1)

)

×

×
(

sin
(

q2µ
2

)

Ãν(q2) − sin
(

q2ν
2

)

Ãµ(q2)

)

+O(g3) (6.39)

In this case the ξ functions are not used in order to keep the (multiplicative) structure.
But one can use an appropiate short hand notation

P 11
µν(x) =

∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiq1µ/2eiq2µ/2ξ(2)
(

P 11
µν ; q1; q2

)

+O(g3),

P 21
µν(x) =

∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiq1µ/2eiq2µ/2ξ(2)
(

P 21
µν ; q1; q2

)

+O(g3). (6.40)

For the gluon action on the isotropic lattice without tadpole improvement,

SG = −β
∑

µ>ν

[

5

3
P 11
µν(x) −

1

12
(P 21

µν(x) + P 21
νµ(x))

]

(6.41)

and for q1 = −q2 = q one obtains

ξ
(

5

3
P 11
µν −

1

12
(P 21

µν + P 21
νµ); q; q

)

=
2

β

(

5

3
− 1

3
cos2

(

qµ
2

)

− 1

3
cos2

(

qν
2

)

)

×

×
(

sin
(

qµ
2

)

Ãν(q) − sin
(

qν
2

)

Ãµ(q)

)

×

×
(

sin
(

qµ
2

)

Ãν(q) − sin
(

qν
2

)

Ãµ(q)

)

+O(g3) =

=
2

β

(

1 +
1

3
sin2

(

qµ
2

)

+
1

3
sin2

(

qν
2

)

)

×

×
(

sin
(

qµ
2

)

Ãν(q) − sin
(

qν
2

)

Ãµ(q)

)

×

×
(

sin
(

qµ
2

)

Ãν(q) − sin
(

qν
2

)

Ãµ(q)

)

+O(g3) =

=
qµν
2β

(

q̃µÃν(q) − q̃νÃµ(q)
) (

q̃µÃν(q) − q̃νÃµ(q)
)

+O(g3) (6.42)

where the abbreviations

qµν :=
(

1 +
1

12
q̃2
µ +

1

12
q̃2
ν

)

, q̃µ := 2 sin
(

qµ
2

)

(aµ, aν absorbed) (6.43)

have been used. Including the tadpole improvement factors u0, this changes to

ξ

(

5

3u4
0

P 11
µν −

1

12u6
0

(P 21
µν + P 21

νµ); q; q

)

=

=
qtµν
2β

(

q̃µÃν(q) − q̃νÃµ(q)
) (

q̃µÃν(q) − q̃νÃµ(q)
)

+O(g3) (6.44)

where

qtµν :=
1

u6
0

(

5u2
0 − 2

3
+

1

12
q̃2
µ +

1

12
q̃2
ν

)

. (6.45)
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Inserting this into the gluon action, one has to think about the asymmetric sum over
µ > ν. If this sum is taken of an expression Mµν which is symmetric in µ und ν as in the
present case, one can simplify to obtain

∑

µ>ν

Mµν =
1

2

∑

µ>ν

Mµν +
1

2

∑

µ>ν

Mνµ =
1

2

∑

µ6=ν
Mµν (6.46)

Also the restriction µ 6= ν can be skipped in the present case because P 11
µν and P 21

µν vanish
both for µ = ν. Summing over µ and ν, one thus obtains

ξ(SIG; q; q) = −1

4

∑

µ,ν

qtµν
(

q̃µÃν(q) − q̃νÃµ(q)
) (

q̃µÃν(q) − q̃νÃµ(q)
)

+O(g). (6.47)

For the action SIIG the situation changes only slightly. The situation described above can
be translated to the pure space part of

SIIG = −β
∑

x

∑

i>j

1

χ

(

5

3

P 11
ij (x)

u4
s

− 1

12u6
s

(P 21
ij (x) + P 21

ji (x))

)

+

−β
∑

x

∑

i

χ

(

4

3

P 11
i4 (x)

u2
su

2
t

− 1

12u4
su

2
t

P 21
i4 (x)

)

. (6.48)

For the second, space-time mixed part one obtains

ξ

(

4

3

P 11
i4 (x)

u2
su

2
t

− 1

12

P 21
i4 (x)

u4
su

2
t

; q; q

)

=
2

β
qti4
(

q̃iÃ4(q) − q̃4Ãi(q)
) (

q̃iÃ4(q) − q̃4Ãi(q)
)

(6.49)

with

qti4 :=
1

u4
su

2
t

(

4u2
s − 1

3
+

1

12
q̃2
i

)

, (6.50)

so that finally

ξ(SIIG ; q; q) = −1

4

∑

i,j

1

χ
qtij
(

q̃iÃj(q) − q̃jÃi(q)
) (

q̃iÃj(q) − q̃jÃi(q)
)

+

−1

2

∑

i

χqtit
(

q̃iÃ4(q) − q̃4Ãi(q)
) (

q̃iÃ4(q) − q̃4Ãi(q)
)

+O(g) =

= −1

4

∑

µ,ν

q̃µν
(

q̃µÃν(q) − q̃νÃµ(q)
) (

q̃µÃν(q) − q̃νÃµ(q)
)

+O(g) (6.51)

where

q̃ij =
1

χ
qtij =

1

u6
sχ

(

5u2
s − 2

3
+

1

12
q̃2
i +

1

12
q̃2
j

)

, (6.52)

q̃i4 = q̃4i = χqti4 =
χ

u4
su

2
t

(

4u2
s − 1

3
+

1

12
q̃2
i

)

. (6.53)

Restoring the (absorbed) dependence on the lattice spacings aµ back into this expression,
one obtains instead

q̃ij =
Va
u6
s

(

5u2
s − 2

3
+

1

12
a2
i q̃

2
i +

1

12
a2
j q̃

2
j

)

, (6.54)

q̃i4 = q̃4i =
Va
u4
su

2
t

(

4u2
s − 1

3
+

1

12
a2
i q̃

2
i

)

(6.55)
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where Va = a3
sat and

q̃µ =
2

aµ
sin

(

aµqµ
2

)

. (6.56)

Before being able to determine the gluon propagator one has to use a gauge fixing term.
Without this term the quadratic form given above is not invertible. For the gauge fixing
term the analogon of −(∂µA

µ)2/2αg is taken, namely

ξ (Sgf ; q; q) = − Va
2αg

(

∑

µ

q̃µÃµ(q)

)2

= − Va
2αg

∑

µ,ν

q̃µÃµ(q)q̃νÃν(q). (6.57)

Adding both, one ends up with

ξ(SG + Sgf ; q; q) =
1

2

∑

µ,ν

Ãµ(q)Mµν(q)Ãν(q). (6.58)

The inverse of Mµν(q) is the gluon propagator. Suprisingly, this gluon propagator has a
form quite similar to the usual one,

Gµν =
−1

(q̃2)2

(

αgq̃µq̃ν +
fµν(q̃α, q̃αβ)

f(q̃α, q̃αβ)

)

. (6.59)

The structure of fµν(q̃α, q̃αβ) and f(q̃α, q̃αβ), however, is more complicated.

6.2.5 Reflections on the Euclidean metric

Having the gluon propagator at hand, a discussion of the Euclidean metric used through-
out these calculations is in order here. The reflections are done for the continuum theory,
but the results can easily be translated to the lattice. For the momentum k one has [203]
(journal version only)

ki = ki = k
(M)
i = −ki(M), k4 = k4 = −ik(M)

0 = −ik0
(M),

k2 =
4
∑

i=1

k2
i = −

3
∑

i=1

k
(M)
i ki(M) − k

(M)
0 k0

(M) = −k2
(M) (6.60)

where the index “(M)” represents the Minkowskian metric. The question arises how to
construct a gluon propagator in Euclidean space-time from this. In continuum theory one
has

G(M)
µν =

−i
k2

(M)



g(M)
µν − (1 − αg)

k(M)
µ k(M)

ν

k2
(M)



 , g(M)
µν = diag(−1; 1, 1, 1). (6.61)

Looking at the different parts

G
(M)
ij =

−i
k2

(M)



g
(M)
ij − (1 − αg)

k
(M)
i k

(M)
j

k2
(M)



 =
−i
k2

(

δij − (1 − αg)
kikj
k2

)

, (6.62)

G
(M)
i0 =

−i
k2

(M)



g
(M)
i0 − (1 − αg)

k
(M)
i k

(M)
0

k2
(M)



 =
−1

k2
(1 − αg)

(

kik4

k2

)

= (6.63)
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=
1

k2

(

δi4 − (1 − αg)
kik4

k2

)

=: iGi4 ⇒ Gi4 =
−i
k2

(

δi4 − (1 − αg)
kik4

k2

)

G
(M)
0i = iG4i ⇒ G4i =

−i
k2

(

δ4i − (1 − αg)
k4ki
k2

)

(6.64)

G
(M)
00 =

−i
k2

(M)



g
(M)
00 − (1 − αg)

k
(M)
0 k

(M)
0

k2
(M)



 =
i

k2

(

δ44 + (1 − αg)
k4k4

(−k2)

)

= (6.65)

=
i

k2

(

δ44 − (1 − αg)
k4k4

k2

)

= −G44 ⇒ G44 =
−i
k2

(

δ44 − (1 − αg)
k4k4

k2

)

,

one ends up with the translations

Gij = Dij = G
(M)
ij = Dij

(M), Gi4 = Di4 = −iG(M)
i0 = iDi0

(M),

G4i = D4i = −iG(M)
0i = iD0i

(M), G44 = G44 = −G(M)
00 = −D00

(M) (6.66)

for the Euclidean gluon propagator

Gµν =
−i
k2

(

gµν − (1 − αg)
kµkν
k2

)

, gµν = diag(1, 1, 1, 1). (6.67)

6.2.6 ξ functions for ψ̄(x)∇(n)
µ ψ(x)

In order to deal with the part of the action related to the quark, the spinor ψ (considered
as lattice spinor) has to be included into the Fourier transform as well. The Fourier
transform of the spinor and the adjoint spinor is given by

ψ(x) =
∫

d4p1

(2π)4
eip1xψ̃(p1), ψ̄(x) =

∫

d4p2

(2π)4
e−ip2x ˜̄ψ(p2) (6.68)

Using this and the Fourier transform of Uµ(x), one can calculate

2ψ̄(x)∇µψ(x) = ψ̄(x)
(

Uµ(x)ψ(x+ aµ) − U †µ(x− aµ)ψ(x− aµ)
)

=

=
∫

d4p2

(2π)4
e−ip2x ˜̄ψ(p2)

{

ξ(0)(Uµ) + ig
∫

d4q

(2π)4
eixqeiqµ/2Ãν(q)ξ

(1)(Uµ; q, ν) +

−g2
∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)eiq1µ/2Ãν1(q1)e
iq2µ/2Ãν2(q2)ξ

(2)(Uµ; q1, ν1; q2, ν2)

}

×

×
∫

d4p1

(2π)4
eip1xeip1µψ̃(p) +

−
∫

d4p2

(2π)4
e−ip2x ˜̄ψ(p2)

{

ξ(0)(Uµ) − ig
∫

d4q

(2π)4
eixqe−iqµ/2Ãν(q)ξ

(1)(Uµ; q, ν) +

−g2
∫

d4q1
(2π)4

d4q2
(2π)4

eix(q1+q2)e−iq2µ/2Ãν2(q2)e
−iq1µ/2Ãν1(q1)ξ

(2)(Uµ; q1, ν1; q2, ν2)

}

×

×
∫ d4p1

(2π)4
eip1xe−ip1µψ̃(p1). (6.69)
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The summation over x then leads to Dirac delta functions which represent the momentum
conservation. Using (q1, ν1) ↔ (q2, ν2) for the second two-gluon part, one obtains

∑

x

ψ̄(x)
(

Uµ(x)ψ(x+ aµ) − U †µ(x− aµ)ψ(x− aµ)
)

=

=
∫

d4p2

(2π)4
e−ip2x ˜̄ψ(p2)

∫

d4p1

(2π)4
eip1xψ̃(p1)

{

(2π)4δ(p2 − p1)
(

eip1µ − e−ip1µ

)

ξ(0)(Uµ) +

+ig(2π)4
∫

d4q

(2π)4
δ(p2 − p1 − q)eip1µ+iqµ/2Ãν(q)ξ

(1)(Uµ; q, ν) +

+ig(2π)4
∫

d4q

(2π)4
δ(p2 − p1 − q)e−ip1µ−iqµ/2Ãν(q)ξ

(1)(Uµ; q, ν) +

−g2(2π)4
∫

d4q1
(2π)4

d4q2
(2π)4

δ(p2 − p1 − q1 − q2)e
ip1µ+iq1µ/2+iq2µ/2 ×

× Ãν1(q1)Ãν2(q2)ξ
(2)(Uµ; q1, ν1; q2, ν2) +

+g2(2π)4
∫

d4q1
(2π)4

d4q2
(2π)4

δ(p2 − p1 − q1 − q2)e
−ip1µ−iq1µ/2−iq2µ/2 ×

× Ãν1(q1)Ãν2(q2)ξ
(2)(Uµ; q2, ν2; q1, ν1)

}

=

=: 2
∫

d4p2

(2π)4
eip2x ˜̄ψ(p2)

∫

d4p1

(2π)4
eip1xψ̃(p1)

{

(2π)4δ(p2 − p1)ξ
(0)(ψ̄∇µψ, p) +

+(2π)4
∫

d4q

(2π)4
δ(p2 − p1 − q)Ãν(q)ξ

(1)(ψ̄Uµψ, p; q, ν) + (6.70)

+(2π)4
∫

d4q1
(2π)4

d4q2
(2π)4

δ(p2 − p1 − q1 − q2)Ãν1(q1)Ãν2(q2)ξ
(2)(ψ̄Uµψ, p; q1, ν1; q2; ν2)

}

.

In the last line new ξ functions are defined which are characterized by the argument
p = (p1 + p2)/2 for the averaged momentum as the second entry. For these ξ functions
one obtains

ξ(0)(ψ̄∇µψ, p) =
1

2

(

eipµ − e−ipµ

)

ξ(0)(Uµ) = i sin(pµ)ξ
(0)(Uµ),

ξ(1)(ψ̄∇µψ, p; q, ν) = ig cos(pµ)ξ
(1)(Uµ; q, ν),

ξ(2)(ψ̄∇µψ, p; q1, ν1; q2, ν2) =

= −ig2 sin(pµ)
1

2

(

ξ(2)(Uµ; q1, ν1; q2, ν2) + ξ(2)(Uµ; q2, ν2; q1, ν1)
)

+

−ig2 cos(pµ)
i

2

(

ξ(2)(Uµ; q1, ν1; q2, ν2) − ξ(2)(Uµ; q2, ν2; q1, ν1)
)

. (6.71)

At first sight this elaborate calculation looks unnecessary because the ξ functions of Uµ(x)
are trivial. Because of this the results indeed reduce to

ξ(0)
(

ψ̄∇µψ, p
)

= i sin(pµ),

ξ(1)
(

ψ̄∇µψ, p; q, ν
)

= ig cos(pµ)δµν ,

ξ(2)
(

ψ̄∇µψ, p; q1, ν1; q2, ν2

)

= − i

2
g2 sin(pµ)δµν1δµν2 . (6.72)
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But it was useful to do this calculation because for the staggered quark the link operator Uµ
is replaced by a more complicated one, and here the usefulness of the above result becomes
obvious. For the higher derivatives, however, this calculation will not be performed. Here
the “pure” results are sufficient. For the second derivative one obtains

ξ(0)
(

ψ̄∇(2)
µ ψ, p

)

= −4 sin2
(

pµ
2

)

,

ξ(1)
(

ψ̄∇(2)
µ ψ, p; q, ν

)

= −2g sin(pµ)δµν , (6.73)

ξ(2)
(

ψ̄∇(2)
µ ψ, p; q1, ν1; q2, ν2

)

= −g2 cos(pµ)δµν1δµν2 ,

for the third derivative one has

ξ(0)
(

ψ̄∇(3)
µ ψ, p

)

= −4i sin(pµ) sin2
(

pµ
2

)

,

ξ(1)
(

ψ̄∇(3)
µ ψ, p; q, ν

)

= −2ig
(

cos(pµ) − cos
(

qµ
2

)

cos(2pµ)
)

δµν , (6.74)

ξ(2)
(

ψ̄∇(3)
µ ψ, p; q1, ν1; q2, ν2

)

= ig2
(

sin(pµ) − 2 cos
(

q1µ
2

)

cos
(

q2µ
2

)

sin(2pµ)
)

δµν1δµν2 .

Finally, for the fourth derivative one obtains

ξ(0)
(

ψ̄∇(4)
µ ψ, p

)

= 16 sin4
(

pµ
2

)

,

ξ(1)
(

ψ̄∇(4)
µ ψ, p; q, ν

)

= 4g
(

2 sin(pµ) − cos
(

qµ
2

)

sin(2pµ)
)

δµν , (6.75)

ξ(2)
(

ψ̄∇(4)
µ ψ, p; q1, ν1; q2, ν2

)

= 4g2
(

cos(pµ) − cos
(

q1µ
2

)

cos
(

q2µ
2

)

cos(2pµ)
)

δµν1δµν2 .

The non-vanishing ξ functions of the special combinations of operators used in the quark
action are given by

ξ(0)
(

ψ̄
(

∇µ −
c3
6
∇(3)
µ

)

ψ, p
)

= i sin(pµ)
(

1 +
2c3
3

sin2
(

pµ
2

))

,

ξ(0)
(

ψ̄
(

∇(2)
µ − c4

12
∇(4)
µ )ψ, p

)

= −4 sin2
(

pµ
2

)(

1 +
c4
3

sin2
(

pµ
2

))

(6.76)

for the no-gluon contribution,

ξ
(1)
0

(

ψ̄
(

∇µ −
c3
6
∇(3)
µ

)

ψ, p; q, ν
)

= ig
((

1 +
c3
3

)

cos(pµ) −
c3
3

cos
(

qµ
2

)

cos(2pµ)
)

,

ξ
(1)
0

(

ψ̄
(

∇(2)
µ − c4

12
∇(4)
µ

)

ψ, p; q, ν
)

= −2g
((

1 +
c4
3

)

sin(pµ) −
c4
6

cos
(

qµ
2

)

sin(2pµ)
)

(6.77)

for the one-gluon contribution, and

ξ
(2)
00

(

ψ̄
(

∇µ −
c3
6
∇(3)
µ

)

ψ, p; q1, ν1; q2, ν2

)

=

= −ig
2

2

((

1 +
c3
3

)

sin(pµ) −
2c3
3

cos
(

q1µ
2

)

cos
(

q2µ
2

)

sin(2pµ)
)

,

ξ
(2)
00

(

ψ̄
(

∇(2)
µ − c4

12
∇(4)
µ

)

ψ, p; q1, ν1; q2, ν2

)

=

= −g2
((

1 +
c4
3

)

sin(pµ) −
c4
3

cos
(

q1µ
2

)

cos
(

q2µ
2

)

cos(2pµ)
)

(6.78)

for the two-gluon contribution.
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6.2.7 ξ functions for the mass and the field strength tensor

The last elements necessary for the determination of Feynman rules are the mass part
atm0 and the part

∑

µ,ν σµνFµν including the QCD field strength tensor. The results for
the (constant) mass part is rather simple,

ξ(0)
(

ψ̄(atm0)ψ, p
)

= atm0,

ξ(1)
(

ψ̄(atm0)ψ, p; q, ν
)

= ξ(2)
(

ψ̄(atm0)ψ, p; q1, ν1; q2, ν2

)

= 0. (6.79)

For the field strength tensor one obtains

ξ(0)
(

ψ̄Fµνψ, p
)

= 0,

ξ(1)
(

ψ̄Fµνψ, p; q, ν1

)

=
(

f 0
µνδµν1 − f 0

µνδνν1
)

, (6.80)

ξ(2)
(

ψ̄Fµνψ, p; q1, ν1; q2, ν2

)

= −g
(

f 1
µνδµν1δµν2 + f 2

µνδµν1δνν2 − f 2
µνδνν1δµν2 − f 1

µνδνν1δνν2
)

where

f 0
µν = cos

(

qµ
2

)

sin(qν),

f 1
µν = sin

(

q1µ
2

+
q2µ
2

)

sin
(

q1ν
2

− q2ν
2

)

cos
(

q1ν
2

+
q2ν
2

)

,

f 2
µν =

1

2

[

cos
(

q1µ
2

)

cos
(

q2ν
2

)

− cos
(

q1µ
2

+ q2µ

)

cos
(

q1ν +
q2ν
2

)

+

− cos
(

q1µ
2

+ q2µ

)

cos
(

q2ν
2

)

− cos
(

q1µ
2

)

cos
(

q1ν +
q2ν
2

) ]

. (6.81)

In combination with the antisymmetric matrix σ this result simplifies,

ξ(1)

(

ψ̄
∑

µ,ν

σµνFµνψ, p; q, ν1

)

=

= i
∑

µ,ν

(

σµν cos
(

qµ
2

)

sin(qν)δµν1 − σµν sin(qµ) cos
(

qν
2

)

δνν1

)

=

= −2i
∑

µ

σµν1 sin(qµ) cos
(

qν1
2

)

,

ξ(2)

(

ψ̄
∑

µ,ν

σµνFµνψ, p; q1, ν1; q2, ν2

)

=

= −ig
(

∑

ν

σν1νf
1
ν1νδν1ν2 + σν1ν2f

2
ν1ν2 − σν2ν1f

2
ν2ν1 −

∑

µ

σµν2f
1
ν2µδν1ν2

)

=

= −2ig

(

∑

ν

σν1νf
1
ν1ν
δν1ν2 +

1

2
σν1ν2(f

2
ν1ν2

+ f 2
ν2ν1

)

)

. (6.82)

6.2.8 Quark propagator and vertices

While the gluon propagator is already given in Eq. (6.59), the different Feynman dia-
gram elements including the quark propagator and the one- and the two-gluon vertex are
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obtained by using the functions ξ(0), ξ(1), and ξ(2). For the inverse propagator one obtains

ξ(0)(SID234; p) = i
c0
χ

3
∑

i=1

γi sin(pi)
(

1 +
2c3s
3

sin2
(

pi
2

))

+

+iγ4 sin(p4)
(

1 +
2c3t
3

sin2
(

p4

2

))

+

+m0at +
2r

χ

3
∑

i=1

sin2
(

pi
2

)(

1 +
c4s
3

sin2
(

pi
3

))

+

+2rχ sin2
(

p4

2

)(

1 +
c4t
3

sin2
(

p4

2

))

=

= i
4
∑

µ=1

γµPµ(pµ) +M(p) (6.83)

where the most general action expression SID234 is taken, allowing for a simplification by
setting appropiate coefficients to zero. The momentum part component Pµ (not the mass
part M) depends only on the component pµ. Therefore, the quark propagator reads

Q(p) =
−i∑4

µ=1 γµPµ(pµ) +M(p)
∑4
µ=1 P

2
µ(pµ) +M2(p)

. (6.84)

The one-gluon vertex with incoming quark momentum p, incoming gluon momentum q1
and Lorentz index µ1 is given by

ξ(1)(S; p; q1, µ1) =
4
∑

µ,ν=1

σµνVµν(p; q1, µ1) +
4
∑

µ=1

γµVµ(p; q1, µ1) + V (p; q, µ1). (6.85)

The two-gluon vertex with incoming quark momentum p, incoming gluon momenta q1, q2
and Lorentz indices µ1, µ2 is used in the one-loop case only for the tadpole diagram,

ξ(2)(S; p; q1, µ1; q2, µ2) =
4
∑

µ,ν=1

σµνVµν(p; q1, µ1; q2, µ2) +

+
4
∑

µ=1

γµVµ(p; q1, µ1; q2, µ2) + V (p; q1, µ1; q2, µ2). (6.86)

6.2.9 The tadpole improvement

As explained before, the tadpole improvement “renormalizes” the size of the link operator
Uµ by dividing it by a correction factor uµ which is called the mean link . This mean link
is a number between 0 and 1. It can be calculated by a Monte Carlo simulation as the
mean value of 1

3
Tr(Uµ). Expanded in the strong coupling, it can (for the so-called Landau

mean link definition) be expressed and calculated by VEGAS [211] as

uµ = 1 − αs
3π
u(2)
µ +O(α2

s), u(2)
µ =

1

2

∫

d4q

(2π)4
Gµµ(αg = 0). (6.87)

This correction is implemented into the MATHEMATICA package. Using this, the contri-
butions to the expansion coefficient αsu

(2)
µ /3π in the expansion with respect to the strong
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coupling are determined. A hat notation is used for the time being to distinguish these
contributions from the original operators. The results are given by

ξ(0)
(

ψ̄
(

∇̃µ −
c3
6
∇̃3
µ

)

ψ, p
)

= iu(2)
µ

[

(

1 +
c3
3

)

sin(pµ) −
c3
3

sin(2pµ)

]

,

ξ(0)
(

ψ̄
(

∇̃2
µ −

1

12
c4∇̃4

µ

)

ψ, p
)

= 2u(2)
µ

[

(

1 +
2c3
3

)

cos(pµ) −
c4
3

cos(2pµ)

]

,

ξ(0)
(

F̃µν , k
′, k
)

= 0 (6.88)

for the zeroth order coefficients,

ξ
(1)
0

(

ψ̄
(

∇̃µ −
c3
6
∇̃(3)
µ

)

ψ, p; q
)

=

= igu(2)
µ

[

(

1 +
c3
3

)

cos(pµ) −
2c3
3

cos(2pµ) cos
(

qµ
2

)

]

,

ξ
(1)
0

(

ψ̄
(

∇̃(2)
µ − c4

12
∇̃(4)
µ

)

ψ, p; q
)

=

= −2gu(2)
µ

[

(

1 +
c4
3

)

sin(pµ) −
c4
3

sin(2pµ) cos
(

qµ
2

)

]

,

ξ(1)
(

ψ̄F̃µνψ, p; q, ρ
)

=

= 2i(u(2)
µ + u(2)

ν )
[

sin(qν) cos
(

qµ
2

)

δµρ − sin(qµ) cos
(

qν
2

)

δνρ

]

(6.89)

for the first order coefficients, and finally

ξ
(2)
00

(

ψ̄
(

∇̃µ −
1

6
c3∇̃(3)

µ

)

ψ, p; q1; q2

)

= −ig
2u(2)

µ

2
×

×
[

(

1 +
c3
3

)

sin(pµ) −
4c3
3

sin(2pµ) cos
(

q1µ
2

)

cos
(

q2µ
2

)

]

,

ξ
(2)
00

(

ψ̄
(

∇̃(2)
µ − 1

12
c4∇̃(4)

µ

)

ψ, p; q1; q2

)

= −g2u(2)
µ ×

×
[

(

1 +
c4
3

)

cos(pµ) −
2c4
3

cos(2pµ) cos
(

q1µ
2

)

cos
(

q2µ
2

)

]

,

ξ(2)
(

ψ̄F̃µνψ, p; q1, ρ1; q2, ρ2

)

=

= −ig
2

(u(2)
µ + u(2)

ν ) (δρ1µδρ2ν − δρ1νδρ2µ) ×

×
[

cos
(

q1µ
2

)

cos
(

q2ν
2

)

− cos
(

q1µ
2

+ q2µ

)

cos
(

q2ν
2

)

+

− cos
(

q1µ +
q2µ
2

)

cos
(

q1ν
2

)

+ cos
(

q2µ
2

)

cos
(

q1ν
2

)

+

− cos
(

q1µ
2

)

cos
(

q1ν +
q2ν
2

)

− cos
(

q1µ
2

+ q2µ

)

cos
(

q1ν +
q2ν
2

)

+

− cos
(

q2µ
2

)

cos
(

q1ν
2

+ q2ν

)

− cos
(

q1µ +
q2µ
2

)

cos
(

q1ν
2

+ q2ν

)

]

(6.90)
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for the second order coefficients. Even though all the coefficients up to second order are
written down, for the first order case only the zeroth order coefficients of this correction
are necessary. The correction to SID234 reads

ξ(0)
(

S̃ID234, p
)

= i
c0
χ
u(2)
s

∑

i

γi

[

(

1 +
c3s
3

)

sin(pi) −
c3s
3

sin(2pi)

]

+

+iγ4u
(2)
t

[(

1 +
c3t
3

)

sin(p4) −
c3t
3

sin(2p4)
]

+

+
r

χ
u(2)
s

∑

i

[

(

1 +
c4s
3

)

cos(pi) −
c4s
6

cos(2pi)

]

+

+rχu
(2)
t

[

(

1 +
c4t
3

)

cos(p4) −
c4t
6

cos(2p4)

]

. (6.91)

This expression, multiplied with αs/3π, is the tadpole improvement which can then be
added to the unimproved contribution.

6.3 The pole mass and wave function renormalization

This section is devoted to the calculation of the renormalized pole mass M1 and the
wave function renormalization factor Z2. As one knows from continuum renormalization
theory, both quantities are obtained by the consideration of the inverse quark propagator
in the rest frame of the quark. The considerations will be done in four steps, for the
isotropic and anisotropic case on the one hand and the free propagator and the first order
correction on the other hand. These considerations are quite parallel to those found in
Ref. [201].

6.3.1 The isotropic free propagator

For the isotropic case, the inverse free quark propagator

S̃0(p)
−1 = Q(p)−1 = i

4
∑

µ=1

γµPµ(pµ) +M(p) (6.92)

in the quark rest frame with ~p = ~0 has the components

Pi(pi = 0) = 0, P4(p4) = sin(p4), M(~p = ~0, p4) = mat + 1 − cos(p4). (6.93)

Therefore, one has

S̃0(~0, p4) =
−iγ4 sin(p4) +mat + 1 − cos(p4)

sin2(p4) + ((1 +mat) − cos(p4))
2 . (6.94)

The denominator can be rewritten as

D(eip4) = sin2(p4) + (1 +mat − cos(p4))
2 =

= (−i sin(p4) +mat + 1 − cos(p4)) (i sin(p4) +mat + 1 − cos(p4)) =

= (−eip4 +mat + 1)(−e−ip4 +mat + 1). (6.95)
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By substituting mat + 1 = eM1 one obtains

D(z) =
(

z − eM1

)

(

1

z
− eM1

)

. (6.96)

The numerator is written in a similar way as

N(z) = −γ4
1

2

(

z − 1

z

)

+ eM1 − 1

2

(

z +
1

z

)

. (6.97)

The Fourier transform of the propagator leads to the free Greens function

G0(~0, t) =
∫ π/at

−π/at

dk4

2π
eik4tS̃0(~0, atk4) =

∮

|z|=1

dz

2πiat
zt/at

N(z)

zD(z)
(6.98)

or

atG0(~0, atτ) = −
∮

|z|=1

dz

2πi

zτN(z)e−M1

(z − eM1)(z − e−M1)
(6.99)

where the ordinary time is given by t = atτ , q4 = atk4 is used. The substitution z = eip4

converts the integration path along the real axis to a circle path in the complex plane.
Therefore, one can apply Cauchy’s theorem which states that the value of this integral
is given by the residues of the integrand lying within this circle. These are very simple
in this case. Because of m > 0 one has M1 > 0. Therefore, the only residue in this case
which has to be taken into account is the one at z = e−M1 . One therefore obtains

atG0(~0, atτ) = −Res

[

zτN(z)e−M1

(z − eM1)(z − e−M1)
; z = e−M1

]

= e−M1(τ+1) N(e−M1)

eM1 − e−M1
. (6.100)

The denominator is simply 2 sinh(M1), for the numerator one obtains

N(e−M1) = −γ4
1

2
(e−M1 − eM1) + eM1 − 1

2
(e−M1 + eM1) = (γ4 + 1) sinh(M1). (6.101)

Therefore, one ends up with the pole mass M1 = ln(1 +mat) and

atG0(~0, atτ) =
1 + γ4

2
e−M1(τ+1) ⇒ Z2(~0) = e−M1 . (6.102)

6.3.2 The anisotropic free propagator

For the case of the anisotropic lattice, the components are modified,

Pi(pi = 0) = 0, P4(p4) = sin(p4) M(~p = ~0, p4) = mat + χ− χ cos(p4). (6.103)

The free quark propagator is given by

S̃0(~0, p4) =
−iγ4 sin(p4) +mat + χ− χ cos(p4)

sin2(p4) + (mat + χ− χ cos(p4))
2 , (6.104)

and the denominator can be rewritten as

D(eip4) = (−i sin(p4) +mat + χ− χ cos(p4)) ×

× (i sin(p4) +mat + χ− χ cos(p4)) =

=
(

1

2
(1 − χ)e−ip4 +mat + χ− 1

2
(1 + χ)eip4

)

×

×
(

1

2
(1 − χ)eip4 +mat + χ− 1

2
(1 + χ)e−ip4

)

⇔ (6.105)

D(z) =
(

1

2
(1 − χ)

1

z
+mat + χ− 1

2
(1 + χ)z

)(

1

2
(1 − χ)z +mat + χ− 1

2
(1 + χ)

1

z

)

.
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There are four roots of the denominator. The first two are solutions of the equation

z2 − 2
mat + χ

1 + χ
z − 1 − χ

1 + χ
= 0 (6.106)

and are given by

z1,2 =
mat + χ±

√

m2a2
t + 2χmat + 1

1 + χ
. (6.107)

In the limit χ→ 1 this simplifies to

z1 → mat + 1, z2 → 0. (6.108)

The second two roots are solutions of

z2 + 2
mat + χ

1 − χ
z − 1 + χ

1 − χ
= 0, (6.109)

given by

z3,4 =
−mat − χ±

√

m2a2
t + 2χmat + 1

1 − χ
(6.110)

In this case the limit χ→ 1 is more involved. One obtains

z3 →
1

mat + 1
, z4 → ∞. (6.111)

It is easy to see that z1z3 = z2z4 = 1. The only root that approaches the root for the
isotropic lattice in the limit χ → 1 is the root z3. But one has to take into account also
z2 which lies inside the unit circle as well. Therefore, one has to determine the value of
the numerator and the cancelled denominator at these values. In chosing

z1 = eM1 , z2 = e−M2, z3 = e−M1 , and z4 = eM2, (6.112)

the expressions for numerator and denominator can be simplified. For z = z2 one obtains

(1 + χ)z2 = mat + χ−
√

m2a2
t + 2χmat + 1 ⇔

(mat + χ− (1 + χ)z2)
2 = m2a2

t + 2χmat + 1 ⇔
(mat + χ)2 − 2(1 + χ)(mat + χ)z2 + (1 + χ)2z2

2 = (mat + χ)2 + 1 − χ2 (6.113)

such that

mat + χ =
1

2
(1 + χ)z2 −

1

2
(1 − χ)

1

z2
=

1

2

(

z2 −
1

z2

)

+
1

2
χ
(

z2 +
1

z2

)

= (6.114)

=
1

2

(

e−M2 − eM2

)

+
1

2
χ
(

e−M2 + eM2

)

= − sinh(M2) + χ cosh(M2).

In this case the numerator and the cancelled denominator are given by

N(z2) = −1

2
γ4

(

e−M2 − eM2

)

+mat + χ− 1

2
χ
(

e−M2 + eM2

)

= (6.115)

= γ4 sinh(M2) − sinh(M2) + χ cosh(M2) − χ cosh(M2) = (γ4 − 1) sinh(M2),
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D(z)

z − z2

∣

∣

∣

z=z2
=

1 + χ

2z2
(z1 − z2)

(

1

2
(1 − χ)e−M2 +mat + χ− 1

2
(1 + χ)eM2

)

=

= eM2

√

m2a2
t + 2χmat + 1

(

1

2

(

e−M2 − eM2

)

+mat + χ− 1

2
χ
(

e−M2 + eM2

)

)

=

= eM2

√

m2a2
t + 2χmat + 1 (− sinh(M2) − sinh(M2) + χ cosh(M2) − χ cosh(M2)) =

= −2eM2 sinh(M2)
√

m2a2
t + 2χmat + 1 (6.116)

The corresponding residue is therefore

R2 := Res

[

zτN(z)

zD(z)
; z = e−M2

]

=
1 − γ4

2

e−M2τ

√

m2a2
t + 2χmat + 1

. (6.117)

For the other root z = z3 one obtains

mat + χ = sinh(M1) + χ cosh(M1). (6.118)

Thus

N(z3) = −1

2
γ4

(

e−M1 − eM1

)

+mat + χ− 1

2
χ
(

e−M1 + eM1

)

= (6.119)

= γ4 sinh(M1) + sinh(M1) + χ cosh(M1) − cosh(M1) = (γ4 + 1) sinh(M1)

and

D(z)

z − z3

∣

∣

∣

z=z3
=

1 − χ

2z3
(z3 − z4)

(

1

2
(1 − χ)eM1 +mat + χ− 1

2
(1 + χ)e−M1

)

=

= eM1

√

m2a2
t + 2χmat + 1

(

1

2

(

eM1 − e−M1

)

+mat + χ− 1

2
χ
(

eM1 + e−M1

)

)

=

= eM1

√

m2a2
t + 2χmat + 1 (sinh(M1) + sinh(M1) + χ cosh(M1) − χ cosh(M1)) =

= eM1 sinh(M1)
√

m2a2
t + 2χmat + 1. (6.120)

The corresponding residue is given by

R1 := Res

[

zτN(z)

zD(z)
; z = e−M1

]

=
1 + γ4

2

e−M1τ

√

m2a2
t + 2χmat + 1

. (6.121)

One finally obtains

atG0(~0, atτ) =
1 − γ4

2

e−M2τ

√

m2a2
t + 2χmat + 1

+
1 + γ4

2

e−M1τ

√

m2a2
t + 2χmat + 1

(6.122)

which leads to the pole masses M1 and M2 and a still common renormalization factor

Z2(~0) =
1

√

m2a2
t + 2χmat + 1

. (6.123)
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6.3.3 The isotropic one-loop case

After having gained experience how to calculate the pole mass and renormalization factor
for the free case, the one-loop case is considered, starting with the inverse propagator

S̃(~0, p4)
−1 = iγ4 sin(p4) +mat + 1 − cos(p4) − Σ̃(~0, p4) (6.124)

where Σ(p) is the result we obtain from the first order radiative correction, written as

Σ̃(p) = i
3
∑

i=1

γi sin(pi)Σi(p) + iγ4 sin(p4)Σ4(p) + Σm(p). (6.125)

For the special case ~p = ~0 a short hand notation is used,

Σi(~0, p4) = 0, Σ4(~0, p4) = Σ̂4(−ip4), Σm(~0, p4) = Σ̂m(−ip4). (6.126)

The arguments of the new functions are chosen for later convenience. For the inverse
propagator one ends up with

S̃(~0, p4)
−1 = iγ4(1 − Σ̂4(−ip4)) sin(p4) +mat + 1 − Σ̂m(−ip4) − cos(p4). (6.127)

Calculating the propagator itself, the denominator is given by

D(eip4) =
(

1 − Σ̂4(−ip4)
)2

sin2(p4) +
(

mat + 1 − Σ̂m(−ip4) − cos(p4)
)2 ⇔ (6.128)

D(z) = −1

4

(

1 − Σ̂4(− ln z)
)2
(

z − 1

z

)2

+
(

mat + 1 − Σ̂m(− ln z) − 1

2

(

z +
1

z

))2

.

Now one makes an ansatz, assuming that the denominator has roots z = e−M with M > 0
as before. Solutions for the parameter M are to be determined in the following. Inserting
z = e−M , one obtains

D(e−M) = −
(

1 − Σ̂4(M)
)2

sinh2(M) +
(

mat + 1 − Σ̂m(M) − cosh(M)
)2 !

= 0 (6.129)

as determining equation for M . Because of sinh(M) > 0, Eq. (6.129) can be solved by

0 < sinh(M) =

∣

∣

∣

∣

∣

mat + 1 − Σ̂m(M) − cosh(M)

1 − Σ̂4(M)

∣

∣

∣

∣

∣

. (6.130)

There are two possible solutions. The first one is given by

(1 − Σ̂4(M1)) sinh(M1) = mat + 1 − Σ̂m(M1) − cosh(M1) ⇔

eM1 = mat + 1 − Σ̂m(M1) + Σ̂4(M1) sinh(M1) (6.131)

and the second by

−(1 − Σ̂4(M2)) sinh(M2) = mat + 1 − Σ̂m(M2) − cosh(M2) ⇔

e−M2 = mat + 1 − Σ̂m(M2) − Σ̂4(M2) sinh(M2). (6.132)
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Not both of these equations have positive solutions Mi. In addition, the solutions are still
given by implicit equations, but they can already be used to simplify the numerator. The
numerator is given by

N(eip4) = −iγ4

(

1 − Σ̂4(−ip4)
)

sin(p4) +mat + 1 − Σ̂m(−ip4) − cos(p4) ⇔

N(z) = −1

2
γ4

(

1 − Σ̂4(− ln z)
)

(

z − 1

z

)

+mat + 1 − Σ̂m(− ln z) − 1

2

(

z +
1

z

)

⇔ N(e−M) = γ4

(

1 − Σ̂4(M)
)

sinh(M) +mat + 1 − Σ̂m(M) − cosh(M). (6.133)

Using Eqs. (6.131) and (6.132) to replace for mat + 1 in the cases M = M1 and M = M2,
one obtains

N(e−M1) = γ4

(

1 − Σ̂4(M1)
)

sinh(M1) + eM1 − Σ̂4(M1) sinh(M1) − cosh(M1) =

= γ4

(

1 − Σ̂4(M1)
)

sinh(M1) + sinh(M1) − Σ̂4(M1) sinh(M1) =

= (γ4 + 1)
(

1 − Σ̂4(M1)
)

sinh(M1) (6.134)

and

N(e−M2) = γ4

(

1 − Σ̂4(M2)
)

sinh(M2) + e−M2 + Σ̂4(M2) sinh(M2) − cosh(M2) =

= γ4

(

1 − Σ̂4(M2)
)

sinh(M2) − sinh(M2) + Σ̂4(M2) sinh(M2) =

= (γ4 − 1)
(

1 − Σ̂4(M2)
)

sinh(M2). (6.135)

Of course, one has problems to factor out these roots from the denominator. But the
denominator can be expanded in a series near these roots. In order to do this, one has to
calculate the first derivative of D(z) with respect to z,

D′(z) = −1

2
(1 − Σ̂4(− ln z))2

(

z − 1

z

)(

1 +
1

z2

)

+

−1

2

(

1 − Σ̂4(− ln z)
)

(

Σ′4(− ln z)

z

)

(

z − 1

z

)2

+ (6.136)

+2
(

mat + 1 − Σ̂m(− ln z) − 1

2

(

z +
1

z

))

(

Σ′m(− ln z)

z
− 1

2

(

1 − 1

z2

)

)

and thus D(e−M) = 0 and

e−MD′(e−M) = 2
(

1 − Σ̂4(M)
)2

sinh(M) cosh(M) − 2
(

1 − Σ̂4(M)
)

Σ′4(M) sinh2(M) +

+2
(

mat + 1 − Σ̂m(M) − cosh(M)
)

(Σ′m(M) + sinh(M)) . (6.137)

Inserting the two different roots, one obtains

e−M1D′(e−M1) =

= 2
(

1 − Σ̂4(M1)
)2

sinh(M1) cosh(M1) − 2
(

1 − Σ̂4(M1)
)

Σ′4(M1) sinh2(M1) +
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+2
(

sinh(M1) − Σ̂4(M1) sinh(M1)
)

(Σ′m(M1) + sinh(M1)) =

= 2
(

1 − Σ̂4(M1)
)

sinh(M1) ×

×
((

1 − Σ̂4(M1)
)

cosh(M1) − Σ′4(M1) sinh(M1) + Σ′m(M1) + sinh(M1)
)

=

= 2
(

1 − Σ̂4(M1)
)

sinh(M1) ×

×
(

eM1 − Σ̂4(M1) cosh(M1) − Σ′4(M1) sinh(M1) + Σ′m(M1)
)

=

= 2
(

1 − Σ̂4(M1)
)

sinh(M1)
d

dM1

(

eM1 − Σ̂4(M1) sinh(M1) + Σ̂m(M1)
)

,

e−M2D′(e−M2) =

= 2
(

1 − Σ̂4(M2)
)2

sinh(M2) cosh(M2) − 2
(

1 − Σ̂4(M2)
)

Σ′4(M2) sinh2(M2) +

+2
(

− sinh(M2) + Σ̂4(M2) sinh(M2)
)

(Σ′m(M2) + sinh(M2)) =

= 2
(

1 − Σ̂4(M2)
)

sinh(M2) ×

×
((

1 − Σ̂4(M2)
)

cosh(M2) − Σ′4(M2) sinh(M2) − Σ′m(M2) − sinh(M2)
)

=

= −2
(

1 − Σ̂4(M2)
)

sinh(M2) ×

×
(

e−M2 + Σ̂4(M2) cosh(M2) + Σ′4(M2) sinh(M2) + Σ′m(M2)
)

=

= −2
(

1 − Σ̂4(M2)
)

sinh(M2)
d

dM2

(

e−M2 + Σ̂4(M2) sinh(M2) + Σ̂m(M2)
)

. (6.138)

This is a rather suprisingly simple result. Exactly this first derivative of the denominator
is necessary to calculate the residue, because

D(z) = D(e−M) + (z − e−M)D′(e−M) +O
(

(z − e−M)2
)

=

= (z − e−M)D′(e−M) +O
(

(z − e−M)2
)

(6.139)

for the two roots M = M1 and M = M2. The residues and wave function renormalization
factors are given by

R1 = Res

[

zτN(z)

zD(z)
; z = e−M1

]

=
1 + γ4

2
e−M1τZ2(~0,M1) with

Z2(~0,M1)
−1 =

d

dM1

(

eM1 − Σ̂4(M1) sinh(M1) + Σ̂m(M1)
)

(6.140)

and

R2 = Res

[

zτN(z)

zD(z)
; z = e−M2

]

=
1 − γ4

2
e−M2τZ2(~0,M2) with

Z2(~0,M2)
−1 =

d

dM2

(

e−M2 + Σ̂4(M2) sinh(M2) + Σ̂m(M2)
)

. (6.141)
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6.3.4 The anisotropic one-loop case

For the anisotropic case one starts with

S̃(~0, p4)
−1 = iγ4(1 − Σ̂4(−ip4)) sin(p4) +mat + χ− Σ̂m(−ip4) − χ cos(p4) (6.142)

for the inverse propagator. For the denominator of the propagator one obtains

D(eip4) = (1 − Σ̂4(−ip4))
2 sin2(p4) + (mat + χ− Σ̂m(−ip4) − χ cos(p4))

2 (6.143)

or

D(z) = −1

4

(

1 − Σ̂4(− ln z)
)2
(

z − 1

z

)2

+
(

mat + χ− Σ̂m(− ln z) − χ

2

(

z +
1

z

))2

.

(6.144)
For z = e−M the equation to solve for the pole contributions is given by

D(e−M) = −(1 − Σ̂4(M))2 sinh2M + (mat + χ− Σ̂m(M) − χ coshM)2 !
= 0. (6.145)

The solutions for M are implicitly given by M1 and M2 where

χ coshM1 + sinhM1 = mat + χ + Σ̂4(M1) sinhM1 − Σ̂m(M1),

χ coshM2 − sinhM2 = mat + χ− Σ̂4(M2) sinhM2 − Σ̂m(M2). (6.146)

Using Eqs. (6.146), one can also simplify the numerator

N(e−M) = γ4(1 − Σ̂4(M)) sinhM +mat + χ− Σ̂m(M) − χ coshM, (6.147)

resulting in

N(e−M1) = (1 + γ4)(1 − Σ̂4(M1)) sinhM1,

N(e−M2) = −(1 − γ4)(1 − Σ̂4(M2)) sinhM2. (6.148)

The zeros of the denominator can finally obtained by calculating the derivative,

e−MD′(e−M) = 2(1 − Σ̂4(M))2 sinhM coshM − 2(1 − Σ̂4(M))Σ′4(M) sinh2M +

+2(mat + χ− Σ̂m(M) − χ coshM)(Σ′m(M) + χ sinhM). (6.149)

For the two solutions the result is given by

e−M1D′(e−M1) = 2(1 − Σ̂4(M1)) sinhM2 ×

× d

dM1

(

χ coshM1 + sinhM1 − Σ̂4(M1) sinhM1 + Σ̂m(M1)
)

,

e−M2D′(e−M2) = −2(1 − Σ̂4(M2)) sinhM2 × (6.150)

× d

dM2

(

χ coshM2 − sinhM2 + Σ̂4(M2) sinhM2 + Σ̂m(M2)
)

.

As a result for the wave function renormalization factor one obtains

Z2(~0,M1)
−1 =

d

dM1

(

χ coshM1 + sinhM1 − Σ̂4(M1) sinhM1 + Σ̂m(M1)
)

,

Z2(~0,M2)
−1 =

d

dM2

(

χ coshM2 − sinhM2 + Σ̂4(M2) sinhM2 + Σ̂m(M2)
)

. (6.151)

One can write both in a even shorter form as

Z2(~0,M1)
−1 =

d

dM1

(mat + χ), Z2(~0,M2)
−1 =

d

dM2

(mat + χ) (6.152)

remembering the defining equations (6.146) for M1 and M2.
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6.3.5 The pole mass regularization

One has to think about how to use these calculations to build up a program for the
calculation of M1. As a consequence of z1 = eM1 and Eq. (6.107), at tree level

M
(0)
1 = ln





mat + χ+
√

m2a2
t + 2χmat + 1

1 + χ



 (6.153)

is obtained for the pole mass. One now can use the first of Eqs. (6.146) to set up a relation
between the expressions for M1 in subsequent orders in αs. In order to see this, note that
Σ̂4 and Σ̂m themselves contain a factor αs. For this reason one inserts the expression to
zeroth order on the right hand side and the term up to first order on the left hand side
and obtains

χ cosh(M
(1)
1 ) + sinh(M

(1)
1 ) = mat + χ+ Σ̂4(M

(0)
1 ) sinh(M

(0)
1 ) − Σ̂m(M

(0)
1 ) (6.154)

Note that M
(1)
1 means the term up to first order. If one inserts M

(1)
1 = M

(0)
1 +∆M

(1)
1 and

expands in the first order correction ∆M
(1)
1 , the result is

χ cosh(M
(1)
1 ) + sinh(M

(1)
1 ) =

≈ χ cosh(M
(0)
1 ) + sinh(M

(0)
1 ) + (χ sinh(M

(0)
1 ) + cosh(M

(0)
1 ))∆M

(1)
1 . (6.155)

Because of (mat + χ+
√

m2a2
t + 2χmat + 1)(mat + χ−

√

m2a2
t + 2χmat + 1) = −1 + χ2

one has

eM
(0)
1 =

mat + χ+
√

m2a2
t + 2χmat + 1

1 + χ
and

e−M
(0)
1 =

−mat − χ +
√

m2a2
t + 2χmat + 1

1 − χ
(6.156)

and thus

χ cosh(M
(0)
1 ) + sinh(M

(0)
1 ) =

1

2
(1 + χ)eM

(0)
1 − 1

2
(1 − χ)e−M

(0)
1 = mat + χ, (6.157)

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 ) =

1

2
(1 + χ)eM

(0)
1 +

1

2
(1 − χ)e−M

(0)
1 =

√

m2a2
t + 2χmat + 1.

Inserting Eq. (6.157) and the expansion in Eq. (6.155) into Eq. (6.154), one obtains

∆M
(1)
1 (M

(0)
1 ) =

Σ̂4(M
(0)
1 ) sinh(M

(0)
1 ) − Σ̂m(M

(0)
1 )

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )

, ∆M
(1)
1 (0) = −Σ̂m(0). (6.158)

Because of the last equality, it is not guaranteed that M1 vanishes when m vanishes and
vice versa. Instead, looking at the first of Eqs. (6.146), for M1 = 0 one obtains

m(M1 = 0)at = Σ̂m(0). (6.159)

The first of Eqs. (6.146) can now be supplemented by this additional term,

χ cosh(M1) + sinh(M1) = m′at + χ+ Σ̂4(M1) sinhM1 − Σ̂′m(M1) (6.160)
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where m′at = mat − Σ̃m(0) and Σ̂′m(M1) = Σ̂m(M1) − Σ̂m(0). While the last term is a
correction for the first-order contribution, m′ is a first-order correction of a leading-order
expression. The only additional appearence of m is given in the quark propagator and
therefore in the radiative correction terms Σ̂4 and Σ̂m. In these first-order terms m can
simply be replaced by m′. Therefore one can replace m everywhere by m′ and drop the
prime for m again, being left with the subtracted mass correction

∆M
(1)
1,sub(M

(0)
1 ) = ∆M

(1)
1 (M

(0)
1 ) − ∆M

(1)
1 (0)

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )

. (6.161)

Still, Eqs. (6.158) and (6.161) are not be the final expressions for the mass correction. The
short hand notation Σ̂ has to be translated back to the original self energy contributions.
The part Σ̂4 can be obtained by calculating the trace of γ4 with the expression

Σ(~p, p4) = i
∑

i

γi sin(pi)Σi(~p, p4) + iγ4 sin(p4)Σ4(~p, p4) + Σm(~p, p4) (6.162)

at ~p = ~0, because

Σ(~0, p4) = iγ4 sin(p4)Σ4(~0, p4) + Σm(~0, p4) (6.163)

and
1

4
Tr
(

γ4Σ(~0, p4)
)

= i sin(p4)Σ4(~0, p4). (6.164)

At the point p4 = iM1 one has

sinhM1Σ4(~0, iM1) = −1

4
Tr
(

γ4Σ(~0, p4)
) ∣

∣

∣

p4=iM1

. (6.165)

Σ̂m(M1) is obtained by taking the trace without any additional Dirac matrix,

Σm(~0, iM1) =
1

4
Tr
(

Σ(~0, p4)
) ∣

∣

∣

p4=iM1

. (6.166)

With

Σ4(~0, iM
(0)
1 ) = Σ̂4(M

(0)
1 ) and Σm(~0, iM

(0)
1 ) = Σ̂m(M

(0)
1 ) (6.167)

one obtains

Σ̂4(M
(0)
1 ) sinh(M

(0)
1 ) − Σ̂m(M

(0)
1 ) = (6.168)

= Σ4(~0, iM
(0)
1 ) sinh(M

(0)
1 ) − Σm(~0, iM

(0)
1 ) = −1

4
Tr
(

(1 + γ4)Σ(~0, iM
(0)
1 )

)

and thus

∆M
(1)
1 = −1

4

Tr
(

(1 + γ4)Σ(~0, iM
(0)
1 )

)

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )

. (6.169)

As a last step one has to think about the physical content of the parameter M1. Because
m is made dimensionless by multiplying it with at, the same holds for M1, i.e. one defines
a physical mass M by M1 = Mat. But then the parameter M1 makes no sense in the limit
χ→ ∞ because in this limit M1 vanishes. Therefore, one defines a dimensionless physical
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mass parameter M̂1 := Mas = M1χ which is related to the dimensional unphysical mass
m by

mat = sinh

(

M̂1

χ

)

+ χ

(

cosh

(

M̂1

χ

)

− 1

)

. (6.170)

Finally, the correction ∆M
(1)
1 is changed to ∆M̂

(1)
1 by multiplying the self energy con-

tributions by a factor χ. The multiplication with χ, i.e. the “shift” to a stable lattice
spacing, makes both the physical mass parameter and the singularities independent of
the lattice spacing ratio. In the isotropic limit the result shown in Eq. (6.169) agrees with
formulas given in the literature (see e.g Refs. [201, 212]).

6.3.6 The wave function renormalization

For the calculation of the wave function renormalization factor Z2 one has to calculate
derivatives of the self energy contributions with respect to the time component. This
becomes obvious by looking at Eqs. (6.151). For the first of Eqs. (6.151), for instance,
one obtains

Z2(~0,M1)
−1 =

d

dM1

(

χ coshM1 + sinhM1 − Σ̂4(M1) + Σ̂m(M1)
)

=

= χ sinh(M1) + cosh(M1) +
d

dM1

(

− sinh(M1)Σ4(~0, iM1) + Σm(~0, iM1)
)

=

= χ sinh(M1) + cosh(M1) +
1

4

d

dM1
Tr
(

(1 + γ4)Σ(~0, iM1)
)

=

= χ sinh(M1) + cosh(M1) +
i

4

d

dp4
Tr
(

(1 + γ4)Σ(~0, p4)
) ∣

∣

∣

p4=iM1

. (6.171)

The one-loop approximation for Z−1
2 is obtained by expanding once more in ∆M

(1)
1 , an

expansion that only effects the first two terms,

Z2(~0,M
(1)
1 )−1 = χ sinh(M

(0)
1 ) + cosh(M

(0)
1 ) + ∆M

(1)
1

(

χ cosh(M
(0)
1 ) + sinh(M

(0)
1 )

)

+

+
i

4

d

dp4

Tr
(

(1 + γ4)Σ(~0, p4)
) ∣

∣

∣

p4=iM1

. (6.172)

The change from the leading order wave function renormalization Z
(0)
2 = Z2(~0,M

(0)
1 ) =

(χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )) to the one-loop approximation Z

(1)
2 = Z2(~0,M

(1)
1 ) is given by

Z
(1)
2 = Z

(0)
2

{

1 − ∆M
(1)
1

χ cosh(M
(0)
1 ) + sinh(M

(0)
1 )

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )

+

+
1

4i

d

dp4

Tr
(

(1 + γ4)Σ(~0, p4)
) ∣

∣

∣

p4=iM1

}

(6.173)

For the isotropic limit, Eq. (6.173) reduces to the expression given in Ref. [201]. Note
that for the case of wave function renormalization there will be IR divergences even in
the massive case. These divergences cannot be cancelled by another term.
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Treatment of IR divergences

One can treat the IR-divergences by using a subtraction method introduced by Kura-
mashi [212]. This method consists of the construction of a counter term by using the
continuum theory with an appropiate choice for the mass which guarantees that the IR
singularity is exactly cancelled. This appropiate mass parameter can be calculated by
taking one step further in the consideration of the denominator of the quark propagator.
In the previous subsections the pole contributions has been calculated in terms of the pole
mass M1 where

m0at + χ = sinhM1 + χ coshM1. (6.174)

If one expands the denominator close to this pole position, i.e. at a four-momentum
p = (~0, iM1)+q for a small additional momentum q, one can compare with the continuum
result for the (scalar) denominator factor which is proportional to 2im̃q4 + q2 where m̃ is
the effective mass one needs in order to adjust the continuum result to the lattice result.
The expansion of the different parts of the expression given in Eq. (6.83) leads to

Pi(qi) ≈ 1

χ
qi,

P4(iM1 + q4) ≈ sin(iM1 + q4) = i sinhM1 cos q4 + coshM1 sin q4 =

≈ i
(

1 − 1

2
q2
4

)

sinhM1 + q4 coshM1,

M(iM1 + q) ≈ 1

χ

3
∑

i=1

(1 − cos qi) +m0at + χ (1 − cos(iM1 + q4)) =

≈ 1

2χ

3
∑

i=1

q2
i +m0at + χ

(

1 − coshM1

(

1 − 1

2
q2
4

)

+ iq4 sinhM1

)

=

=
1

2
χq2 − 1

2
χq2

4 +m0at + χ− χ coshM1 +
1

2
χq2

4 coshM1 + iχq4 sinhM1 =

= sinhM1 + iχq4 sinhM1 +
1

2
χq2 − 1

2
χq2

4 (1 − coshM1) (6.175)

where in the two last steps the mass relation (6.174) and

q2 =
1

χ2

3
∑

i=1

q2
i + q2

4 (6.176)

have been used. The denominator is given by

3
∑

i=1

P 2
i + P 2

4 +M2 ≈ 1

χ2

3
∑

i=1

q2
i +

(

i
(

1 − 1

2
q2
4

)

sinhM1 + coshM1q4

)2

+

+
(

sinhM1 + iχq4 sinhM +
1

2
χq2 − 1

2
χq2

4 (1 − coshM1)
)2

=

≈ q2 − q2
4 − (1 − q2

4) sinh2M1 + 2i sinhM1 coshM1q4 +

+ cosh2M1q
2
4 + sinh2M1 + 2iχq4 sinh2M1 + χq2 sinhM1 +

−χq2
4 sinhM1 (1 − coshM1) − χ2q2

4 sinh2M1 =

= 2iq4 sinhM1 (coshM1 + χ sinhM1) + q2 (1 + χ sinhM1) +
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+q2
4 sinhM1

(

(2 − χ2) sinhM1 − χ(1 − coshM1)
)

. (6.177)

The contribution proportional to q2
4 does not give leading order contributions neither for

the case q4 = 0 nor for q4 6= 0 if q is considered to be small. Therefore, the comparison
leads to the effective mass (also called continuum mass)

m̃ = sinhM1
coshM1 + χ sinhM1

1 + χ sinhM1
. (6.178)

The counter term has to be subtracted from the integrand and added as an integral, both
within a circle of finite radius Λ which keeps the UV divergences under control.

IR correction for Feynman gauge

The sum given by Kuramashi [212] in Eq. (55) can be calculated to be

∑

ρ

ṽρS̃(p4 + q, m̃)ṽρD̃(q, λ) =
∑

ρ

iγρ
1

iγ4p4 + iq/ + m̃
iγρ

1

q2 + λ2
= (6.179)

= −
∑

ρ

γρ(−iγ4p4 − iq/+ m̃)γρ
(p2

4 + 2p4q4 + q2 + m̃2)(q2 + λ2)
= − 2iγ4p4 + 2iq/+ 4m̃

(p2
4 + 2p4q4 + q2 + m̃2)(q2 + λ2)

.

The contraction with 1 + γ4 and the multiplication with i leads to

2(p4 + q4 − 2im̃)

(p2
4 + 2p4q4 + q2 + m̃2)(q2 + λ2)

(6.180)

The derivative with respect to p4 is seperately written for numerator (first) and denomi-
nator (second),

2

(p2
4 + 2p4q4 + q2 + m̃2)(q2 + λ2)

− 4(p4 + q4 − 2im̃)(p4 + q4)

(p2
4 + 2p4q4 + q2 + m̃2)2(q2 + λ2)

(6.181)

Inserting p4 = im̃, one obtains

2

(−m̃2 + 2im̃q4 + q2 + m̃2)(q2 + λ2)
− 4(q4 − im̃)(q4 + im̃)

(−m̃2 + 2im̃q4 + q2 + m̃2)2(q2 + λ2)
=

=
2

(2im̃q4 + q2)(q2 + λ2)
− 4(q2

4 + m̃2)

(2im̃q4 + q2)2(q2 + λ2)
=

=
2q2

(q4 + 4m̃2q2
4)(q

2 + λ2)
− 4(q2

4 + m̃2)(q4 − 4m̃2q2
4)

(q4 + 4m̃2q2
4)

2(q2 + λ2)
+ im̃q4(· · ·). (6.182)

This expression is the one which is subtracted from the integrand. In order to calculate
the corresponding counter term for the integral, the integration of this expression over a
finite sphere of radius Λ is done for polar coordinates. The measure in four-dimensional
polar coordinates is given by q3dq dϕ sin θ1dθ1 sin2 θ2dθ2 where ϕ1 ∈ [0, 2π], θi ∈ [0, π] for
i = 1, 2. The integrand will not depend on the two first angles, the integration over these
can therefore be performed in advance, it results in a factor 4π. The calculation is done
as an example for the second (denominator) part and the representation q4 = q cos θ2 is
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used (q is the absolute value of the four-vector). Then the last angular integration can be
performed to obtain

f(q) := 4π2 (3q4 + 2q2m̃2 − 4m̃4)
√
q2 + 4m̃2 − (3q4 + 8q2m̃2 − 4m̃4)q

4q2(q2 + λ2)m̃4
√
q2 + 4m̃2

. (6.183)

One has to to keep the gluon mass λ non-vanishing only in cases where it regularizes the
integration. This is the case for the part

f0(q) := 4π2 q −
√
q2 + 4m̃2

q2(q2 + λ2)
√
q2 + 4m̃2

(6.184)

of the above cited function f(q). For this part one obtains

∫ Λ

0
f0(q)q

3dq = π
∫ Λ

0

q2 − q
√
q2 + 4m̃2

(q2 + λ2)
√
q2 + 4m̃2

dq =

= 4π2
∫ lna

0

4m̃2 sinh2 ζ − 4m̃2 sinh ζ cosh ζ

4m̃2(sinh2 ζ + λ2/4m̃2)2m̃ cosh ζ
2m̃ cosh ζ dζ =

= 4π2
∫ lna

0

sinh2 ζ − sinh ζ cosh ζ

sinh2 ζ + λ2/4m̃2
dζ = 4π2

∫ ln a

0

e2ζ − 2 + e−2ζ − e2ζ + e−2ζ

e2ζ − 2 + e−2ζ + λ2/m̃2
dζ =

= π
∫ lna

0

2(e−2ζ − 1)dζ

e2ζ − 2 + e−2ζ + λ2/m̃2
= 4π2

∫ 1

1/a2

(z − 1)dz

z2 + (λ2/m̃2 − 2)z + 1
=

≈ 2π2
∫ 1

1/a2

(2z + (λ2/m̃2 − 2))dz

z2 + (λ2/m̃2 − 2)z + 1
= 2π2 ln

(

z2 + (λ2/m̃2 − 2)z + 1
)

∣

∣

∣

∣

∣

1

z=1/a2

=

≈ 2π2
(

ln(1 + λ2/m̃2 − 2 + 1) − ln
(

a−4 − 2a−2 + 1
))

=

= 2π2

(

ln

(

λ2

m̃2

)

− 2 ln
(

1 − 1

a2

)

)

= 2π2

(

ln

(

λ2

m̃2

)

− 2 ln

(

2Λ(Λ +
√

Λ2 + 4m̃2)

(Λ +
√

Λ2 + 4m̃2)2

))

=

= 2π2

(

ln

(

λ2

m̃2

)

− 2 ln

(

2Λ

Λ +
√

Λ2 + 4m̃2

))

(6.185)

where the substitutions

q = 2m̃ sinh ζ, ζ(q) = ln

(

q +
√
q2 + 4m̃2

2m̃

)

, dk = 2m̃ cos ζ dζ,

ζ(0) = 0, ζ(Λ) = ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

=: ln a (6.186)

with

a2 − 1 =
1

4m̃2

(

Λ2 + Λ2 + 4m̃2 + 2Λ
√

Λ2 + 4m̃2 − 4m̃2
)

=
2Λ(Λ +

√
Λ2 + 4m̃2)

4m̃2
(6.187)

and
z = e−2ζ , dz = −2e−2ζdζ (6.188)

have been used. The rest of f(q), called f1(q), can be calculated by setting λ = 0,

f1(q) = 4π2 (3q2 + 2m̃2)
√
q2 + 4m̃2 − (3q2 + 8m̃2)q

4q2m̃4
√
q2 + 4m̃2

, (6.189)
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it results in
∫

f1(q)q
3dq = 2π2 ln(2m̃) − 8m̃4 ln(Λ +

√
Λ2 + 4m̃2) +

+
π2

4m̃4

(

Λ(3Λ3 + 4Λm̃2 − 3Λ2
√

Λ2 + 4m̃2 + 2m̃2
√

Λ2 + 4m̃2)
)

= (6.190)

= 2π2

(

− ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

+
Λ2

8m̃4
(3Λ2 + 4m̃2) − Λ

8m̃4
(3Λ2 − 2m̃2)

√
Λ2 + 4m̃2

)

.

Together with the integral over f0, and up to a general factor 2π2, one thus ends up with

2 ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

− Λ2

2m̃2
+

Λ

2m̃2

√
Λ2 + 4m̃2 (6.191)

for the numerator derivative and

ln

(

λ2

Λ2

)

+ ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

+
Λ2(3Λ2 + 4m̃2)

8m̃4
− Λ(3Λ2 − 2m̃2)

8m̃4

√
Λ2 + 4m̃2 (6.192)

for the denominator derivative.

IR correction for general gauge

Because the calculations are already performed for the Feynman gauge (αg = 1), for the
general covariant gauge one has to concentrate only on the additional term (up to the
factor −(1 − αg)). This is given by

iq/
1

iγ4p4 + iq/+ m̃
iq/

1

q2(q2 + λ2)
=

iq/(−iγ4p4 − iq/+ m̃)iq/

(p2
4 + 2p4q4 + q2 + m̃2)q2(q2 + λ2)

= (6.193)

=
ip4(2q4q/− γ4q

2) + iq2q/− m̃q2

(p2
4 + 2p4q4 + q2 + m̃2)q2(q2 + λ2)

=
2ip4q4q/− iγ4p4q

2 + iq2q/− m̃q2

(p2
4 + 2p4q4 + q2 + m̃2)q2(q2 + λ2)

.

Contraction with 1 + γ4 and multiplication with i gives

−2p4q
2
4 + p4q

2 − q2q4 − im̃q2

(p2
4 + 2p4q4 + q2 + m̃2)q2(q2 + λ2)

(6.194)

The derivative with respect to p4 for the numerator and the denominator leads to

−(2q2
4 − q2)

(p2
4 + 2p4q4 + q2 + m̃2)q2(q2 + λ2)

+
2(2p4q

2
4 − p4q

2 + q2q4 + im̃q2)(p4 + q4)

(p2
4 + 2p4q4 + q2 + m̃2)2q2(q2 + λ2)

(6.195)

By inserting p4 = im̃ one obtains

−(2q2
4 − q2)

(2im̃q4 + q2)q2(q2 + λ2)
+

2(2im̃q2
4 − im̃q2 + q2q4 + im̃q2)(q4 + im̃)

(2im̃q4 + q2)2q2(q2 + λ2)
=

=
−(2q2

4 − q2)

(2im̃q4 + q2)q2(q2 + λ2)
+

2q4(2im̃q4 + q2)(q4 + im̃)

(2im̃q4 + q2)2q2(q2 + λ2)
=

=
−(2q2

4 − q2)

(2im̃q4 + q2)q2(q2 + λ2)
+

2q4(q4 + im̃)

(2im̃q4 + q2)q2(q2 + λ2)
=

=
−(2q2

4 − q2)(q2 − 2im̃q4)

(q4 + 4m̃2q2
4)q

2(q2 + λ2)
+

2q4(q4 + im̃)(q2 − 2im̃q4)

(q4 + 4m̃2q2
4)q

2(q2 + λ2)
=

=
−(2q2

4 − q2)

(q4 + 4m̃2q2
4)(q

2 + λ2)
+

2q2
4(q

2 + 2m̃2)

(q4 + 4m̃2q2
4)q

2(q2 + λ2)
+ im̃q4(· · ·). (6.196)
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The integrated result is

1

2
ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

− Λ2(Λ2 + 8m̃2)

16m̃4
+

Λ(Λ2 + 6m̃2)

16m̃4

√
Λ2 + 4m̃2 (6.197)

for the numerator derivative and

−1

2
ln

(

λ2

Λ2

)

− 1

2
ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

+
Λ2(Λ2 + 8m̃2)

16m̃4
− Λ(Λ2 + 6m̃2)

16m̃4

√
Λ2 + 4m̃2

(6.198)
for the denominator derivative. Looking at the IR divergences, one observes that in the
massive case these divergences are only present in the derivative parts of the denominator.
They combine to

(

1 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

(6.199)

which vanishes for αg = 3. There is also an interesting feature for the total sum of the
gauge dependent parts. In looking at Eq. (6.196) one recognizes that there is a substancial
cancellation of terms. The only remaining term is the singular one,

q4 + 4m̃2q2
4

(q4 + 4m̃2q2
4)q

2(q2 + λ2)
=

1

q2(q2 + λ2)
. (6.200)

This is also reflected in the integrated results.

Counter term for the massless case

Because needed later on, the counter terms are considered also in the case m0 = 0. In
this case the non-integrated denominator derivative is given by

−4q2
4

q4(q2 + λ2)
− (1 − αg)

2q2
4

q4(q2 + λ2)
. (6.201)

For the angular integration (normalized such that
∫

√
1 − t2dt = 1) one obtains

∫ +1

−1

2

π
q2
4

√
1 − t2dt =

∫ +1

−1

2q2t2

π

√
1 − t2dt =

2q2

π

∫ π

0
cos2 θ sin2 θ dθ =

=
q2

2π

∫ π

0
sin2(2θ)dθ =

q2

4π

∫ 2π

0
sin2 θ′dθ′ =

q2

4
. (6.202)

Therefore, one arrives at

− 1

q2(q2 + λ2)
− (1 − αg)

1

2q2(q2 + λ2)
=
(

−1 − 1

2
(1 − αg)

)

1

q2(q2 + λ2)
. (6.203)

Together with
∫ Λ

0

q3dq

q2(q2 + λ2)
= −1

2
ln

(

λ2

Λ2

)

(6.204)

one ends up with
1

2

(

1 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

. (6.205)



6.3. THE POLE MASS AND WAVE FUNCTION RENORMALIZATION 287

For the numerator derivative one obtains

2

q2(q2 + λ2)
+ (1 − αg)

2q2
4 − q2

q4(q2 + λ2)
. (6.206)

After angular integration this expression results in

2

q2(q2 + λ2)
− (1 − αg)

1

2q2(q2 + λ2)
=
(

2 − 1

2
(1 − αg)

)

1

q2(q2 + λ2)
(6.207)

and after radial integration in

1

2

(

−2 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

. (6.208)

The sum of both is given by

1

2
(−1 + (1 − αg)) ln

(

λ2

Λ2

)

. (6.209)

6.3.7 Corrections to the speed of light

As a further issue in this section the first order radiative correction to the coefficient c0,
simply denominated as the speed-of-light coefficient , is calculated. The name “speed-of-
light” was coinde because this coefficient is determined by the condition that the energy
relation p2

4 = ~p 2 +m2 should hold also for a quark propagator changed by the first order
correction to the self energy. The corrected inverse quark propagator is given by

Q(~p, p4)
−1 = ic0

at
as

∑

i

γi sin(pi)
(

1 +
c3s
3

− c3s
3

cos(pi)
)

− i
∑

i

γi sin(pi)Σi(~p, p4) +

+iγ4 sin(p4)
(

1 +
c3t
3

− c3t
3

cos(p4)
)

− iγ4 sin(p4)Σ4(~p, p4) +

+2r
at
as

∑

i

sin2
(

pi
2

)(

1 +
c4s
3

− c4s
3

cos2
(

pi
2

))

+mat +

+2r
as
at

sin2
(

p4

2

)(

1 +
c4t
3

− c4t
3

cos2
(

p4

2

))

− Σm(~p, p4). (6.210)

The requirement results in the condition

c0
at
as

(

1 +
c3s
3

− c3s
3

cos(pi)
)

−Σi(~p, p4) =
at
as

(

1 +
c3t
3

− c3t
3

cos(p4) − Σ4(~p, p4)
)

(6.211)

or for ~p = ~0 and p4 = iM1 in

c0 = 1 +
c3t
3

(1 − coshM1) + χΣ̂i(M1) − Σ̂4(M1). (6.212)

Again the question arises how these quantities Σ̂i(M1) are connected to the calculated
self energy contributions. To determine Σ̂i one first has to construct the derivative of
Eq. (6.162) with respect to pi,

∂

∂pi
Σ(~p, p4) = iγi cos(pi)Σi(~p, p4) + i

∑

j

γj sin(pj)
∂

∂pi
Σj(~p, p4) +

+iγ4 sin(p4)
∂

∂pi
Σ4(~p, p4) +

∂

∂pi
Σm(~p, p4). (6.213)
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The trace together with γi at ~p = ~0 then results in

1

4
Tr

(

γi
∂

∂pi
Σ(~0, p4)

)

= iΣi(~0, p4) (6.214)

so that

Σ̂i(M1) =
1

4i
Tr

(

γi
∂

∂pi
Σ(~0, p4)

) ∣

∣

∣

∣

∣

p4=iM1

. (6.215)

To determine c0, one thus has to calculate

c0 = 1+
c3t
3

(1−coshM1)+
χ

4i
Tr

(

γi
∂

∂pi
Σ(~0, p4)

) ∣

∣

∣

∣

∣

p4=iM1

+
Tr
(

γ4Σ(~0, p4)
)

4 sinhM1

∣

∣

∣

∣

∣

p4=iM1

. (6.216)

where the index i is arbitrary. pi could be for instance the first space component. In the
case of a massless quark there would be a division by zero in the last term. Therefore,
the procedure changes a bit. In this case one calculates the derivative of Eq. (6.162) with
respect to p4,

∂

∂p4
Σ(~p, p4) = i

∑

i

γi sin(pi)
∂

∂p4
Σi(~p, p4) +

+iγ4 cos(p4)Σ4(~p, p4) + iγ4 sin(p4)
∂

∂p4
Σ4(~p, p4) +

∂

∂p4
Σm(~p, p4) (6.217)

at the point (~p, p4) = (~0, iM1) = (~0, 0) to obtain

∂

∂p4
Σ(~0, p4)

∣

∣

∣

p4=0
= iγ4Σ4(~0, 0) +

∂

∂p4
Σm(~0, p4)

∣

∣

∣

p4=0
. (6.218)

Thus one has

Σ̂(0) = Σ4(~0, 0) =
1

4i
Tr

(

γ4
∂

∂p4
Σ(~0, p4)

) ∣

∣

∣

∣

∣

p4=0

(6.219)

and finally

c0 = 1 +
χ

4i
Tr

(

γi
∂

∂pi
Σ(~0, p4)

) ∣

∣

∣

∣

∣

p4=0

− 1

4i
Tr

(

γ4
∂

∂p4
Σ(~0, p4)

) ∣

∣

∣

∣

∣

p4=0

. (6.220)

The IR singularities appearing in the massless case does exactly cancel within the two
derivative terms.

6.3.8 The effective energy scale

Up to now the general factor αs/3π has not been considered. The reason is that this
factor is not a constant but a quantity running with the energy scale. A priori one does
not know what energy scale to chose. But one can find an energy scale which is closely
related to the problem under consideration by following the subsequent steps. Suppose
the first order correction of a quantity A (written in integral form) is given by

A(1) = A(0) + αs∆A
(1), αs∆A

(1) =
∫

αV (p2)∆I(p)d4p, (6.221)
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where αV (p2) is taken from the naive potential model to be αV (p2) := VQQ̄p
2. Assume

further that the asymptotic expansion of αV (p2) is terminated after the second term,

αV (p2) ≈ αV (µ2) + β∗ ln

(

p2

µ2

)

a2
V (µ2) (6.222)

where β∗ is related to the leading order coefficient of the beta function. Then one obtains

αsA
(1) ≈

∫

(

αV (µ2) + β∗ ln

(

p2

µ2

)

α2
V (µ2)

)

∆I(p)d4p = (6.223)

=

(

αV (µ2) + β∗ ln

(

p∗2

µ2

)

αV (µ2)

)

∫

∆I(p)d4p ≈ αV (p∗2)
∫

∆I(p)d4p.

Therefore, it makes sense to chose αs = αV (p∗2) where p∗2 is determined by

ln(p∗2) =

∫

ln(p2)∆I(p)d4p
∫

∆I(p)d4p
. (6.224)

It is now an easy task to calculate this effective energy scale by weighting the integrands
by this logarithmic factor.

6.4 The one-loop diagrams

The one-loop Feynman diagrams
which are to be calculated to cor-
rect the quark propagator are only
of two kinds: The rainbow diagram
and the tadpole diagram, as shown
in Fig. 6.3. In doing so, the MATH-
EMATICA packages written for the
purpose of these calculations are in-
troduced in this section.

p p − q p

q

p p

q

p p

Figure 6.3: Rainbow diagram (top right), tadpole
diagram (bottom left) and tadpole improvement
counter term (bottom right)

6.4.1 The trace of the self energy diagram

The self energy diagram will be split up into two parts, the gluon propagator and the trace
along the quark line. While the first is common also for the tadpole diagram, the latter
will be considered first. The trace has to be taken in the opposite direction of the fermion
flow. Looking at the calculations of the previous section, the different contributing parts
are given by

• the quark-gluon vertices
∑

µ,ν σµνVµν(p; q1, µ1) +
∑

µ γµVµ(p; q1, µ1) + V (p; q1, µ1)

• the quark propagator Q with numerator −i∑µ γµPµ(pµ) + M(p) and denomina-
tor

∑

µ P
2
µ(pµ) + M2(p). The packages will handle them in this separate form for

simplicity of the results, especially the derivative of the quark propagator correction.
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The package gamma.add does not use a formal Clifford algebra treatment of the Dirac
structure of the Fermion line because it is complicated in this case (multiply occuring
indices without summation) and also not necessary for the rather simple applications.
Instead of this, it makes use of the explicit form of the gamma matrices, given by

γi =
(

0 −iσi
iσi 0

)

γ4 =
(

1l2 0
0 −1l2

)

, γ5 = γ1γ2γ3γ4 =
(

0 1l2
1l2 0

)

. (6.225)

which is a Hermitean basis. The package combines all the expressions and calculates the
trace of the total expression. This trace will be taken with or without the inclusion of
some γλ in order to extract either the four momentum parts Σλ or the mass part Σm of
the self energy contribution. Some work has to be done in order to evaluate this trace.
Modules of trigonometric functions are defined by

sin[p, mu] = sin
(

pµ
2

)

, cos[p, mu] = cos
(

pµ
2

)

(6.226)

The trigonometric relations are implemented into a MATHEMATICA package and are
performed by the command collect[]. This command also converts the trigonometric
functions with momentum q of the gluon to expressions which can be handled by the
VEGAS package [211]. There is an additional package string.add which converts the
result of this calculation to the (bare) input form of VEGAS (Fortran77) using the newly
defined MATHEMATICA command FortranWrite[].

6.4.2 Options for quark propagator contributions

Options are left to select either the clover action (i.e. c3t = c3s = c4t = c4s = 0, all
other constants equal to 1 for the moment) or the D234 action (in this simple case also
c3t = c3s = c4t = c4s = 1). One can also change between the simple and the improved
cloverleaf field strength tensor (see before, Eq. (6.19)). The change to

F̃µν(x) =
5

3
Fµν(x) −

1

6

(

Uµ(x)Fµν(x+ aµ)U
†
µ(x) + U †µ(x− aµ)Fµν(x− aµ)Uµ(x− aµ) +

−Uν(x)Fνµ(x+ aν)U
†
ν(x) − U †ν (x− aν)Fνµ(x− aν)Uν(x− aν)

)

(6.227)

within the Feynman term can be acomplished by replacing σµν by

1

3
(5 − cos(qµ) − cos(qν))σµν =

(

1 +
2

3
sin

(

qµ
2

)

+
2

3
sin

(

qν
2

))

σµν . (6.228)

6.4.3 The gluon part

The gluon part can be calculated by adding the gauge fixing term to the pure gluon
action and performing the inversion decribed above in Sec. 6.2.4. This gluon propagator
then depends on the gluon gauge parameter αg, and one can use this parameter in the
calculations to test for gauge independence of the calculated quantities. A nice fact is that
the coefficients fµν in Gµν and the gauge dependent part turn out to be proportional to
q̃µq̃ν in the case µ 6= ν. The same holds for the quark trace Qµν in what follows. Because
the remaining parts of these expressions are shown to be only functions of squared sines
as well, the contraction of these two terms is a totally symmetric function in all four
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integration variables, so that one can restrict the integration range to the range [0, π]
for each of these inner momentum components. The integration will be shown later.
One should mention in advance that the factors q̃µq̃ν are removed from the single input
expressions to the VEGAS package and instead are included in the contracted integrand.

6.4.4 The rainbow diagram

The rainbow diagram can be calculated as

Σ =
4

3
g2
∫ π

−π

d4qdl

(2π)4

4
∑

µ,ν=1

Qdl
µνG

dl
µν =

16παs
3

∫ π

−π

d4qdl

16π4

4
∑

µ,ν=1

Qdl
µνG

dl
µν =

=
αs
3π

(

4

π

)2 ∫ π

0
d4qdl

4
∑

µ,ν=1

Qdl
µνG

dl
µν . (6.229)

The VEGAS output is given up to a factor αs/3π. This formula is valid also for the
tadpole diagram. For the self energy diagram, Qµν represents the trace part, i.e. the
contribution of the quark propagator together with the quark-gluon vertices, while for
the tadpole diagram Qµν only contains the quark-two-gluon vertex. Gµν represents the
gluon propagator. In order to keep the gluon propagator out of consideration in possible
derivatives with respect to the outer momentum, the outer momentum flow is considered
to run through the quark propagator. Note, though, that in this expression all quantities
are chosen to be dimensionless (indicated by the index “dl”). Therefore, Σ itself is a
dimensionless quantity, defined similar to the inverse quark propagator by at times the
corresponding dimensional quantity. The trace part

Qdl
µν = Tr(V dl

µ Q
dlV dl

ν ), V dim
µ = aµV

dl
µ , Qdim = atQ

dl (6.230)

is already dimensionless according to the construction with dimensionless Q and Vµ, while
this is not the case for the gluon propagator. But one can transform the initial expression
M−1

µν (cf. Eq. (6.58)) to a dimensionless quantity by calculating

Gdl
µν = Gdim

µν aµaν =
1

Va
M−1

µν aµaν . (6.231)

The quantity Gdim
µν is actually the one obtained as output from the package. Inserting all

these quantities, one obtains

Σ =
αs
3π

(

4

π

)2 ∫ π

0
d4qdl

4
∑

µ,ν=1

aµaνQ
dl
µνG

dim
µν =

=
αs
3π

(

4

π

)2 ∫ π

0
d4q

4
∑

µ,ν=1

aµaνQµνGµν =
αs
3π

∫ π

0
d4q σ(q) (6.232)

where the indices “dl” and “dim” are omitted again, assuming that from now on one
knows the meaning of the different contributions. The integration itself is then done by
VEGAS. This package written by Peter Lepage [211] is able to perform up to ten nested
integrations by using a Monte Carlo method. It is written in Fortran77 and for the present
case compiled together with a main program called vegmain.f and different subroutines,
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which will be included in one file vegasfcn.f. Depending on the term which should be
calculated, different ingredients can be combined automatically: the main function f in
vqvg.fcn for the whole diagram as explained in this subsection, together with the gluon
propagator (gprop.fcn) and one of the quark line parts (e.g. the mass part vqv0.fcn).
VEGAS needs several parameters to determine the precision of the calculation (e.g. the
number of iterations) which are given in the input file inveg.dat.

The two ingredients, namely the quark and the gluon part of the diagrams, have to
be combined in a main integrand function σ(q) which can be integrated by VEGAS. Not
included in this function will be the factor αs/3π because additional considerations have to
be done for the running coupling αs. The following calculation also includes the different
“preparations” made for the contributions. These are

Restoration of the lattice spacing

q̃µ =
k̂µ
aµ

⇒ q̃i =
1

atχ
k̂i, q̃4 =

1

at
k̂4 ⇒ q̃2 =

1

a2
tχ2

k̂2, k̂2 := k̂2
1 + k̂2

2 + k̂2
3 + k̂2

4

where k̂µ = 2 sin
(

qµ
2

)

= 2 sin

(

aµkµ
2

)

(6.233)

Change of the quark propagator

Qµν =
Q̃µν

Q̃

Q̃ = Q̂ ˆ̃Qij = Q̂ij

Q̃µµ = ˆ̃Qµµ
ˆ̃Qi4 = χQ̂i4

Q̃µν = k̂µk̂ν
ˆ̃Qµν

ˆ̃Q44 = χ2Q̂44

(6.234)

Change of the gluon propagator

Gµν =
αgq̃µq̃ν
Va(q̃2)2

+
G̃µν

G̃
,

G̃ = (k̂2)2Ĝ ˆ̃Gij = Ĝij

G̃µµ = a2
tχ

2 ˆ̃Gµµ
ˆ̃Gi4 = χĜi4

G̃µν = a2
tχ

2k̂µk̂ν
ˆ̃Gµν

ˆ̃G44 = χ2Ĝ44

(6.235)

The dimensionless momenta k̂ and the other hatted quantities are those which are output
of the program. The integrand function is thus calculated to be

(

π

4

)2

σ(q) =
4
∑

µ,ν=1

aµaν
Q̃µν

Q̃

(

αgq̃µq̃ν
Va(q2)2

+
G̃µν

G̃

)

=

=
3
∑

i=1

a2
i

Q̃ii

Q̃

(

αgk̂
2
i

a2
tχ(k̂2)2

+
G̃ii

G̃

)

+ 2
3
∑

i<j

aiaj
Q̃ij

Q̃

(

αgk̂ik̂j

a2
tχ(k̂2)2

+
G̃ij

G̃

)

+

+2
3
∑

i=1

aia4
Q̃i4

Q̃

(

αgk̂ik̂4

a2
t (k̂2)2

+
G̃i4

G̃

)

+ a2
4

Q̃44

Q̃

(

αgχk̂
2
4

a2
t (k̂2)2

+
G̃44

G̃

)

=

=
3
∑

i=1

a2
tχ

2 Q̂ii

Q̂

(

αgk̂
2
i

a2
tχ(k̂2)2

+
a2
tχ

2Ĝii

a4
tχ3(k̂2)2Ĝ

)

+ 2
3
∑

i<j

a2
tχ

2 Q̂ij

Q̂

(

αgk̂ik̂j

a2
tχ(k̂2)2

+
a2
tχ

2k̂ik̂jĜij

a4
tχ3(k̂2)2Ĝ

)

+
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+2
3
∑

i=1

a2
tχ
χQ̂i4

Q̂

(

αgk̂ik̂4

a2
t (k̂2)2

+
a2
tχ

3k̂ik̂4Ĝi4

a4
tχ3(k̂2)2Ĝ

)

+ a2
t

χ2Q̂44

Q̂

(

αgχk̂
2
4

a2
t (k̂2)2

+
a2
tχ

4Ĝ44

a4
tχ3(k̂2)2Ĝ

)

=

= χ

[

3
∑

i=1

Q̂ii

Q̂

(

αgk̂
2
i +

Ĝii

Ĝ

)

+ 2
3
∑

i<j

Q̂ij

Q̂

(

αg +
Ĝij

Ĝ

)

k̂ik̂j +

+2χ
3
∑

i=1

Q̂i4

Q̂

(

αg +
Ĝi4

Ĝ

)

k̂ik̂4 + χ2 Q̂44

Q̂

(

αgk̂
2
4 +

Ĝ44

Ĝ

) ]

1

(k̂2)2
. (6.236)

6.4.5 The tadpole diagram

The tadpole diagram calculation contains the two-gluon vertex. The clover part Vµν does
not contribute for a vanishing momentum change, one has

• the two-gluon vertices
∑

µ Vµ(p; q1, µ1; q2, µ2) + V (p; q1, µ1, q2, µ2).

The non-clover part has a very simple form. The non-derivative expression is diagonal for
vanishing external momentum (the case always considered to determine the renormaliza-
tion) because the γµ term contains at least one sine function of the sum of the external
momenta. This is of course not the case if one calculates the derivatives with respect to
the outer momentum components. Both contributions have to be integrated by VEGAS
in the way decribed above. The gauge independence of the summed expression of rainbow
and tadpole contributions is checked in all cases. The rather large contribution due to
the tadpole will be cancelled on the lattice by the tadpole improvement terms.

6.4.6 The tadpole improvement

The tadpole improvement is given by the corresponding first order correction of the self
energy diagram due to the insertion of the tadpole improvement factor uµ up to this order.
Therefore, is simply the expression in Eq. (6.91) at p = 0 multiplied by αs/3π. Because
αs/3π is the general factor left out of all results, one obtains for the mass part

χ

4
Tr(Σ) = r

[

3

χ

(

1 +
c4s
6

)

u(2)
s + χ

(

1 +
c4t
6

)

u
(2)
t

]

. (6.237)

For the derivative of the momentum parts one obtains

χ

4ias

∂

∂ki
Tr(γiΣ) =

c0
χ

(

1 +
c3s
3

)

u(2)
s ,

χ

4iat

∂

∂k4

Tr(γ4Σ) =
(

1 +
c3t
3

)

u
(2)
t . (6.238)

6.4.7 Steps of the calculation

In this subsection the steps of the calculation will be detailed. First of all, starting with
a definite set of numbers for the anisotropy χ and the physical mass parameter M1,
the unphysical mass parameter m necessary for the calculations is calculated by using
Eq. (6.170). With these input parameters, the following quantities (specified by their file
name, listed alphabetically and named by a few key words) are calculated:

• the full rainbow vqv0r, tadpole vqv0t, and tadpole improvement vqv0u

−χ
4(χ sinh(M1) + cosh(M1))

Tr
(

(1 + γ4)Σ
(p)
)

, p = r, t, u (6.239)
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• the 1-derivative of the 1-rainbow vqv1d + vqv1n, 1-tadpole vqv1t, and 1-tadpole
improvement vqv1u

χ

4ias
Tr

(

γ1
∂

∂k1

Σ(p)

)

, p = r, t, u (6.240)

where the first one is separated in two parts according to the quotient rule,

∂

∂k1

(

Q̂µν

Q̂

)

=
1

Q̂

∂Q̂µν

∂k1
− Q̂µν

Q̂2

∂Q̂

∂k1
=:

ias
χ
vqv1n +

ias
χ
vqv1d (6.241)

• the 4-derivative of the full rainbow vqv4d+vqv4n, tadpole vqv4p, and tadpole im-
provement vqv4q

1

4iat(χ sinh(M1) + cosh(M1))
Tr

(

(1 + γ4)
∂

∂k4

Σ(p)

)

, p = r, t, u (6.242)

• the 4-rainbow vqv4r, 4-tadpole vqv4t, and 4-tadpole improvement vqv4u

1

4 sinh(M1)
Tr
(

γ4Σ
(p)
)

, p = r, t, u (6.243)

• the 4-derivative of the 4-rainbow vqv4s

−1

4iat
Tr

(

γ4
∂

∂k4
Σ(r)

)

(6.244)

Given the results for all these parts (for different values for the anisotropy parameter
χ and/or the mass parameter), the remaining work is a matter of combination of these
contributions. Because this parameter is needed for the wave function renormalization,
the mass renormalization is the first quantity that has to be calculated. Considering
Eq. (6.158), the ingredients for the unsubtracted ∆M (1) are just vqv0r, vqv0t, and vqv0u.
Adding up the rainbow contribution vqv0r and the tadpole contribution vqv0t, the result
turns out to be gauge independent, i.e. independent of the parameter αg. The full tadpole
improvement vqv0u taken in Landau gauge (αg = 0) cancels the whole or almost the whole
tadpole contribution. In order to calculate the subtracted mass correction, the subtraction
shown in Eq. (6.161) has to be done, using the already obtained value for the unsubtracted
mass correction for vanishing input mass parameter. An example for values obtained in
this procedure is shown in Table 6.1.

The next step in the procedure is to calculate the speed-of-light renormalization. This
calculation does not need a subtraction of IR-divergences and the mass renormalization
results, therefore it is performed at this point. For the massive case, Eq. (6.216) shows
that the elements vqv1d and vqv1n for the rainbow, vqv1t for the tadpole, and vqv1u for
the tadpole improvement constitute the second term of this expression, while the third
term is given by vqv4r for the rainbow, vqv4t for the tadpole, and vqv4u for the tadpole
improvement. The first term vanishes as long as one uses c3t = 0 as it is done in most of
the cases, namely for the actions Sclover in Eq. (6.14) and SIID234 in Eq. (6.16). This term
has to be taken into account as well for c4t 6= 0, i.e. for the action SID234 in Eq. (6.15).
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αg = 1 vqv0r vqv0t sum vqv0u res sub
0.00 −3.062 6.348 3.285 −4.529 −1.243 0.000
0.01 −3.001 6.286 3.285 −4.484 −1.200 0.031
0.05 −2.752 6.051 3.299 −4.316 −1.017 0.167
0.10 −2.493 5.781 3.287 −4.122 −0.835 0.295
0.50 −1.147 4.253 3.106 −3.023 0.083 0.906
1.00 −0.278 3.188 2.910 −2.254 0.656 1.262
2.00 0.512 2.108 2.620 −1.469 1.151 1.532
5.00 1.138 1.020 2.158 −0.662 1.496 1.636
10.00 1.323 0.588 1.911 −0.330 1.581 1.614

αg = 0 vqv0r vqv0t sum vqv0u res sub
0.00 −1.244 4.529 3.285 −4.529 −1.244 0.000
0.01 −1.191 4.484 3.294 −4.484 −1.191 0.041
0.05 −1.013 4.316 3.303 −4.316 −1.013 0.171
0.10 −0.832 4.122 3.290 −4.122 −0.832 0.299
0.50 0.085 3.023 3.108 −3.023 0.085 0.908
1.00 0.657 2.254 2.911 −2.254 0.657 1.263
2.00 1.150 1.469 2.619 −1.469 1.150 1.532
5.00 1.496 0.662 2.158 −0.662 1.496 1.636
10.00 1.581 0.330 1.911 −0.330 1.581 1.615

Table 6.1: Mass renormalization for the action SIIG +Sclover for different values of the mass

parameter M
(0)
1 and χ = 3.6. The first column indicates the value for M

(0)
1 , the fourth

column is the sum of the second and third column, the sixth column is the sum of the
fourth and the fifth column. Finally, the seventh column is the subtracted result.

Rainbow and tadpole contributions are summed separately in Table 6.2. However, note
that in case of M

(0)
1 = 0 the contribution vqv4s is used instead of vqv4r. In Table 6.3 the

results of the rainbow and the tadpole diagram calculation are summed and the tadpole
improvement is calculated as well, again only for Landau gauge (αg = 0). Note that all
these tables are only examples for the whole calculation which is given by many tables of
this kind in Ref. [209], as it is useful for practical applications in lattice calculations.

The calculation of the wave function renormalization, finally, needs the mass correction
as well as the subtraction of the IR-divergence, before the integration can be performed.
Looking at Eq. (6.173), the ingredients for this calculation are vqv4d and vqv4n for the
rainbow, vqv4p for the tadpole, and vqv4q for the tadpole improvement. The values for
vqv4d and vqv4n shown in Table 6.4 are the IR-subtracted values. Therefore, Table 6.4

only shows the finite part Z
(1)
2 of the correction to the wave function renormalization in

Z2 = Z
(0)
2

{

1 + αs(Z
(1)
2 + Z

(1)IR
2 ) +O(α2

s)
}

. (6.245)

The singular part is given by

Z
(1)IR
2 =







(1 + (αg − 1)) ln(λ2/Λ2)/3π for m = 0

(−2 + (αg − 1)) ln(λ2/Λ2)/3π for m > 0
(6.246)
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αg = 1 vqv1d vqv1n vqv4r reg vqv1t vqv4t tad
0.00 0.313 −0.785 −0.124 −0.596 1.565 −0.128 1.437
0.01 1.237 −2.889 1.058 −0.594 1.565 −0.128 1.437
0.05 0.890 −2.086 0.601 −0.595 1.565 −0.128 1.437
0.10 0.735 −1.683 0.352 −0.596 1.565 −0.128 1.437
0.50 0.351 −0.614 −0.325 −0.588 1.565 −0.128 1.437
1.00 0.190 −0.211 −0.549 −0.571 1.565 −0.128 1.437
2.00 0.073 0.039 −0.649 −0.538 1.565 −0.128 1.437
5.00 0.012 0.130 −0.672 −0.530 1.565 −0.128 1.437
10.00 0.002 0.121 −0.706 −0.583 1.565 −0.128 1.437

αg = 0 vqv1d vqv1n vqv4r reg vqv1t vqv4t tad
0.00 0.463 −0.113 −0.682 −0.332 1.235 −0.064 1.171
0.01 1.945 −1.719 −0.567 −0.340 1.235 −0.064 1.171
0.05 1.431 −1.119 −0.649 −0.338 1.235 −0.064 1.171
0.10 1.202 −0.819 −0.720 −0.337 1.235 −0.064 1.171
0.50 0.643 −0.023 −0.942 −0.322 1.235 −0.064 1.171
1.00 0.404 0.281 −0.989 −0.304 1.235 −0.064 1.171
2.00 0.212 0.470 −0.955 −0.272 1.235 −0.064 1.171
5.00 0.067 0.545 −0.877 −0.264 1.235 −0.064 1.171
10.00 0.016 0.543 −0.877 −0.318 1.235 −0.064 1.171

Table 6.2: The speed-of-light correction for the action SIIG + Sclover for different values of

the mass parameter M
(0)
1 (first column). Columns two to four contain the contributions

from the rainbow diagram, added in column five. Columns six and seven contain the
contributions from the tadpole diagram, added in column eight.

(cf. Eqs. (6.199) and (6.209)). Finally, the term

Z
(1)
2,M1

= −∆M
(1)
1

χ cosh(M
(0)
1 ) + sinh(M

(0)
1 )

χ sinh(M
(0)
1 ) + cosh(M

(0)
1 )

(6.247)

is added, using the results from Table 6.1. In the literature, the contribution Z
(1)
2,M1

is not

always included as part of the definition of Z
(1)
2 . Therefore it makes sense to give these

values separately, as it is done in Table 6.4. If one takes Z
(1)
2 − Z

(1)
2,M1

for the unimproved
Wilson action SWilson in Eq. (6.20), the results of Ref. [163] are reproduced. Including

Z
(1)
2,M1

leads to the static result of Ref. [213] which has been used in many subsequent
static calculations, for instance in Ref. [214]. This latter static value also corresponds
to the large mass limit of the one-loop Z2 calculated in many versions of the NRQCD
actions [203].

For the action SIG + Sclover the results for the massless case in Ref. [209] agree with
Ref. [202]. Note, however, that the massive data do not tend towards the massless result

as asM
(0)
1 decreases. This is a result of the fact that the massive case expressions contain a

contribution ln(atm) which eventually diverges, while for the massless case the mass is set
identically to zero from the beginning which is a usual practice in most of the literatur on
massless lattice perturbation theory. It leads to different IR structures, seen for instance



6.4. THE ONE-LOOP DIAGRAMS 297

αg = 0 reg tad sum vqv1u vqv4u t.i. res
0.00 −0.596 1.437 0.842 −1.235 0.064 −1.171 −0.330
0.01 −0.594 1.437 0.843 −1.235 0.064 −1.171 −0.328
0.05 −0.595 1.437 0.842 −1.235 0.064 −1.171 −0.329
0.10 −0.596 1.437 0.842 −1.235 0.064 −1.171 −0.330
0.50 −0.588 1.437 0.849 −1.235 0.064 −1.171 −0.322
1.00 −0.571 1.437 0.867 −1.235 0.064 −1.171 −0.304
2.00 −0.538 1.437 0.899 −1.235 0.064 −1.171 −0.272
5.00 −0.530 1.437 0.907 −1.235 0.064 −1.171 −0.264
10.00 −0.583 1.437 0.854 −1.235 0.064 −1.171 −0.317

αg = 0 reg tad sum vqv1u vqv4u t.i. res
0.00 −0.332 1.171 0.839 −1.235 0.064 −1.171 −0.332
0.01 −0.340 1.171 0.831 −1.235 0.064 −1.171 −0.341
0.05 −0.338 1.171 0.834 −1.235 0.064 −1.171 −0.338
0.10 −0.337 1.171 0.835 −1.235 0.064 −1.171 −0.337
0.50 −0.322 1.171 0.850 −1.235 0.064 −1.171 −0.322
1.00 −0.304 1.171 0.867 −1.235 0.064 −1.171 −0.305
2.00 −0.272 1.171 0.899 −1.235 0.064 −1.171 −0.273
5.00 −0.264 1.171 0.907 −1.235 0.064 −1.171 −0.264
10.00 −0.318 1.171 0.854 −1.235 0.064 −1.171 −0.318

Table 6.3: Continuation of Table 6.2, the results of this table are listed in the second
and third column. They are summed in the fourth column. Columns five and six contain
the tadpole improvement contributions for Landau gauge. These are summed in column
seven. The final result is found in column eight.

in Eq. (6.246). The alternative way, namely to take the limit atm→ 0 and λ→ 0 keeping
atm > λ, is not used in this report but can be taken in order to analyse the anomalous
contributions (see Ref. [209]).

In a matching calculation one will be looking at differences between the lattice and
continuum Z2. As long as IR divergences are handled in the same manner in the lattice
and continuum evaluations, one should not run into any problems and the m → 0 limit
should be smooth. For instance, using dimensional regularization in the MS scheme, in
Feynman gauge one finds the UV finite continuum results

Z
(1)cont
2 =

{

(ln(λ2/µ2) + 1/2) /3π for m = 0

(ln(m2/µ2) + 2 ln(m2/λ2) − 4) /3π for m > 0
(6.248)

The expression for the massive case can be rewritten as (3 ln(m2/µ2)−2 ln(λ2/µ2)−4) /3π.
Comparing with the singular part calculated for the wave function renormalization on the
lattice in Eq. (6.246), is makes sense to consider the subtracted Z2 factor

Z
(1)
2,sub = Z

(1)
2 −







(1/2)/3π for m = 0
(

3 ln
(

(asM
(0)
1 )2

)

− 4
)

/3π for m > 0.
(6.249)

It is shown in Ref. [209] that for this subtracted Z2 factor the transition to m = 0 is
smooth.
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αg = 1 vqv4d vqv4n vqv4p sum vqv4q res z2m sum
0.00 0.580 −0.454 0.128 0.253 −0.064 0.190 0.000 0.190
0.01 −0.698 −2.547 0.128 −3.118 −0.064 −3.182 −0.031 −3.213
0.05 −0.464 −1.662 0.128 −1.999 −0.064 −2.062 −0.160 −2.222
0.10 −0.420 −1.184 0.128 −1.476 −0.064 −1.540 −0.271 −1.810
0.50 −0.459 0.116 0.128 −0.216 −0.064 −0.279 −0.628 −0.907
1.00 −0.416 0.517 0.128 0.228 −0.064 0.165 −0.687 −0.522
2.00 −0.226 0.635 0.128 0.536 −0.064 0.473 −0.620 −0.147
5.00 0.140 0.540 0.128 0.807 −0.064 0.744 −0.487 0.256
10.00 0.307 0.520 0.128 0.954 −0.064 0.891 −0.450 0.440

αg = 0 vqv4d vqv4n vqv4p sum vqv4q res z2m sum
0.00 1.005 −0.321 0.064 0.747 −0.064 0.683 0.000 0.683
0.01 −0.885 −1.803 0.064 −2.624 −0.064 −2.688 −0.040 −2.728
0.05 −0.455 −1.113 0.064 −1.505 −0.064 −1.568 −0.164 −1.732
0.10 −0.312 −0.734 0.064 −0.982 −0.064 −1.045 −0.273 −1.319
0.50 −0.089 0.304 0.064 0.279 −0.064 0.215 −0.630 −0.415
1.00 0.052 0.606 0.064 0.722 −0.064 0.658 −0.688 −0.029
2.00 0.301 0.665 0.064 1.029 −0.064 0.966 −0.620 0.346
5.00 0.684 0.553 0.064 1.301 −0.064 1.237 −0.487 0.750
10.00 0.847 0.538 0.064 1.449 −0.064 1.385 −0.450 0.935

Table 6.4: Wave function renormalization for the action SIIG + Sclover for different values

of the mass parameter M
(0)
1 (first column) and χ = 3.6. The rainbow and tadpole contri-

butions are shown in columns two to four, in the fifth column the sum is shown. Column
six contains the tadpole improvement which is added to give the results shown in column
seven. In column eight the correction Z

(1)
2,M1

is shown (cf. Eq. (6.247)), the sum of this
result with the result in column seven is shown in column nine.

6.4.8 Insight into some technical details

The calculation has to be performed not for a vanishing outer momentum but for a
remaining temporal component. This will give rise to a dependence on this momentum
in terms of powers of trigonometric functions in atk4/2. After using cos2(atk4/2) = 1 −
sin2(atk4/2) and other trigonometric relations one can distinguish between different powers
of sin(atk4/2) where the odd powers are accompained by a factor cos(atk4/2) whereas the
even are not. One then inserts the value −iatk4 = M1 = M̂1/χ which means that one
converts

sin

(

atk4

2

)

→ i sinh





M̂
(0)
1

2χ



 = i sh1, cos

(

atk4

2

)

→ cosh





M̂
(0)
1

2χ



 = ch1. (6.250)

This conversion affects only the trace part of the diagram. These conversions are done
separately for the numerator and the denominator and are combined afterwards. In doing
so one sees that the imaginary parts vanish again. The reason is that the imaginary unit
in each of these parts (up to some general imaginary factor for the derivatives) is always
accompained by a factor cs := k4 ∗ c4 = 2 sin(atk4/2) 2 cos(atk4/2) where k4 is the fourth
component of the loop momentum. An odd power of such a term vanishes because of the
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symmetry of the integration. Therefore, the imaginary parts vanish altogether (which of
course should not lead to the erroneous assumption that one can skip the single imaginary
parts from the very beginning). Different cases are considered in the following.

Treatment of imaginary parts for the tadpole contributions

Because there is no denominator, the imaginary part can be skipped, since they are odd
in ci.

Treatment of imaginary parts for the rainbow contributions

The result of this calculation can be written as

nr + icini
dr + icidi

=
drnr + c2i dini + ici(drni − dinr)

d2
r + c2i d

2
i

. (6.251)

The second part of the numerator vanishes because of the symmetry property, and one
has to look only on the first part and the denominator using

c2i = (k4 ∗ c4)2 = 2 sin2

(

atk4

2

)

2 cos2
(

atk4

2

)

=

= 4 sin2

(

atk4

2

)(

1 − sin2

(

atk4

2

))

= sk4(4− sk4)/4 =: relf. (6.252)

Treatment of imaginary parts for the derivative of the rainbow numerator

Here one has the same situation as in the previous case except for the general factor ias
which one has to keep track of.

Treatment of imaginary parts for the derivative of the rainbow denominator

The derivative of the denominator gives rise to three different contributions, namely the
numerator nr+icini, the derivative of the denominator ias(gr+icigi), and the denominator
itself, dr + icidi. Up to a general factor ias one obtains

(gr + icigi)(nr + icini)

(dr + icidi)2
=

(dr − icidi)
2(gr + icigi)(nr + icini)

(d2
r + c2i d

2
i )

2
=

=
(dr − 2icidrdi − c2id

2
i )(grnr + iciginr + icigrni − c2i gini)

(d2
i + c2id

2
i )

2
=

=
(d2
r − c2id

2
i )(grnr − c2i gini) + 2c2idrdi(grni + ginr)

(d2
r + c2id

2
i )

2
+

+ici
(d2
r − c2i d

2
i )(grni + ginr) − 2drdi(grnr − c2i gini)

(d2
r + c2i d

2
i )

2
. (6.253)

All these calculations were automatized up to the very end. The FORTRAN input code
is generated by MATHEMATICA, the quark and gluon parts are joined and general
settings are added, as well as IR divergence subtraction features as being necessary for
the calculation of the wave function renormalization. After compilation, this program
is run for different physical mass parameters and lattice spacing ratios. The output is
then used to automatically generate the corresponding tables for the pole mass and wave
function renormalization as well as the speed-of-light correction (see Ref. [209]).



300 CHAPTER 6. ANISOTROPIC IMPROVED QUARK ACTIONS

6.5 Staggered quarks

While the Wilson method to create quark actions (as shown and used in the previous
sections) is quite involved, the method to discretize QCD by staggering quark actions is
the simplest way to obtain an improvement of the lattice spacing behaviour of lattice
QCD starting from the naive quark action in Eq. (6.11). The reason why this action was
disfavoured for a long time was the fact that the quarks always appear in groups of four
identical quark flavours. The multiplicity of flavours is not a real problem, it can be easily
adjusted in simulations. The real problem consists in the occurence of flavour changing
interactions which greatly complicate the interpretation of the simulations and has to be
understood more deeply.

The question why it is worthwile to spend effort on this kind is answered by a couple
of advantages of the staggered quark quantization. Besides the easy construction, the
application of staggered quarks for light flavours can use the fact that in close analogy
to the continuum, chiral symmetry prohibits additive mass renormalizations and implies
that errors caused by a nonzero grid spacing a are automatically quadratic in a, rather
than linear as in Wilson’s formulation. Fortunately, the above mentioned problem has got
solved. It could be shown that the flavour-changing interaction is mainly given by the one-
gluon exchange between quarks [194, 215]. This interaction is a lattice artefact of order
O(a2) which can be removed by a tree-level modification of the lattice action, namely
the fattening of the link operators, as will be detailed in the following. The tree-level
modification is proved to work for the isotropic case in Ref. [210].

6.5.1 The staggered quark action

The naive quark action in Eq. (6.11) has an exact symmetry under the transformation

ψ(x) → ψ′(x) = iγ5γρ(−1)xρ/aρψ(x) = iγ5γρ exp(ixρπ/aρ)ψ(x) (6.254)

This symmetry is called “doubling symmetry”. Therefore, any low energy momentum
mode ψ(x) of the theory is equivalent to another mode ψ′(x) with momentum pρ ≈ π/aρ,
the maximally allowed momentum on the lattice in the direction ρ. This new mode is
one of the “doublers” of the naive quark. The doubling transformation can be appied
successively in all directions, the general transformation is given by

ψ(x) → ψ′(x) :=
∏

ρ

(iγ5γρ)
ζρ exp (iζρxρπ/aρ)ψ(x) (6.255)

where ζ is a vector with one or more components equal to 1 and all the others equal to
0. Consequently, there are 15 doublers in four dimensions, the whole amount has to be
interpreted as sixteen equivalent quark flavours. As it is shown in Ref. [210], the fifteen
redundant flavours can be removed again by replacing the link operator Uµ(x) in the naive
quark action (6.11) by the fat link

Vµ(x) :=



1 +
∑

ζ

(1 − ζµ)c(ζ
2)P (ζ)



Uµ(x) (6.256)

where c(ζ2) = 1 +O(αs(π/a)) and where

P (ζ) :=
∏

ρ

(∇(2)
ρ

4

)ζρ ∣
∣

∣

∣

∣

symm

(6.257)
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is a correction of lattice artefacts of even order in aρ, symmetrized over all possible or-
derings of the operators. At tree level, c(ζ2) can be omitted. The corrections to Vµ(x)
with ζµ = 1 are dropped explicitly since the other parts of the corresponding quark-gluon
vertex vanish when the gluon has momentum qµ = π/aµ, as is the case in the naive action.
At tree level one therefore obtains

Vµ(x) =



1 +
∑

ζ

∏

ρ6=µ

(∇(2)
ρ

4

)ζρ




∣

∣

∣

∣

∣

symm

Uµ(x) =
∏

ρ6=µ

(

1 +
1

4
∇(2)
ρ

)

∣

∣

∣

∣

∣

symm

Uµ(x). (6.258)

Using Vµ(x) instead of Uµ(x) in the derivative contained in the naive quark action (6.11),
all flavour-changing interactions of the order O(a2) are removed. It is straightforward
to remove the remaining lattice artefacts in that order to obtain an O(a2) Symanzik
improved quark action. First, the flavour-conserving lattice artefacts of order O(a2) due
to the ζ2 = 1 parts of Vµ are removed by

Vµ(x) → V ′µ(x) := Vµ(x) −
∑

ρ6=µ

(∇ρ)
2

4
Uµ(x). (6.259)

As will be seen later on, these corrections cancel the low-energy effects of the single
operators ∆(2)

ρ without affecting their high-momentum behaviour and therefore are called
low energy corrections, the derivative ∇µ in the naive quark action is changed to ∇′µ.
Second, the discretization of the derivative through O(a2) is corrected by replacing

∇′µ →
(

∇′µ −
1

6
(∇µ)

3
)

(6.260)

in the action [216, 217] (see Eq. (6.313)). This correction is called Naik term (note that
the replacement of Uµ(x) by V ′µ(x) is not necessary for the (∇µ)

3 term).

6.5.2 ξ functions for the fat link

The construction of the fat link Vµ(x) calls for the calculation of multiple derivatives up
to the third order which are symmetrized with respect to all occuring indices. In the
following the symmetrization will be indicated by round brackets enclosing the indices.
For these operators, the ξ functions have to be calculated up to the two-gluon exchange
in order to obtain Feynman rules for the one-loop correction.

The no-gluon vertex component

Using the formalism developed in Sec. 6.2, the no-gluon contributions are given by

ξ(0)(Uµ) = 1,

ξ(0)
(

1

4
∇(2)

(ρ)Uµ

)

= ξ(0)
(

1

4
∇(2)
ρ Uµ

)

= 0,

ξ(0)
(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ

)

= ξ(0)
(

1

16
∇(2)
ρ1 ∇(2)

ρ2 Uµ

)

= 0,

ξ(0)
(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)Uµ

)

= ξ(0)
(

1

64
∇(2)
ρ1
∇(2)
ρ2
∇(2)
ρ3
Uµ

)

= 0. (6.261)
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The no-gluon component for the fat link is therefore given by ξ(0)(Vµ) = 1. Going from
here to the ξ function of the action part, one obtains

ξ(0)
(

ψ̄∇′µψ, p
)

= i sin(pµ)ξ
(0)(Vµ) = i sin(pµ) (6.262)

(cf. Eq. (6.71)) where the prime throughout this subsection indicates only the fattening
without the low energy correction which is treated separately.

The one-gluon vertex component

The contributions with one gluon line attached contain the momentum q and the Lorentz
index ν of the gluon. The contributions are given by

ξ(1) (Uµ; q, ν) = ξ
(1)
0 δµν ,

ξ(1)
(

1

4
∇(2)
ρ Uµ; q, ν

)

= ξ
(1)
0 δµν + ξ

(1)
1 δρν ,

ξ(1)
(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q, ν

)

= ξ
(1)
0 δµν +

2
∑

i=1

ξ
(1)
i δρiν ,

ξ(1)
(

1

64
∇(2)

(ρ1
∇(2)
ρ2 ∇

(2)
ρ3)Uµ; q, ν

)

= ξ
(1)
0 δµν +

3
∑

i=1

ξ
(1)
i δρiν (6.263)

where

ξ
(1)
0 (Uµ; q) = 1,

ξ
(1)
0

(

1

4
∇(2)
ρ Uµ; q

)

= − sin2
(

qρ
2

)

,

ξ
(1)
1

(

1

4
∇(2)
ρ Uµ; q

)

= sin
(

qµ
2

)

sin
(

qρ
2

)

,

ξ
(1)
0

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)
Uµ; q

)

= sin2
(

qρ1
2

)

sin2
(

qρ2
2

)

,

ξ
(1)
i

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)
Uµ; q

)

= −1

2
sin

(

qµ
2

)

sin
(

qρ1
2

)

sin2
(

qρ2
2

)

,

ξ
(1)
0

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q

)

= − sin2
(

qρ1
2

)

sin2
(

qρ2
2

)

sin2
(

qρ3
2

)

,

ξ
(1)
i

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q

)

=
1

3
sin

(

qµ
2

)

sin
(

qρ1
2

)

sin2
(

qρ2
2

)

sin2
(

qρ3
2

)

. (6.264)

In calculating

ξ(1) (Vµ; q, ν) = ξ(1) (Uµ; q, ν) +
′
∑

ρ6=µ
ξ(1)

(

1

4
∇(2)
ρ Uµ; q, ν

)

+ (6.265)

+
1

2

′
∑

ρi 6=µ
ξ(1)

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q, ν

)

+
1

6

′
∑

ρi 6=µ
ξ(1)

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q, ν

)

,

two cases have to be distinguished, namely the case ν = µ and the case ν 6= µ. The
primed sums

∑′
ρi 6=σ run over all occuring indices ρi distinct from each other and from σ.
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The one-gluon vertex component (µ)

Using the ξ
(1)
0 parts, for the first case one obtains

ξ(1)(Vµ; q, ν) = 1 −
′
∑

ρ

sin2
(

qρ
2

)

+
1

2

′
∑

ρi

sin2
(

qρ1
2

)

sin2
(

qρ2
2

)

+

−1

6

′
∑

ρi

sin2
(

qρ1
2

)

sin2
(

qρ2
2

)

sin2
(

qρ3
2

)

=

= 1 − sin2
(

qν1
2

)

− sin2
(

qν2
2

)

− sin2
(

qν3
2

)

+ sin2
(

qν1
2

)

sin2
(

qν2
2

)

+

+ sin2
(

qν1
2

)

sin2
(

qν3
2

)

+ sin2
(

qν2
2

)

sin2
(

qν3
2

)

− sin2
(

qν1
2

)

sin2
(

qν2
2

)

sin2
(

qν3
2

)

=

=
(

1 − sin2
(

qν1
2

))(

1 − sin2
(

qν2
2

))(

1 − sin2
(

qν3
2

))

=

= cos2
(

qν1
2

)

cos2
(

qν2
2

)

cos2
(

qν3
2

)

. (6.266)

The ξ function for the action is given by

ξ(1)
(

ψ̄∇′µψ, p; q, µ
)

= ig cos(pµ)ξ
(1)(Vµ; q, µ) =

= ig cos(pµ) cos2
(

qν1
2

)

cos2
(

qν2
2

)

cos2
(

qν3
2

)

. (6.267)

The one-gluon vertex component (ν)

For the second case (ν 6= µ) the summation reads

ξ(1)(Vµ; q, ν) =
∑

ρ6=µ
sin

(

qµ
2

)

sin
(

qρ
2

)

δρν +

−1

4

′
∑

ρi 6=µ

2
∑

i=1

sin
(

qµ
2

)

sin
(

qρi

2

)

sin2
(

qρj

2

)

δρiν +

+
1

18

′
∑

ρi 6=µ

3
∑

i=1

sin
(

qµ
2

)

sin
(

qρi

2

)

sin2
(

qρj

2

)

sin2
(

qρk

2

)

δρiν =

= sin
(

qµ
2

)

sin
(

qν
2

)

− 1

2

∑

ρi 6=µ,ν
sin

(

qµ
2

)

sin
(

qν
2

)

sin2
(

qρ
2

)

+

+
1

6

′
∑

ρi 6=µ,ν
sin

(

qµ
2

)

sin
(

qν
2

)

sin2
(

qρ2
2

)

sin2
(

qρ3
2

)

=

= sin
(

qµ
2

)

sin
(

qν
2

)

(

1 − 1

2

′
∑

ρi 6=µ,ν
sin2

(

qρ1
2

)

+
1

6

′
∑

ρi 6=µ,ν
sin2

(

qρ1
2

)

sin2
(

qρ2
2

)

)

=

= sin
(

qµ
2

)

sin
(

qν
2

)

(

1 − 1

2
sin2

(

qν1
2

)

− 1

2
sin2

(

qν1
2

)

+
1

3
sin2

(

qν1
2

)

sin2
(

qν1
2

)

)

=

=
1

6
sin

(

qµ
2

)

sin
(

qν
2

)(

2 + cos2
(

qν1
2

)

+ cos2
(

qν2
2

)

+ 2 cos2
(

qν1
2

)

cos2
(

qν2
2

))

.

(6.268)
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Here the ξ function for the action reads

ξ(1)
(

ψ̄∇′µψ, p; q, ν
)

= ig cos(pµ)ξ
(1)(Vµ; q, ν) =

ig

6
cos(pµ) sin

(

qµ
2

)

sin
(

qν
2

)

×

×
(

2 + cos2
(

qν1
2

)

+ cos2
(

qν2
2

)

+ 2 cos2
(

qν1
2

)

cos2
(

qν2
2

))

.

(6.269)

The two-gluon vertex components

The results for contributions including gluons with quantum numbers (q1, ν1) and (q2, ν2)
can be organized as

ξ(2) (Uµ; q1, ν1; q2, ν2) = ξ
(2)
00 δµν1δµν2 ,

ξ(2)
(

1

4
∇(2)
ρ Uµ; q1, ν1; q2, ν2

)

= ξ
(2)
00 δµν1δµν2 + ξ

(2)
01 δµν1δρν2 + ξ

(2)
10 δρν1δµν2 + ξ

(2)
11 δρν1δρν2 ,

ξ(2)
(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1, ν1; q2, ν2

)

=

= ξ
(2)
00 δµν1δµν2 +

2
∑

j=1

ξ
(2)
0j δµν1δρjν2 +

2
∑

i=1

ξ
(2)
i0 δρiν1δµν2 +

2
∑

i,j=1

ξ
(2)
ij δρiν1δρjν2,

ξ(2)
(

1

64
∇(2)
ρ1
∇(2)
ρ2
∇(2)
ρ3
Uµ; q1, ν1; q2, ν2

)

=

= ξ
(2)
00 δµν1δµν2 +

3
∑

j=1

ξ
(2)
0j δµν1δρjν2 +

3
∑

i=1

ξ
(2)
i0 δρiν1δµν2 +

3
∑

i,j=1

ξ
(2)
ij δρiν1δρjν2. (6.270)

For no derivative one obtains

ξ
(2)
00 (Uµ; q1; q2) =

1

2
, (6.271)

for one derivative one gets

ξ
(2)
00

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

= −1

2
sin2

(

q1ρ1 + q2ρ1
2

)

,

ξ
(2)
01

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

=
i

2
e−iq2µ/2 sin

(

q1ρ1 +
q2ρ1
2

)

,

ξ
(2)
10

(

1

4
∇(2)
ρ1 Uµ; q1; q2

)

= − i

2
eiq1µ/2 sin

(

q1ρ1
2

+ q2ρ1

)

,

ξ
(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

=
1

2

(

cos
(

q1µ + q2µ
2

)

− eiq1µ/2−iq2µ/2
)

cos
(

q1ρ1 + q2ρ1
2

)

. (6.272)

For two derivatives the result reads

ξ
(2)
00

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

= −ξ(2)
00

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2
(q1ρj

+ q2ρj

2

)

,

ξ
(2)
0i

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

=

= −1

2
ξ

(2)
01

(

1

4
∇(2)
ρi
Uµ; q1; q2

)(

sin2
(

q1ρj

2

)

+ sin2
(

q1ρj
+ q2ρj

2

))

,

ξ
(2)
i0

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

=
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= −1

2
ξ

(2)
10

(

1

4
∇(2)
ρi
Uµ; q1; q2

)(

sin2
(

q1ρj
+ q2ρj

2

)

+ sin2
(

q2ρj

2

))

,

ξ
(2)
ii

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

= −1

2
ξ

(2)
11

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2
(

q1ρj
+ q2ρj

2

)

,

ξ
(2)
ij

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

=
1

2
ξ

(2)
10

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin
(

q2µ
2

)

sin
(

q2ρj

2

)

+

+
1

2
ξ

(2)
01

(

1

4
∇(2)
ρj
Uµ; q1; q2

)

sin
(

q1µ
2

)

sin
(

q1ρi

2

)

(6.273)

where (i, j) is a cyclic permutation of (1, 2), and for three derivatives one obtains

ξ
(2)
00

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1; q2

)

=

= ξ
(2)
00

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2
(

q1ρj
+ q2ρj

2

)

sin2
(

q1ρk
+ q2ρk

2

)

,

ξ
(2)
0i

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1; q2

)

=
1

6
ξ

(2)
01

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

×

×
{

sin2
(

q1ρj

2

)

sin2
(

q1ρk

2

)

+ sin2
(

q1ρj
+ q2ρj

2

)

sin2
(

q1ρk
+ q2ρk

2

)

+

+
(

sin2
(

q1ρj

2

)

+ sin2
(

q1ρj
+ q2ρj

2

))(

sin2
(

q1ρk

2

)

+ sin2
(

q1ρk
+ q2ρk

2

))

}

,

ξ
(2)
i0

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1; q2

)

=
1

6
ξ

(2)
10

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

×

×
{

sin2
(

q1ρj
+ q2ρj

2

)

sin2
(

q1ρk
+ q2ρk

2

)

+ sin2
(

q2ρj

2

)

sin2
(

q2ρk

2

)

+

+
(

sin2
(

q1ρj
+ q2ρj

2

)

+ sin2
(

q2ρj

2

))(

sin2
(

q1ρk
+ q2ρk

2

)

+ sin2
(

q2ρk

2

))

}

,

ξ
(2)
ii

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1; q2

)

=

=
1

3
ξ

(2)
11

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2
(

q1ρj
+ q2ρj

2

)

sin2
(

q1ρk
+ q2ρk

2

)

,

ξ
(2)
ij

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1; q2

)

= (6.274)

= −1

6
ξ

(2)
10

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin
(

q2µ
2

)

sin
(

q2ρj

2

)(

sin2
(

q1ρk
+ q2ρk

2

)

+ sin2
(

q2ρk

2

))

+

−1

6
ξ

(2)
01

(

1

4
∇(2)
ρj
Uµ; q1; q2

)

sin
(

q1µ
2

)

sin
(

q1ρi

2

)(

sin2
(

q1ρk

2

)

+ sin2
(

q1ρk
+ q2ρk

2

))

where (i, j, k) is a cyclic permutation of (1, 2, 3). For the calculation of the fat link ξ
function ξ(2)(Vµ; q1, ν1; q2, ν2), several cases have to be considered.

The two-gluon vertex component (µµ)

The ξ function for Vµ is given by

ξ(2)(Vµ; q1, µ; q2, µ) = ξ(2)(Uµ; q1, µ; q2, µ) +
′
∑

ρi 6=µ
ξ(2)

(

1

4
∇(2)
ρ1
Uµ; q1, µ; q2, µ

)

+
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+
1

2

′
∑

ρi 6=µ
ξ(2)

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1, µ; q2, µ

)

+
1

6

′
∑

ρi 6=µ
ξ(2)

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)
Uµ; q1, µ; q2, µ

)

=

= ξ
(2)
00 (Uµ; q1; q2) +

′
∑

ρi 6=µ
ξ

(2)
00

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

+
1

2

′
∑

ρi 6=µ
ξ

(2)
00

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1; q2

)

+

+
1

6

′
∑

ρi 6=µ
ξ

(2)
00

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)Uµ; q1; q2

)

+ . . . =

=
1

2
− 1

2

′
∑

ρi 6=µ
sin2(qρ1) +

1

4

′
∑

ρi 6=µ
sin2(qρi

) sin2(qρj
) − 1

12

′
∑

ρi 6=µ
sin2(qρi

) sin2(qρj
) sin2(qρk

) =

=
1

2
− 1

2

′
∑

ρi 6=µ
sin2(qρ1) +

1

2

′
∑

ρi 6=µ
sin2(qρ1) sin2(qρ2) −

1

2

′
∑

ρi 6=µ
sin2(qρ1) sin2(qρ2) sin2(qρ3) =

=
1

2

3
∏

i=1

(

1 − sin2(qρi
)
)

=
1

2

3
∏

i=1

cos2(qρi
)

where the ellipses indicate components for ν1 or ν2 unequal to µ. In this calculation the
short-hand notation q = (q1 + q2)/2 is used. The result on the level of the action reads

ξ(2)(ψ̄∇′µψ, p; q1, µ; q2, µ) =
ig2

2
sin(pµ) cos2(qν1) cos2(qν2) cos2(qν3). (6.275)

The two-gluon vertex diagonal components (νν)

Next, one considers the case where the (common) Lorentz index ν of the gluon legs is
different from the Lorentz index µ of the Dirac gamma matrix. In this case one obtains

ξ(2)(Vµ; q1, ν; q2, ν) = ξ(2)(Uµ; q1, ν; q2, ν) +
′
∑

ρi 6=µ
ξ(2)

(

1

4
∇(2)
ρ1
Uµ; q1, ν; q2, ν

)

+

+
1

2

′
∑

ρi 6=µ
ξ(2)

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1, ν; q2, ν

)

+
1

6

′
∑

ρi 6=µ
ξ(2)

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)Uµ; q1, ν; q2, ν

)

=

=
′
∑

ρi 6=µ
ξ

(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

δρ1ν −
1

4

′
∑

ρi 6=µ

2
∑

i=1

ξ
(2)
11

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2(qρj
)δρiν +

+
1

18

′
∑

ρi 6=µ

3
∑

i=1

ξ
(2)
11

(

1

4
∇(2)
ρi
Uµ; q1; q2

)

sin2(qρj
) sin2(qρk

)δρiν =

=
′
∑

ρi 6=µ
ξ

(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

δρ1ν −
1

2

′
∑

ρi 6=µ
ξ

(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

sin2(qρ2)δρ1ν +

+
1

6

′
∑

ρi 6=µ
ξ

(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

sin2(qρ2) sin2(qρ3)δρ1ν = (6.276)

=
′
∑

ρi 6=µ
ξ

(2)
11

(

1

4
∇(2)
ρ1
Uµ; q1; q2

)

δρ1ν

{

1 − 1

2

′
∑

ρi 6=ρ1
sin2(qρ2) +

1

6

′
∑

ρi 6=ρ1
sin2(qρ2) sin2(qρ3)

}

.

In the second step of the previous calculation the sums over i were done explicitly, but
then the indices ρ1 and ρ2 resp. ρ1, ρ2 and ρ3 were interchanged, resulting in two or three
identical expressions, resp. Therefore the factors were cancelled. There are finally two
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possibilities left for each of the two sums in the parantheses (while ρ1 = ν, ρ2 and ρ3 can
take two possible values different from µ and ν). If one takes ν1 and ν2 to be these values,
one ends up with

ξ(2)(Vµ; q1, ν; q2, ν) =

= ξ
(2)
11

(

1

4
∇(2)
ν Uµ; q1; q2

)

{

1 − 1

2
sin2(qν1) −

1

2
sin2(qν2) +

1

3
sin2(qν1) sin2(qν2)

}

=

=
1

2

(

cos(qµ) − eiq1µ/2−iq2µ/2
)

cos(qν) ×

×
{

1 − 1

2
sin2(qν1) −

1

2
sin2(qν2) +

1

3
sin2(qν1) sin2(qν2)

}

. (6.277)

After using trigonometric relations, one obtains

1 − 1

2
sin2(qν1) −

1

2
sin2(qν2) +

1

3
sin2(qν1) sin2(qν2) =

= 1 − 1

2
+

1

2
cos2(qν1) −

1

2
+

1

2
cos2(qν2) +

+
1

3
− 1

3
cos2(qν1) −

1

3
cos2(qν2) +

1

3
cos2(qν1) cos2(qν2) =

=
1

3
+

1

6
cos2(qν1) +

1

6
cos2(qν2) +

1

3
cos2(qν1) cos2(qν2) =

=
1

6

(

2 + cos2(qν1) + cos2(qν2) + 2 cos2(qν1) cos2(qν2)
)

, (6.278)

such that

ξ(2)(Vµ; q1, ν; q2, ν) =
1

12

(

cos(qµ) − eiq1µ/2−iq2µ/2
)

cos(qν) × (6.279)

×
{

2 + cos2(qν1) + cos2(qν2) + 2 cos2(qν1) cos2(qν2)

}

=

=
1

12

(

cos(qµ) − eiq1µ/2−iq2µ/2
)

cos(qν)C
(νν)
ν1ν2

where
C(νν)
ν1ν2

:= 2 + cos2(qν1) + cos2(qν2) + 2 cos2(qν1) cos2(qν2) (6.280)

is used. All factors except the first (non-trivial) one are symmetric under the interchange
(q1, µ) ↔ (q2, µ). Therefore, according to Eq. (6.71),

ξ(2)(ψ̄∇′µψ, p; q1, ν; q2, ν) = −ig
2

6
sin(pµ) sin

(

q1µ
2

)

sin
(

q2µ
2

)

cos(qν)C
(νν)
ν1ν2

+

+
ig2

12
cos(pµ) sin

(

q1µ − q2µ
2

)

cos(qν)C
(νν)
ν1ν2

. (6.281)

The two-gluon vertex components (µν)

Next the case is considered where one of the indices is µ, the other ν 6= µ. One obtains

ξ(2)(Vµ; q1, µ; q2, ν) = ξ(2)(Uµ; q1, µ; q2, ν) +
′
∑

ρi 6=µ
ξ(2)

(

1

4
∇(2)
ρ1
Uµ; q1, µ; q2, ν

)

+



308 CHAPTER 6. ANISOTROPIC IMPROVED QUARK ACTIONS

+
1

2

′
∑

ρi 6=µ
ξ(2)

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)
Uµ; q1, µ; q2, ν

)

+
1

6

′
∑

ρi 6=µ
ξ(2)

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)Uµ; q1, µ; q2, ν

)

=

=
1

6
ξ

(2)
01

(

1

4
∇(2)
ν Uµ; q1; q2

)

{

2 cos2
(

q1ν2
2

)

cos2
(

q1ν3
2

)

+

+ cos2
(

q1ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

+ cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3
2

)

+

+2 cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

}

=

=
i

12
e−iq2µ/2 sin

(

q1ν +
q2ν
2

)

{

2 cos2
(

q1ν2
2

)

cos2
(

q1ν3
2

)

+

+ cos2
(

q1ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

+ cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3
2

)

+ (6.282)

+2 cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

}

=

=
i

12
e−iq2µ/2 sin

(

q1ν +
q2ν
2

)

C(µν)
ν1ν2

.

The corresponding result for the component (νµ) reads

ξ(2)(Vµ; q1, ν; q2, µ) = − i

12
eiq1µ/2 sin

(

q1ν
2

+ q2ν

)

C(νµ)
ν1ν2

(6.283)

where the relations

C(µν)
ν1ν2 =

{

2 cos2
(

q1ν2
2

)

cos2
(

q1ν3
2

)

+ cos2
(

q1ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

+

+ cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3
2

)

+ 2 cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

}

,

C(νµ)
ν1ν2

=

{

2 cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

+ cos2
(

q1ν2 + q2ν2
2

)

cos2
(

q2ν3
2

)

+

+ cos2
(

q2ν2
2

)

cos2
(

q1ν3 + q2ν3
2

)

+ 2 cos2
(

q2ν2
2

)

cos2
(

q2ν3
2

)

}

(6.284)

are used. For this case one therefore has to use two different ξ functions which, however,
on interchange of arguments turn out to be equal except for the first factor,

ξ(2)(Vµ; q1, µ; q2, ν) =
i

12
e−iq2µ/2 sin

(

q1ν +
q2ν
2

)

C(µν)
ν1ν2

,

ξ(2)(Vµ; q2, µ; q1, ν) = − i

12
eiq2µ/2 sin

(

q1ν +
q2ν
2

)

C(µν)
ν1ν2

. (6.285)

Therefore (cf. again Eq. (6.71))

ξ(2)(ψ̄∇′µψ, p; q1, µ; q2, ν) =
ig2

12
sin(pµ) sin

(

q2µ
2

)

sin
(

q1ν +
q2ν
2

)

C(µν)
ν1ν2

+

−ig
2

12
cos(pµ) cos

(

q2µ
2

)

sin
(

q1ν +
q2ν
2

)

C(µν)
ν1ν2 . (6.286)
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The two-gluon vertex components (ν1ν2)

Here the result reads

ξ(2) (Vµ; q1, ν1; q2, ν2) = ξ(2)(Uµ; q1, ν1; q2, ν2) +

+
∑

ρ1 6=µ
ξ(2)

(

1

4
∇(2)
ρ1
Uµ; q1, ν1; q2, ν2

)

+
1

2

∑

ρ2 6=ρ1 6=µ
ξ(2)

(

1

16
∇(2)

(ρ1
∇(2)
ρ2)Uµ; q1, ν1; q2, ν2

)

+

+
1

6

∑

ρ3 6=ρ2 6=ρ1 6=µ
ξ(2)

(

1

64
∇(2)

(ρ1
∇(2)
ρ2
∇(2)
ρ3)Uµ; q1, ν1; q2, ν2

)

=

= − i

12
eiq1µ/2 sin

(

q1ν1
2

+ q2ν1

)

sin
(

q2µ
2

)

sin
(

q2ν2
2

)

×

×
(

1 + cos2
(

q1ν3 + q2ν3
2

)

+ cos2
(

q2ν3
2

))

+

+
i

12
e−iq2µ/2 sin

(

q1ν2 +
q2ν2
2

)

sin
(

q1µ
2

)

sin
(

q1ν1
2

)

×

×
(

1 + cos2
(

q1ν3
2

)

+ cos2
(

q1ν3 + q2ν3
2

))

(6.287)

which can be written as

ξ(2)(Vµ; q1, ν1; q2, ν2) = − i

12
eiq1µ/2 sin

(

q1ν1
2

+ q2ν1

)

sin
(

q2µ
2

)

sin
(

q2ν2
2

)

C
(ν1ν2)
1ν3 +

+
i

12
e−iq2µ/2 sin

(

q1ν2 +
q2ν2
2

)

sin
(

q1µ
2

)

sin
(

q1ν1
2

)

C
(ν1ν2)
2ν3 , (6.288)

ξ(2)(Vµ; q2, ν2; q1, ν1) = − i

12
eiq2µ/2 sin

(

q1ν2 +
q2ν2
2

)

sin
(

q1µ
2

)

sin
(

q1ν1
2

)

C
(ν1ν2)
2ν3 +

+
i

12
e−iq1µ/2 sin

(

q1ν1
2

+ q2ν1

)

sin
(

q2µ
2

)

sin
(

q2ν2
2

)

C
(ν1ν2)
1ν3 (6.289)

where

C
(ν1ν2)
1ν3 = 1 + cos2

(

q1ν3 + q2ν3
2

)

+ cos2
(

q2ν3
2

)

,

C
(ν1ν2)
2ν3 = 1 + cos2

(

q1ν3
2

)

+ cos2
(

q1ν3 + q2ν3
2

)

. (6.290)

Therefore, one obtains

ξ(2)(ψ̄∇′µψ, p; q1, ν1; q2, ν2) =

=
ig2

12
sin(pµ) sin

(

q1µ
2

)

sin
(

q2µ
2

)

sin
(

q1ν1
2

+ q2ν1

)

sin
(

q2ν2
2

)

C
(ν1ν2)
1ν3 +

+
ig2

12
sin(pµ) sin

(

q1µ
2

)

sin
(

q2µ
2

)

sin
(

q1ν1
2

)

sin
(

q1ν2 +
q2ν2
2

)

C
(ν1ν2)
2ν3 +

+
ig2

12
cos(pµ) cos

(

q1µ
2

)

sin
(

q2µ
2

)

sin
(

q1ν1
2

+ q2ν1

)

sin
(

q2ν2
2

)

C
(ν1ν2)
1ν3 +

−ig
2

12
cos(pµ) sin

(

q1µ
2

)

cos
(

q2µ
2

)

sin
(

q1ν1
2

)

sin
(

q1ν2 +
q2ν2
2

)

C
(ν1ν2)
2ν3 . (6.291)
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6.5.3 The low energy contributions

Low energy contributions come from ∆V = V ′ − V , i.e. the matrix

∆Vµ(x) := −
∑

ρ6=µ

1

4
(∇ρ)

2Uµ(x). (6.292)

The contributions with no and one gluon

There is no contribution from the low energy term in case of no gluon,

ξ(0)
(

−1

4
(∇ρ)

2Uµ

)

= 0 ⇒ ξ(0)
(

ψ̄∆∇′µψ, p
)

= 0. (6.293)

The contribution for one gluon is given by

ξ(1)
(

−1

4
(∇ρ)

2Uµ; q, ν
)

= ξ
(1)
0 δµν + ξ

(1)
1 δρν with

ξ
(1)
0

(

−1

4
(∇ρ)

2Uµ; q
)

= sin2
(

qρ
2

)

− sin4
(

qρ
2

)

,

ξ
(1)
1

(

−1

4
(∇ρ)

2Uµ; q
)

= − sin
(

qµ
2

)

sin
(

qρ
2

)

+ sin
(

qµ
2

)

sin3
(

qρ
2

)

. (6.294)

For the two cases ν = µ and ν 6= µ one obtains

ξ(1) (∆Vµ; q, µ) =
∑

ρ6=µ
ξ(1)

(

−1

4
(∇ρ)

2Uµ; q, µ
)

=

=
∑

ρ6=µ
sin2

(

qρ
2

)(

1 − sin2
(

qρ
2

))

=
∑

ρ6=µ
sin2

(

qρ
2

)

cos2
(

qρ
2

)

=

=
1

4

∑

ρ6=µ
sin2(qρ) =

1

4

(

sin2(qν1) + sin2(qν2) + sin2(qν3)
)

,

ξ(1) (∆Vµ; q, ν) = − sin
(

qµ
2

)

sin
(

qν
2

)

sin
(

qµ
2

)

sin3
(

qν
2

)

=

= − sin
(

qµ
2

)

sin
(

qν
2

)(

1 − sin2
(

qν
2

))

=

= − sin
(

qµ
2

)

sin
(

qν
2

)

cos2
(

qν
2

)

. (6.295)

Therefore, the ξ functions for the action are given by

ξ(1)
(

ψ̄∆∇′µψ, p; q, µ
)

=
ig

4
cos(pµ)

(

sin2(qν1) + sin2(qν2) + sin2(qν3)
)

,

ξ(1)
(

ψ̄∆∇′µψ, p; q, ν
)

= −ig cos(pµ) sin
(

qµ
2

)

sin
(

qν
2

)

cos2
(

qν
2

)

. (6.296)

The two-gluon vertex components

In general one has

ξ(2)(∆Vµ; q1, ν1; q2, ν2) =

=
∑

ρ6=µ

(

ξ
(2)
00 δµν1δµν2 + ξ

(2)
01 δµν1δρν2 + ξ

(2)
10 δρν1δµν2 + ξ

(2)
11 δρν1δρν2

)

. (6.297)
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where

ξ
(2)
00

(

−1

4
(∇ρ)

2Uµ; q1; q2

)

=

=
1

2
sin2

(

q1ρ + q2ρ
2

)(

1 − sin2
(

q1ρ + q2ρ
2

))

= −1

8
sin2(q1ρ + q2ρ),

ξ
(2)
01

(

−1

4
(∇ρ)

2Uµ; q1; q2

)

=

= − i

2
e−iq2µ/2 sin

(

q1ρ +
q2ρ
2

)(

1 − sin2
(

q1ρ
2

)

− sin2
(

q1ρ + q2ρ
2

))

,

ξ
(2)
10

(

−1

4
(∇ρ)

2Uµ; q1; q2

)

=

=
i

2
eiq1µ/2 sin

(

q1ρ
2

+ q2ρ

)(

1 − sin2
(

q1ρ + q2ρ
2

)

− sin2
(

q2ρ
2

))

,

ξ
(2)
11

(

−1

4
(∇ρ)

2Uµ; q1; q2

)

=

= −1

2

(

cos
(

q1µ + q2µ
2

)

− eiq1µ/2−iq2µ/2
)

[

cos
(

q1ρ + q2ρ
2

)

− sin
(

q1ρ
2

)

sin
(

q2ρ
2

)

+

− cos
(

q1ρ + q2ρ
2

)(

sin2
(

q1ρ + q2ρ
2

)

+ sin2
(

q1ρ
2

)

+ sin2
(

q2ρ
2

))

]

+

− i

2
sin

(

q1µ + q2µ
2

)

cos
(

q1ρ + q2ρ
2

)(

sin2
(

q1ρ
2

)

− sin2
(

q2ρ
2

))

. (6.298)

With this one obtains

ξ(2)(∆Vµ; q1, µ; q2, µ) =
∑

ρ6=µ
ξ

(2)
00

(

−1

4
(∇ρ)

2Uµ; q1; q2

)

,

ξ(2)(∆Vµ; q1, ν; q2, ν) = ξ
(2)
11

(

−1

4
(∇ν)

2Uµ; q1; q2

)

,

ξ(2)(∆Vµ; q1, µ; q2, ν) = ξ
(2)
01

(

−1

4
(∇ν)

2Uµ; q1; q2

)

,

ξ(2)(∆Vµ; q1, ν; q2, µ) = ξ
(2)
10

(

−1

4
(∇ν)

2Uµ; q1; q2

)

. (6.299)

Proceeding to the ξ functions to ψ̄∆∇µψ, the component (µµ) is given by

ξ(2)(ψ̄∆∇µψ, p; q1, µ; q2, µ) =

=
ig2

8
sin(pµ)

(

sin2(q1ν1 + q2ν1) + sin2(q1ν2 + q2ν2) + sin2(q1ν3 + q2ν3)
)

(6.300)

while for the coefficient (νν) one obtains

ξ(2)(ψ̄∆∇µψ, p; q1, ν; q2, ν) =

= ig2 sin(pµ) sin
(

q1µ
2

)

sin
(

q2µ
2

)

[

cos
(

q1ν + q2ν
2

)

− sin
(

q1ν
2

)

sin
(

q2ν
2

)

+

− cos
(

q1ν + q2ν
2

)(

sin2
(

q1ν + q2ν
2

)

+ sin2
(

q1ν
2

)

+ sin2
(

q2ν
2

))

]

+
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−ig
2

2
cos(pµ) sin

(

q1µ − q2µ
2

)

[

cos
(

q1ν + q2ν
2

)

− sin
(

q1ν
2

)

sin
(

q2ν
2

)

+

− cos
(

q1ν + q2ν
2

)(

sin2
(

q1ν + q2ν
2

)

+ sin2
(

q1ν
2

)

+ sin2
(

q2ν
2

))

]

+

+
ig2

2
cos(pµ) sin

(

q1µ + q2µ
2

)

cos
(

q1ν + q2ν
2

)(

sin2
(

q1ν
2

)

− sin2
(

q2ν
2

))

. (6.301)

The off-diagonal components (µν) and (νµ) are given by

ξ(2)(ψ̄∆∇µψ, p; q1, µ; q2, ν) =

= −ig
2

2
sin(pµ) sin

(

q2µ
2

)

sin
(

q1ν +
q2ν
2

)(

1 − sin2
(

q1ν
2

)

− sin2
(

q1ν + q2ν
2

))

+

+
ig2

2
cos(pµ) cos

(

q2µ
2

)

sin
(

q1ν +
q2ν
2

)(

1 − sin2
(

q1ν
2

)

− sin2
(

q1ν + q2ν
2

))

,

ξ(2)(ψ̄∆∇µψ, p; q1, ν; q2, µ) =

= −ig
2

2
sin(pµ) sin

(

q1µ
2

)

sin
(

q1ν
2

+ q2ν

)(

1 − sin2
(

q1ν + q2ν
2

)

− sin2
(

q2ν
2

))

+

−ig
2

2
cos(pµ) cos

(

q1µ
2

)

sin
(

q1ν
2

+ q2ν

)(

1 − sin2
(

q1ν + q2ν
2

)

− sin2
(

q2ν
2

))

.

(6.302)

6.5.4 The Naik term contributions

The Naik term contributions read

ξ(0)
(

−1

6
ψ̄(∇µ)

3ψ, p
)

= − i

6
sin3(pµ),

ξ
(1)
0

(

−1

6
ψ̄(∇µ)

3ψ, p; q
)

=

= −ig
6

cos(pµ)
(

(

1 − 4 sin2(pµ)
)

cos2
(

qµ
2

)

− cos2(pµ)
)

,

ξ
(2)
00

(

−1

6
ψ̄(∇µ)

3ψ, p; q1; q2

)

=

=
ig2

48

{

sin(pµ)
(

3 −
(

4 cos2(pµ) − 1
)

(

4 cos2
(

q1µ
2

)

− 1
)(

4 cos2
(

q2µ
2

)

− 1
))

+

+8 cos(pµ)
(

1 − 4 sin2(pµ)
)

cos
(

q1µ
2

)

cos
(

q2µ
2

)

sin
(

q1µ − q2µ
2

)

}

(6.303)

where

sin(3pµ) = 3 sin(pµ) − 4 sin3(pµ), cos(3pµ) = 4 cos3(pµ) − 3 cos(pµ) (6.304)

has been used to obtain the final form.
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6.5.5 The tadpole improvement

Finally, the tadpole improvement has to be worked out which, to the considered order g2,
is given by the expansion of the no-gluon contribution in the parameters

∆u(2)
ρ =

g2

4π2
u

(2)
0 . (6.305)

One obtains (note the comma notation)

ξ(0)
, (Uµ) = ξ

(0)
,0 ∆u(2)

µ with ξ
(0)
,0 (Uµ) = 1,

ξ(0)
,

(

1

4
∇(2)
ρ Uµ

)

= ξ
(0)
,0 ∆u(2)

µ + ξ
(0)
,1 ∆u(2)

ρ with

ξ
(0)
,0

(

1

4
∇(2)
ρ Uµ

)

= 0, ξ
(0)
,1

(

1

4
∇(2)
ρ Uµ

)

= 1, (6.306)

while all functions ξ(0)
, of higher derivatives vanish. Therefore, one ends up with

ξ(0)
, (Vµ) = ξ(0)

, (Uµ) +
∑

ρ6=µ
ξ(0)
,

(

1

4
∇(2)
ρ Uµ

)

= ∆u(2)
µ +

∑

ρ6=µ
∆u(2)

ρ . (6.307)

The ξ function of the corresponding action is given by

ξ(0)
,

(

ψ̄∇′µψ, p
)

= −i sin(pµ)



∆u(2)
µ +

∑

ρ6=µ
∆u(2)

ρ



 =
−ig2

4π
sin(pµ)

(

4u
(2)
0

)

. (6.308)

The tadpole improvement contribution of the low energy part is calculated via

ξ(0)
,

(

−1

4
(∇ρ)

2Uµ

)

= ξ
(0)
,0 ∆u(2)

µ + ξ
(0)
,1 ∆u(2)

ρ with

ξ
(0)
,0

(

−1

4
(∇ρ)

2Uµ

)

= 0, ξ
(0)
,1

(

−1

4
(∇ρ)

2Uµ

)

= −1

2
. (6.309)

Therefore

ξ(0)
, (∆Vµ) =

∑

ρ6=µ
ξ(0)
,

(

−1

4
(∇ρ)

2Uµ

)

= −1

2

∑

ρ6=µ
∆u(2)

ρ =
g2

4π

(

−3

2
u

(2)
0

)

(6.310)

and thus

ξ(0)
,

(

ψ̄∆∇′µψ, p
)

= −i sin(pµ)ξ
(0)
, (∆Vµ) =

−ig2

4π
sin(pµ)

(

−3

2
u

(2)
0

)

. (6.311)

The Naik term, finally, gives a contribution

ξ(0)
,

(

−1

6
ψ̄(∇µ)

3ψ, p
)

=
1

16

(

e3ipµ − eipµ + e−ipµ − e−3ipµ

)

∆u(2)
µ =

=
1

16

(

eipµ − e−ipµ

) (

e2ipµ + e−2ipµ

)

∆u(2)
µ = (6.312)

=
i

4
sin(pµ) cos(2pµ)∆u

(2)
µ =

−ig2

4π
sin(pµ)

(

−1

4
cos(2pµ)u

(2)
0

)

.
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6.6 Staggered quark action and vertices

After applying all changes of the naive action mentioned in the previous section, the
staggered quark action reads

S = a3
sat

∑

x

ψ̄c(x)







c0
as

3
∑

i+1

γi

(

∇′i −
1

6
(∇i)

3
)

+
1

at
γ4

(

∇′4 −
1

6
(∇4)

3
)

+m0







ψc(x) =

=
∑

x

ψ̄(x)

{

c0
χ

3
∑

i=1

γi

(

∇′i −
1

6
(∇i)

3
)

+ γ4

(

∇′4 −
1

6
(∇4)

3
)

+m0at

}

ψ(x) (6.313)

where again ψc(x) is the continuum spinor and ψ(x) = a3/2
s ψc(x) is the (dimensionless)

lattice spinor. The anisotropy is given by χ = as/at. ∇′µ, finally, is the lattice derivative
using V ′µ(x) instead of Uµ(x). According to this action together with the results of the
previous section, the no-gluon component reads

ξ(0)(S, p) = −ic0
χ

3
∑

i=1

γi

(

sin(pi)ξ
(0)(V ′i ) +

1

6
sin3(pi)

)

+

−iγ4

(

sin(p4)ξ
(0)(V ′4) +

1

6
sin3(p4)

)

+m0at =

= −ic0
χ

3
∑

i=1

γi sin(pi)
(

1 +
1

6
sin2(pi)

)

+

−iγ4 sin(p4)
(

1 +
1

6
sin2(p4)

)

+m0at (6.314)

There is no low-energy contribution, and the contribution from the Naik term is obvious
in these two steps. This result is just the inverse free quark propagator and can be written
as

S̃0(p)
−1 = ξ(0)(S, p) = i

4
∑

µ=1

P0µ(pµ) +M0(p). (6.315)

The results for the one- and two-gluon vertices are not written out explicitly. They can
be combined from the different parts of the previous section and are implemented in a
MATHEMATICA code which generates the FORTRAN input codes for the numerical
calculation. Details of this are given later on. The consideration is continued with the
mass- and wavefunction renormalization at this point.

6.6.1 Green function and residues

After having calculated the self energy correction

Σ(p) =
i

χ

3
∑

i=1

γi sin(pi)Σi(p) + iγ4 sin(p4)Σ4(p) + Σm(p), (6.316)

this correction can be subtracted from the inverse free quark propagator S0(p)
−1 in order

to obtain the inverse resummed quark propagator S̃(p)−1 which can be written as

S̃(p)−1 = i
4
∑

µ=1

γµPµ(p) +M(p). (6.317)
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Taking ~p = 0, this inverse propagator simplifies to

S̃(~0, p4)
−1 = iγ4P4(~0, p4) +M(~0, p4) =

= iγ4 sin(p4)
(

1 +
1

6
sin2(p4) − Σ4(~0, p4)

)

+m0at − Σm(~0, p4). (6.318)

The part sin2(p4)/6 is due to the Naik term and vanishes in the absence of the Naik term.
This has to be taken into account in the following. The general procedure in getting to
the pole mass and the wave function renormalization is to calculate the Green function

G(~0, t) =
∫ π/at

−π/at

dk4

2π
eik4tS̃(~0, atk4) =

∮

|z|=1

dz

2πiat
zt/at−1S̃(0,−i ln z) (6.319)

(k4 is the momentum vector while p4 = atk4 is made dimensionless). In the second step
the substitution z = eip4 = eiatk4 leads to a closed circle integral with radius |z| = 1 which
according to Cauchy’s law reduces to the sum of residues of poles of order one at z = zn
lying within this circle. One therefore has

atG(~0, atτ) =
∮

|z|=1

dz

2πi
zτ−1S̃(~0,−i ln z) =

∑

n

Res
[

zτ−1S̃(~0,−i ln z); z = zn
]

(6.320)

In the case S̃(~0, p4), the denominator and numerator are considered separately,

S̃(~0,−i ln z) =
N(z)

D(z)
(6.321)

where for the free case

N(eip4) = −iγ4 sin(p4)
(

1 +
1

6
sin2(p4)

)

+m0at,

D(eip4) = sin2(p4)
(

1 +
1

6
sin2(p4)

)2

+m2
0a

2
t = (6.322)

=
(

−i sin(p4)
(

1 +
1

6
sin2(p4)

)

+m0at

)(

i sin(p4)
(

1 +
1

6
sin2(p4)

)

+m0at

)

.

In order to obtain residues of the integrand and therefore results for the Green function,
z is replaced by e−M and (implicit) zeros of D(e−M) are searched for in terms of M . For
the denominator one obtains

D̂(M) := D(e−M) = sinh2(M)
(

1 − 1

6
sinh2(M) − Σ̂4(M)

)2

+
(

m0at − Σ̂m(M)
)2
.

(6.323)
where sin(iM) = i sinh(M) is used and Σ̂i(M) := Σi(~0, iM) (for i = 4, m) as well as
D̂(M) = D(e−M) are defined the same way as in the Wilson action case. The two
possible solutions M1 and M2 for D(e−M) = 0 are given by

m0at − Σm(~0, iM1) = sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ4(~0, iM1)

)

, (6.324)

m0at − Σm(~0, iM2) = − sinh(M2)
(

1 − 1

6
sinh2(M2) − Σ4(~0, iM2)

)

. (6.325)
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These are implicit equations for M1 and M2. However, looking at the right hand sides
(without self energy corrections), it is obvious that the appropiate solution with M > 0 for
m > 0 is given by M = M1. Because one cannot explicitly factor out the corresponding
zero as factor (z − e−M) in the denominator, the alternative way is chosen, namely to
calculate the Taylor series expansion of D(z) at this specific zero up to first order,

D(z) = D(e−M) + (z − e−M)D′(e−M) +O
(

(z − e−M)2
)

. (6.326)

The derivative of D(z) at e−M is not equal to the derivative of the previously defined
D̂(M) = D(e−M). Instead, one has (M = − ln z)

e−MD′(e−M) = z
dD(z)

dz

∣

∣

∣

z=e−M
= z

dM

dz

dD̂(M)

dM
= −dD̂(M)

DM
=

= 2 sinh(M) cosh(M)
(

1 − 1

6
sinh2(M) − Σ̂4(M)

)2

+

+2 sinh2(M)
(

1 − 1

6
sinh2(M) − Σ̂4(M)

)(

−1

3
sinh(M) cosh(M) − Σ̂′4(M)

)

+

+2
(

m0at − Σ̂m(M)
)

Σ′m(M). (6.327)

One now can insert the implicit equation for M = M1,

e−M1D′(e−M1) =

= 2 sinh(M1) cosh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)2

+

+2 sinh2(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)(

−1

3
sinh(M1) cosh(M1) − Σ̂′4(M1)

)

+

+2 sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

Σ′m(M1) =

= 2 sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

{

cosh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

+

+ sinh(M1)
(

−1

3
sinh(M1) cosh(M1) − Σ̂′4(M1)

)

+ Σ′m(M1)

}

=

= 2 sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

×

× d

dM1

{

sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

+ Σ̂m(M1)

}

. (6.328)

The numerator is given by

N̂(M) := N(e−M) = γ4 sinh(M)
(

1 − 1

6
sinh2(M) − Σ̂4(M)

)

+m0at − Σ̂m(M), (6.329)

therefore

N̂(M1) = γ4 sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

+

+ sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

=

= (1 + γ4) sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

. (6.330)
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Using this, the relevant residue is given by

R1 = Res

[

zτN(z)

zD(z)
; z = e−M1

]

=
1 + γ4

2
e−M1τZ2(~0,M1) (6.331)

with the inverse wave function renormalization factor

Z2(~0, iM1)
−1 =

d

dM1

{

Σ̂m(M1) + sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ̂4(M1)

)

}

. (6.332)

6.6.2 The mass renormalization

In order to calculate the mass renormalization, one iterates Eq. (6.324) in using the ansatz

M1 = M
(0)
1 + ∆M

(1)
1 +O(α2) and performs an order by order comparison. One obtains

m0at = sinh(M
(0)
1 )

(

1 − 1

6
sinh2(M

(0)
1 )

)

(6.333)

and

−Σ̂m(M
(0)
1 ) = ∆M

(1)
1

d

dM1

{

sinh(M1)
(

1 − 1

6
sinh2(M1)

)

}

M1=M
(0)
1

− sinh(M
(0)
1 )Σ̂4(M

(0)
1 ) =

= ∆M
(1)
1

{

cosh(M
(0)
1 ) − 1

2
sinh2(M

(0)
1 ) cosh(M

(0)
1 )

}

− sinh(M
(0)
1 )Σ̂4(M

(0)
1 ). (6.334)

Therefore, one has

∆M
(1)
1 =

−Σ̂m(M
(0)
1 ) + sinh(M

(0)
1 )Σ̂4(M

(0)
1 )

cosh(M
(0)
1 )

(

1 − sinh2(M
(0)
1 )/2

) =
−Σm(~0, iM

(0)
1 ) + sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 )

cosh(M
(0)
1 )

(

1 − sinh2(M
(0)
1 )/2

) .

(6.335)

The part Σm(~0, iM
(0)
1 )− sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 ) is given by one quarter of the trace of the

self energy contribution in Eq. (6.316) multiplied by (1 + γ4),

Tr
(

(1 + γ4)Σ(~0, iM
(0)
1 )

)

= 4Σm(~0, iM
(0)
1 ) − 4 sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 ). (6.336)

The final result for the mass renormalization correction reads

∆M
(1)
1 (M

(0)
1 ) =

−Tr
(

(1 + γ4)Σm(~0, iM
(0)
1 )

)

4 cosh(M
(0)
1 )

(

1 − sinh2(M
(0)
1 )/2

) . (6.337)

Because m = 0 implies ∆M
(1)
1 = 0 for staggered quarks, one does not need to subtract

the correction according to

∆M
(1)
1,sub(M

(0)
1 ) = ∆M

(1)
1 (M

(0)
1 ) − ∆M

(1)
1 (0)

cosh(M
(0)
1 )

(

1 − sinh2(M
(0)
1 )/2

) (6.338)

in this case.
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6.6.3 The wave function renormalization

The wave function renormalization the expression is given by Eq. (6.332), i.e.

Z2(~0, iM1)
−1 =

d

dM1

{

Σm(~0, iM1) + sinh(M1)
(

1 − 1

6
sinh2(M1) − Σ4(~0, iM1)

)

}

=

= cosh(M1)
(

1 − 1

2
sinh2(M1)

)

+
d

dM1

{

Σm(~0, iM1) − sinh(M1)Σ4(~0, iM1)

}

=

= cosh(M
(0)
1 )

(

1 − 1

2
sinh2(M

(0)
1 )

)

− 3

2
∆M

(1)
1 sinh3(M

(0)
1 ) +

+
d

dM1

{

Σm(~0, iM
(0)
1 ) − sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 )

}

. (6.339)

There is again a zeroth order contribution,

Z
(0)
2 (~0, iM1)

−1 =
d

dM1

{

sinh(M
(0)
1 )

(

1 − 1

6
sinh2(M

(0)
1 )

)

}

=

= cosh(M
(0)
1 )

(

1 − 1

2
sinh2(M

(0)
1 )

)

. (6.340)

In terms of this contribution one can invert Eq. (6.340) to obtain

Z
(1)
2 (~0, iM1) = Z

(0)
2

{

1 +
3

2
Z

(0)
2 ∆M

(1)
1 sinh3(M

(0)
1 ) +

−Z(0)
2

d

dM1

(

Σm(~0, iM
(0)
1 ) − sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 )

)

}

. (6.341)

The part Σm(~0, iM
(0)
1 ) can be obtained as before by taking one quarter of the trace of

Σ(~0, iM
(0)
1 ). The part − sinh(M

(0)
1 )Σ4(~0, iM

(0)
1 ) is obtained by taking one quarter of the

trace of Σ(~0, iM1) multiplied with γ4. One has to take the derivative of both terms.
Combining these steps one obtains

Z
(1)
2 (~0, iM1) = Z

(0)
2

{

1 +
3

2
Z

(0)
2 ∆M

(1)
1 sinh3(M

(0)
1 ) − Z

(0)
2

4

d

dM1
Tr
(

(1 + γ4)Σ(~0, iM1)
)

}

.

(6.342)

Written in terms of a derivative with respect to the (dimensionless) quantity p4 = iM
(0)
1 ,

one obtains

Z
(1)
2 (~0, iM1) = Z

(0)
2

{

1 +
3

2
Z

(0)
2 ∆M

(1)
1 sinh3(M

(0)
1 ) +

+
Z

(0)
2

4i

d

dp4
Tr
(

(1 + γ4)Σ(~0, p4)
)

∣

∣

∣

∣

∣

p4=iM
(0)
1

}

. (6.343)

The derivative will be IR-divergent, and one has to think about whether the same method
as before works, especially how the effective continuum mass reads in this case. This is
done in the following subsection.
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6.6.4 The IR counter term

The subtraction of the IR contribution is done by calculating an appropiate counter term
within the continuum theory. In order to cancel the IR divergences, the mass parameter
of the continuum contribution has to be adjusted to the lattice result. This is done
by comparing the (scalar) denominator of the quark propagator in the continuum to
the expansion of the denominator of the quark propagator on the lattice close to the
calculated pole. Starting point for the latter one is again the ξ function of the action S
in Eq. (6.314). If one uses the representation in terms of momentum part and mass parts
given in Eq. (6.315) and p = (~0, iM1)+q for the momentum where q is small, the different
parts read

P0i(qi) =
1

χ
sin qi

(

1 +
1

6
sin2 qi

)

≈ 1

χ
qi,

P04(iM1 + q4) = sin(iM1 + q4)
(

1 +
1

6
sin2(iM1 + q4)

)

=

≈ (i sinhM1 + q4 coshM1)

(

1 − 1

6
sinh2M1 +

+
i

3
q4 sinhM1 coshM1 +

1

6
q2
4

(

sinh2M1 + cosh2M1

)

)

,

M0(iM1 + q) = m0at = sinhM1

(

1 − 1

6
sinh2M1

)

. (6.344)

Therefore, for the scalar denominator factor one obtains

3
∑

i=1

P 2
0i(qi) + P 2

04(iM1 + q4) +M2
0 (iM1 + q) =

= 2iq4

(

1 − 1

6
sinh2M1

)(

1 − 1

2
sinh2M1

)

sinhM1 coshM1 + q2 +O(q2
4) (6.345)

where terms proportional to q2
4 can be neglected because they do not contribute to the

leading order expression (cf. Ref. [212]). This expression has to be compared with the
denominator factor (2im̃q4+q

2) from the continuum result for the quark propagator where
m̃ is called the (effective) continuum mass. The comparison results in

m̃ = sinhM1 coshM1

(

1 − 1

6
sinh2M1

)(

1 − 1

2
sinh2M1

)

. (6.346)

Without the Naik term the calculations simplify significantly. One then has

P0i(qi) ≈ 1

χ
qi,

P04(iM1 + q4) ≈ i sinhM1 + q4 coshM1,

M0(iM1 + q) = m0at = sinhM1 (6.347)

and therefore

3
∑

i=1

P 2
0i + P 2

04 +M2
0 =

1

χ2

3
∑

i=1

q2
i + (i sinhM1 + q4 coshM1)

2 + sinh2M1 =

= 2iq4 sinhM1 coshM1 + q2 + q2
4 sinh2M1. (6.348)
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In this case the continuum mass is given by

m̃ = sinhM1 coshM1. (6.349)

Finally, note that χ does not explicitly occur in these expressions, even though one started
with the anisotropic action. Using this continuum mass, the expressions for the subtrac-
tion term of the integrand for

1

4i

d

dp4
Tr
(

(1 + γ4)Σ(~0, p4)
)

∣

∣

∣

∣

∣

p4=iM
(0)
1

(6.350)

are just the same as for the non-staggered quarks. This holds true also for the re-added
singular contribution. Therefore, the result can be taken from there. The subtraction
term for the numerator derivative (first term according to the quotient rule where the
derivative of the numerator is taken) reads

∆̃n(q) =
2q2

(q4 + 4m̃2q2
4)(q

2 + λ2)
+ (1 − αg)

2q2
4 − q2

(q4 + 4m̃2q2
4)(q

2 + λ2)
, (6.351)

the singular contribution is given by

∆n(Λ) = 2 ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

− Λ2

2m̃2
+

Λ

2m̃2

√
Λ2 + 4m̃2 + (6.352)

−1

2
(1 − αg)

{

ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

− Λ2(Λ2 + 8m̃2)

8m̃4
+

Λ(Λ2 + 6m̃2)

8m̃4

√
Λ2 + 4m̃2

}

.

Here λ is the gluon mass, and Λ is the cutoff parameter which have to be chosen to be
less than π. For the denominator derivative the subtraction term reads

∆̃d(q) = −4
(q2

4 + m̃2)(q4 − 4m̃2q2
4)

(q4 + 4m̃2q2
4)

2(q2 + λ2)
− 2(1 − αg)

q2
4(q

2 + 2m̃2)

(q4 + 4m̃2q2
4)q

2(q2 + λ2)
, (6.353)

while the singular contribution is given by

∆d(Λ) =
(

1 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

+

+ ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

+
Λ2(3Λ2 + 4m̃2)

8m̃4
− Λ(3Λ2 − 2m̃2)

8m̃4

√
Λ2 + 4m̃2 + (6.354)

+
1

2
(1 − αg)

{

ln

(

Λ +
√

Λ2 + 4m̃2

2m̃

)

− Λ2(Λ2 + 8m̃2)

8m̃4
+

Λ(Λ2 + 6m̃2)

8m̃4

√
Λ2 + 4m̃2

}

.

It turns out that in the massive case only the denominator derivative is IR singular. This
changes for the massless case. The corresponding expressions are then given by

∆̃n(q) =
2

q2(q2 + λ2)
+ (1 − αg)

2q2
4 − q2

q4(q2 + λ2)
, (6.355)

∆̃d(q) =
−4q2

4

q4(q2 + λ2)
− (1 − αg)

2q2
4

q4(q2 + λ2)
, (6.356)

∆n(Λ) =
1

2

(

−2 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

, (6.357)

∆d(Λ) =
1

2

(

1 +
1

2
(1 − αg)

)

ln

(

λ2

Λ2

)

. (6.358)
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6.6.5 The speed of light correction

Following Ref. [209], the correction of the speed-of-light coefficient is given by the require-
ment that the spatial and the temporal parts of the inverse quark propagator are related
by this factor, c0asPi(p) = atP4(p). This condition leads to

c0

(

1 +
1

6
sin2(pi)

)

− Σi(~p, p4) = 1 +
1

6
sin2(p4) − Σ4(~p, p4) (6.359)

where i is either 1, 2, or 3. For ~p = ~0 and p4 = iM1 one obtains

c0 = 1 − 1

6
sinh2(M1) + Σ̂i(M1) − Σ̂4(M1). (6.360)

The part Σ̂i(M1) can only be extracted from Σ(~0, iM1) by taking the derivative with
respect to the spatial component,

d

dpi
Σ(~p, p4) =

i

χ
γi cos(pi)Σi(~p, p4) + (6.361)

+
i

χ

3
∑

j=1

γj sin(pj)
d

dpi
Σj(~p, p4) + iγ4 sin(p4)

d

dpj
Σ4(~p, p4) +

d

dp4

Σm(~p, p4).

Taking ~p = ~0 and the trace with γi, all the parts in the second line vanish such that one
obtains

d

dpi
Tr
(

γiΣ(~0, p4)
)

=
4i

χ
Σi(~0, p4). (6.362)

For the part Σ̂4(M1) one takes the trace with γ4,

Tr
(

γ4Σ(~0, p4)
)

= 4i sin(p4)Σ4(~0, p4). (6.363)

Therefore, one obtains

c0 = 1 − 1

6
sinh2(M1) +

χ

4i

d

dpi
Tr
(

γiΣ(~0, p4)
)

∣

∣

∣

∣

∣

p=(~0,iM1)

+
1

4

Tr
(

γ4Σ(~0, iM1)
)

sinh(M1)
. (6.364)

In the massless case the division by sinh(M1) is ill-defined. In this case one has to take
the derivative here as well, the result then reads

c0 = 1 +
χ

4i

d

dpi
Tr
(

γiΣ(~0, p4)
)

∣

∣

∣

∣

∣

p=(~0,0)

− 1

4i

d

dp4

Tr
(

γ4Σ(~0, p4)
)

∣

∣

∣

∣

∣

p=(~0,0)

. (6.365)



Chapter 7

QCD sum rules for heavy quarks

Sum rules have been investigated years before Quantum Chromodynamics was introduced
to describe elementary particle physics. In order to understand, why the method consid-
ered in this chapter is called “sum rule method”, i.e. to understand, what is summed here
and to what purpose, it is useful to take a short glimpse at a historical example just as
an illustration, without going too much into details. In 1966 Drell and Hearn [218] and
Gerasimov [219] independently constructed an exact sum rule for the magnetic moment
of the nucleon. The sum rule presented in Ref. [218] was written as

∫ ∞

0

dν

ν
(σP (ν) − σA(ν)) =

2π2α

M2
p

κ2
p

where the quantities on the left hand side were the total cross section for the absorption
of a circularly polarized photon on a proton of laboratory energy hν with spin parallel
or antiparallel to the photon spin, while the right hand side contained the fine structure
constant α, the proton mass mp, and the anomalous magnetic moment κp of the proton
in units of the nucleon magneton. The authors stressed that this sum rule containing
only experimental quantities could be analyzed in the laboratory. This sum rule already
contained elements which appear also in more modern treatments.

The general principle shown in this example is that perturbatively calculable quantities
like the cross sections on the left hand side are compared with pure experimental quantities
which cannot be determined by means of perturbation theory. Sum rules, therefore, can
be used for the nonperturbative determination of physical parameters. The kind of sum
rules shown in this example were later on called asymptotic sum rules because they use
the assumption that the integral over the infinite range converges asymptotically.

The highly cited publication of Bjørken about asymptotic sum rules [220] was the start-
ing point for activities of constructing and analyzing sum rules for all kinds of phenomena.
The branch of sum rules which are considered in this chapter are related to QCD. In 1979
Shifman, Vainshtain and Zakharov (SVZ) developed the method of QCD sum rules [155].
This method became a widely used working tool in hadron phenomenology.

After saying a few words about the SVZ approach to QCD sum rules in the first
section, the following sections will deal with the preparation for and the construction and
analysis of QCD sum rules for different applications.

322
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7.1 SVZ approach and operator product expansion

The objects QCD sum rules are applied to are the two-point correlators of hadronic
currents, an object which was already introduced in the previous chapters. Originally,
the SVZ approach [155] was only intended for light quark systems but it turned out
to be applicaple to heavy quark systems as well. Because it relates perturbative and
nonperturbative quantities, the QCD sum rule method is deeply related to an expansion in
inverse powers of the squared momentum q2 (actually, the Euclidean analogue Q2 = −q2),
the Operator Product Expansion (OPE). For the vector-vector correlation function

i
∫

T {jµ(x)jν(0)} eiqxd4x = Oµν = (qµqν − q2gµν)O, (7.1)

the operator product expansion is given by

O =
∑

n

Cn(q
2)On = (7.2)

= CI(q
2)I + CM(q2)OM + CG(q2)OG + Cσ(q

2)Oσ + CΓ(q2)OΓ + Cf(q
2)Of + . . .

where the order of the expansion is given by the mass dimension d. Operators up to the
sixth order in the mass dimension are given by

I (the unit operator) (d = 0), OM = ψ̄Mψ, OG = Ga
µνG

a
µν (d = 4),

Oσ = ψ̄σµνt
aM̃ψGa

µν , OΓ = ψ̄Γ1ψψ̄Γ2ψ, Of = fabcGa
µνG

b
νρG

c
ρµ (d = 6)

(7.3)

where ta are the generators of SU(3). The coefficients Cn are known as Wilson coefficients
and can be calculated perturbatively. The operators take various forms, depending on
whether the currents are vector or axial vector currents. For the vector current, especially
for the ρ meson current

j(ρ)
µ =

1

2
(ūγµu− d̄γµd) (7.4)

one obtains the contributions

CI =
1

8π2
ln

(

µ2

Q2

)

+O(αs)

CMOM =
1

2Q4
(muūu+mdd̄d) +O(αs),

CGOG =
αs

24πQ4
Ga
µνG

a
µν , (7.5)

CσOσ =
igs

12Q8
(m3

uūσµνt
au+m3

dd̄σµνt
ad)Ga

µν +O(gsα),

CΓOΓ = −παs
2Q6

(ūγµγ5t
au− d̄γµγ5t

ad)2 − παs
9Q6

(ūγµt
au+ dγµt

ad)
∑

q=u,d,s

q̄γµt
aq.

The operator CσOσ as well as the (not even listed) operator CfOf do not play any
significant role here. For the axial vector current of the a1 meson,

j(a1)
µ =

1

2
(ūγµγ5u− d̄γµγ5d) (7.6)
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one obtains the following difference to the result for the vector current,

i
∫

(T{j(a1)
µ (x)j(a1)

ν (0)} − T{j(ρ)
µ (x)j(ρ)

ν (0)})eiqxd4x = −gµν
Q2

(muūu+mdd̄d) +

−(qµqν − gµνq
2)

2παs
Q6

(ūLγµt
auL − d̄Lγµt

adL)(ūRγµt
auR − d̄Rγµt

adR) (7.7)

where qL,R = 1
2
(1± γ5)q. It is obvious that for this case one obtains a deviation from the

transversality, given by the (d = 4)-term. The result for the pseudoscalar current for the
π meson,

j(π) =
i

2
(ūγ5u− d̄γ5d) (7.8)

reads

i
∫

T{j(π)(x)j(π)(0)}eiqxd4x = − 3Q2

16π2
ln

(

µ2

Q2

)

− 1

4Q2
(muūu+mdd̄d) +

αs
16πQ2

Ga
µνG

a
µν +

+
παs
4Q4

(ūσµνγ5t
au− d̄σµνγ5t

ad)2 +
παs
6Q4

(ūγµt
au+ d̄γµt

ad)
∑

q=u,d,s

q̄γµt
aq. (7.9)

Actually, one is interested in the vacuum expectation values (or condensates) of all these
quantities. The basic quantities are 〈I〉 = 1, 〈q̄q〉, 〈(αs/π)Ga

µνG
a
µν〉, and 〈q̄q〉2. In order to

reduce the more complicated vacuum expectation values of the operators to these values,
one can use assumptions such as the equality of the light quark masses and the PCAC
(partially conserved axial-vector current) hypothesis [221] to obtain

〈muūu+mdd̄d〉 =
1

2
(mu +md)〈ūu+ d̄d〉 = −1

2
m2
πf

2
π . (7.10)

The isotopic invariance 〈ūu〉 = 〈d̄d〉 = 〈q̄q〉 is used as well. The gluon condensate is
abbreviated by 〈(αs/π)G2〉. A approximation has to be done for the four-quark operators.
One represents this vacuum expectation value by the square of vacuum expectation values
〈ψ̄ψ〉, with

〈ψ̄Γ1ψψ̄Γ2ψ〉 =
1

N2
((Tr(Γ1)Tr(Γ2) − Tr(Γ1Γ2)) 〈ψ̄ψ〉2 (7.11)

where the normalization factor N is defined by

〈ψ̄AψB〉 =
δAB
N

〈ψ̄ψ〉. (7.12)

The subsripts A and B denote spin, colour, and flavour. For the SU(3) symmetric case
one obtains N = 3×3×4 = 36 and 〈ψ̄ψ〉 = 〈ūu+ d̄d+ s̄s〉. If the SU(3) breaking is taken
into account explicitly, A and B do no longer contain the flavour indices. Therefore, one
obtains N = 12. Examples are given in Ref. [155] for Γ1 = Γ2 = γµ, Γ1 = Γ2 = γµγ5, and
Γ1 = Γ2 = σµνγ5. If one compares the simplified results

Tr(γµ) = 0, Tr(γµγµ) = 4Tr(1l4) = 16,

Tr(γµγ5) = 0, Tr(γµγ5γµγ5) = −Tr(γµγµ) = −16,

Tr(σµνγ5) = 0, Tr(σµνγ5σµνγ5) = Tr(σµνσµν) =

(where σµν = i[γµ, γν ]/2) = −1

4
Tr([γµ, γν ][γµ, γν ]) = 48 (7.13)
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with the vacuum condensates

〈q̄γµγ5t
aqq̄γµγ5t

aq〉 = −〈q̄γµtaqq̄γµtaq〉 =
16

9
〈q̄q〉2,

〈q̄σµνγ5t
aqq̄σµνγ5t

aq〉 =
16

3
〈q̄q〉2, (7.14)

one obtains an effective normalization1 N = 9 and

〈CΓOΓ〉V = −παs
2Q6

(

〈(ūγµγ5t
au)2〉 + 〈(d̄γµγ5t

ad)2〉
)

− παs
9Q6

(

〈(ūγµtau)2〉 + 〈(d̄γµtad)2〉
)

=

= −παs
2Q6

(

32

9
〈q̄q〉2

)

− παs
9Q6

(

−32

9
〈q̄q〉2

)

= −112παs
81Q6

〈q̄q〉2, (7.15)

〈CΓOΓ〉A = 〈CΓOΓ〉V − 2παs
Q6

(

〈ūLγµtauLūRγµtauR〉 + 〈d̄LγµtadLd̄RγµtadR〉
)

=

= −112παs
81Q6

〈q̄q〉2 − 2παs
Q6

(

−16

9
〈q̄q〉2

)

=
176παs
81Q6

〈q̄q〉2, (7.16)

〈CΓOΓ〉P =
παs
4Q4

(

〈(ūσµνγ5t
au)2〉 − 〈(d̄σµνγ5t

ad)2〉
)

+
παs
6Q4

(

〈(ūγµtau)2〉 + 〈(d̄γµtad)2〉
)

=

=
παs
4Q4

(

32

3
〈q̄q〉2

)

+
παs
6Q4

(

−32

9
〈q̄q〉2

)

=
56παs
27Q4

〈q̄q〉2. (7.17)

For the axial vector current one has used

q̄Lγµt
aqL =

1

4
q̄(1+ γ5)γµ(1− γ5)t

aq =
1

2
q̄γµ(1− γ5)t

aq, q̄Rγµt
aqR =

1

2
q̄γµ(1+ γ5)t

aq

(7.18)
and

Tr(Γ1) = Tr(Γ2) = 0 for Γ1 =
1

2
γµ(1 − γ5), Γ2 =

1

2
γµ(1 + γ5),

Tr(Γ1Γ2) =
1

4
Tr (γµ(1 − γ5)γµ(1 + γ5)) =

1

4
Tr (γµγµ(1 + γ5)(1 + γ5)) =

=
1

2
Tr (γµγµ(1 + γ5)) =

1

2
Tr(γµγµ) = 2Tr(1l4) = 8 (7.19)

to obtain

〈q̄LγµtaqLq̄RγµtaqR〉 = −8

9
〈q̄q〉2. (7.20)

In normalizing the whole operator product expansion to the leading order term, one
obtains

〈Oµν〉 =
qµqν − gµνq

2

8π2

(

ln

(

µ2

Q2

)

+
〈O2〉
Q2

+
〈O4〉
Q4

+
〈O6〉
Q6

+. . .

)

+
gµνq

2

8π2

(

〈O′4〉
Q4

+. . .

)

(7.21)

(actually, 〈O2〉 is absent in all cases). Taking the value αs〈q̄q〉2 ≈ 4 × 10−4 GeV6 one has

〈O6〉V = −896π3αs
81

〈q̄q〉2 ≈ −0.137GeV6,

〈O6〉A =
1408π3αs

81
〈q̄q〉2 ≈ 0.216GeV6,

〈O′6〉P =
448π3αs

27
〈q̄q〉2 ≈ 0.206GeV6. (7.22)

1This result is different from the one in Ref. [155] because the trace Tr(tata) = 16 is not taken into
account. Note in addition that in Ref. [155] the tensor σµν is defined without the factor i.
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7.2 The polynomial adjustment method

After the presentation of the main ideas of the SVZ approach to the QCD sum rule
method, the first concrete application will be given. The quantities which will be deter-
mined in this application are the fine structure constant α at the pole of the Z0 boson [222]
and the anomalous magnetic moment of the muon [223]. The values of both quantities are
of paramount importance for precision tests of the Standard Model. In this section the
general method for the QCD sum rule determination of these two quantities is presented
before details about the two different determinations are given.

7.2.1 The integral representation

The corrections ∆α(−q2) to the QED coupling constant are given by the corrections to
the photon propagator due to the calculation of a chain of inserted vacuum-polarization
terms [224, 225, 226],

−α(−q2)

q2
= α0

(

−1

q2
+

−1

q2
Πγ(−q2)

−1

q2
+ . . .

)

=

=
−α0

q2(1 + Πγ(−q2)/q2)
=

−α0

q2(1 − ∆α(q2))
(7.23)

where Πγ(−q2) = −e2q2Π(−q2) = −4πα0q
2Π(−q2) and Π(−q2) is the two-point correla-

tor. The function Π(−q2)/q2 is a meromorphic function except for a cut along the real
axis for q2 > 4m2

π, and it vanishes for |q2| → ∞.

In order to understand what this means, one can
resort to a simplified example, namely the correlator
function

ΠM(−q2) =
√

4m2
π − q2. (7.24)

This function takes an imaginary value for q2 > 4m2
π.

The sign of the imaginary value depends on whether
one approaches the real axis from the upper or lower
half plane, as it is shown in Fig. 7.1. This is indi-
cated by setting q2 = se±i0, s > 4m2

π. Therefore, one
obtains

real axis

Figure 7.1: cut along the real axis

√

4m2
π − sei0 =

√

4m2
π + seiπ =

√

(s− 4m2
π)e

iπ =

= eiπ/2
√

s− 4m2
π = i

√

s− 4m2
π,

√

4m2
π − se−i0 = e−iπ/2

√

s− 4m2
π = −i

√

s− 4m2
π. (7.25)

As explained in Chapter 2, the discontinuity is defined by

Disc ΠM(s) = ΠM(−sei0) − ΠM(−se−i0) = 2i
√

s− 4m2
π (7.26)

and the spectral density is given by

ρM (s) =
1

2πi
Disc ΠM(s) =

1

π

√

s− 4m2
π. (7.27)
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q2

4m 2
π

Figure 7.2: circle paths

After having parametrized the cut by introducing the
discontinuity, one can use Cauchy’s theorem in order
to express the correlator function by the correspond-
ing spectral density. For this one takes the circle
about the specific point z = q2 and expands this cir-
cle to a circle with infinite radius (see Fig. 7.2). If
the circle reaches the cut, an alternative path along
the real axis can be chosen to circumvent this cut,
resulting in two line integrals. In assuming that in
the limit of an infinite radius the circle part of the
integral vanishes, one obtains

ΠM(−q2) =
1

2πi

∮ ΠM(−z)dz
z − q2

=

=
1

2πi

∫ 4m2
πe

−i0

∞e−i0

ΠM (−z)dz
z − q2

+
1

2πi

∫ ∞ei0

4m2
πe

i0

ΠM(−z)dz
z − q2

=

=
1

2πi

∫ ∞

4m2
π

ΠM(−si0) − ΠM(−s−i0)
s− q2

ds =
∫ ∞

4m2
π

ρM (s)

s− q2
. (7.28)

This dispersion relation is valid not only for the specific example but is valid in general
if ΠM(−q2) falls off sufficiently fast for |q2| → 0. However, this is not the case for the
correlator function one is dealing with in this application. Therefore, ΠM (−q2) is singular.
But one can redefine ΠM(−q2) by a subtracted quantity,

ΠM (−q2) → ΠM(−q2) − ΠM(0) =
∫ ∞

4m2
π

(

1

s− q2
− 1

−q2

)

ρ(s)ds =

=
∫ ∞

4m2
π

q2ρ(s)ds

s(s− q2)
(7.29)

which can also be obtained if one writes a dispersion relation for ΠM(−q2)/q2 instead of
ΠM(−q2). Finally note that the index M represents the Minkowskian space. Usually,
the correlator function is calculated in Euclidean space. For these correlator functions
the cut runs along the negative real axis, so the discontinuity is defined along this cut
with arguments se∓iπ. For the two-point correlator in Euclidean space one then has the
dispersion relation [59]

Π(−q2)

−q2
=
∫ ∞

4m2
π

ρ(s)ds

s(s+ q2)
or Π(−q2) = −

∫ ∞

4m2
π

q2ρ(s)ds

s(s+ q2)
. (7.30)

Taking into account only hadronic contributions, the spectral density is related to the
relative hadronic cross section in e+e− annihilations

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(7.31)

by R(s) = ρ(s). For low energies the relative cross section is determined by the pion form
factor Fπ,

R(s) =
v3
π

4
|Fπ(s)|2, vπ =

√

1 − 4m2
π

s
. (7.32)
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Therefore, the expression one deals with for the hadronic contribution to the fine structure
correction is given by

∆α(M2
Z) = − α

3π

∫ ∞

4m2
π

H(s)ρ(s)ds, H(s) =
M2

Z

s(M2
Z − s)

. (7.33)

The integrand consists of the spectral density ρ(s) and a factor H(s) which is called weight
function. This weight function has a single pole at the origin, a fact that will become
important in the argumentation that follows. In case of the anomalous magnetic moment
of the muon, the weight function can be determined from the first order QED correction to

p

p + k

p’+ k

p’

k

k q = p − p’

(q2 = 0)

Figure 7.3: hadronic corrections
to the muon anomalous moment

the muon-photon vertex with a self energy insertion
in the photon loop. In Fig. 7.3, the contribution of
the shaded bubble reads

Πµν(−q2) = (qµqν − q2gµν)Π(−q2). (7.34)

For the scalar correlator function one has the sub-
tracted dispersion relation

Π(−q2) =
∫

q2ρ(s)ds

s(s− q2)
. (7.35)

Ignoring for the moment the Dirac structure of the fermion lines, the integral representing
the loop in the Feynman diagram is given by

∫

d4k

(2π)4

Π(−q2)

((p+ k)2 −m2)((p′ + k)2 −m2)(k2)2
=

=
∫

d4k

(2π)4

∫

ds
ρ(s)

s(s− k2)((p+ k)2 −m2)((p′ + k)2 −m2)k2
=

=
∫

ds
ρ(s)

s

∫

d4k

(2π)4

−1

((p+ k)2 −m2)((p′ + k)2 −m2)k2(k2 − s)
(7.36)

where the dispersion relation has been inserted and the integrations have been inter-
changed. In the case p′, p→ 0, the innermost integral is given by

K(s) =
(1 + x2)(1 + x)2

x2
ln(1 + x) +

x2(1 + x)

1 − x
ln(x) +

+
x2

2
(2 − x2) +

(1 + x2)(1 + x)2

x2

(

−x+
x2

2

)

(7.37)

with x = (v − 1)/(v + 1, v =
√

1 − 4m2
µ/s. This situation is represented by the same

diagram as in Fig. 7.3 where the bubble and one of the attached gluon lines is replaced
by a gluon line with “mass” s. Therefore, one obtains

aµ =
α2

0

3π2

∫ ∞

4m2
π

H(s)ρ(s)ds (7.38)

where the weight function is now given by H(s) = K(s)/s. K(s) has a cut along the real
axis so that the decay of the weight function H(s) = K(s)/s with increasing s is faster
than in the case of the QED coupling. If one again only takes the hadronic contribution,
ρ(s) is meant to be the spectral density corresponding to the hadronic correlator function.
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7.2.2 Local and global duality

The question may arise why one cannot exclude the experimental values from the con-
siderations at all and take relations like the one in Eq. (7.27) in order to calculate the
spectral density from a correlator function, a quantity that could be calculated perturba-
tively. The reason is that there is actually an obstacle in using this relation. As depending
on methods of functional analysis, the dispersion relation (7.35) can be solved for ρ(s)
only if there are no poles encircled by the path in the complex plane. These poles can
have their origin from weight functions in combination with the spectral density. This
means that if there is such a weight function included in the integration of the spectral
density, the inverse relation shown above is only valid locally and not globally . This is
called local resp. global duality (see e.g. Ref. [55]).

The occurence of a singularity in the encircled part of the complex plane is actually
the fact for the weight functions for the two parameters under consideration. Therefore,
one cannot completely keep out the experimental measurements from the considerations.
There is, however, a way to include them in an optimal way. This is done by the polynomial
adjustment method that will be introduced in the following. In the meantime, this method
has also been used by other authors (see e.g. Ref. [227]).

7.2.3 Introduction of the method

The polynomial adjustment method is based on the fact that one can use global duality
when the weight function is non-singular. This is the case for a polynomial function.
Therefore, one can mimic the weight function by a polynomial function obeying several
conditions which will be explained later. By adding and subtracting a polynomial function
PN(s) of given order N to the weight function H(s), one obtains exactly

∫ sb

sa

ρ(s)H(s)ds =
∫ sb

sa

ρ(s) (H(s) − PN(s)) ds+
∫ sb

sa

ρ(s)PN (s)ds (7.39)

where [sa, sb] is any interval from the total integration range. But because the second
term has a polynomial weight, one can use global duality to write

∫ sb

sa

ρ(s)PN(s)ds =
1

2πi

∫ sb

sa

Disc Π(s)PN(s)ds =

= − 1

2πi

∮

|s|=sa

Π(−s)PN (s)ds+
1

2πi

∮

|s|=sb

Π(−s)PN (s)ds. (7.40)

Therefore, this part can be represented by the difference of two circle integrals in the
complex plane. On the other hand, the differenceH(s)−PN(s) suppresses the contribution
of the first part. Thus, the method consists of the following steps:

• replace ρ(s) in the first part of Eq. (7.39) by the value of the experimentally measured
total cross section R(s) (see e.g. Ref. [224]),

• replace the circle integral contribution by zero, if the radius sa of this circle integral
corresponds to the threshold energy of the corresponding flavour,

• insert the QCD perturbative and non-perturbative parts of Π(−s) on the circle for
the second part of Eq. (7.39) in all other cases.
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These replacements can be seen as a concept within QCD sum rules. To obtain the best
efficiency for the method, one should consider to restrict the polynomial function due to
the following contraints:

• The method of least squares fit should be used to mimic the weight.

• However, the degree N should not be higher than the order of the highest pertur-
bative resp. non-perturbative contribution increased by one (this is a consequence
of Cauchy’s theorem involved in the analytical integration of the circle integrals).

• Especially for the low energy region, the polynomial function should vanish on the
real axis to avoid instanton effects [79].

• In regions where resonances occur, the polynomial function should fit the weight
function to suppress those contributions which constitute the highest uncertainty of
the experimental data.

As just mentioned, the integration on the circle can be done analytically by using Cauchy’s
theorem. But one has to keep in mind that the result for Π(−s) used here depends loga-
rithmically on the renormalization scale µ and on the parameters of the theory that are
renormalized at the scale µ. These are the strong coupling constant, the quark masses
and the condensates. As advocated in Ref. [228], the renormalization group improve-
ment for the moments of the electromagnetic correlator is implemented by performing
the integrations over the circle with radius |s| = sb with constant parameters, i.e. they are
renormalized at a fixed scale µ. Subsequently these parameters are evolved from this scale
to µ2 = sa using the four-loop β function. In other words, one imposes the renormaliza-
tion group equation on the moments rather than on the correlator itself. This procedure
is not only technically simpler but avoids also possible inconsistencies inherent to the
usual approach where one applies the renormalization group to the correlator, expands in
powers of ln(s/µ2) and carries out the integration in the complex plane only at the end.
In the present case the reference scale is given by ΛMS.

7.2.4 The experiment side

The polynomial adjustment method needs theoretical as well as experimental input data.
Data from experiments are crucial in the low energy range and in the threshold regions
where perturbative QCD cannot be applied. Combined data sets from various electron-
positron annihilation experiments [224] are used which are supplemented by recent BES
measurements [229]. In addition, the use of precise τ -decay data from Ref. [230] by isospin
rotation promises to be a rewarding step in the low energy region. The vector spectral
functions of τ decay are related to the isovector e+e− cross sections for the corresponding
hadronic states X by [230]

σI=1(e+e− −→ X0) =
4πα2

0

s
vJ=1(τ

− → X−ντ ). (7.41)

vJ=1(τ
− → X−ντ ) is obtained by dividing the normalized invariant mass-squared distri-

bution dNX−/NX−ds for a given hadronic mass
√
s by the appropriate kinematic factor,

vJ=1(τ
− → X−ντ ) =

m2
τ

6|Vud|2SEW

B(τ− → X−ντ )

B(τ− → e−ν̄eντ )
×
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× dNX−

NX−ds





(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)





−1

(7.42)

where |Vud| = 0.9752 ± 0.0007 denotes the CKM weak mixing matrix element [127] and
SEW = 1 + δEW = 1.0194 accounts for electroweak second order corrections [231]. The
spectral functions are normalized by the ratio of the respective vector branching fraction
B(τ− → X−ντ ) to the branching fraction of the electron channel B(τ− → e−ν̄eντ ) =
17.79 ± 0.04 [232].

7.2.5 The theory side

The two-point correlator [108] is given by

12π2i
∫

〈0|jem
µ (x)jem

ν (0)|0〉eiqxd4x = (−gµνq2 + qµqν)Π(−q2) (7.43)

where one only includes the isospin contribution I = 1 in order to make it comparable
to considerations for the τ decay. The scalar correlator function Π(−q2) consists of per-
turbative and non-perturbative contributions which are included to the extent needed for
the required accuracy. For massless quarks the imaginary part of the two-point function
is known up to four loops in QCD perturbation theory [233]. For the strange quark the
O(m2

q/s) power correction to three-loop order is included [233]. The perturbative contri-
butions to the current-current correlator read [233, 234, 235]

ΠP(s) =
9

4

Nf
∑

i=1

Q2
i

[

20

9
+

4

3
L+ CF

(

55

12
− 4ζ3 + L

)

αs
π

+

−C2
F

(

143

72
+

37

6
ζ3 − 10ζ5 +

1

8
L
)(

αs
π

)2

+

+CACF

(

44215

2592
− 227

18
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5

3
ζ5 +

41

8
L− 11

3
ζ3L+

11

24
L2
)(

αs
π

)2

+

−CFTFNf

(

3701

648
− 38

9
ζ3 +

11

6
L− 4

3
ζ3L+

1

6
L2
)(

αs
π

)2

+

+

{

8 + CF (16 + 12L)
αs
π

+

+C2
F

(

1667

24
− 5

3
ζ3 −

70

3
ζ5 +

51

2
L+ 9L2

)(

αs
π

)2

+

+CACF

(

1447

24
+

16

3
ζ3 −

85

3
ζ5 +

185

6
L+

11

2
L2
)(

αs
π

)2

+

−CFTF
(

64

3
− 16ζ3 +Nf

(

95

6
+

26

3
L+ 2L2

))(

αs
π

)2
}

m2
q

s
+ (7.44)

+
(

c3 + k2L+
1

2
(k0β1 + 2k1β0)L

2 +
1

3
k0β

2
0L

3
)(

αs
π

)3

+O(αs
4) +O(m4

q/s
2)

]

with L = ln(−µ2/s), k0 = 1, k1 = 1.63982 and k2 = 6.37101 (for the βi see Eq. (2.20)).
The yet unknown constant term in the four-loop contribution has been denoted by c3.
However, the constant non-logarithmic terms do not contribute to the circle integrals. The



332 CHAPTER 7. QCD SUM RULES FOR HEAVY QUARKS

condensate contributions which will be referred to as the non-perturbative contributions
are given by [234]

ΠNP(s) =
2π2

3s2

(

1 +
7αs
6π

)

〈αs
π
G2〉 +

+
32π2

3s2

(

1 +
αs
4π
CF + . . .

)

〈muūu〉 +
8π2

3s2

(

1 +
αs
4π
CF + . . .

)

〈mdd̄d〉 +

+
8π2

3s2

(

1 +
αs
4π
CF + (5.8 + 0.92L)

α2
s

π2

)

〈mss̄s〉 +

+
4α2

s

3s2
(0.6 + 0.333L)〈muūu+mdd̄d〉 + (7.45)

−CAm
4
s

3s2

(

1 + 2L+ (0.7 + 7.333L+ 4L2)
αs
π

)

+
1792π3

81s3
αs|〈q̄q〉|2 +O(s−4)

where the m4
s/s

2-contribution arising from the unit operator has been included. The
SU(3) colour factors CF = 4/3, CA = 3, TF = 1/2 have been used. The number of active
flavours is denoted by Nf . For the coupling constant αs of the strong interaction the
four-loop formula in Ref. [48] is used, although a three-loop accuracy would be sufficient
for the present application,

αs(µ
2)

π
=

1

β0LΛ
− β1 lnLΛ

β0(β0LΛ)2
+

1

(β0LΛ)3

[

β2
1

β2
0

(ln2 LΛ − lnLΛ − 1) +
β2

β0

]

+

− 1

(β0LΛ)4

[

β3
1

β3
0

(

ln3 LΛ − 5

2
ln2 LΛ − 2 lnLΛ +

1

2

)

+ 3
β1β2

β2
0

lnLΛ − β3

2β0

]

(7.46)

where LΛ = ln(µ2/Λ2
MS

) and the coefficients of the QCD beta function are given in
Eq. (2.20). For the running quark mass the four-loop expression [236]

m̄(µ2)

m̄(m2)
=

c(αs(µ
2)/π)

c(αs(m2)/π)
(7.47)

is used where [237]

c(x) = xγ0/β0

{
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+
1

2

(

γ1

β0

− γ0β1

β2
0

)(

γ2

β0

− γ1β1 + γ0β2

β2
0

+
γ0β

2
1

β3
0

)

+
1

6

(

γ1

β0

− γ0β1

β2
0

)3 ]

x3 + . . .

}

and where γ0 = 1,

γ1 =
1

6

[
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9
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]

,

γ2 =
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,
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γ3 =
1
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[

4603055
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+
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−
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+
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. (7.49)

ζ(z) is Riemann’s zeta function. Again one could have stayed with three-loop accuracy
in the running of the quark mass.

7.2.6 The evaluation of the QED coupling

Besides being of paramount importance for precision tests of the Standard Model, an
accurate knowledge of α(MZ) is instrumental in narrowing down the mass mindows for
the last missing particle of the Standard Model, the Higgs boson. The calculation of
hadronic contributions to the running fine structure constant or QED coupling using the
polynomial adjustment method is published in Ref. [222]. An important is the selection
of points sa and sb for the limits of the integrals resp. the radii of the circles. Except
for the threshold regions there is a wide range for placing these points. One can show
that the results are fairly independent of this choice. However, in some cases the method
is limited by computational constraints as for instance the fact that matrices cannot be
inverted in some special cases. For this reason it is not advisable to make the intervals
too narrow.

As a first interval, a range is selected which starts from the light flavour production
threshold s0 = 4m2

π and ranges to the appearence of a new flavour, denoted as threshold
and marked by the mass of the ψ, s1 = m2

ψ ≈ (3.1GeV)2. Because there are no quark
flavours active below the threshold s0, the inner circle integral can be set to zero and one
obtains

∫ s1

s0
R(s)H(s)ds = (7.50)

=
∫ s1

s0
Rexp(s) (H(s) − PN(s)) ds+ 6πi

∮

|s|=s1
ΠQCD(−s)PN(s)ds.

As mentioned before, the constraints imposed on the polynomial function are such that
it vanishes on the real axis at s = s1 and coincides with the weight function H(S) at the
ρ resonance, i.e. for s = m2

ρ ≈ (1GeV)2. Fig. 7.4 shows polynomials of different order in
comparison to the weight function. The results shown in Fig. 7.5 are compared with the
result obtained by using only experimental data. For the up and down quarks one only
keeps the mass zero part of the QCD contribution while for the strange quark also the
terms to order O(m2

s/q
2) are included.

The second interval runs from s1 to the flavour threshold marked by the mass of the Υ,
s2 = m2

Υ ≈ (9.46GeV)2. For the charm quark, one again can set the inner circle integral
to zero, but for the lighter quarks one has to keep both circle integrals. The perturbative
series for the charm quark is used up to its known extent.

The third interval given between s2 and (40GeV)2 is again subdivided into two in-
tervals, in this case because of the length of the interval. For the first of these two
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Figure 7.4: Weight function H(s) and polynomial approximations PN(s) in the lowest
energy interval 2mπ ≤ √

s ≤ 3.1GeV. The least square fit was done in the interval
mρ ≤

√
s ≤ 3.1GeV with further constraints H(s) = PN (s) at

√
s = 1GeV and PN(s) = 0

at
√
s = 3.1GeV. The quality of the polynomial approximation is shown up to N = 4.

The scaled variable s/s1 is used for the polynomial approximation where s1 is the upper
end point of the interval such that PN(s/s1) is dimensionless.

Figure 7.5: Comparison of the l.h.s. and r.h.s. of the sum rule given by Eq. (7.50) in
the interval 0.28GeV ≤ √

s ≤ 3.1GeV. Dotted horizontal line: value of integrating the
l.h.s. using experimental data including error bars [224]. The points give the values of
the r.h.s. integration for various orders N of the polynomial approximation. Straight line
interpolations between the points are for illustration only. The dashed lines indicate the
error estimate of the calculation.
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data contribution error

interval for
√
s N contr. to ∆α

(5)
had(MZ) due to ΛMS

[0.28 GeV, 3.1 GeV] 1, 2 24% (73.9 ± 1.1) × 10−4 0.9 × 10−4

[3.1 GeV, 9.46 GeV] 3, 4 0.3% (69.5 ± 3.0) × 10−4 1.4 × 10−4

[9.46 GeV, 30 GeV] 3, 4 1.1% (71.6 ± 0.5) × 10−4 0.06 × 10−4

[30 GeV, 40 GeV] 3, 4 0.15% (19.93 ± 0.01) × 10−4 0.02 × 10−4

√
s > 40 GeV (42.67 ± 0.09) × 10−4

total range (277.6 ± 3.2) × 10−4 1.67 × 10−4

Table 7.1: Contributions of different energy intervals to α
(5)
had(MZ). Second column: choice

of neighbouring pairs of the polynomial degree N . Third column: fraction of the contri-
bution of experimental data [224]. Fourth column: contribution to ∆α

(5)
had(MZ) with all

errors included except for the systematic error due to the dependence on ΛMS which is
separately listed in the fifth column.

intervals one chooses [(9.46GeV)2, (30GeV)2], for the second [(30GeV)2, (40GeV)2]. For
the bottom quark the “threshold rule” (i.e. leaving out the inner circle) applies again.
The remaining part of the integral starting from s4 = (40GeV)2 up to infinity is done by
inserting the function R(s) into the second part of Eq. (7.39), proportional to

ρhad(s) = πα0Nc

∑

f

Q2
f

√

1 −
4m2

f

s

(

1 +
2m2

f

s

)

(7.51)

(Nc is the number of colours).

The results are collected in Table 7.1. To obtain these results, the values

〈αs
π
GG〉 = 0.04 ± 0.04GeV4, αs〈q̄q〉2 = (4 ± 4) × 10−4 GeV6 (7.52)

for the condensates are used. For the errors coming from the uncertainty of the QCD
scale one takes

ΛMS = 380 ± 60MeV (7.53)

The errors resulting from the uncertainty in the QCD scale in different energy intervals
are clearly correlated and will have to be added linearly in the end. Also included is the
error of the strange quark mass at the scale of 1GeV which is taken to be

m̄s(1GeV) = 200 ± 60MeV. (7.54)

For the charm and bottom quark masses the values

m̄c(mc) = 1.4 ± 0.2GeV, m̄b(mb) = 4.8 ± 0.3GeV (7.55)

are used. Summing up the contributions from the five flavours u, d, s, c and b, the result
for the hadronic contribution to the dispersion integral including the systematic error due
to the dependence on ΛMS (column 5 in Table 7.1) reads

∆α
(5)
had(MZ) = (277.6 ± 4.1) × 10−4. (7.56)
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In order to obtain the total result for α(MZ), one has to add the lepton and top contribu-
tions. Since there is nothing new about the calculation of these contributions, one simply
can take the values cited in Ref. [238],

∆αthad(MZ) = (−0.70 ± 0.05) × 10−4, ∆αlep(MZ) ≈ 314.97 × 10−4. (7.57)

Writing ∆α(MZ) = ∆αlep(MZ) + ∆αhad(MZ), the final result reads

α(MZ)−1 = α(0)−1(1 − ∆α(MZ)) = 128.925± 0.056 (7.58)

where α(0)−1 = α0 = 137.036.

7.2.7 The evaluation of the magnetic moment

The Brookhaven National Laboratory (BNL) just recently reported on a precision mea-
surement of the anomalous magnetic moment [239],

aexp
µ = (116 592 023± 151) × 10−11 (7.59)

which has to be contrasted with the theory prediction. From the theoretical point of
view the uncertainty in the determination of aµ (as well as α(MZ)) is dominated by the
uncertainty of the hadronic contribution. The new measurement would correspond to a
hadronic contribution of

aexp,had
µ = (7350 ± 153) × 10−11 (7.60)

The well-known QED contribution to the anomalous magnetic moment is the largest
contribution with aQED

µ = (11658470 ± 0.2) × 10−10. The weak contribution is aweak
µ =

(15.1 ± 0.4) × 10−10. While these contributions are rather well-known (see e.g. [241]),
the uncertainty for the hadronic contribution is still high. As an example for the actual
calculations of the hadronic contribution the value ahad

µ = (6967±119)×10−11 of Ref. [242]
is cited. This value as well as the value ahad

µ = (6924 ± 62) × 10−11 cited by Davier and
Höcker [227] no longer overlaps with the experimental measurement. Instead, as pointed
out in the paper of Czarnecki and Marciano [240], the value given in Ref. [227] leads to

aSM
µ = (116 591 597± 67) × 10−11 (7.61)

which leads to a difference of

aexp
µ − aSM

µ = (426 ± 165) × 10−11, (7.62)

which is roughly 2.6σ. This observation has caused a flood of papers in the hep-ph
preprint archive in 2001, containing models which could explain this difference with non-
SM models. However, as found by several groups (see e.g. Ref. [243, 244]), the sign for
the light-by-light contribution calculated in Ref. [245] figured out to be wrong. This
has been corrected in the meantime by the authors (see Ref. [246]) and changed the
difference between the experimental value and the Standard Model (SM) prediction to
aexp
µ − aSM

µ = (247 ± 165) × 10−11.

The procedure for the polynomial adjustment method chosen in case of the anomalous
magnetic moment of the muon differs from the one used for the QED coupling because of
two reasons. As mentioned earlier, on the one hand the singularity of the weight function
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interval for
√
s contributions to ahad

µ comments

[0.28GeV, 1.4GeV] (5303 ± 61) × 10−11 τ decay data
ω resonance (388.9 ± 13.6) × 10−11 Breit-Wigner
φ resonances (403.7 ± 12.6) × 10−11 narrow resonances
[1.4GeV, 3.1GeV] (519.6 ± 20.4) × 10−11 polynomial method
J/ψ resonances (88.1 ± 6.1) × 10−11 narrow resonances
[3.1GeV, 40GeV] (220.9 ± 2.0) × 10−11 e+e− annihilation data
Υ resonances (1.07 ± 0.06) × 10−11 narrow resonances
[40GeV,∞] 1.5 × 10−11 theory
top quark contr. < 10−13 theory
whole range ±18.3 × 10−11 uncertainty from ΛMS

hadronic contr. (6927 ± 70) × 10−11

Table 7.2: The different contributions to the hadronic part of the anomalous magnetic
moment ahad

µ of the muon.

decays much faster with increasing s, it therefore would need more effort to approximate
the weight function by a polynomial in the lower energy region. On the other hand one
can (and, therefore, should) make use of the fact that the τ data between s = (0.28GeV)2

and s1 = (1.4GeV)2 have been measured with high precision. The less precise e+e− data
from the above energy region, however, are worthwile to be replaced by QCD expressions
as much as possible. The methods and results shown here are published in Ref. [223].

Because of the reasons just mentioned, a first integration interval is fixed from the pion
production threshold s = 4m2

π up to s = (1.4GeV)2 where the τ data sets of Ref. [230]
are taken to calculate the contribution. In this range these data set is in excellent shape.
However, because this contribution will give the dominant part of the calculation, one
has to be very careful with the treatment of the error estimates. In order to do this in a
reliable fashion, the data set has been treated by taking into account the corresponding
covariance matrix. The application of the polynomial adjustment method actually starts
at s = (1.4GeV)2. As in the case of the QED coupling, one takes the next threshold
sψ = (3.1GeV)2 as an upper limit. It turns out that in the case of the anomalous
magnetic moment there is no need for further subdivision up to the end of the data sets
in Ref. [224] at s = (40GeV)2. However, the contribution of this range is already so
small that one can take pure experimental e+e− data for this interval. The remaining
contribution from above s = (40GeV)2 is then a pure theoretical prediction obtained by
integrating up the spectral density.

The results are presented in Table 7.2. The consideration of the error estimates differs
from the precious case of the QED coupling in some points because different data sets are
used. Only error estimates from the uncertainties for the quark masses and a systematic
error over the whole interval from the uncertainty of the parameter ΛMS are kept. In
comparison to this, all other error estimates for the theory contribution of the “mixed”
regions (like errors of vacuum expectation values) can be neglected. The obtained value
and the error estimate is comparable with the predictions in Ref. [227]. The result can
therefore be seen as one of the most accurate estimates on this field.
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7.3 Moments and power corrections

In the previous section, weight functions have been used extensively. These weight func-
tions are special combinations of moments of the spectral density for which the consid-
erations of Section 2.6 apply. Therefore, it is useful to continue with the consideration
of power corrections analyzed by moments of the spectral density. The question is what
power corrections (as ingredients of QCD sum rules) can tell us about the different con-
densate contributions. It will be shown that simple models for the vector and the axial
vector reproduce the leading order power corrections of the operator product expansion to
reasonable accuracy. But because the models for the vector and the axial vector channel
are different, this shows that an extrapolation of perturbation theory to low energies, as
it is suggested by the IR fix point method, does not work in the sense that this method
leads to physically unreliable results in low energy regions.

The two models presented here are simple enough to allow for explicit evaluation. With
these models it is possible to calculate power corrections to all orders and to determinate
moments for these power corrections. On the other hand, the models are detailed enough
to reproduce the main features of the spectra. Once again, they can be considered as test
cases for the “quality” of different kinds of moments for use in QCD sum rules. Note that
these rough models can only capture the gross features of the spectra while the fine details
(visible at high resolution in the energy) can be different. It is expected that for the first
few terms of the power expansion the accuracy is rather good while for high-order terms
it can only be an order of magnitude approximation. Nevertheless, such simple models
based on the gross features of the spectrum are definitely useful for a general analysis.

7.3.1 A vector channel model

As a model for the vector channel the spectral density can be taken to be

ρV (s) = 2m2
V δ(s−m2

V ) + θ(s− 2m2
V ) (7.63)

(see Fig. 7.6 top). By using a dispersion relation one obtains the correlation function

ΠV (Q2) =
2m2

V

m2
V +Q2

+ ln

(

µ2

2m2
V +Q2

)

+ subtractions (7.64)

with necessary subtractions. The expression in Eq. (7.64) is used to generate all power
corrections. Indeed, for Q2 ≫ m2

V the expansion in m2
V /Q

2 leads to

ΠV (Q2) = ln

(

µ2

Q2

)

+
∞
∑

n=1

(

−2m2
V

Q2

)n (
1

n
− 1

2n−1

)

(7.65)

where the first term is the leading order perturbative contribution in αs and the remain-
ing terms are power corrections. Note that the analytic properties of the expansion in
Eq. (7.65) up to any finite order are different from the exact (though model-dependent)
result in Eq. (7.64). This is rather a general feature: analytic properties of approximations
for the correlators can be different from those of the exact result. In some instances this
restricts the precision and may lead to a misuse of approximations in areas where they
do not work.
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Figure 7.6: Spectral densities for the models for the vector channel (corresponding to
Eq. (7.63) and the axial-vector channel (corresponding to Eq. (7.71). The arrows indicate
the narrow width resonances, given by the δ distributions.

Writing the operator product expansion for the correlator in the general form

ΠV (Q2) = ln

(

µ2

Q2

)

+
∞
∑

n=1

cn
(Q2)n

, (7.66)

one finds

cn =
(

1

n
− 1

2n−1

)

(−2m2
V )n (7.67)

for the model in Eq. (7.64). The first two coefficients vanish, c1 = c2 = 0. The vanishing
of c1 is in full agreement with the fact that there exist no dimension-two operators in
realistic cases while the vanishing of c2 means that the gluon condensate is neglected in
this model (which is justified numerically for the case of τ decays). Note that these two
constraints are built-in requirements for the simple models – they were just constructed
in this way. The third coefficient reads

c3 = −2

3
m6
V . (7.68)

Phenomenologically this coefficient is related to the value of the vacuum expectation of
local four-quark operators which in factorized approximation is given by

〈OV
6 〉 = −896π3

81
αs〈q̄q〉2 (7.69)

(see Eqs. (7.22)). Its numerical value is approximated reasonably well by the expression
in Eq. (7.68) with mV = mρ. The first few terms of the model operator product expansion
in the vector channel read explicitly

ΠV (Q2) = ln

(

µ2

Q2

)

− 2m6
V

3Q6
+

2m8
V

Q8
− 22m10

V

5Q10
+

26m12
V

3Q12
+ . . . (7.70)

The term of dimension 8 in the operator product expansion is sometimes taken into ac-
count as expressed through the vacuum expectation value of local operators, even though
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it is very poorly known numerically [247]. Higher order terms were never used in phe-
nomenological applications. The expression in Eq. (7.65) shows also the actual scale of
the expansion in the vector channel, s0 = 2m2

V . For the first few terms there is a numer-
ical cancellation between the resonance and continuum contributions to the coefficients
cn while for higher order terms (large values of n) the scale s0 = 2m2 dominates. (This
cancellation is one of the reasons for the success of the Borel sum rules for the ρ meson in
the vector channel). The scale Λ with Λ ∼ ΛQCD ∼ ΛMS ∼ 350÷400MeV or Λ2 ∼ 0.25m2

V

does not fit the scale of the power corrections in this model.

7.3.2 An axial channel model

Because of the presence of the pion, in the case of the axial part of the correlator (axial
channel) the spectrum at low energies is drastically different from the one for the vector
channel. All axial-vector resonances (with spin 1) have a finite mass. In the massless limit
there is theoretically a Goldstone mode – corresponding to the observed pion – with spin
zero contributing to the correlator of the axial-vector current (this is the reason why the
nomenclature “axial correlator” and “axial channel” are chosen). The main mass scale
is the mass ma1 of the axial-vector meson a1 which will be expressed by m2

a1
= 2m2

A for
further convenience. The model for the spectrum in the axial channel reads (Fig. 7.6
bottom)

ρA(s) = m2
Aδ(s) +m2

Aδ(s− 2m2
A) + θ(s− 2m2

A) (7.71)

where the first term is the pion contribution, the second one is contribution of the a1

meson, and the third represents the continuum. There is no gap between the second
resonance and the continuum. The correlator in the axial channel is given by

ΠA(Q2) =
m2
A

Q2
+

m2
A

2m2
A +Q2

+ ln

(

µ2

2m2
A +Q2

)

. (7.72)

The expansion at large Q2 reads

ΠA(Q2) = ln

(

µ2

Q2

)

+
∞
∑

n=1

(

−2m2
A

Q2

)n (
1

n
− 1

2
(1 + δn1)

)

=

= ln

(

µ2

Q2

)

+
4m6

A

3Q6
− 4m8

A

Q8
+

48m10
A

5Q10
− 64m12

A

3Q12
+ . . . (7.73)

where δn1 is the Kronecker symbol. Here the contribution of the dimension-four operator
is again zero while the dimension-six contribution is positive and larger than that in
the vector channel, which is the case also in the (model independent) operator product
expansion,

〈OA
6 〉 =

1408π3

81
αs〈q̄q〉2. (7.74)

While the continuum contribution (logarithm and 1/n part in Eq. (7.65)) remains the
same, the factor −1/2n−1 in case of the vector channel is replaced by −1/2 (for n > 1)
in Eq. (7.73). Therefore, higher order power corrections for the vector channel are domi-
nated by the continuum while for the axial channel they are dominated by the resonance
contributions and are generally larger – the mass of the a1 meson gives the scale both for
the resonance contributions and the continuum threshold in this particular model. How-
ever, this cannot be quantitatively checked at present because the numerical values of the
higher order condensates are not known phenomenologically with sufficient accuracy.
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7.3.3 Comparing the moments

One can compare the results for the model operator product expansion given by Eqs. (7.65)
and (7.73) because of Weinberg’s relationm2

a1
= 2m2

ρ [248] simply by identifying the scales
mV = mA = m. The direct moments (cf. Eq. (2.145)) corresponding to the model spectral
density for the vector channel for k = 0 then read (assuming 2m2 < M2

τ )

M0l = 1 −
(

2m2

M2
τ

)l+1 (

1 − l + 1

2l

)

. (7.75)

One observes that the perturbative contribution is represented by the first term on the
right hand side of Eq. (7.75). The power corrections are given in what follows. The
combined perturbative and power correction structure is a natural order for the direct
sl-moments. For large l the contribution of the power corrections decreases and the
moments are saturated by perturbation theory, i.e. if m2 ≪ M2

τ , the power corrections
for the moments M0l die out fast.

For modified moments Mkl with l = 0 and arbitrary k (see Eq. (2.149)) one obtains

Mk0 =

(

1 − 2m2

M2
τ

)k+1

+ (k + 1)
2m2

M2
τ

(

1 − m2

M2
τ

)k

. (7.76)

The magnitude of these moments tends to zero for large values of k and definitely cannot
be represented perturbatively. It is obvious that a decomposition Mk0 = 1 + ∆k0 with
small values of ∆k0 fails in this case. If m2 ≪ M2

τ , the power corrections for the moments
Mk0 are still basically given by the lowest order term. But if 2m2 is close to M2

τ as it is
actually the case for τ decays (the conclusion is based on the model spectrum), power
corrections for the moments Mk0 are given by a linear combination of all operators up
to the specified order while for the moments M0l power corrections are given by a single
operator of dimension l and are relatively small. Keeping only the first few contributions
can therefore give a completely wrong answer for ∆0k at large values of k.

The dominance of the resonances for the axial channel becomes obvious if one considers
the moments for the axial case. For 2m2

A < M2
τ the direct moments are given by

M00 = 1, M0l = 1 +

(

2m2

M2
τ

)l+1 (

1 − l + 1

2

)

, (7.77)

while the modified moments for l = 0 read

Mk0 =

(

1 − 2m2

M2
τ

)k+1

+ (k + 1)
m2

M2
τ

+ (k + 1)

(

1 − 2m2

M2
τ

)k
m2

M2
τ

. (7.78)

The second term in Mk0 comes from the pion resonance at s = 0. Therefore, the mo-
ments Mk0 will not vanish for increasing values of k but will increase linearly in k. These
two features of the experimental k moments, namely the decrease of the vector contribu-
tion and the increase of the axial contribution due to the pion (as found in Eqs. (7.76)
and (7.78)) are very essential for a successful comparison with the theoretical description
of the τ -moments.
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l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
MV ex

0l 0.98692 0.99021 0.99497 0.99777 0.99909 0.99964

M
V (3)
0l 0.98692 1.0000 1.0000 1.0000 1.0000 1.0000

MA ex
0l 1.0262 1.0196 1.0110 1.0055 1.0026 1.0011

M
A(3)
0l 1.0262 1.0000 1.0000 1.0000 1.0000 1.0000

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
MV ex

k0 0.98692 0.95745 0.91306 0.85716 0.79358 0.72591

M
V (3)
k0 0.98692 0.94766 0.86915 0.73830 0.54203 0.26725

MA ex
k0 1.0262 1.0851 1.1748 1.2902 1.4256 1.5761

M
A(3)
k0 1.0262 1.1047 1.2617 1.5234 1.9159 2.4655

Table 7.3: Moments Mkl for k = 0 (top) and l = 0 (bottom) for the vector cannel and
the axial channel model, using the exact result M ex

0l as well as the power series expansion

up to the third order term in 1/Q2, M
(3)
0l (m2

A = m2
V = m2

ρ = (769.3MeV)2 [127]).

7.3.4 A quantitative analysis

In this subsection a few features of an analysis done in Ref. [51] will be shown. In this
analysis it is assumed that the two models give the exact results at any order of the power
expansion. Considering the moments, one can find out whether it is enough to keep only
the three terms usually available in phenomenology in order to have a reasonable (given)
accuracy.

• The upper part of Table 7.3 shows the situation for the l moments. One sees that
the perturbation theory contribution dominates the results. For both vector and
axial correlators the accuracy of the three-term approximation is better than 2%
and improves for large values of l as expected.

• For the k moments shown in the lower part of Table 7.3 one sees the dominance of
nonperturbative contributions to the vector and axial correlator results. For k = 4
the accuracy is already about 10% and deteriorates fast.

The general arguments given here are becoming more transparent if one considers
modified moments Mkl with non-zero values of l. This is done in Table 7.4 where the
ratios

M τ
kl −M

τ(3)
kl

M τ
kl

(7.79)

for the τ -moments defined by

M τ
kl = N τ

kl

∫ M2
τ

0

(

1 − s

M2
τ

)k+2 (
s

M2
τ

)l (

1 +
2s

M2
τ

)

ρ(s)ds

M2
τ

(7.80)

are given (the normalization factor N τ
kl is chosen so that M τ

kl = 1 for ρ(s) = 1). In this case
only τ -moments for large values of l and small values of k show perturbative behaviour.
The bottom line in Table 7.4 is drastically different from the rest of the table, the reason
being that the massless pion only contributes to moments with l = 0. This makes the
large k moments still reasonably precise using only third-order power corrections.
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l = 7 −0.00 −0.01 −0.02 −0.02 −0.03 −0.03 −0.02 −0.00
l = 6 −0.01 −0.01 −0.02 −0.02 −0.02 −0.01 +0.00 +0.02
l = 5 −0.01 −0.02 −0.02 −0.02 −0.01 +0.00 +0.01 +0.02
l = 4 −0.01 −0.02 −0.02 −0.01 −0.00 +0.00 +0.01 +0.02
l = 3 −0.01 −0.01 −0.01 −0.01 −0.00 +0.01 +0.04 +0.10
l = 2 +0.02 +0.06 +0.14 +0.32 +0.66 +1.27 +2.33 +4.11
l = 1 +0.02 +0.02 −0.02 −0.21 −0.71 −1.88 −4.34 −9.24
l = 0 −0.01 −0.01 −0.02 −0.02 −0.01 +0.01 +0.00 −0.05

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Table 7.4: Relative deviation of the moments M
τ(3)
kl for the power series up to third order

from the moments M τ
kl for the full result containing the vector and the axial-vector channel

model (see Eq. (7.79)). The approximation m2
A = m2

V = m2
ρ = (769.3MeV)2 [127] is used.

7.3.5 Modifications of the model for the axial channel

For the axial channel there is a freedom in choosing the spectrum because there are two
resonances which are essential at low energies, the pion and the a1 meson. This brings
in four free parameters: the two residues of the resonances, the mass of the a1 meson,
and the starting point for the continuum. Therefore, two requirements for the vanishing
of the power corrections 1/Q2 and 1/Q4 are not sufficient to uniquely fix the low-energy
spectrum in a simple way (with only one scale). There can be many different additional
requirements all reasonably close to the experimental data. The general expression

ρA(s) = 4π2f 2
πδ(s) + 4π2f 2

aδ(s− 2m2
A) + θ(s− s0) (7.81)

has been analyzed in Ref. [51] where the threshold s0 of the continuum is considered
as a free parameter. There are constraints to this parameter, one of the contraints is
s0 > 2m2

A. However, this constraint is quite weak. One can actually admit a resonance as
a bump in the continuum, a situation that is almost given for the a1 meson. The positivity
constraint for f 2

π realized by s0 < 4m2
A, however, has to be taken seriously. Note that

s0 = 4m2
A leads to fπ = 0. Therefore, the pion decouples and does not contribute to the

spectrum of the correlator. This is not the case in reality. For some values of s0 in the
interval 2m2

A < s0 < 4m2
A the spectrum can be fixed by taking the experimental value

for fπ. Experimentally one has 4π2f 2
π ≈ m2

A which is close to the model without a gap.
Nevertheless, the conclusions about moments are valid for these modified models as well.

7.3.6 A note on other models for power corrections

Of course, other models can be used for the spectrum. The model of narrow resonances
inspired by the ’t Hooft model, for instance, was analyzed in QCD on the basis of local
duality [249]. The spectrum was studied within the local duality approach where one has

m2
n = (2n+ 1)m2

ρ, f 2
n = 2m2

ρ n = 0, 1, . . . (7.82)

for the vector channel and where mρ is the mass of the the ground state ρ meson. For the
axial channel the result of the local duality approach coupled with the 1/Nc approximation
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reads

m2
n = nm2

a1
, f 2

0 = 4π2f 2
π =

1

2
m2
a1

= m2
ρ, f 2

n = 2m2
ρ = m2

a1
, n = 1, 2 . . .

(7.83)
where ma1 is the mass of the ground state a1 meson. The structure of the spectrum
reflects the classical results on chiral symmetry and Weinberg’s relations for axial-vector
and vector meson masses which is realized if one identifies the scales in both channels,
m2
a1

= 2m2
ρ = 2m2. This identification leads to a simplified picture where two chains of

resonances are simply shifted by an amount m2
ρ = m2. This is the gross structure of the

spectrum. Experimental results differ quite a bit from this picture, but such details can
be accounted for by using the operator product expansion [150].

Within the model based on the local duality approach the summation of all resonances
results in the vector correlator

ΠV (Q2) =
∞
∑

n=0

f 2
n

m2
n +Q2

=
∞
∑

n=0

2m2
ρ

(2n+ 1)m2
ρ +Q2

=

=
∞
∑

n=0

1

n+ (Q2 +m2
ρ)/(2m

2
ρ)

= −ψ
(

Q2 +m2
ρ

2m2
ρ

)

+ subtractions =

= ln

(

µ2

Q2

)

− m4
ρ

6Q4
+ 0

m6
ρ

Q6
+

7m8
ρ

60Q8
+ 0

m10
ρ

Q10
+ . . . (7.84)

where the renormalization scale µ comes in through the subtraction term. ψ(z) is the
digamma function (cf. Appendix D.3). Note that the expression in Eq. (7.84) is quite
different from the result obtained in Eq. (7.65).

In the axial channel the model based on local duality (with parameters from Eq. (7.83))
leads to the expression

ΠA(Q2) =
∞
∑

n=0

f 2
n

m2
n +Q2

=
f 2

0

Q2
+
∞
∑

n=1

m2
a1

m2
a1
n +Q2

=

=
m2
a1

2Q2
+
∞
∑

n=1

1

n+Q2/m2
a1

= −m
2
a1

2Q2
− ψ

(

Q2

m2
a1

)

+ subtractions =

= ln

(

µ2

Q2

)

+
m4
a1

12Q4
+ 0

m6
a1

Q6
− m8

a1

120Q8
+ 0

m10
a1

Q10
+ . . . (7.85)

In this case all power corrections of dimension 2(2k + 1) vanish because of B2k+1 = 0.
This contradicts the results of the operator product expansion since there is no explicit
(symmetry) reason for such a vanishing. At moderate orders of n the structure of the
expansion in Eq. (7.85) is inconsistent with the asymptotic expansion expected from the
operator product expansion and, therefore, is not supported by phenomenology.

The qualitative difference of the models given in Eqs. (7.84) and (7.85) from the previ-
ous case with a continuum contribution, however, is the analytic structure of the correla-
tors. In the narrow resonance model one only has a single dimensional parameter m2 and
one would expect the power corrections to behave as (m2/Q2)n with m2 determining the
scale. However, the coefficients of the power corrections grow more than exponentially for
large values of k because of the Bernoulli numbers B2k which come in as coefficients of
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the expansion of the digamma function. The reason for the divergent nature of the series
of power corrections is that for the models given in Eqs. (7.84) and (7.85) there are poles
located arbitrarily far away from the origin Q2 = 0. In these models, therefore, there is
in fact an infinite number of scales nm2 for positive integers n. This is the reason why
perturbation theory does not work even at sufficiently large s. But if one approximates
a chain of resonances by a continuum starting from some threshold s0, one instead gets
a finite radius of convergence of the order s0, Q

2 > s0 and a well working perturbation
theory picture at s > s0.

One can conclude that the narrow resonance model for the vector and axial channel
does not display the difference between low and high energies. The only criterion of
perturbation theory calculability is the length of the averaging interval while its position
in terms of energies is almost unimportant. This is a natural feature of the translation
invariance of the spectra in these models. The symmetry of the simplified model spectrum
is definitely violated in the realistic phenomenological spectrum, making the region of
high energy essentially different from the low energy domain. Therefore, the spectrum in
terms of an infinite chain of infinitely narrow resonances does not properly incorporate the
asymptotic freedom of QCD in the sense that such a spectrum violates scale invariance.

7.3.7 A final remark on the concept of duality

The description of strong interactions based on QCD proves to be very successful for
processes at large energies where the coupling constant is small due to the property of
asymptotic freedom [250]. This makes perturbation theory computations reliable. At
low energies the problem of strong coupling prevents using QCD as an unambiguous
theoretical tool for computations of physical observables and various phenomenological
models are introduced. These models are inspired by QCD but it is difficult to establish
a quantitative relation between the underlying theory and a model used in practice. An
example is given by the chiral perturbation theory (ChPT) for Goldstone modes [251].
Chiral perturbation theory is very convenient in describing interactions of pions (as light-
est hadrons) with nucleons or resonances at low energy in the small momentum (and
mass) expansion [252]. Thus the description of strong interactions at low energies relies
on phenomenological models with explicit introduction of elementary hadron fields or on
the closely related approaches based on general principles of analyticity, unitarity and
symmetry [253].

A general idea of linking this approach for the low energy description of hadrons with
QCD is the concept of duality which means that the description of inclusive observables
which are sensitive to the contribution of many particles is simpler than that of exclusive
processes and can be represented by almost free fermions or weakly coupled quarks [254].
This concept works well for infrared soft observables in τ -decays and other sum rules
where the limit of massless quarks is nonsingular [155, 255, 150, 256, 53, 257, 258, 50,
49, 259]. For the infrared sensitive observables the realization of the duality concept for
the light modes is not quite straightforward since the infrared cutoff explicitly enters the
calculation. In such cases the cutoff is usually taken from experiment such as the mass of
a real hadron.
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7.4 Interpolation of the correlation function

Since the hadronic contribution is sensitive to the details of the strong coupling regime of
QCD at low energies and cannot be unambiguously computed in a perturbation theory
framework, the theoretical prediction for the anomalous magnetic moment of the muon
within the Standard Model depends crucially on how this contribution is estimated [245].
In the absence of a reliable theoretical tool for the computation in this region one turns
to experimental data on low-energy hadron interactions for extracting a numerical value,
as it was shown in Section 7.2.

Figure 7.7: The leading order
hadronic contribution, to the
anomalous magnetic moment
of the muon, the shaded bub-
ble indicates the hadronic two-
point correlator

In general terms the hadronic contribution to the ano-
malous magnetic moment of the muon is determined
by the correlation functions of electromagnetic currents.
Since a source for the electromagnetic current is read-
ily available for a wide range of energies, one tries to
extract these functions or some of their characteristics
relevant for a particular application from experiment.
Without explicit use of QCD the correction ahad

µ in the
Standard Model is generated through the electromag-
netic interaction ejhad

µ Aµ with jhad
µ being the hadronic

part of the electromagnetic current. The leading contri-
bution comes from the two-point correlator referred to
as the hadronic part of the photon vacuum polarization
contribution (expressed in terms of the function K(s)
introduced in Section 7.2, see Fig. 7.7) while the four-
point function first emerges at order α3, most explicitly

as the light-by-light scattering amplitude. These correlators are not calculable pertur-
batively in the region essential for the determination of the hadronic contributions to
the anomalous magnetic moment. To avoid using QCD in the strong coupling mode
one can extract the necessary contribution by studying these two correlation functions
experimentally without an explicit realization of the hadronic electromagnetic current
jhadµ in terms of elementary fields. Another possibility which is close in spirit is to use
phenomenological models to saturate these correlators with contributions of real hadrons
at low energies [260, 261, 262, 263, 264]. There is also a possibility to use a concept of
duality between hadron and quark-gluon descriptions modified for handling IR sensitive
observables [226, 265, 243]. In Ref. [266] this last option is discussed.

7.4.1 Hadronic contribution at leading order

At the leading order in α the hadronic contribution is described by the correlator in
Eq. (7.1) in terms of a single function Π(q2) = Πhad(q2) of one variable q2. The contri-
bution of Πhad(q2) to the muon anomalous magnetic moment (see e.g. Ref. [267]) is given
by

ahad
µ (LO) =

1

3

(

α

π

)2 ∫ ∞

4m2
π

ds

s
K(s)ρhad(s) (7.86)

with a one-loop kernel of the form (cf. Eq. (7.37))

K(s) =
∫ 1

0
dx

x2(1 − x)

x2 + (1 − x)s/m2
. (7.87)
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Here ρhad(s) = Disc Πhad(s)/2πi and m is the muon mass. The leading order hadronic
contribution to the anomalous magnetic moment of the muon is depicted in Fig. 7.7. It
is represented by an integral over the hadron spectrum and no specific information about
the function ρhad(s) is necessary point-wise. However, a QCD approach based on light
quark duality in the massless approximation is not directly applicable as the integral in
Eq. (7.86) is IR sensitive and depends strongly on the threshold structure of the function
Πhad(q2). In most applications the threshold structure is extracted from experiment. To
leading order in α the function ρhad(s) can uniquely be identified with data from e+e−

annihilation into hadrons. Introducing the relative e+e− cross section

Rexp(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, s = (pe+ + pe−)2 (7.88)

and identifying it with the theoretical quantity ρhad(s) one finds

ahad
µ (LO) =

1

3

(

α

π

)2 ∫ ∞

4m2
π

Rexp(s)K(s)

s
ds. (7.89)

In order to create a framework for the analysis of hadronic contributions at next-to-leading
order (NLO) based on duality arguments one rewrites the leading order (LO) expression
for the hadronic contribution to the anomalous magnetic moment given in Eq. (7.86) in
a different form. As discussed earlier, a two-point correlator Π(q2) as a function of the
complex variable q2 can have a cut along the positive semiaxis s > 0 with a positive
discontinuity [268]. This spectral condition plays a crucial role in the analysis of the
structure of the two-point correlators and related observables [269, 82]). The dispersion
representation with a subtraction at the origin (cf. Eq. (2.42)) for the Euclidean domain
reads

Πhad(−q2) = q2
∫ ∞

4m2
π

ρhad(s)

s(s− q2)
ds (7.90)

which implies the normalization condition Πhad(0) = 0. Using Eqs. (7.86) and (7.87) one
can rewrite the LO contribution to the anomalous magnetic moment as an integral over
Euclidean values of q2 for Πhad(−q2),

ahad
µ (LO) =

1

3

(

α

π

)2 ∫ ∞

0

{

−Πhad(t)
}

W (t)dt (7.91)

with

W (t) =
4m4

√
t2 + 4m2t(t+ 2m2 +

√
t2 + 4m2t)2

. (7.92)

Such a representation is well-known and is often written as a parametric integral [270, 271].

The representation in Eq. (7.89) is suitable for the evaluation of the hadronic contri-
butions to the anomalous magnetic moment by using experimental data, since it can be
rewritten in terms of the hadronic cross section for e+e− annihilation. The representa-
tion in Eq. (7.91) is more suitable for a theoretical study as perturbation theory should
preferably be applied in the Euclidean domain. Integration by parts in Eq. (7.91) results
in

∫ ∞

4m2
π

ds

s
K(s)ρhad(s) =

∫ ∞

0

(

−dΠ
had(t)

dt

)

F (t)dt, F (t) =
∫ ∞

t
W (ζ)dζ (7.93)
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Figure 7.8: The LO Euclidean weight function F (t)

with

F (t) =
1

2

(

t+ 2m2 −
√
t2 + 4m2t

t+ 2m2 +
√
t2 + 4m2t

)

=
2m4

(t+ 2m2 +
√
t2 + 4m2t)2

. (7.94)

The behaviour of the function F (t) is shown in Fig. 7.8 for small and large t. It reads

F (t)|t→0 =
1

2
−

√
t

m
+O(t), F (t)|t→∞ =

m4

2t2
+O(1/t3). (7.95)

The surface terms of the integration by parts vanish because the integrand in Eq. (7.91)
satisfies the conditions |Πhad(t)| < C

√
t at small t and |Πhad(t)| < C ′/t2 at large t with

some given constants C, C ′.

A key physical quantity of the analysis is the derivative of the hadron vacuum polar-
ization function dΠhad(t)/dt which is closely related to the Adler function (cf. Eq. (2.42))

D(t) = −tdΠ
had(t)

dt
. (7.96)

This quantity can be computed in perturbative QCD with massless quarks for large t,

−tdΠ
had(t)

dt
= Q2

qNc

(

1 +
αs(t)

π

)

(7.97)

where Qq is the charge of the quark in units of the elementary electric charge and Nc is
the number of colours. Computation at small t in perturbation theory is not possible for
light quarks with small masses as the theory enters the regime of strong coupling. The
behavior of the function dΠhad(t)/dt for small t can be extracted from experiment where
the lower limit of the spectrum is determined by the finite pion masses. This leads to a
finite value for the function dΠhad(t)/dt at t = 0.
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7.4.2 A model spectral function

Using the patterns of small and large t behaviour of the function dΠhad(t)/dt for the light
modes, an interpolation function f(t) valid for all t in the form

−dΠ
had(t)

dt
= Q2

qNcf(t), f(t) =
1

t+ ∆
(7.98)

is suggested. Writing

f(t) = −dp(t)
dt

(7.99)

one has

p(t) = ln
(

∆

t+ ∆

)

, p(0) = 0. (7.100)

The analytic properties of the function p(t) are given by the cut along the positive semiaxis
starting at s = ∆. The discontinuity across the cut is equal to one,

r(s) =
1

2πi
Disc p(s) = θ(s− ∆). (7.101)

Thus the contribution to the anomalous magnetic moment contains an integral

I(∆) =
∫ ∞

0
f(t)F (t)dt (7.102)

which is the basic quantity for the theoretical analysis. The analytical expression for
I(∆) is available but too cumbersome to be presented here. This expression is used in
numerical calculations. However, in order to understand the integral in Eq. (7.102) more
deeply, in particular, to find where the integral in Eq. (7.102) is saturated or what region
of integration is important, an approximation can be useful. The constant approximation
for the function f(t),

f appr(t) = const = f(0) =
1

∆
(7.103)

gives

Iappr(∆) = f(0)
∫ ∞

0
F (t)dt = f(0)

m2

3
=
m2

3∆
. (7.104)

This result represents the leading term of the series expansion of I(∆) for small m2. The
series expansion of I(∆) for small m2 up to terms of order m6 is given by

I(∆) =
1

3
v +

(

19

24
+

1

2
ln v

)

v2 +
(

77

30
+ 2 ln v

)

v3 + . . . (7.105)

with v = m2/∆. This series converges nicely for small values of v. By comparing differ-
ent results for the anomalous magnetic moment of the muon (given in the literature in
Ref. [266]), the value

∆ = 4m2
eff , meff = 201.0 ± 1.8MeV (7.106)

is obtained. The function r(s) in Eq. (7.101) is depicted in Fig. 7.9 for meff = 201MeV.
This completes the quantitative description of the interpolation function for the two-
point correlator of the light modes which can be used for the computation of the hadronic
contributions at NLO. This interpolation is named “model 1” in the following.
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Figure 7.9: s-dependence of the spectral functions ρ1(s) = r(s) of model 1 in Eq. (7.101)
and ρ2(s) = 3ρq(s) of model 2 in Eq. (7.108) (upper diagram), as compared to the spectral
function ρ3(s) = ρhad(s) for model 3 in Eqs. (7.109) and (7.111). meff = 201MeV,
mq = 179MeV and central values mρ = 769.9MeV and Γρ = 150.2MeV [127] are used.
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7.4.3 Alternatives for the model spectral function

The interpolation function for the two-point correlator of hadronic electromagnetic cur-
rents in Eq. (7.98) is very simple. One can use more sophisticated interpolations. A formal
criterion for the choice of the interpolation is its consistency with general principles of
quantum field theory (analyticity and unitarity in this case). A practical criterion is its
simplicity such that analytical calculations become technically feasible. One can turn to
free field models in a search for mathematical functions that can be used in the interpola-
tion procedure. For instance, the scalar or fermionic correlation functions with masses as
free parameters can be taken as suitable candidates. The fermionic interpolation function
was considered in detail in Ref. [243]. It is given by the expression

π(t,mq) =
(

1

3z
− 1

)

ϕ(z) − 1

9
,

ϕ(z) =
1√
z

artanh(
√
z) − 1, z =

t

4m2
q + t

. (7.107)

The discontinuity across the cut (4m2
q ,∞) at t = −s−i0 is given by the fermionic spectral

density of the form

ρq(s) =
1

3

√

1 − 4m2
q

s

(

1 +
2m2

q

s

)

. (7.108)

A pictorial representation of ρq(s) is shown in Fig. 7.9. The two functions f(t,meff)/3
and −dπ(t,mq)/dt coincide within 1% accuracy in the interval t = (0, m2

q) if the effective

parameters are related through meff/mq =
√

5/2 ≈ 1.12. The interpolation given by the
spectral density in Eq. (7.108) will be referred to as “model 2” in the following.

In order to show that the particular shape of the spectral density is of importance
only up to a “smearling” in the low energy region, a more realistic interpolation for the
vacuum polarization function in the Euclidean domain can be chosen in the simple form

ρhad(s) = 2m2
ρδ(s−m2

ρ) + θ(s− 2m2
ρ). (7.109)

This is the one-scale no-parameter model that was introduced in the last section which
satisfies the duality constraints from the operator product expansion. The hadronic scale
of the model is given by the ρ-meson mass mρ which is eventually fixed from experi-
ment [127]. The spectrum in Eq. (7.109) gives an interpolation function of the form

fhad(t) =
2m2

ρ

(t+m2
ρ)

2
+

1

t+ 2m2
ρ

. (7.110)

The value of the interpolation function fhad(t) at the origin t = 0 reads fhad(0) = 5/2m2
ρ.

However, the approximation of an infinitely narrow resonance in Eq. (7.109) is too rough
for computing such an integral. A natural modification of the spectrum is to introduce a
finite width for the ρ meson. This is achieved by replacing the function δ(s−m2

ρ) by the
Breit-Wigner function for the resonance part of the spectrum in Eq. (7.109),

ρhad
R (s) =

2m2
ρ

π

Γρmρ

(s−m2
ρ + Γ2

ρ/4)2 + Γ2
ρm

2
ρ

,

ρhad
Γ (s) = θ(s− 4m2

π)θ(2m
2
ρ − s)ρhad

R (s) + θ(s− 2m2
ρ). (7.111)
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The interpolation function based on this spectrum will be called “model 3” in the follow-
ing. Fig. 7.9 shows the s-dependence of ρhad

Γ (s). The expression for the resonance part of
the spectrum reduces to 2m2

ρδ(s−m2
ρ) in the limit Γρ → 0. Using the Breit-Wigner form

of the spectrum for the region 4m2
π < s < 2m2

ρ one finds the contribution of the resonance
to the interpolation function in the Euclidean domain

fhad
R (t) =

2m2
ρ

∫

4m2
π

ρhad
R (s)ds

(s+ t)2
. (7.112)

The interpolation function in the Euclidean domain for the spectrum with nonzero width
reads

fhad
Γ (t) = fhad

R (t) +
1

t+ 2m2
ρ

. (7.113)

Computing the value of the interpolation function at the origin for Γρ = 150.2MeV [127]
one finds

fhad
Γ (0) = fhad

R (0) +
1

2m2
ρ

= (5.15 + 0.84)GeV −2 = 6.0GeV −2 (7.114)

instead of the result obtained before in the infinitely narrow resonance approximation.

7.4.4 Comparison of results for the three models

The spectral functions taken for model 1 from Eq. (7.101), for model 2 from Eq. (7.108),
and for model 3 from Eq. (7.111) are shown in Fig. 7.9 in order to allow one to compare
these models. Neither model 1 nor model 2 has a discontinuity across the positive semiaxis
of the s-plane resembling the experimental spectrum. However, both models result in
integrals over the spectrum for the respective kernels which are very close to the result
obtained in the experimentally inspired model 3 and, eventually, to the data. From
the purely mathematical point of view this is related to the fact that the procedure of
analytic continuation is an incorrectly posed problem: small variations of functions in the
Euclidean domain can produce big variations on the cut.

The t-dependence of the Euclidean representation by the functions f(t), −3dπ(t)/dt,
and fhad

Γ (t) is shown in Fig. 7.10. A phenomenological interpretation of the situation is
given by duality between hadrons and free light fermions with QCD quantum numbers
as for the particular application related to the computation of the anomalous magnetic
moment. Of course, the main objective of the calculation of the hadronic contribution at
the leading order from experiment is to reach a high precision. The use of direct data
seems to be superior to a parameterization of the spectrum from indirect observations.
However, as soon as the integral over the data is computed, a smooth interpolation func-
tion of a simple form can be introduced in the Euclidean domain to be used in higher
order calculations. Because this interpolation function is explicit and complies with the
general properties of analyticity and unitarity one can find its discontinuity across the
positive semiaxis and perform further calculations in the spectral representation as well.
The analysis of NLO contributions along these lines shows that the data-based results
are accurately reproduced [243]. Numerical values for all these models are compared
extensively in Ref. [266], showing agreement up to O(1%).
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Figure 7.10: The functions fi(t) for the three different models where f1(t) = f(t) is given
by Eq. (7.98), f2(t) = −3dπ(t)/dt is given by Eq. (7.107) and f3(t) = fhad

Γ (t) is given by
Eq. (7.113). ∆ = 4m2

eff is used where meff = 200MeV is applied for the upper diagram
and meff = 205MeV for the lower diagram. The parameter mq used for π(t) is connected
to meff by mq = 2meff/

√
5. The values mρ = 769.9MeV and Γρ = 150.2MeV used in fhad

R

are taken from Ref. [127].
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(a) (b) (c) (d)

Figure 7.11: NLO contributions to the anomalous magnetic moment of the muon involving
the contribution of the hadronic two-point correlator (a), a lepton-hadron type (so-called
double bubble) diagram (b), the light-by-light contribution (c), and the two-photon Green
function (d)

7.4.5 Hadronic contribution at next-to-leading order

The interpolation given by the function f(t) for the two-point correlator with the numeri-
cal value of the phenomenological parameter from Eq. (7.106) is now used at NLO. Two of
the NLO diagrams involving the hadronic two-point correlator are shown in Fig. 7.11(a)
and (b). The NLO contribution is an integral of Im Πhad(s) with the two-loop kernel
K(2)(s),

ahad
µ (NLO) =

1

3

(

α

π

)3 ∫ ∞

0

ds

s
K(2)(s)ρhad(s). (7.115)

The analytical expression for the kernelK(2)(s) is known [272]. Assuming that the infrared
scale Mh of the hadronic spectrum ρhad(s) is larger than m (the infrared scale of the data
is given by the explicit cutoff at

√
s = 2mπ) one can use an expansion of K(2)(s) in

m2/s under the integration sign in Eq. (7.115) to generate an expansion in m/Mh for the
integral. For example, the vertex part of the kernel has an expansion [273]

K(2)
ver(s) =

m2

s

(

223

27
− 2π2

3
− 23

18
ln
(

s

m2

)

)

+

+
m4

s2

(

8785

576
− 37π2

24
− 367

108
ln
(

s

m2

)

+
19

72
ln2

(

s

m2

)

)

+ (7.116)

+
m6

s3

(

13072841

216000
− 883π2

120
− 10079

1800
ln
(

s

m2

)

+
141

40
ln2

(

s

m2

)

)

+ . . . .

Generally, the terms of the expansion contain powers and logarithms of the variable m2/s.
For pure powers one can use a generating integral representation with a polynomial P (x),
given by

m2
∫ 1

0

P (x)dx

m2x+ s
=
m2

s

∑

n

an

(

m2

s

)n

, an =
∫ 1

0
P (x)(−x)ndx. (7.117)

A given polynomial P (x) restores the pure power expansion of Eq. (7.116). For the
logarithmic part the generating integral representation can be chosen with a polynomial
G(x) of the form

m2
∫ 1

0

G(x)dx

sx+m2
= G1(m

2/s) +G2(m
2/s) ln

(

s

m2

)

. (7.118)
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The polynomial G(x) generates polynomials G1(x), G2(x) through Eq. (7.118). The mix-
ture of pure powers due to the polynomial G1(x) leads to a redefinition of the polynomial
P (x) in Eq. (7.117). Using Eqs. (7.115) and (7.117) one finds the expression for the pure
power part of the expansion to be

∫ ∞

0

ds

s
K(2)(s)|powerρ

had(s) =
∫ 1

0

dx

x
P (x)[−Πhad(m2x)] (7.119)

which reduces to derivatives of Πhad(t) at the origin and gives the analytic part of the
expansion in m/Mh. For the logarithmic part one finds the representation

∫ ∞

0

ds

s
K(2)(s)|power&logρ

had(s) =
∫ 1

0
dxG(x)[−Πhad(m2/x)] (7.120)

which is sensitive to the entire Euclidean domain and gives the nonanalytic part of the
expansion containing ln(m/Mh). This procedure can be performed up to any finite order
inm2, and the whole calculation can be organized in a way such that only Euclidean values
of momenta are necessary for Πhad(−q2). Therefore, this procedure can be performed even
if the spectral density is not known pointwise. However, if one uses simple model spectral
functions like the one in Eq. (7.101) (model 1), even the integration in Minkowskian space
can be performed easily.

For the spectral density ρhad
1 (s) = r(s) starting at s = ∆ = 4m2

eff (see Fig. 7.9), the
basic elements that emerge in Eq. (7.115) are integrals of the form

Mn,p(∆) = ∆n
∫ ∞

∆

ds

sn+1
lnp

(

s

m2

)

(7.121)

for which the recurrence relation

Mn,p(∆) =
1

n
lnp(∆/m2) +

p

n
Mn,p−1(∆), Mn,0(∆) =

1

n
(7.122)

can be used. With Eq. (7.116) one finally obtains

ahad
µ,ver(NLO) =

(

α

π

)3

V (m2/∆) (7.123)

with

V (v) =
v

9

(

377

18
− 2π2 +

23

6
ln v

)

+
v2

9

(

23647

1152
− 37π2

16
+

677

144
ln v +

19

48
ln2 v

)

+ o(v2)

(7.124)
where o(v2) is any function that satisfies limv→0 o(v

2)/v2 = 0. For brevity only two terms
of the expansion of the function V (m2/∆) at small m2/∆ have been presented, resulting
from the corresponding expansion of the kernel in Eq. (7.116). This contribution is only
one part of the next-to-leading order contributions. In Ref. [266] the so-called light-
by-light contribution (see Fig. 7.11(c)) and two-photon Green function (Fig. 7.11(d))
are considered in more detail which is not repeated here. To conclude this section, the
numerical values shown in Ref. [266] demonstrate that even with a simple model like
the one introduced here the calculation of next-to-leading order contributions can be
accomplished – contributions which become important as the designed target accuracy
40 × 10−11 [239] for the measurement of aµ will be reached.
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7.5 Low-energy gluon contributions

Before starting with the construction of sum rules for the determination of e.g. the charm
quark mass, as it will be explained in the next section, a further constraint has to be
mentioned. Besides the considerations on the “value”, i.e. the reliability and usefulness
of different kinds of modified moments in Section 7.3, also the use of direct moments is
restricted by results presented in Ref. [274] which are dealt with in detail in this section.

A contribution of massless intermediate states to the correlators of heavy quark cur-
rents is discussed in this section. For the correlator of the vector currents such a contribu-
tion first appears at the O(α3

s) order of perturbation theory and is given by a three-gluon
state. This gluon contribution to the correlator has a qualitatively new feature – its ab-
sorptive part starts at zero energy in contrast to other contributions where the absorptive
parts start at the two-particle threshold. This feature determines the analytic structure of
the correlator at small q2 – at the order O(α3

s) of perturbation theory a cut along the pos-
itive semiaxis emerges. The non-analyticity at the origin resulting from such a cut leads
to strong limitations on the observables that can be theoretically constructed for com-
parison with experimental data. Because the data are most precise near the production
threshold, the theoretical analysis should enhance this part of the spectrum. Technically
an enhancement of the near-threshold contributions is achieved by considering integrals
of the production rate with weight functions which suppress the high-energy tail of the
spectrum. The integrals with weight functions 1/sn for different positive integer n (known
from the previous considerations as direct moments of the spectral density) are most of-
ten used in the sum rule analysis. Theoretically such moments are given by the q2 = 0
derivatives of the vacuum polarization function Π(q2) which is a basic quantity for the
analysis of the heavy quark production in the JPC = 1−− channel.

7.5.1 The effective action

In order to obtain the relevant three-gluon contributions, an investigation of the special
issues of quantum field theory is of order here, given by the gauge group SU(Nc) ⊗ U(1)
representing both gluons and photons (see e.g. Ref. [88, 275]). The Lagrangian of a heavy
fermion field ψ interacting with a gauge field B of the gauge group reads

L = ψ̄ (iγµ∂µ + γµBµ −m)ψ (7.125)

where Bµ = eAµ + gsBµ. Here Aµ is a gauge field of the U(1) subgroup (photon) with
the coupling constant e and Bµ is a gauge field of the SU(Nc) subgroup (gluon) with the
coupling constant gs. The matrix notation for the non-Abelian gauge field potentials is
used, Bµ = taB

a
µ, ta are generators of the gauge group SU(Nc). A generating functional

W [J ] of connected Green functions is given by a functional integral with the sources J ,

Z[J ] = exp(iW [J ]) =
∫

[dψ̄ dψ] exp
(

i
∫

LJ(x)d4x
)

=

=
∫

[dψ̄ dψ] exp
(

i
∫

(

ψ̄(iγµ∂µ + γµBµ −m)ψ + JµBµ
)

d4x
)

(7.126)

where the product JµBµ implies a trace with respect to the representation of combined
group SU(Nc)⊗U(1). A proper gauge fixing is implied as well. The effective action Γ[B̄]
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for the gauge field is then given by the Legendre transform

Γ[B̄] = W [J ] − JB̄, B̄ =
δW [J ]

δJ
. (7.127)

It was shown that this procedure is equivalent to the more direct calculation in external
fields (see e.g. Ref. [275]). It is also a generalization of results obtained for constant
external fields [276]. Up to leading order in h̄ the effective action constructed with a
Legendre transform can also be found through

exp(iΓ[B]) =
∫

[dψ̄ dψ] exp
(

i
∫

ψ̄(iγµ∂µ + γµBµ −m)ψ d4x
)

=

=
∫

det (iγµ∂µ + γµBµ −m) d4x (7.128)

where B is now a classical gauge field. By using the identity detM = exp(Tr(lnM)) for
an operator M one continues with

iΓ[B] =
∫

Tr
[

ln (iγµ∂µ + γµBµ −m)
]

d4x. (7.129)

Using the leading order inverse fermion propagator

S−1
0 = iγµ∂µ −m, (7.130)

the effecive action Γ[B] can be expanded in B to obtain

iΓ[B] =
∫

{

Tr
[

ln(S−1
0 )

]

+ Tr
[

ln(1 + γµBµS0)
]}

d4x =

=
∫

{

Tr
[

ln(S−1
0 )

]

+ Tr[γµBµS0] +
1

2
Tr[γµBµS0γ

νBνS0] + (7.131)

+
1

3
Tr[γµBµS0γ

νBνS0γ
ρBρS0] +

1

4
Tr[γµBµS0γ

νBνS0γ
ρBρS0γ

σBσS0] +O(B5)
}

d4x.

The first term can be omitted for it does not depend on B and therefore will not contribute
to the current. Remaining with the electromagnetic part for the moment, the current is
given by

eJ = −δΓ[B]

δA
, eJµ = −δΓ[B]

δAµ
= Tr

[

ieγµ
1

iγµ′∂µ′ + γµ′Bµ′ −m

]

. (7.132)

This expression could be calculated in principle, taking a general gauge. This general
gauge, however, would take the most complicated form

Aµ(x) =
i

2

∫

∂αxD(x− y)Fαµ(y)dy (7.133)

where Fαµ is the field strength tensor. This expression can be seen to be correct by
calculating (all derivatives acting with respect to x)

∂µAν(x) − ∂νAµ(x) =
i

2

∫

(

∂µ∂
αD(x− y)Fαν(y) − ∂ν∂

βD(x− y)Fβµ(y)
)

dy =

=
i

2

∫

(

−igαµδ(x− y)Fαν(y) + igβν δ(x− y)Fβµ(y)
)

dy =

=
1

2

∫

δ(x− y) (Fµν(y) − Fνµ(y))dy = Fµν(x). (7.134)
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The situation simplifies because for small values of x the special choice

Aaµ(x) =
1

2
xαF a

αµ(x) (7.135)

can be used. The corresponding expression in the general SU(Nc)⊗U(1) case is given by

Bµ(x) =
1

2
xαGαµ(x), Gαµ = Fαµ +Ga

αµta. (7.136)

At first sight this solution seem to spoil the calculability of an effective action. Indeed,
if the current is calculated from the expression of the effective action with this simple
solution for the gauge field, the configuration space components xα acting on the vacuum
state result vanish. On the other hand, because of

∫

eiqxd4x = (2π)4δ(4)(q) →
∫

d4x = (2π)4δ(4)(0) (7.137)

for q → 0, one ends up with an indefinite expression 0 ·∞. The way out of this situation is
given by “shielding” the vacuum state against the action of xα. This is done by a formal
trick, namely to differentiate the expression with respect to the mass m (which occurs in
S0 only) and to integrate again afterwards. The trick “works” because of the fact that

∂

∂m
S0 = S2

0 (7.138)

where the trace can be rearranged accordingly so that one of the factors S0 is standing in
front of the whole expression and the other at the end. For the fourth order contribution
in Eq. (7.131) one obtains for instance

i
∂

∂m
Γ4[B] = Tr[S0γ

µBµS0γ
νBνS0γ

ρBρS0γ
σBσS0] (7.139)

(the factor 4 from the Leibnitz rule cancels the factor from the expansion of the logarithm).
Now one can indeed use the simple gauge fixing in Eq. (7.136). The field strength tensor
components can be extracted from the trace (only the trace over the representation space
of the algebra is kept), and one is left with

i
∂

∂m
Γ4[B] =

1

16
t(α, µ; β, ν; γ, ρ; δ, σ)Tr(GαµGβνGγρGδσ). (7.140)

In momentum space (xµ → −i∂/∂pµ) the coefficient t(α, µ; β, ν; γ, ρ; δ, σ) is given by

t(α, µ; β, ν; γ, ρ; δ, σ) = Tr
(

S(p)γµ∂αS(p)γν∂βS(p)γρ∂γS(p)γσ∂δS(p)
)

. (7.141)

On the level of Feynman diagrams, this trace can be understood differently as well. Be-
cause of

S(p+ k) = S(p) + kµ∂
µS(p) +O(k2), (7.142)

−i∂µS(p) = −i ∂
∂pµ

S(p) = S(p)γµS(p) (7.143)

and
S(p+ k) = S(p) + S(p)i/kS(p) + S(p)i/kS(p)i/kS(p) + O(k3), (7.144)



7.5. LOW-ENERGY GLUON CONTRIBUTIONS 359

the trace can be understood as an expansion of

Tr (S(p)γµS(p− k0)γ
νS(p− k0 − k1)γ

ρS(p− k0 − k1 − k2)γ
σS(p− k0 − k1 − k2 − k3))

(7.145)
to first order in the momenta k0, k1, k2, and
k3. Taking −k0 to be the incoming momen-
tum in the diagram in Fig. 7.12, this setting
would lead to a diagram where the momen-
tum is not conserved from the very beginning.
Only the condition k0 + k1 + k2 + k3 = 0 would
lead to momentum conservation. This path will
not be followed here. Instead, the expression
in Eq. (7.141) is calculated directly. But be-
cause there are many technical details involved
again, the explicit calculation is presented in
Appendix K. At this point only the result is
shown,

γ
σ

p
p − k1

p − k1 − k2

p − k1 − k2 − k3

k1

ρ, c

k2

ν, b

k3

µ, a

Figure 7.12: 3-gluon–photon diagram

∆ΓQCD =
eg3
sdabc

180m4(4π)2

[

14Tr(FGaGbGc) − 5Tr(FGa)Tr(GbGc)
]

(7.146)

where dabc are the totally symmetric SU(Nc) structure constants defined by the relation
dabc = 2Tr({ta, tb}tc). The trace in Eq. (7.146) is understood as a trace with respect
to the Lorentz indices of the fields, i.e. one considers the field strength tensors of gauge
fields as matrices for which Tr(FGa) = F µνGa

νµ. This makes the formulae shorter and
more transparent. Note that the two-gluon transitions are forbidden according to the
generalization of Furry’s theorem to non-Abelian theories [277]. Therefore, the diagram
in Fig. 7.12 calculated in the limit of low energies (and, therefore, heavy quarks) is the
leading contribution in the calculation of the correlator function. But before proceeding
to the calculation of the induced current, the result is compared with a corresponding
expression given in QED.

7.5.2 Comparison with QED

The effective action within QED corresponding to Fig. 7.12 with gluons substituted by
photons is known as Euler-Heisenberg Lagrangian [275],

∆ΓQED =
2α2

45m4

[

( ~E2 − ~H2)2 + 7( ~E · ~H)2
]

, α =
e2

4π
. (7.147)

This expression can be obtained by a direct calculation in the same way as the result in
Eq. (7.146). One can also extract it from Eq. (7.146) by modifying the gauge group factors
and taking into account the symmetry of the action with respect to the external gauge
fields. Note that Eq. (7.146) is only the term linear in the photon field while the higher
order contributions are not explicitly written down because they are redundant for the
primary purpose to determine the low-energy structure of the heavy quark correlators. In
the following some relations between the fourth-order monomials of the photon field are
given to convert the basis of Eq. (7.146) into the traditional QED basis used in Eq. (7.147).

With the definitions for the electric field ~E and the magnetic field ~H ,

F 0j = −F0j = −Ej , F i0 = −Fi0 = Ei, F ij = Fij = −ǫijkHk (7.148)
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one finds

Tr(F 2) = 2( ~E2 − ~H2), Tr(F 4) = 2( ~E2 − ~H2)2 + 4( ~E · ~H)2. (7.149)

Using these results for the traces, the correspondence between Eq. (7.146) and its QED
counterpart in Eq. (7.147) can be established easily.

7.5.3 The induced vector current

The induced electromagnetic current Jµ is an effective electromagnetic current for the
low-energy effective theory describing the interaction of photons and fermions. As shown
before, an expression for this induced current is given by the derivative of the effective ac-
tion with respect to the external Abelian gauge field, shown in Eq. (7.132). The derivative
with respect to Aµ can be replaced by a derivative with respect to Fµν = ∂µAν − ∂νAµ,

eJµ(x) = −δFµ′ν′
δAµ

δΓ[B]

δFµ′ν′
= −2∂ν

δΓ[B]

δFνµ
. (7.150)

Expressed differently, one can say that after having integrated out the heavy quark field
in the functional integral, one obtains the relation

〈jµ〉ψ = 〈ψ̄γµψ〉ψ ≡ Jµ (7.151)

for the electromagnetic current of the heavy quark. With the explicit expression for the
effective action given in Eq. (7.146) one obtains

Jµ = ∂νOµν , Oµν =
−g3

sdabc
90m4(4π)2

[14(GaGbGc)µν − 5(Ga)µνTr(GbGc)]. (7.152)

Note that the current conservation ∂µJ
µ = 0 following from the original relation ∂µj

µ = 0
is necessary for a gauge invariant interaction with photons. It is automatically guaranteed
because the operator Oµν is antisymmetric, Oµν + Oνµ = 0. Higher order corrections in
the coupling constant α of the U(1) subgroup are omitted. The induced electromagnetic
current in Eq. (7.152) is a correction of order 1/m4 in the inverse heavy quark mass which
vanishes in the limit of an infinitely heavy quark. Corrections in the inverse heavy quark
masses are important for tests of the Standard Model at the present level of precision and
have been already discussed in various areas of particle phenomenology [89, 278, 279, 280].

7.5.4 The induced tensor current

Expressions for the induced currents with quantum numbers other than that of the elec-
tromagnetic current JPC = 1−− can be obtained in a similar way. A review was recently
presented in Ref. [281]. As an example the calculation of the induced (antisymmetric)
tensor current interacting with photons in the context of the effective action is discussed
here. A tensor current of the form

jµν = ψ̄σµνψ, σµν =
i

2
[γµ, γν ] (7.153)

is considered and its low-energy limit induced by a heavy quark loop is calculated. The
properties of this current are rather similar to those of the electromagnetic current. Note
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that the classical vector mesons (like ρ, ω, φ) interact with this current and can thus be
created by it. Introducing an interaction

∆LT = gT ψ̄σ
µνψFµν (7.154)

in the Lagrangian of heavy quarks, one readily finds the effective action for gauge fields
induced by such a vertex. The low-energy limit at one-loop order reads

ΓT =
−gTg3

sdabc
6m3(4π)2

(

2Tr(FGaGbGc) − Tr(FGa)Tr(GbGc)
)

(7.155)

with the same notations as in Eq. (7.146) (cf. Appendix K for details of the calculation).
According to the form of the effective interaction in Eq. (7.154) the induced current Jµν
is given by a derivative

gTJ
µν = − δΓT

δFµν
(7.156)

and explicitly reads

Jµν =
−g3

sdabc
6m3(4π)2

(

2(GaGbGc)µν − (Ga)µνTr(GbGc)
)

. (7.157)

Note the lower power of the heavy quark mass in Eq. (7.157) as compared to Eq. (7.152).

7.5.5 The spectrum for the induced vector current correlator

The consequences of the low-energy contributions to vector and tensor currents just calcu-
lated become manifest when the correlator functions are calculated. First the case of the
vector current is discussed where the data obtained from e+e− annihilation experiments
are rather precise. The correlator of the induced vector current Jµ (as integral kernel of
the correlator function) has the general form

〈TJµ(x)Jν(0)〉 = −∂α∂β〈TOµα(x)Oνβ(0)〉 (7.158)

where an explicit representation of the current given by the derivative of the antisym-
metric operator Oµν has been employed. The resulting correlator 〈TOµα(x)Oνβ(0)〉 in
Eq. (7.158) contains only gluonic operators. Such correlators were considered previously
in the framework of perturbation theory [71, 282, 283]. In leading order of perturbation
theory the correlator in Eq. (7.158) has the topological structure of a sunset diagram as
shown in Fig. 7.13(a). Technically, a convenient procedure of computing the sunset-type
diagrams is to work in configuration space [107, 108, 112]. One finds

〈TJµ(x)Jν(0)〉 =
−34dabcdabc
2025π4m8

(

αs
π

)3 (

∂µ∂ν − gµν∂
2
) 1

x12
. (7.159)

A Fourier transform of the correlator in Eq. (7.159) gives the vacuum polarization function
in momentum space which reads

12π2i
∫

〈TJµ(x)Jν(0)〉eiqxd4x = (qµqν − gµνq
2)Π(q2) (7.160)
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(a) (b)

Figure 7.13: Induced massless correlator diagrams

where at small q2 (q2 ≪ m2)

Π(q2)|q2≈0 = Cg

(

q2

4m2

)4

ln

(

µ2

−q2

)

, Cg =
17dabcdabc
243000

(

αs
π

)3

. (7.161)

For QCD with the colour group SU(3) one has dabcdabc = 40/3. The spectral density of
the vacuum polarization function Π(q2) in Eq. (7.160) at small values for s is given by

ρ(s)|s≈0 = Cg

(

s

4m2

)4

. (7.162)

Note that the spectral density given in Eq. (7.162) can be found without an explicit
calculation of the Fourier transform of the correlator in Eq. (7.160). Instead of computing
the Fourier transform one can use a spectral decomposition (dispersion representation)
in configuration space which was heavily employed for the analysis of sunset diagrams in
Ref. [107, 108, 112]. In this particular instance the spectral representation of the correlator
in configuration space reads

i

x12
=

π2

28Γ(6)Γ(5)

∫ ∞

0
s4D(x2, s)ds (7.163)

with D(x2, s) being the propagator of a scalar particle of mass
√
s,

D(x2, m2) =
im

√
−x2K1(m

√
−x2)

4π2(−x2)
(7.164)

where K1(z) is the McDonald function (a modified Bessel function of the third kind, see
e.g. Appendix D.1.3 and Ref. [85]). Γ(z) is Euler’s gamma function.

An asymptotic behaviour of the spectral density of the corresponding contribution for
large energies (where the limit of massless quarks can be used) enters the expression for
the ratio R(s) of e+e− annihilation into hadrons and has been known since long ago [233].
This term is usually called light-by-light (lbl) contribution and reads

Rlbl(s) =
(

αs
π

)3 dabcdabc
1024

(

176

3
− 128ζ(3)

)

. (7.165)

Here ζ(z) is the Riemann ζ function with ζ(3) = 1.20206 . . . The contribution to the
spectral density given in Eq. (7.165) is negative while the result given in Eq. (7.162) is
positive as it should be the case for the spectral density of the electromagnetic current
which is a Hermitean operator.
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7.5.6 The spectrum for the induced tensor current correlator

The results for the correlator of the tensor current given in Eq. (7.157) are slightly more
complicated. The correlator reads

12π2i
∫

〈TJµν(x)Jαβ(0)〉eiqxd4x = (gµαgνβ − gµβgνα)Πg(q
2) +

+(gµαqνqβ − gµβqνqα − gναqµqβ + gνβqµqα)Πq(q
2) (7.166)

with the two scalar amplitudes Πg(q
2) and Πq(q

2). With the explicit expressions for the
induced tensor current Jµν in Eq. (7.157) one finds

Πg(q
2) = −q

2

2
Πq(q

2) =
dabcdabc
3240

(

αs
π

)3 −q2

4

(

q2

4m2

)3

ln

(

µ2

−q2

)

. (7.167)

The physical content of the amplitudes Πg(q
2) and Πq(q

2) is related to the contributions
of the states with JPC = 1−− and JPC = 1+−, resp. Note that the sum rule analysis for
the mesons with quantum numbers JPC = 1+− has been done in Ref. [284] with quark
interpolating currents. From the present results, a possibility is seen also to use gluonic
currents as interpolating operators for such mesons. The validity of such a description
depends strongly on the strength of the interaction of the meson in question with the
corresponding interpolating operator which is difficult to estimate.

Note that there are only two independent gluonic operators available to construct the
induced currents under consideration. The electromagnetic current is given by a derivative
of a special linear combination of these operators while the tensor current is given by a
linear combination of the operators themselves. There is one more current relevant to the
situation. It originates from the Gordon decomposition of the electromagnetic current
(see e.g. Ref. [275])

2mψ̄γµψ = ∂ν(ψ̄σ
µνψ) + ψ̄ i

↔
D µψ,

↔
D =

→
D −

←
D . (7.168)

This relation holds for the induced currents as well. The left hand side and the right hand
side of Eq. (7.168) have different parity since the number of Dirac γ-matrices between
spinor fields is different. This is reflected in an additional factor m at the left hand side of
Eq. (7.168). In the massless limit the two types of currents are alien and can never mix.
At the level of induced currents the Dirac structure of the initial heavy quark currents is
reflected in different degrees of suppression by the heavy quark mass m.

7.5.7 The spectrum for the mixed current correlator

Having both vector and tensor induced currents at hand, one can study a mixed correlator
of the form

12π2i
∫

〈TJµ(x)Jαβ(0)〉eiqxd4x = i(gµαqβ − gµβqα)ΠM(q2) (7.169)

with a single scalar amplitude ΠM(q2). Such mixed correlators are useful in sum rule
applications [285]. One finds

ΠM(q2) =
dabcdabc
8100

(

αs
π

)3 −q2

4m

(

q2

4m2

)3

ln

(

µ2

−q2

)

. (7.170)
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The physical content of the amplitude ΠM(q2) is given by JPC = 1−− resonances, i.e. by
the Υ meson family in case of b quarks for the original currents and by the ρ meson family
in case of induced currents at low energies.

7.5.8 Consequences for the moments

The qualitative new feature of the effective currents in Eqs. (7.152) and (7.157) is that
they are expressed through massless fields. Therefore, the spectrum of the two-point
correlators of these currents start at zero energy (at least for finite orders of perturba-
tion theory). This feature drastically changes the analytic structure of the two-point
correlators of these currents and, in particular, their infrared (IR) or small q2 behaviour
because of the branching point (cut) singularity of Π(q2) at the origin q2 = 0. This new
feature of having a nonvanishing spectrum below the formal tree-level two-particle thresh-
old appearing at O(α3

s) order of perturbation theory for induced current correlators has
important phenomenological consequences. Indeed, such a change of the analytic struc-
ture of induced current correlators affects strongly the theoretical expressions for some
observables usually employed in heavy quark physics for the precision determination of
the parameters of heavy quarks and their interactions.

Sum rule expressions for heavy quarks are normally formulated in terms of moments

Mn =
∫

ρ(s)ds

sn+1
(7.171)

of the spectral density ρ(s). The moments in Eq. (7.171) are related to the derivatives of
the correlator function Π(q2) at the origin,

Mn =
1

n!

(

d

dq2

)n

Π(q2)
∣

∣

∣

q2=0
. (7.172)

Such moments are chosen in order to suppress the high energy part of the spectral density
ρ(s) which is not measured accurately in the experiment. Within the sum rule method
one assumes that the moments in Eq. (7.171) can be calculated for any n or, equivalently,
that the derivatives in Eq. (7.172) exist for any n. The existence of these moments seems
to be obvious because one implicitly assumes that the spectral density ρ(s) of the current
correlator of the heavy quarks with mass m vanishes below the two-particle threshold
at s = 4m2. But according to the considerations of this section [274], this assumption
does not hold true at O(α3

s). Caused by the factor (s/4m2)4 in Eq. (7.162), the moments
become infrared singular for n ≥ 4 in case of the induced vector current. This can already
be seen by looking at the factor 1/m4 in the induced vector current in Eq. (7.152). For
the induced tensor current the corresponding moments start to diverge earlier because of
a weaker suppression by the heavy quark mass. The corresponding factor in Eq. (7.157)
is 1/m3 instead of 1/m4. Therefore, in this case the moments become infrared singular
already for n ≥ 3. However, the sum rule analysis of the charmonium (cc̄ system) was
done for n up to 7 [286, 287], for the bottonium (bb̄ system) even up to 20. In view of
the result on the low-energy behaviour of the spectral density, one has either to limit
the accuracy of theoretical calculations for the standard moments to the O(α2

s) order of
perturbation theory which seems insufficient for a high precision analysis of quarkonium
systems (especially for bb̄ with the Coulomb resummation performed to all orders) or to
use only the first few moments.
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7.6 Finite energy sum rules for the charm quark

The mass of the charm quark is a parameter which is very important for phenomenological
applications. The charm quark mass lies between the light and heavy mass parameters.
The dependence of perturbation theory on the strange quark mass is very weak because
it is only a small parameter.2 Therefore, the uncertainty does not play a crucial role. On
the other hand, the numerical value of the bottom quark mass is quite well determined.
Therefore, the strong dependence of perturbation theory on the bottom quark mass can
be met by a reasonable uncertainty.

Roughly speaking, while the numerical value of the charm quark mass has the same
uncertainty as the value for the bottom quark mass at an absolute scale, the relative
uncertainty is bigger by a factor of three. On the other hand, the influence of perturbation
theory on the charm quark mass is already important. The conclusion is that it is desirable
to decrease the uncertainty for the numerical value of the charm quark mass in order to fit
the improving accuracy of experimental data. The improved perturbation theory has then
to be compared again with the experimental data in order to determine other parameters
and to verify (or falsify) the Standard Model of elementary particle physics. The work
presented in this section joins in this effort by analyzing finite energy sum rules for the
charm quark mass.

7.6.1 The path to sum rules

As has been already discussed in previous sections, the charm quark mass is an impor-
tant ingredient in high precision measurements of parameters such as the running QED
coupling α or the anomalous magnetic moment. In order to construct the sum rules, one
can start with one of these quantities. The running QED coupling at the energy

√
q2 is

given by (cf. Eq. (7.23))

α(−q2) =
α0

1 − 4πα0Π(q2)
(7.173)

While α0 = 1/137.04 is a constant, the q2 dependence of the running coupling is depend-
ing on the scheme selected for the renormalization of the singularities occuring in the
correlator function Π(q2). However, the quantity

1

4πα(q2)
+ Π(q2) =

1

4πα0

(7.174)

is an invariant for all schemes at all values of q2. One can therefore use a specific scheme
like the MS scheme and at the point q2 = 0 to obtain the running coupling in by using
the correlator function for the same scheme and at the same point. The aim is thus
to calculate this correlator function. As usual, because of the nonperturbative character
of the spectral function at thresholds, one cannot calculate the correlator function by
integrating the spectral density over the whole range from the first resonances to infinity.
Instead one starts with subdividing this huge interval up into a part up to a energy square
s0 for which one takes experimental input data for the spectral density, and a part starting
from s0, assuming that s0 is large enough to use perturbation theory. The expression then

2A still weaker dependence would be given by the u and d quarks if they were taken into account.
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reads

Π(0) =
∫ s0

0

ρ(s)

s
ds+

∫ ∞

s0

ρ(s)

s
ds ≈

∫ s0

0

ρexp(s)

s
ds+

∫ ∞

s0

ρthe(s)

s
ds (7.175)

where the lower limit s = 0 can be replaced by the lowest lying resonance in the ex-
perimental spectrum. The prediction for the correlator function from theory is given as
integral of the corresponding spectral density ρthe(s) starting from the mass threshold
4m2 where the mass value should be taken corresponding to the selected renormaliza-
tion scheme. This threshold need not (and for the MS mass actually doesn’t) coincide
with the experimental threshold. The mass parameter is actually the pole mass which
will be determined by the sum rule method. For this purpose one considers the above
approximation as an equality, replaces the theory part by a difference and writes

Π(0) =
∫ s0

0

ρexp(s)

s
ds−

∫ s0

4m2

ρthe(s)

s
ds+ Πthe(0). (7.176)

The interesting part of this expression is the difference of the first two terms, and the
interesting question is, how far they cancel each other, in order that Π(0) = Πthe(0).
Therefore, the last term will no longer be considered, instead a set of sum rules (corre-
sponding to values q2 6= 0) will be set up for this difference. The sum rules one has to
consider for this purpose are those constructed by moments closest to the moments given
by the original equation. The two sum rules

R−1 =
∫ s0

0
ρexp(s)ds =

∫ s0

4m2
ρthe(s)ds, R1 =

∫ s0

0

1

s2
ρexp(s)ds =

∫ s0

4m2

1

s2
ρthe(s)ds

(7.177)
suffice to determine the two parameters of the sum rule analysis, namely s0 and m. But
actually a broader range of moments will be considered. It turns out that s0 obtains a
value which lies just above the resonance region. Therefore, the input for the left hand
sides are given by resonance contributions – a fact that renders the form of these sum
rules, namely to modell the non-perturbative contribution by summing over these modes
up to a reasonable energy

√
s0.

k Mk [GeV] Γk [10−3 GeV] Γeek [10−6 GeV] R−1 [GeV2] R1 [GeV−2]
1 3.09687 ± 0.00004 0.087 ± 0.005 5.26 ± 0.37 6.483 0.0705
2 3.68596 ± 0.00009 0.50907 ± 0.00013 2.12 ± 0.18 3.110 0.01685
3 3.7699 ± 0.0025 25.3 ± 2.9 0.26 ± 0.04 0.390 0.001931
4 4.040 ± 0.010 52 ± 10 0.75 ± 0.15 1.206 0.004527
5 4.159 ± 0.020 70 ± 20 0.77 ± 0.23 1.275 0.004260
6 4.415 ± 0.006 43 ± 15 0.47 ± 0.10 0.826 0.002174

13.29 0.1002

Table 7.5: Resonance contributions for the c quark, as taken from Ref. [127]

The experiment side

Different threshold regions occur for higher and higher center-of-mass energies. Here the
contribution of the c quark is considered. For the left hand sides of the sum rules which
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are called the “experimental sides” one obtains the values shown in Table 7.5 using the
resonance positions Mk and the e+e− widths Γeek given in Ref. [127] according to

Rexp
−1 =

∫ s0

0
ρexp(s)ds =

9π

ᾱ2NcQ2
c

6
∑

k=1

Γeek Mk,

Rexp
1 =

∫ s0

0

ρexp(s)

s2
ds =

9π

ᾱ2NcQ2
c

6
∑

k=1

Γeek (Mk)
−3 (7.178)

where ᾱ = α(4m2
c) ≈ α0 = 1/137.04 is the running QED coupling at the threshold, Nc = 3

is the number of colours, Qc = 2/3 is the electric charge of the c quark, and the spectral
density is normalized to 1.

The theory side

On the theory side, the spectral density can be considered in different approximations. In
the following subsection these expressions will be built up from very simple model spectral
densities up to first order expressions. All this can and will be done analytically for the
moments from R−2 to R3 (note the restriction for the degree of the moments from the con-
siderations of the last section [274]). In the steps that follow, second order approximations
are included numerically, and different resummation techniques are applied.

7.6.2 Theory side spectral densities

The expressions considered here include the leading order contribution in αs, the first
order corrections in a Schwinger parametrization as well as in the exact form. Finally,
the first (gluon) condensate contributions are included. In all cases, the spectral density
is alternatively taken to be a constant, given by its the value at the upper boundary s0

(so-called “box approximation”), or the exact function.

Leading order box approximation

To leading order the spectral density is given by

ρ(0)(s) =

√

1 − 4m2

s

(

1 +
2m2

s

)

(7.179)

(normalized to 1). The box approximation is obtained by multiplying this function at the
point s = s0 with the corresponding integral over 1. Therefore, one obtains

R
[0]
−1 = ρ(0)(s0)

∫ s0

4m2
ds = ρ(0)(s0)(s0 − 4m2) = s0

(

1 − 4m2

s0

)3/2 (

1 +
2m2

s0

)

,

R
[0]
1 = ρ(0)(s0)

∫ s0

4m2

ds

s2
= ρ(0)(s0)

(

1

4m2
− 1

s0

)

=
1

4m2

(

1 − 4m2

s0

)3/2 (

1 +
2m2

s0

)

.

(7.180)
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Leading order exact integration

It is easy in this case to perform the exact integration. With the substitution

v =

√

1 − 4m2

s
⇒ s =

4m2

1 − v2
, ds =

8m2v dv

(1 − v2)2
(7.181)

one obtains

R
(0)
−1 =

∫ s0

4m2
ρ(0)(s)ds =

∫ s0

4m2

√

1 − 4m2

s

(

1 +
2m2

s

)

ds =

=
∫ v0

0
v

(

1 +
1 − v2

2

)

8m2v dv

(1 − v2)2
= 4m2

∫ v0

0

(3 − v2)v2

(1 − v2)2
dv (7.182)

where v0 =
√

1 − 4m2/s0 is the velocity at the energy square s0. Partial fractioning

(3 − v2)v2

(1 − v2)2
=

1

2(1 − v)2
+

1

2(1 + v)2
− 1 (7.183)

leads to

R
(0)
−1 = 4m2

∫ v0

0

(

1

2(1 − v)2
+

1

2(1 + v)2
− 1

)

dv = 4m2

[

1

2(1 − v)
− 1

2(1 + v)
− v

]v0

0

=

= 4m2
[

v

1 − v2
− v

]v0

0
= 4m2

[

v3

1 − v2

]v0

0

= 4m2 v3
0

1 − v2
0

= s0

(

1 − 4m2

s0

)3/2

. (7.184)

For the second moment one obtains

R
(0)
1 =

∫ s0

4m2

√

1 − 4m2

s

(

1 +
2m2

s

)

ds

s2
=

∫ v0

0
v

(

1 +
1 − v2

2

)

(1 − v2)2

(4m2)2

8m2v dv

(1 − v2)2
=

=
1

4m2

∫ v0

0
(3 − v2)v2dv =

1

4m2

[

v3 − 1

5
v5
]v0

0
=

1

4m2
v3
0(1 − 1

5
v2
0) =

=
1

20m2

(

1 − 4m2

s0

)3/2 (

5 − 1 +
4m2

s0

)

=
1

5m2

(

1 − 4m2

s0

)3/2 (

1 +
m2

s0

)

.

(7.185)

First order contribution from the MS-scheme

If a mass different from the pole mass is used, one has to take into account the first order
difference. For example, the relation between the pole mass m and the running MS-mass
mMS is given by

m = m̄
(

1 +
4

3

(

ᾱs
π

))

. (7.186)

This leads to a change of the velocity variable v,

v =

√

1 − 4m2

s
=

√

1 − 4m̄2

s

(

1 +
8

3

(

ᾱs
π

))

= v̄

√

1 − 8

3v̄2

(

ᾱs
π

)

4m̄2

s
=

= v̄

(

1 − 4

3v̄2

(

ᾱs
π

)

4m̄2

s

)

= v̄ − 4

3v̄

(

ᾱs
π

)

4m̄2

s

(

v̄ =
√

1 − 4m̄2/s
)

(7.187)
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where only expressions up to O(ᾱs) have been taken into account. Therefore, the leading
order spectral density can be written as

ρ(0)(s) =

√

1 − 4m2

s

(

1 +
2m2

s

)

=
1

2
v(3 − v2) =

=
1

2

(

v̄ − 4

3v̄

(

ᾱs
π

)

4m̄2

s

)(

3 − v̄2 +
8

3

(

ᾱs
π

)

4m̄2

s

)

=

=
1

2
v̄(3 − v̄2) +

8

3
v̄
(

ᾱs
π

)

4m̄2

s
− 4

3v̄
(3 − v̄2)

(

ᾱs
π

)

4m̄2

s
=

=
1

2
v̄(3 − v̄2) − 4

v̄
(1 − v̄2)2 ᾱs

π
= ρ̄(0)(s) − 4

v̄

(

4m̄2

s

)2
ᾱs
π
. (7.188)

For the moments there are two changes which have to be taken into account, namely the
change of the lower limit and the change of the spectral density,

R(0)
n =

∫ s0

4m2

ds

sn
ρ(0)(s) =

∫ s0

4m̄2

ds

sn
ρ(0)(s) −

∫ 4m2

4m̄2

ds

sn
ρ(0)(s) =

=
∫ s0

4m̄2

ds

sn
ρ̄(0)(s) − 4

(

ᾱs
π

) ∫ s0

4m̄2

ds

sn

(

4m̄2

s

)2

−
∫ 4m2

4m̄2

ds

sn
ρ̄(0)(s) (7.189)

Because the change of the lower limit is only small, the box approximation can be used
for the third part. But because the spectral density vanishes for s = 4m̄2, one obtains

∫ 4m2

4m̄2

ds

sn
ρ̄(0)(s) ≈ (4m2 − 4m̄2)ρ̄(0)(4m̄2)(4m̄2)−n = 0 (7.190)

while for the second part one obtains
∫ s0

4m̄2

ds

sn
ρ̄(0)(s) = (4m̄2)2

∫ s0

4m̄2

ds

sn+2
= (7.191)

=



















(4m̄2)2 ln
(

s0

4m̄2

)

> 0 for n = −1

− (4m̄2)2

(n + 1)sn+1

∣

∣

∣

s0

4m̄2
=

(4m̄2)2

n + 1

(

(4m̄2)−n−1 − s−n−1
0

)

> 0 for n 6= −1

Naive running of the coupling

Since the strong coupling enters the spectral density in the previous paragraph, one faces
the question of whether this coupling should be used at a fixed energy scale or as a running
coupling for an energy scale which varies according to the moment degree. A naive scale
definition which depends on the degree of the moment is given by the mean value of the
integration measure,

∫ s0

4m2

ds

sn
= (4m2)1−n

∫ 1

x0

xn−2dx =
(4m2)1−n

n− 1

(

1 − xn−1
0

)

=

=: (4m2)1−n
(

1

x0

− 1
)

x̄n = (s0 − 4m2)s̄−n. (7.192)

therefore

x̄n =
x0

n− 1

1 − xn−1
0

1 − x0
. (7.193)
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There are two values for the degree n at which the expression must be considered more
carefully. For the case n = 1 one inserts n = 1 + ε and expands in ε,

x̄1+ε = x̄+O(ε) =
x0

ε

−ε ln x0

1 − x0
+O(ε) =

x0

ε

1 − xε0
1 − x0

(7.194)

in order to obtain

x̄ = −x0 ln x0

1 − x0
(n = 1). (7.195)

For n = 0 one inserts n = ε and expands again,

1 + ε ln x̄ =
x0

1 − ε

1 − x−1
0 (1 + ε lnx0)

1 − x0
= (1 + ε)

(

1 +
ε lnx0

1 − x0

)

(7.196)

to obtain

ln x̄ = 1 +
ln x0

1 − x0

(n = 0). (7.197)

Schwinger parametrization in box approximation

Before proceeding to the full first-order correction of the spectral density in αs, the so-
called Schwinger parametrization of this first order term is used, in terms of v given
by [141]

ρ̃(sw)(v) = v
3 − v2

2

{

1 +
4αs
3π

(

π2

2v
− 3 + v

4

(

π2

2
− 3

4

))}

. (7.198)

The moments are given by multiplying this spectral density at v = v0 (corresponding to
s = s0) with the factors

(s0 − 4m2) = s0

(

1 − 4m2

s0

)

= s0v
2
0 and

(

1

4m2
− 1

s0

)

=
1

4m2

(

1 − 4m2

s0

)

=
v2
0

4m2
.

(7.199)

Schwinger parametrization in exact integration

For the purpose of an exact integration the integrals

I−1,−1 =
∫ v0

0

(3 − v2)v

(1 − v2)2
dv =

∫ v0

0

1

2

(

dv

(1 − v)2
− dv

(1 + v)2
+

dv

1 − v
− dv

1 + v

)

=

=
1

2

[

1

1 − v
+

1

1 + v
− ln(1 − v) − ln(1 + v)

]v0

0
=

1

2

[

2(1 + v2)

1 − v2
− ln(1 − v2)

]v0

0

=

=
1 + v2

0

1 − v2
0

− 1

2
ln(1 − v2

0) − 1 =
v2
0

1 − v2
0

− 1

2
ln(1 − v2

0), (7.200)

I−1,0 =
∫ v0

0

(3 − v2)v2

(1 − v2)2
dv =

v3
0

1 − v2
0

(cf. before) (7.201)

I−1,1 =
∫ v0

0

(3 − v2)v3

(1 − v2)2
dv =

=
∫ v0

0

(

1

2

(

dv

(1 − v)2
− dv

(1 + v)2
− dv

1 − v
+

dv

1 + v

)

− v dv

)

=
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=
1

2

[

1

1 − v
+

1

1 + v
+ ln(1 − v) + ln(1 + v) − v2

]v0

0
=

=
1

2

[

2

1 − v2
− v2 + ln(1 − v2)

]v0

0
=

1

2

(

(1 + v2
0)v

2
0

1 − v2
0

+ ln(1 − v2
0)

)

(7.202)

are calculated in case of the moment R−1, and

I1,−1 =
∫ v0

0
(3 − v2)v dv =

[

3

2
v2 − 1

4
v4
]v0

0
=

1

4
(6 − v2

0)v
2
0, (7.203)

I1,0 =
∫ v0

0
(3 − v2)v2dv =

[

v3 − 1

5
v5
]v0

0
=

1

5
(5 − v2

0)v
3
0, (7.204)

I1,1 =
∫ v0

0
(3 − v2)v3dv =

[

3

4
v4 − 1

6
v6
]v0

0
=

1

12
(9 − 2v2

0)v
4
0 (7.205)

in case of the moment R1. Using these integrals one obtains

R
(sw)
−1 −R

(0)
−1 = 4m2 4αs

3π

{

π2

8
(4I−1,−1 − 3I−1,0 − I−1,1) +

3

16
(3I−1,0 + I−1,1)

}

=

=
m2αs
2π

{

2π2

3

(

7 − 6v0 − v2
0

1 − v2
0

v2
0 − 5 ln(1 − v2

0)

)

+

+
1 + 6v0 + v2

0

1 − v2
0

v2
0 + ln(1 − v2

0)

}

, (7.206)

R
(sw)
1 −R

(0)
1 =

1

4m2

4αs
3πm2

{

π2

8
(4I1,−1 − 3I1,0 − I1,1) +

3

16
(3I1,0 + I1,1)

}

=

=
αsv

2
0

960πm2

{

2π2

3

(

360 − 180v0 − 105v2
0 + 36v3

0 + 10v4
0

)

+

+(180 + 45v0 − 36v2
0 − 10v3

0)v0

}

. (7.207)

First order in box approximation

The next step is to calculate the first order contribution in box approximation. The “box
part” is obvious whereas the exact first order contribution to the spectral density is given
by [141]

ρ̃(1)(v) = v
3 − v2

2

[

1 +
4αs
3πv

{

A(v) +
3PV (v)

3 − v2
ln
(

1 + v

1 − v

)

+
3QV (v)

3 − v2

}]

(7.208)

where

A(v) = (1 + v2)

{

Li2

(

(1 − v)2

(1 + v)2

)

+ 2 Li2

(

1 − v

1 + v

)

+ ln

(

(1 + v)3

8v2

)

ln
(

1 + v

1 − v

)

}

+

+3v ln

(

1 − v2

4v

)

− v ln v, (7.209)

PV (v) =
33

24
+

22

24
v2 − 7

24
v4, QV (v) =

5

4
v − 3

4
v3. (7.210)
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First order in exact integration

Even this expression can be integrated exactly including the different weights. The ex-
pressions obtained by using MATHEMATICA for the integration according to

R
(1)
−1 =

∫ s0

4m2
ρ(s)ds = 4m2

∫ v0

0
ρ̃(v)

2v dv

(1 − v2)2
,

R
(1)
1 =

∫ s0

4m2

1

s2
ρ(s)ds =

1

4m2

∫ v0

0
ρ̃(v)2v dv (7.211)

and using the dilogarithm identities (see Appendix E)

Li2(1 + v) = −Li2(−v) +
π2

6
− 1

2
ln(v2) ln(1 + v) − iπ ln(1 + v), (7.212)

Li2(1 − v) = −Li2(v) +
π2

6
− 1

2
ln(v2) ln(1 − v), (7.213)

Li2

(

1 + v

2

)

= Li2

(

−1 − v

1 + v

)

+
π2

6
+

1

2
ln
(

2

1 + v

)

ln

(

(1 − v)2

2(1 + v)

)

(7.214)

are given by

R
(1)
−1 = R

(0)
−1 + 4m2 αs

4π
A−1, R

(1)
1 = R

(0)
1 +

1

4m2

αs
4π
A1 (7.215)

where

A−1 =
1

3

{

− 2v(7 − 13v2) + 48v(3 + v2)
(

ln
(

1 − v

2

)

− 2

3
ln v

)

+

+(1 − v)(55 − 17v + 21v2 − 3v3) ln
(

1 + v

1 − v

)

− 20(1 − v2)π2 +

−16(1 − v2) ln v ln
(

1 + v

1 − v

)

+ 24(3 + v4) ln
(

1 + v

2

)

ln
(

1 + v

1 − v

)

+

+80(1 − v2) (Li2(v) − Li2(−v)) − 48(1 − v2) Li2

(

−1 − v

1 + v

)

+

+8(4 − v2 + v4)

(

Li2

(

(1 − v)2

(1 + v)2

)

+ 2 Li2

(

1 − v

1 + v

)

− 2 ln v ln
(

1 + v

1 − v

)

)}

,

(7.216)

A1 =
1

9

{

2v

9
(453 + 296v2 − 93v4) + 16v(33− 16v2 + 3v4)

(

2

3
ln v − ln

(

1 + v

2

))

+

−1 − v

3
(679 − 113v − 230v2 + 154v3 + 55v4 − 17v5) ln

(

1 + v

1 − v

)

− 8π2 +

−32 ln v ln
(

1 + v

1 − v

)

− 24(1 − v2)(11 + 2v2 − v4) ln
(

1 + v

2

)

ln
(

1 + v

1 − v

)

+

+32 (Li2(v) − Li2(−v)) − 72 Li2

(

(1 − v)2

(1 + v)2

)

− 240 Li2

(

−1 − v

1 + v

)

+

+8v2(9 + 3v2 − v4)

(

Li2

(

(1 − v)2

(1 + v)2

)

+ 2 Li2

(

1 − v

1 + v

)

− 2 ln v ln
(

1 + v

1 − v

)

)}

.

(7.217)
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The gluon condensate contribution

Finally, one can include also the gluon condensate contribution. For this one uses the
vector correlator given in Ref. [287] (dropping the index “V ” and a factor 1/12π2)

Π(q2) = 1lΠI + 〈g2G2〉ΠG (7.218)

where

ΠI(q
2) =

∫ ∞

4m2

√

1 − 4m2

s

(

1 +
2m2

s

)

ds

s + q2
(7.219)

and

ΠG(q2) =
−1

4(q2)2
(1 − 3J2(q

2/m2) + 2J3(q
2/m2)) (7.220)

where

JN(q2/m2) =
∫ 1

0

dx

(1 + x(1 − x)q2/m2)N
. (7.221)

As a first step the integrals over spectral densities for the correlator parts JN(q2/m2),
denoted by ρN (−s/m2), are calculated. For this purpose the integration path from 4m2

to s0 closely above resp. below the real axis is replaced by a circle path about the center
s = m2 with radius s0 −m2 which will not include the origin for s0 but is close enough to
the threshold. This circle path is denoted by C. Taking the simplest case, namely N = 1
and the pure integration of the spectral density without any weight, one obtains

∫ s0

4m2
ρ1(s)ds =

−1

2πi

∮

C
J1(−s/m2)ds =

−1

2πi

∮

C
ds
∫ 1

0

dx

1 − x(1 − x)s/m2
. (7.222)

One can change the Feynman parameter x to a better choice,

x =
1

2
(1 + v), dx =

1

2
dv, v = 2x− 1, x(1 − x) =

1

4
(1 − v2) (7.223)

and furthermore can use the fact that v appears only quadratically to absorb the factor
1/2 of the measure in a convolution of the interval [−1, 1] to [0, 1]. Therefore, one finally
obtains
∫ s0

4m2
ρ1(s)ds =

−1

2πi

∮

C
ds
∫ 1

0

dv

1 − (1 − v2)s/(4m2)
=

4m2

2πi

∫ 1

0

dv

1 − v2

∮

C

ds

s− 4m2/(1 − v2)
.

(7.224)
Now the residue theorem can be used. The circle integral only contributes if the singularity
at the point sp = 4m2/(1 − v2) lies within the circle, such that

sp − 4m2 =
4m2

1 − v2
− 4m2 ≤ s0 − 4m2 ⇔ v2 ≤ 1 − 4m2

s0
=: v2

0. (7.225)

In this case the value for the residue integral is 2πi, otherwise zero. For this simple case
one therefore obtains
∫ s0

4m2
ρ1(s)ds = 4m2

∫ v0

0

dv

1 − v2
= 2m2

∫ v0

0

(

dv

1 − v
+

dv

1 + v

)

= 2m2 ln
(

1 + v0

1 − v0

)

. (7.226)

If the simple example is extended to higher values in N , the circle integral will result
in zero in all cases because of the residue theorem. However, an additional weight such
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as 1/s2 will change the situation drastically. In this case one has to expand this weight
function f(s) in a Taylor series around the pole position sp,

f(s) =
∞
∑

i=0

(s− sp)
i 1

i!
f (i)(sp) (7.227)

and take the i = (N − 1)th term to obtain the residue. This will be done in a more
general way separately for positive and negative powers of the weight. For f(s) = 1/sn

one obtains

f(s) =
1

sn
, f (i)(s) =

(−1)i(n+ i− 1)!

(n− 1)!sn+i
, f (N−1)(s) =

(−1)N−1(n+N − 2)!

(n− 1)!sn+N−1

(7.228)
and therefore

∫ s0

4m2

1

sn
ρN (s)ds =

−1

2πi

∮

C

1

sn
JN(−s/m2)ds =

= −(4m2)N

2πi

∫ 1

0
dv
∮

ds

sn (4m2 − (1 − v2)s)N
=

= −(4m2)N

2πi

∫ 1

0

dv

(1 − v2)N

∮

C

(−1)Nds

sn (s− 4m2/(1 − v2))N
=

= (4m2)N
(n+N − 2)!

(n− 1)!(N − 1)!

∫ v0

0

dv

(1 − v2)N

(

1 − v2

4m2

)n+N−1

=

=
1

(4m2)n−1

(n+N − 2)!

(n− 1)!(N − 1)!

∫ v0

0
(1 − v2)n−1dv. (N ≥ 1, n ≥ 1) (7.229)

For f(s) = sn one obtains

f(s) = sn, f (i)(s) =
n!

(n− i)!
sn−i−1, f (N−1)(s) =

n!

(n−N + 1)!
sn−N (7.230)

and thus
∫ s0

4m2
snρN(s)ds =

−1

2πi

∮

C
snJN(−s/m2)ds =

= −(4m2)N

2πi

∫ 1

0
dv
∮

C

snds

(4m2 − (1 − v2)s)N
=

= −(4m2)N

2πi

∫ 1

0

dv

(1 − v2)N

∮

C

(−1)Nsnds

(s− 4m2/(1 − v2))N
=

= (4m2)N
(−1)N−1n!

(n−N + 1)!(N − 1)!

∫ v0

0

dv

(1 − v2)N

(

4m2

1 − v2

)n−N
=

= (4m2)n
(−1)N−1n!

(n−N + 1)!(N − 1)!

∫ v0

0

dv

(1 − v2)n
. (N ≥ 1, n ≥ N − 1) (7.231)

Integrals with ρ0(s) = 1 vanish in all possible cases. If one now takes

ρG(s) =
1

4s2

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

, (7.232)
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one obtains

∫ s0

4m2
s2ρG(s)ds =

1

4

∫ s0

4m2

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds = 0, (7.233)
∫ s0

4m2
sρG(s)ds =

1

4

∫ s0

4m2

1

s

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds =

=
1

4

(

3 1!

0! 1!
− 2 2!

1! 1!

)

∫ v0

0
dv =

−v0

4
, (7.234)

∫ s0

4m2
ρG(s)ds =

1

4

∫ s0

4m2

1

s2

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds =

=
1

4

(

1

4m2

)

(

3 2!

1! 1!
− 2 3!

1! 2!

)

∫ v0

0
(1 − v2)dv = 0, (7.235)

∫ s0

4m2

1

s
ρG(s)ds =

1

4

∫ s0

4m2

1

s3

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds =

=
1

4

(

1

(4m2)2

)(

3 3!

2! 1!
− 2 4!

2! 2!

)

∫ v0

0
(1 − v2)2dv =

=
−3

4(4m2)2

(

v0 −
2

3
v3
0 +

1

5
v5
0

)

, (7.236)

∫ s0

4m2

1

s2
ρG(s)ds =

1

4

∫ s0

4m2

1

s4

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds =

=
1

4

(

1

(4m2)3

)(

3 4!

3! 1!
− 2 5!

3! 2!

)

∫ v0

0
(1 − v2)3dv =

=
−8

4(4m2)3

(

v0 − v3
0 +

3

5
v5
0 −

1

7
v7
0

)

. (7.237)

One can find a general expression (which is be proven to work for all integer values of n),

∫ s0

m2

1

sn+1
ρG(s)ds =

1

4

∫ s0

4m2

1

sn+3

(

3ρ2(−s/m2) − 2ρ3(−s/m2)
)

ds =

=
1

4

(

1

(4m2)n+2

)(

3(n+ 3)!

(n+ 2)!1!
− 2(n+ 4)!

(n+ 2)!2!

)

∫ v0

0
(1 − v2)n+2dv =

=
−(n + 1)(n+ 3)

4(4m2)n+2

∫ v0

0
(1 − v2)n+2dv. (7.238)

The general result can be found by comparison with the moment provided in Ref. [287].
For this purpose the result in case of s0 → ∞, i.e. v0 → 1 is calculated and

∫ 1

0
(1 − v2)n+2dv =

1

2

∫ 1

0
t−1/2(1 − t)n+2dt =

1

2
B(1/2, n+ 3) =

=
Γ(1/2)Γ(n+ 3)

2Γ(n+ 7/2)
=

2n+2(n+ 2)!

(2n+ 5)!!
(7.239)

(t = v2) is used to obtain

∫ ∞

4m2

1

sn+1
ρG(s)ds =

−2n+2(n+ 1)(n+ 3)(n+ 2)!

4(4m2)n+2(2n+ 5)!!
=

−2n+2(n + 1)(n+ 3)!

4(2n+ 5)!!(4m2)n+2
. (7.240)
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This checks for the leading order term as well. Here one obtains

∫ s0

4m2

1

sn+1

√

1 − 4m2

s

(

1 +
2m2

s

)

ds =

=
∫ v0

0

(

1 − v2

4m2

)n+1

v

(

1 +
1 − v2

2

)

8m2v dv

(1 − v2)2
=

=
1

(4m2)n

(

2
∫ v0

0
(1 − v2)n−1v2dv +

∫ v0

0
(1 − v2)nv2dv

)

(7.241)

and for s→ ∞ resp. v0 → 1

∫ ∞

4m2

1

sn+1

√

1 − 4m2

s

(

1 +
2m2

s

)

ds =

=
1

(4m2)n

(∫ 1

0
t1/2(1 − t)n−1dt+

1

2

∫ 1

0
t1/2(1 − t)ndt

)

=

=
1

(4m2)n

(

B(3/2, n) +
1

2
B(3/2, n+ 1)

)

=

=
1

(4m2)n

(

Γ(3/2)Γ(n)

Γ(n + 3/2)
+

Γ(3/2)Γ(n+ 1)

2Γ(n+ 5/2)

)

=

=
1

(4m2)n

(

1
2

√
π (n− 1)!2n+1

(2n+ 1)!!
√
π

+
1
2

√
π n!2n+2

2(2n+ 3)!!
√
π

)

=

=
2n

(4m2)n
(2n + 3 + n)(n− 1)!

(2n+ 3)!!
= 3

2n(n+ 1)(n− 1)!

(4m2)n(2n+ 3)!!
(7.242)

where

Γ(n + 5/2) =
(2n+ 3)!!

√
π

2n+2
(7.243)

is used.

7.6.3 The sum rule pairs

The contributions calculated so far are coded in the file sumrules.add. The different
kinds of moments are enumerated according to the previous subsections. Therefore,

• mom1[n ,s ,m ] is leading order in box approximation

• mom2[n ,s ,m ] is leading order in exact integration

• mom3[n ,s ,m ] is Schwinger parametrization in box approximation

• mom4[n ,s ,m ] is Schwinger parametrization in exact integration

• mom5[n ,s ,m ] is first order in box approximation

• mom6[n ,s ,m ] is first order in exact integration

• mom7[n ,s ,m ] is first order with gluon condensate contribution
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n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2 n2 = 3
n1 = −2 1.377059 1.370344 1.369071 1.371422 1.375783
n1 = −1 1.377059 1.367445 1.368029 1.371137 1.375755
n1 = 0 1.370344 1.367445 1.368283 1.371624 1.376026
n1 = 1 1.369074 1.368031 1.368283 1.373075 1.377219
n1 = 2 1.371425 1.371139 1.371624 1.373074 1.378978
n1 = 3 1.375787 1.375758 1.376026 1.377215 1.378969

Table 7.6: mass values obtained by the sum rule pair (n1, n2)

n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2 n2 = 3
n1 = −2 4.196339 4.192714 4.192032 4.193292 4.195646
n1 = −1 4.196339 4.183859 4.184615 4.188644 4.194643
n1 = 0 4.192714 4.183859 4.186418 4.196623 4.210066
n1 = 1 4.192041 4.184621 4.186418 4.220750 4.250832
n1 = 2 4.193302 4.188650 4.196623 4.220747 4.325102
n1 = 3 4.195661 4.194651 4.210066 4.250818 4.325067

Table 7.7: energy values obtained by the sum rule pair (n1, n2)

(the moments mom8[n ,s ,m ] and mom9[n ,s ,m ] not appearing in the list are designed
for the second order Coulomb contribution used in the next subsection). The parameter
n, s and m are the moment label, the threshold value s0 and the mass. Having all these
theory ingredients at hand, one can use them in the sum rule analysis.

For this purpose a pair of sum rules is constructed, consisting of equations where the
left hand side contains the resonance contributions and the right hand side the correspond-
ing theoretical moment according to Eq. (7.177). Free parameters of these equations are
the mass m of the c quark and the threshold value s0. Doing this for a whole range of mo-
ment pairs where the first order contribution is taken to be in Schwinger parametrization,
for the example mom7 one obtains the results shown in Table 7.6 for the mass mc and in
Table 7.7 for

√
s0, both given in GeV. The tables are generated automatically by the pro-

cedures masstable[name ,fn ] and energytable[name ,fn ] where name is the name of
the LATEX file to be generated and fn is the label of the moment function used, so in this
case mom7. The two procedures themselves use the procedure rrsolve[fn ,n1 ,n2 ,n ]

for solving the sum rule pair (n1, n2) with n resonances included. n = 6 resonances have
been taken to obtain a first insight, even though it is obvious that

√
s0 lies below the fifth

resonance. This fact has to be taken into account for further considerations.

The numbers appearing in these tables show a huge degree of stability. While these
numbers are nearly independent on whether the gluon condensate contribution (〈g2G2〉 =
(0.83GeV)4) is taken into account, the values depend on the other parameters such as the
QED coupling ᾱ (which is assumed here to be roughly 1.03α0) and the strong coupling
αs (taken as αs = 0.32). This dependence is the reason why more work is done about the
form of the perturbation series in the following subsection.
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LO NLO NNLO + Gluon
n = 2 1.417 1.86357 2.11214 2.11217
n = 1 1.24851 1.66829 1.93996 1.93996
n = 0 1.18593 1.50412 1.72644 1.72618

n = −1 1.18957 1.4229 1.58931 1.5886
n = −2 1.2121 1.39412 1.52702 1.52583
n = −3 1.23674 1.38733 1.49962 1.49795

Table 7.8: masses obtained by the sum rule for
√
s0 = 4.6GeV including six resonances

7.6.4 Resummation and other rearrangements

As a first step the (unphysical) parameter s0 is removed from the sum rule analysis. The
only remaining parameter m can therefore be determined for each single moment.

Second order Coulomb contribution

In this analysis a second order QCD correction is included which is called Coulombic
because it consists of a power series in 1/v. This contribution is given by [118]

∆ρ̃(2c)(v) = CF

(

αs
π

)2

ρ̃(0)(v)
(

CFρ
(2c)
A (v) + CAρ

(2c)
NA(v) + TRNLρ

(2c)
L (v) + TRNHρ

(2c)
H (v)

)

(7.244)
where for the colour group SU(3) one has CF = 4/3, CA = 3, TR = 1/2. NL = 3 indicates
the number of light flavours and NH = 1 the number of heavy flavours. The different
parts are given by

ρ
(2c)
A (v) =

π4

12v2
− 2π2

v
+
π4

6
+ π2

(

−35

18
− 2

3
ln v +

4

3
ln 2

)

+
39

4
− ζ(3),

ρ
(2c)
NA(v) =

π2

v

(

31

72
− 11

12
ln(2v)

)

+ π2
(

179

72
− ln v − 8

3
ln 2

)

− 151

36
− 13

2
ζ(3),

ρ
(2c)
L (v) =

π2

v

(

1

3
ln(2v) − 5

18

)

+
11

9
, ρ

(2c)
H (v) =

44

9
− 4π2

9
. (7.245)

In Table 7.8 the leading order, the next-to-leading order, and the next-to-next-to-leading
order with or without the gluon condensate contribution are compared for the different
moments, taking as an example s0 = (4.6GeV)2 and all six resonances. The table is
created by using the procedure contritable[name ,e ,n ] where name is the name of
the generated LATEX file, e is the square root of s0, and n is the number of resonances.
This procedure itself makes use of the procedure eesolve[fn ,e ,n1 ,n ] where fn is
the label of the moment function and n1 is the degree of the moment. The following new
moments are used in the package sumrules.add:

• mom8[n ,s ,m ]: second order Coulomb box approximation

• mom9[n ,s ,m ]: second order Coulomb exact integration

• moma[n ,s ,m ]: the latter including the gluon condensate contribution
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From Table 7.8 it is obvious that the addition of the gluon condensate contribution has
nearly no effect. Instead, the degree of the moments as well as the order of perturbative
expansion plays an important role. One therefore has to think about the errors which are
incurred by terminating the perturbation series at a specified order and about whether one
can improve the situation by resumming specific terms. These two points are discussed
in the following.

Coulomb resummation

The terms (αs/v)
k in Eq. (7.244) can be resummed by using the correlator [120]

ΠC(q2)=
3π

4m

{

−
√

4m2 + q2 + CFαsm

(

ln

(

µ2
f

4m2 + q2

)

− 2γE − 2ψ

(

1 − CFαsm√
4m2 + q2

))}

(7.246)
where ψ(z) = Γ′(z)/Γ(z) is the digamma function (see Appendix D.5) and µf is the
factorization scale. Because of the expansion

ψ(1 − z) = −γE −
∞
∑

n=1

ζ(n+ 1)zn (7.247)

one obtains

γE + ψ

(

1 − CDαsm√
4m2 + q2

)

= −
∞
∑

n=1

ζ(n+ 1)

(

CFαsm√
4m2 + q2

)n

. (7.248)

Taking the discontinuity of the whole expression, the even terms of the expansion

ΠC(q2)=
3π

4m

{

−
√

4m2 + q2 + CFαsm

(

ln

(

µ2
f

4m2 + q2

)

+ 2
∞
∑

n=1

ζ(n+ 1)

(

CFαsm√
4m2 + q2

)n)}

(7.249)
can be seen to give no contribution. One therefore has to calculate

Disc
(√

4m2 − s
)

=
√

4m2 + se−iπ −
√

4m2 + seiπ =

=
√

(s− 4m2)e−iπ −
√

(s− 4m2)eiπ =

=
√
s− 4m2e−iπ/2 −

√
s− 4m2eiπ/2 =

= −2i
√
s− 4m2 = −2iv

√
s, (7.250)

Disc ln

(

µ2
f

4m2 − s

)

= ln

(

µ2
f

4m2 + se−iπ

)

− ln

(

µ2
f

4m2 + seiπ

)

=

= ln

(

4m2 + seiπ

4m2 + se−iπ

)

= 2πi, (7.251)

Disc

(

1√
4m2 − s

)

=
1√

4m2 + se−iπ
− 1√

4m2 + seiπ
=

=
eiπ/2√
s− 4m2

− e−iπ/2√
s− 4m2

=
2i√

s− 4m2
=

2i

v
√
s
, (7.252)

Disc

(

1

(
√

4m2 − s)3

)

=
1

(
√

4m2 + se−iπ)3
− 1

(
√

4m2 + seiπ)3
= (7.253)

=
e3iπ/2

(
√
s− 4m2)3

− e−3iπ/2

(
√
s− 4m2)3

=
−2i

(
√
s− 4m2)3

=
−2i

v3s3/2
.



380 CHAPTER 7. QCD SUM RULES FOR HEAVY QUARKS

The spectral density close to threshold (and therefore
√
s ≈ 2m) is given by

ρC(s) ≈ 3π

4m

{

1

π

√
s− 4m2 + CFαsm

(

1 +
2ζ(2)

π

CFαsm

2mv

)}

=

≈ 3v

2

{

1 +
CFαs
π

π2

2v
+
(

CFαs
π

)2 π4

12v2

}

≈ ρ̃C(v). (7.254)

This reproduces the terms of leading order in 1/v. One therefore can use ΠC(q2) to resum
the Coulomb terms. For the moments one then obtains

Rn =
∫ s0

4m2

1

sn+1
ρC(s)ds =

−1

2πi

∮

C

1

sn+1
ΠC(−s)ds (7.255)

where C is a contour containing the cut up to s = s0 drough s = 2m2 which can be
parametrized by

s = m2 + s0/2 + (m2 − s0/2)eiϕ, ϕ ∈ ] − π, π]. (7.256)

Note that these calculations are done with a new macro file called quasico.add.

To delineate the progress so far, the calculation was started with the expression

ρ̃(sc)(v) = ρ̃(sw)(v) + ∆ρ̃(2c)(v) =
v(3 − v2)

2

(

1 + CF
αs
π
t1 + CF

(

αs
π

)2

t2

)

=

=
3v

2

(

1 + CF
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π
t1 + CF

(

αs
π

)2

t2

)

+
v3

2

(

1 + CF
αs
π
t1 + CF

(

αs
π

)2

t2

)

. (7.257)

While the second part is not Coulombic to this order, one can resum the leading 1/v
terms according to the previous considerations,

ρ̃(sc)(v) =
3v

2

(

1 + CF
αs
π

π2

2v
+ C2

F

(

αs
π

)2 π4
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+

+
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2
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π
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(
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)2
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(
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(
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=

= ρ̃C(v) +
3v

2

(

1 + CF
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π
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(
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t′2
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+
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2

(
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(
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π

)2
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)

(7.258)

where

t′1 = t1 −
π2

2v
, t′2 = t2 − CF

π4

12v2
. (7.259)

The hard correction factor

The resummation described before frees one from the leading 1/v terms which become

dominant near threshold. However, subleading terms in the parts ρ
(c)
A , ρ

(c)
NA, and ρ

(c)
L

remain. The first one can be removed by extracting the so-called hard correction factor
(1 − 4CFαs/π) (cf. e.g. Ref. [118], Eq. (4)) before the Coulomb terms are resummed,

ρ̃(sc)(v) =
(

1 − 4CF
αs
π

)

v(3 − v2)

2

(

1 + CF
αs
π

(t1 + 4) + CF

(

αs
π

)2

(t2 + 4CF (t1 + 4))

)

.

(7.260)
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where now t1 + 4 and t2 + 4CF (t1 + 4) have to be taken instead of t1 and t2 as starting
expressions for the contributions of different orders in the resummation procedure. This
factorization can be done separately for the part proportional to v which resum to the
Coulomb term afterwards. On the other hand, the subleading terms in 1/v occuring in

ρ
(c)
NA and ρ

(c)
L can be absorbed into an effective coupling constant for the Coulomb term.

The effective coupling

In order to absorb the subleading order terms 1/v occuring in ρ
(c)
NA and ρ

(c)
L into an effective

coupling , one rewrites the decomposition as
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+
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(
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(7.261)

where

tα =
(

31

36
− 11

6
ln(2v)

)

CA −
(

5

9
− 2

3
ln(2v)

)

TRNL, (7.262)

t′1 = t1 −
π2

2v
, t′′2 = t2 − CF

π4

12v2
− tα. (7.263)

All leading and subleading 1/v terms are removed by redefining t1 and t2 through the
extraction of the hard correction factor and then going to t′1 and t′′2, all (leading and
subleading) 1/v terms are removed. The effective coupling is defined by

αC = αs

{

1 +
αs
π

(

31

36
CA − 5

9
TRNL −

(

11

6
CA − 2

3
TRNL

)

ln(2v)
)}

(7.264)

where the coefficient proportional to ln(2v) is proportional to the coefficient β0 contained
in the renormalization group equation.

The high energy tale coupling

The terms not affected by the Coulomb resummation are called the high energy tail . While
the Coulomb expression as considered to be the leading order term, the convergence of the
perturbation series is crucial and bears witness to whether the resummation is effective
or not, depending on the different parameters like the degree of the moment and the
parameter s0. A simple way to improve the first two terms of this perturbation series
is to define an effective coupling for the high energy tail. This has to be done for a
specific (central) moment and is done by demanding that for this moment the second
order contribution should vanish. Starting with

Rn = R(c)
n +

αs
π
R(1)
n +

(

αs
π

)2

R(2)
n , (7.265)

the requirement is to find an effective coupling αHE so that (e.g. for the zeroth moment)

R0 = R
(c)
0 +

αs
π
R

(1)
0 +

(

αs
π

)2

R
(2)
0 = R

(c)
0 +

αHE
π

R
(1)
0 + 0. (7.266)
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Figure 7.14: Energy dependence of the spectral density with Breit–Wigner resonances
with and without a cubic partial DD̄ cross section for cD = 7

The effective coupling is therefore given by

αHE = αs



1 +
αs
π

R
(2)
0

R
(1)
0



 ⇒ αs = αHE



1 − αHE
π

R
(2)
0

R
(1)
0



+O(α3
HE). (7.267)

Expressed in terms of this effective coupling, for an arbitrary moment one obtains

Rn = R(c)
n +

αHE
π

R(1)
n +

(

αHE
π

)2
(

R(2)
n − R(1)

n

R
(1)
0

)

. (7.268)

By construction, the second order term vanishes for n = 0, but the suppression of this
term is expected to be also effective for moments close to n = 0.

Improvements on the experiment side

There are two possible improvements on the experimental input. First one can replace
the narrow resonances by the Breit–Wigner distribution function,

ρexp
k (s) =

9πΓeek Mk

ᾱ2NcQ2
c

δ(s−M2
k ) → 9πΓeek Mk

ᾱ2NcQ2
c

ΓkMk

π((s−Mk)2 + Γ2
kM

2
k )
. (7.269)

The total widths of the six resonances are again taken from Ref. [127] and listed in
Table 7.5. A second improvement is the simulation of the partial DD̄ production cross
section. According to Ref. [288], this cross section can be assumed to be proportional to
v3
D. In this case the spectral density is given by

ρD(s) = cDv
3
D(s) = cD

(

1 − 4m2
D

s

)3/2

(7.270)
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Figure 7.15: Energy dependence of the spectral density with Breit–Wigner resonances
with and without a linear partial DD̄ cross section for cD = 2

where mD = (1864.5 ± 0.5)MeV [127] is the mass of the D0 meson. The combination of
both for a sample value of cD = 7 is shown in Fig. 7.14. The direct proportionality to
vD (instead of the cubic one), however, simulates the experimental data more accurately.
The influence of the linear DD̄ threshold on the resonances is shown in Fig. 7.15 for
cD = 2. In any case it is obvious, however, that for a fixed parameter s0 the introduction
of the parameter cD opens again the window for considering pairs of sum rules in order
to determine the parameter pair (mc, cD).

The choice of a non-vanishing partial DD̄ production cross section is not only optional
but also necessary. The reason is that there is no solution for moments with non-negative
degree if the partialDD̄ cross section is not included. To demonstrate this fact, in Fig. 7.16
the the mass dependence of the theory predictions for the moments (solid curves) with
the experiment values including a partial (cubic) DD̄ cross section is shown for cD = 0,
cD = 4, and cD = 8 (dashed lines, from bottom to top). The solution is given by the
intersection of the solid curve with the corresponding dashed curve. The three parts of
Fig. 7.16 display the results for the moments R−2 (left), R−1 (middle), and R0 (right).
As one can see, there is no intersection with the lowest line for negative degree of the
momentum. For this reason the the partial DD̄ cross section has to be taken into account
(note that the interval for the mass is limited to the left by the threshold).

7.6.5 Sum rule analysis

Before starting with the sum rules analysis, the different options for setting up these sum
rules are listed. Note though that the resummation of the Coulombic terms and the choice
of a corresponding effective coupling αC is not given as option but is used in all cases. To
see the difference emerging from this (non-optional) technique one can compare with the
results obtained earlier for the non-resummed theory contribution. The options are the



384 CHAPTER 7. QCD SUM RULES FOR HEAVY QUARKS

Figure 7.16: mass dependence of the moments R−2 (left), R−1 (middle), and R0 (right)
as predicted by the theory (solid curves) and by the experiment (dashed curves) for the
values cD = 0, cD = 4, and cD = 8 (from bottom to top). The intersection point gives
rise to the solution of the corresponding sum rule.

Figure 7.17: dependence of the solution for cD (cubic partial DD̄ cross section) on mc for
different degrees n of the moments Rn at

√
s0 = 4.6GeV
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following:

1. including the Breit–Wigner shape of the resonances.

2. giving the logarithms occuring in the effective coupling αC a fixed value at the
threshold value

√
s0 instead of letting them run with the integration variable.

3. working with the effective coupling αHE for the high energy tail.

4. extracting the hard correction factor (1− 4CFαs/π) before Coulomb resummation.

5. changing the value of αs. Note that it is not obvious that αs should take a constant
value (we normally take αs(mτ ) = 0.32). An (unfortunately not practicable) model
would be to use the running coupling on the circle. This is not practicable because
the dependence of αs has to be derived from the corresponding correlator.

The different options and combinations of them are analyzed in the following, both for the
mass parameter mc as well as for cD, for various pairs (n1, n2) of moment degrees around
the “central point” (0, 0) and for continuum energy values

√
s0 = 4.5GeV, 4.6GeV,

and 4.7GeV. In order to visualize the solution pairs (mc, cD) obtained, in Fig. 7.17 the
dependence of cD on mc is shown for different degrees of the moments at

√
s0 = 4.6GeV.

The solutions shown in Fig. 7.17 are obtained by using solveco[fn ,n ,m ,s ] (a pro-
cedure within quasico.add) where fn is the head of the moment function, n is the moment
degree, m is the quark mass mc, and s is the threshold energy square s0. The numerical cal-
culation of the intersection points (mc, cD) is done by using masscross[fn ,s ,n1 ,n2 ],
this procedure is used in mdtable[name ,fn ,e ] to automatically generate the tables.

An argument in favour of the choice of a linear DD̄ threshold

Looking at the tables for different options, one finds a stable behaviour of the parameters
for different choices of the moment pairs (n1, n2) as well as for different choices of the
energy

√
s0. Especially the last possibility gives a criterion whether to chose the linear

or cubic DD̄ threshold. As mentioned earlier, the threshold linear in vD in combination
with Breit–Wigner resonances (see Fig. 7.15) already visually approximates the actually
measured cross section much better. This feature shows up also in the tables. While there
is no convergence of the parameter cD for different energy values

√
s0, the values converge

in case of the linear threshold for increasing energies. Therefore, in the following only the
linear threshold will be considered.

Two favourite choices in the final choice

While the inclusion of Breit–Wigner resonances (option 1) or the effective high energy
tail (option 3) affects the results only slightly, the other options give rise to noticeable
changes. Criterion for the favourite choice of the method is the afore mentioned stability.
The choice of a fixed effective coupling as well as the choice of using the hard correction
factor both lead to a stabilization for both the quark mass mc and the threshold parameter
cD, while their combination destabilizes the parameter cD profoundly. Therefore, either
of these choices should be used. Unfortunately, these choices result in different values for
the charm quark mass (and the parameter cD). Therefore, a further criterion is necessary.
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The convergence criterion leading to the final estimate

A criterion on whether the fixed effective coupling or the hard correction factor should be
used is given by the criterion of convergence. The results for the zeroth momentum up to
second order for mc = 1.5GeV and

√
s0 = 4.6GeV, for instance, read

R
(2)
0 = 12.96 + 28.75 − 8.60 − 5.02,

R
(4)
0 = 12.96 + 13.33 − 8.60 + 8.22 (7.271)

where the different contributions in Eq. (7.271) are the leading order contribution, the
Coulomb resummed term, the non-Coulombic first and second order contribution, respec-
tively. Because first and second order corrections have to be considered in relation to
the combined leading order and Coulomb contribution, the comparison favours option 2
(fixed effective coupling) and disfavours option 4 (hard correction factor). The tables for
the fixed effective coupling (with Breit-Wigner resonances and a linear DD̄ threshold) are
shown in Tables 7.9 and 7.10. The results which can be read off these tables are given by

mc = 1.510 ± 0.013GeV, cD = 1.61 ± 0.05. (7.272)
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mc [GeV] n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.522968 1.514630 1.510111 1.507389
n1 = −1 1.522968 1.511241 1.508545 1.506650
n1 = 0 1.514630 1.511241 1.507386 1.506041
n1 = 1 1.510111 1.508545 1.507386 1.505440
n1 = 2 1.507389 1.506650 1.506041 1.505440

mc [GeV] n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.510094 1.505495 1.503391 1.502222
n1 = −1 1.510094 1.503704 1.502624 1.501877
n1 = 0 1.505495 1.503704 1.502173 1.501646
n1 = 1 1.503391 1.502624 1.502173 1.501415
n1 = 2 1.502222 1.501877 1.501646 1.501415

mc [GeV] n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.498417 1.497313 1.497406 1.497626
n1 = −1 1.498417 1.496900 1.497297 1.497594
n1 = 0 1.497313 1.496900 1.497457 1.497678
n1 = 1 1.497406 1.497297 1.497457 1.497772
n1 = 2 1.497626 1.497594 1.497678 1.497772

Table 7.9: values for mc obtained by the pair (n1, n2) for
√
s0 = 4.5GeV, 4.6GeV, and

4.7GeV (top to bottom) for Coulomb resummation with options 1 and 2 combined

cD n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.576556 1.567129 1.561946 1.558799
n1 = −1 1.576556 1.590757 1.593953 1.596183
n1 = 0 1.567129 1.590757 1.617685 1.627092
n1 = 1 1.561946 1.593953 1.617685 1.657688
n1 = 2 1.558799 1.596183 1.627092 1.657688

cD n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.577719 1.572814 1.570555 1.569296
n1 = −1 1.577719 1.583442 1.584398 1.585055
n1 = 0 1.572814 1.583442 1.592533 1.595664
n1 = 1 1.570555 1.584398 1.592533 1.606222
n1 = 2 1.569296 1.585055 1.595664 1.606222

cD n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2
n1 = −2 1.571350 1.570238 1.570331 1.570553
n1 = −1 1.571350 1.572360 1.572097 1.571899
n1 = 0 1.570238 1.572360 1.569496 1.568362
n1 = 1 1.570331 1.572097 1.569496 1.564404
n1 = 2 1.570553 1.571899 1.568362 1.564404

Table 7.10: values for cD obtained by the pair (n1, n2) for
√
s0 = 4.5GeV, 4.6GeV, and

4.7GeV (top to bottom) for Coulomb resummation with options 1 and 2 combined



Appendix A

The electroweak coupling matrix

The electro-weak coupling coefficients gij(q
2) used in Chapter 1 are given by

g11 = Q2
f − 2Qfvevf ReχZ + (v2

e + a2
e)(v

2
f + a2

f )|χZ|2,
g12 = Q2

f − 2Qfvevf ReχZ + (v2
e + a2

e)(v
2
f − a2

f )|χZ|2,
g13 = −2Qfveaf ImχZ,

g14 = 2Qfveaf ReχZ − 2(v2
e + a2

e)vfaf |χZ|2, (A.1)

g21 = q2
f − 2Qfvevf ReχZ + (v2

e − a2
e)(v

2
f + a2

f)|χZ|2,
g22 = q2

f − 2Qfvevf ReχZ + (v2
e − a2

e)(v
2
f − a2

f)|χZ|2,
g23 = −2Qfveaf ImχZ,

g24 = 2Qfveaf ReχZ − 2(v2
e − a2

e)vfaf |χZ|2, (A.2)

g31 = −2Qfaevf ImχZ,

g32 = −2Qfaevf ImχZ,

g33 = 2Qfaeaf ReχZ,

g34 = 2Qfaeaf ImχZ , (A.3)

g41 = 2Qfaevf ReχZ − 2veae(v
2
f + a2

f)|χZ|2,
g42 = 2Qfaevf ReχZ − 2veae(v

2
f − a2

f )|χZ|2,
g43 = 2Qfaeaf ImχZ ,

g44 = −2Qfaeaf ReχZ + 4veaevfaf |χZ|2 (A.4)

where χZ(q2) = gM2
Zq

2/(q2−M2
Z+iMZΓZ), with MZ and ΓZ the mass and width of the Z0

and g = GF (8
√

2πα)−1 ≈ 4.49 ·10−5GeV−2. Qf are the charges of the final state quarks to
which the electro-weak currents directly couple; ve and ae, vf and af are the electro-weak
vector and axial vector coupling constants. For example, in the Weinberg–Salam model,
one has ve = −1 + 4 sin2 θW , ae = −1 for leptons, vf = 1 − 8

3
sin2 θW , af = 1 for up-type

quarks (Qf = 2
3
), and vf = −1 + 4

3
sin2 θW , af = −1 for down-type quarks (Qf = −1

3
).

The left- and right-handed coupling constants are then given by gL = v+a and gR = v−a,
respectively. In the purely electromagnetic case one has g11 = g12 = g21 = g22 = Q2

f and
all other gr′r = 0. The terms linear in ReχZ and ImχZ come from γ − Z0 interference,
whereas the terms proportional to |χZ|2 originate from Z-exchange.
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Note that the generalization to the case where one starts with longitudinally polarized
beams is straightforward and amounts to the replacement

g1i → (1 − h−h+)g1i + (h− − h+)g4i

g4i → (1 − h−h+)g4i + (h− − h+)g1i (A.5)

where h− and h+ (−1 ≤ h± ≤ +1) denote the longitudinal polarization of the electron
and the positron beam, respectively. Clearly there is no interaction between the beams
when h+ = h− = ±1.



Appendix B

The decay rate terms

It is convenient to define the mass dependent variables a := 2 +
√
ξ, b := 2 −

√
ξ and

w0 :=
√

(1 −
√
ξ)/(1 +

√
ξ). The rate functions t1, . . . , t12 are then given by [8]
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(B.2)
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t7 := 2 ln

(

1 − ξ

2ξ

)

ln
(

1 + v

1 − v

)

− Li

(

2v

(1 + v)2

)

+ Li

(

− 2v

(1 − v)2

)

+

−1

2
Li

(

−
(

1 + v

1 − v

)2
)

+
1

2
Li

(

−
(

1 − v

1 + v

)2
)

+ (B.6)

+ Li
(

2w0

1 + w0

)

− Li
(

− 2w0

1 − w0

)

− 2 Li
(

w0

1 + w0

)

+ 2 Li
(

− w0

1 − w0

)

+

+ Li
(

2aw0

b+ aw0

)

− Li
(

− 2aw0

b− aw0

)

− 2 Li
(

aw0

b+ aw0

)

+ 2 Li
(

− aw0

b− aw0

)

t8 := ln

(

ξ

4

)

ln
(

1 + v

1 − v

)

+ Li
(

2v

1 + v

)

− Li
(

− 2v

1 − v

)

− π2 (B.7)

390



391
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Decay rate terms which were published in Ref. [18] and which are needed for the longitu-
dinal spin-spin correlation without polar angle dependence are given by
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Finally, for the polar angle dependent spin-spin correlation the relevant decay rate terms
can be found in Ref. [24],
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, (B.15)

t22 := 2 ln

(

1 + v

2 −
√
ξ

)

ln

(

2(1 +
√
ξ)(2 −

√
ξ)

(1 + v)2

)

+

+4 Li2

(√
ξ − 1 + v

2v

)

− 4 Li2

(

(1 − v)(
√
ξ − 1 + v)

2v(2 −
√
ξ)

)

(B.16)

In the massless limit (i.e. for ξ → 0 and v → 1) the decay rate terms are given by

t1 → ln 4 − 3

2
ln

(

4

ξ

)

t2 → ln 4 − 1

2
ln

(

4

ξ

)

t3 → ln

(

4

ξ

)

t4 →
π2

2

t5 →
π2

6
− 1

4
ln2

(

4

ξ

)

t6 →
π2

6
+

1

4
ln2

(

4

ξ

)

t7 → −π
2

2
− 1

4
ln2

(

4

ξ

)

t8 → −2π2

3
− 1

2
ln2

(

4

ξ

)

t9 → −2π2

3
− 1

2
ln2

(

4

ξ

)

t10 → ln

(

4

ξ

)

t11 → ln

(

4

ξ

)

t12 → ln

(

4

ξ

)

t13 → 0

t14 →
π2

6
t15 →

π2

3
+

1

4
ln2

(

4

ξ

)

t16 → −π
2

6

t17 → 0 t18 → 0 t19 → −π
2

3

t20 → −π
2

6
t21 →

π2

3
+

1

4
ln2

(

4

ξ

)

t22 → 0

(B.17)



Appendix C

Gluon energy cut decay rate terms

C.1 Steps for the gluon energy cut calculations

This appendix contains the calculations for the two-fold integrals which are necessary to
obtain the unpolarized and polarized structure functions in Sec. 1.1. The calculation is
done in a “cascade” of four levels which is detailed in the first section. The sections that
follow deal with the new decay rate terms which are relevant for these calculations.

C.1.1 The first step: formal integration

The first step is the formal integration over the phase space variable z where because of
z± = (A± B)/C the result of this integration are expressed by

A = 2y − 2y2 − ξy, B = 2y
√

(1 − y)2 − ξ, C = 4y + ξ, (C.1)

and λ. One obtains
∫ y1

0

∫ z+

z−
ylzmdy dz = Ĩo(l,m), (C.2)

∫ y2

y1

∫ 2λ−y

z−
ylzmdy dz = Ĩλ(l,m) − 1

2
Ĩab(l,m) +

1

2
Ĩba(l,m).

The principle of this splitting procedure is shown by an example. In case of m = 2 the
z-integration for the first integral results in

∫ z+

z−
z2dz =

(A + B)3

3C3
− (A− B)3

3C3
= 2

3A2 + B2

3C3
B, (C.3)

giving a contribution to Ĩo. In contrast to this, the splitting of the second integral is
somehow more involved. By separating the parts symmetric and antisymmetric in B one
obtains three parts which shall be presented in the same order as in the above displayed
classification,

∫ 2λ−y

z−
z2dz =

1

3
(2λ− y)3 − (A− B)3

3C3
=

1

3
(2λ− y)3 −AA2 + 3B2

3C3
+

3A2 + B2

3C3
B. (C.4)

It is easy to see that the third part is equal to the one obtained in the z-integration of the
first integral except for a factor 1/2. However, one has to keep in mind that the limits of
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the y-integration have changed. The characteristic for this part for all orders of m is the

appearance of
√

(1 − y)2 − ξ. This square root which also separates the integral classes
themselves does not appear in the second part. Therefore, both parts lead to similar
contributions in neighbouring integral classes. For this reason a further integral class K̃
shall be introduced which is classified behind T̃ . In contrast to this, the first part is new.
Collecting all parts, one ends up with

Ĩ(l,m) =
1

2
Ĩba(l,m) + Ĩo(l,m) − 1

2
Ĩab(l,m) + Ĩλ(l,m). (C.5)

C.1.2 The second step: global substitution

According to the polynomial function in the numerator of the integrands, the integral
parts can be split up into integrals with simple powers of y. In case of m = −1 the
z-integration leads to a logarithmic factor which necessitates a separated classification.
These logarithmic integrals are denoted by raised indices. One obtains

Ĩba(l, 2) =
4

3

(

(16 − 16ξ + 3ξ2)Îab(3, l + 3) − 4(8 − 3ξ)Îab(3, l + 4) + 16Îab(3, l + 5)
)

,

Ĩba(l, 1) = 4
(

(2 − ξ)Îab(2, l + 2) − 2Îab(2, l + 3)
)

,

Ĩba(l, 0) = 4Îab(1, l + 1),

Ĩba(l,−1) = Îba(l),

Ĩba(l,−2) =
4

ξ
Îab(0, l − 1), (C.6)

Ĩo(l, 2) =
4

3

(

(16 − 16ξ + 3ξ2)Îo(3, l + 3) − 4(8 − 3ξ)Îo(3, l + 4) + 16Îo(3, l + 5)
)

,

Ĩo(l, 1) = 4
(

(2 − ξ)Îo(2, l + 2) − 2Îo(2, l + 3)
)

,

Ĩo(l, 0) = 4Îo(1, l + 1),

Ĩo(l,−1) = Îbao (l),

Ĩo(l,−2) =
4

ξ
Îo(0, l − 1), (C.7)

Ĩab(l, 2) =
2

3

(

(16 − 16ξ + ξ2)(2 − ξ)Ŝab(3, l + 3) − 6(16 − 12ξ + ξ2)Ŝab(3, l + 4)

+24(4 − ξ)Ŝab(3, l + 5) − 32Ŝab(3, l + 6)
)

,

Ĩab(l, 1) = (8 − 8ξ + ξ2)Ŝab(2, l + 2) − 4(4 − ξ)Ŝab(2, l + 3) + 8Ŝab(2, l + 4),

Ĩab(l, 0) = 2
(

(2 − ξ)Ŝab(1, l + 1) − 2Ŝab(1, l + 2)
)

,

Ĩab(l,−1) = ln
(

ξ(1 +
√

ξ)2
)

Ŝab(0, l) + 2Îz(l) − Îab(l),

Ĩab(l,−2) = −2

ξ

(

(2 − ξ)Ŝab(0, l − 1) − 2Ŝab(0, l)
)

, (C.8)

Ĩλ(l, 2) =
1

3
Ŝλ(−3, l),
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Ĩλ(l, 1) =
1

2
Ŝλ(−2, l),

Ĩλ(l, 0) = Ŝλ(−1, l),

Ĩλ(l,−1) = ln
(

1 − 2λ+
√

ξ
)

Ŝλ(0, l) + Îλ(l),

Ĩλ(l,−2) = −Ŝλ(1, l). (C.9)

The notation with hats stands for

Ŝo(k, l) =
∫ y1

0

yldy

(4y + ξ)k
= (1 +

√

ξ)l
∫ w0

w1

(

1 − w2

b2 − a2w2

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Ŝab(k, l) =
∫ y2

y1

yldy

(4y + ξ)k
= (1 +

√

ξ)l
∫ w1

w2

(

1 − w2

b2 − a2w2

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Ŝλ(k, l) =
∫ y2

y1

yldy

(2λ− y)k
= (1 +

√

ξ)l
∫ w1

w2

(

1 − w2

w2 − w2
λ

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2

(C.10)

and similarly for the other integral classes. To calculate the second form of the integrals
the global substitution

y = 1 −
√

ξ
1 + w2

1 − w2
(C.11)

is introduced, leading to v =
√

1 − ξ, vi =
√

(1 − yi)2 − ξ, vλ =
√

(1 − 2λ)2 − ξ,

w0 =

√

√

√

√

1 −√
ξ

1 +
√
ξ
, wi =

√

√

√

√

1 − yi −
√
ξ

1 − yi +
√
ξ
, wλ =

√

√

√

√

1 − 2λ−√
ξ

1 − 2λ+
√
ξ

(C.12)

as notations as well as a = 2+
√
ξ and b = 2−

√
ξ for limits and constants. The logarithmic

integrals are given by

Îba(l) =
∫ y2

y1
ln

(

z+(y)

z−(y)

)

yldy

= (1 +
√

ξ)l
∫ w1

w2

ln

(

(1 + w)(b+ aw)

(1 − w)(b− aw)

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Îbao (l) =
∫ y1

0
ln

(

z+(y)

z−(y)

)

yldy

= (1 +
√

ξ)l
∫ w0

w1

ln

(

(1 + w)(b+ aw)

(1 − w)(b− aw)

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Îz(l) =
∫ y2

y1
ln

(

y

1 +
√
ξ

)

yldy

= (1 +
√

ξ)l
∫ w1

w2

ln

(

w2
0 − w2

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Îab(l) =
∫ y2

y1
ln (4y + ξ) yldy



396 APPENDIX C. GLUON ENERGY CUT DECAY RATE TERMS

= (1 +
√

ξ)l
∫ w1

w2

ln

(

b2 − a2w2

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Îλ(l) =
∫ y2

y1
ln

(

2λ− y

1 − 2λ+
√
ξ

)

yldy

= (1 +
√

ξ)l
∫ w1

w2

ln

(

w2 − w2
λ

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
. (C.13)

C.1.3 The third step: indefinite integration

All integrals presented in the previous paragraph can be expressed as differences of indef-
inite integrals. In this context the non-logarithmic integrals with subscripts o and ab can
be treated as the same type of integral. One has

Ŝo(k, l) = Sab(k, l, w0) − Sab(k, l, w1),

Ŝab(k, l) = Sab(k, l, w1) − Sab(k, l, w2),

Ŝλ(k, l) = Sλ(k, l, w1) − Sλ(k, l, w2),

Îba(l) = Iba(l, w1) − Iba(l, w2),

Îbao (l) = Iba(l, w0) − Iba(l, w1),

Îz(l) = Iz(l, w1) − Iz(l, w2),

Îab(l) = Iab(l, w1) − Iab(l, w2),

Îλ(l) = Iλ(l, w1) − Iλ(l, w2). (C.14)

the indefinite integrals are given by

Sab(k, l, w) = (1 +
√

ξ)l
∫

(

1 − w2

b2 − a2w2

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Sλ(k, l, w) =
(1 +

√
ξ)l

(1 − 2λ+
√
ξ)k

∫

(

1 − w2

w2 − w2
λ

)k (
w2

0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Iba(l, w) = (1 +
√

ξ)l
∫

ln

(

(1 + w)(b+ aw)

(1 − w)(b− aw)

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Iz(l, w) = (1 +
√

ξ)l
∫

ln

(

w2
0 − w2

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Iab(l, w) = (1 +
√

ξ)l
∫

ln

(

b2 − a2w2

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
,

Iλ(l, w) = (1 +
√

ξ)l
∫

ln

(

w2 − w2
λ

1 − w2

)(

w2
0 − w2

1 − w2

)l
4
√
ξw dw

(1 − w2)2
, (C.15)

and an increase of the order of the integral class (e.g. from Ĩ to S̃) leads to an additional
factor

1
√

(1 − y)2 − ξ
=

1 − w2

2
√
ξw

(C.16)
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in the integrand. Nevertheless, not all integrals have to be calculated. Instead of this,
there exist recurrence relations

Sab(k, l, w) = 4Sab(k + 1, l + 1, w) + ξSab(k + 1, l, w),

Sλ(k, l, w) = 2λSλ(k + 1, l, w) − Sλ(k + 1, l + 1, w) (C.17)

for the non-logarithmic integrals resulting from multiplying both denominator and nu-
merator by 4y + ξ or 2λ − y, resp., can be used to reduce the number of integrals to a
limited number of “border integrals” which denotes integrals with k = 0 or l = 0.

C.1.4 The fourth step: partial fractioning

The w-integration can be performed after having done a partial fractioning. This will
lead to the final step of the cascade. In the selected example one obtains

Sab(3, 0) =
4

(4 − ξ)2
(I3
ab− − I3

ab+) +
4 − 2

√
ξ + ξ

(4 − ξ)3
(I2
ab− − I2

ab+),

Sab(2, 0) =
1

4 − ξ
(I2
ab− − I2

ab+),

Sab(1, 0) =
1

4
(I1
ab− − I1

ab+) − 1

4
(I1

1− − I1
1+),

Sab(0,−2) =
1

v
(I2

0− − I2
0+),

Sab(0,−1) = I1
0− − I1

0+ − I1
1− + I1

1+,

Sab(0, 0) = I2
1− − I2

1+

Sab(0, 1) = −I3
1− + I3

1+ +
1

2
(2 +

√

ξ)(I2
1− − I2

1+),

Sab(0, 2) = I4
1− − I4

1+ − (2 +
√

ξ)(I3
1− − I3

1+) +
1

2
(2 + 2

√

ξ + ξ)(I2
1− − I2

1+),

Sab(0, 3) = −I5
1− + I5

1+ +
3

2
(2 +

√

ξ)(I4
1− − I4

1+) − 1

4
(12 + 12

√

ξ + 5ξ)(I3
1− − I3

1+) +

+
1

8
(8 + 12

√

ξ + 12ξ + 3ξ
√

ξ)(I2
1− − I2

1+), (C.18)

Sλ(1, 0) = I1
1− − I1

1+ − I1
λ− + I1

λ+,

Sλ(0, l) = Sab(0, l), (C.19)

Iβ(−1) = Iβ1
0− − Iα1

0+ − Iβ1
1− + Iβ1

1+,

Iβ(0) = Iβ2
1− − Iβ2

1+,

Iβ(1) = −Iβ3
1− + Iβ3

1+ +
1

2
(2 +

√

ξ)(Iβ2
1− − Iβ2

1+),

Iβ(2) = Iβ4
1− − Iβ4

1+ − (2 +
√

ξ)(Iβ3
1− − Iβ3

1+) +
1

2
(2 + 2

√

ξ + ξ)(Iβ2
1− − Iβ2

1+),

Iβ(3) = −Iβ5
1− + Iβ5

1+ +
3

2
(2 +

√

ξ)(Iβ4
1− − Iβ4

1+) − 1

4
(12 + 12

√

ξ + 5ξ)(Iβ3
1− − Iβ3

1+) +

+
1

8
(8 − 12

√

ξ + 12ξ + 3ξ
√

ξ)(Iβ2
1− − Iβ2

1+) (C.20)
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where β ∈ {ba, z, ab, λ} and the dependence on w is suppressed. Clearly, the integrals
Sλ(0, l) coincide with Sab(0, l) since the difference given by the term 2λ−y or 4y+ξ resp. is
lost. Remarkable is also the similarity between the splittings for the integrals Sab(0, l) and
Iα(l). This splitting is a consequence of the fact that the same term has to be partially
fractionized. Before going to this point one has to include a remark. In the presented
formulas it seems as if there appear always a difference Inα− − Inα+ (α ∈ {1, 0, ab, λ}).
Therefore, it would be more convenient to calculate the difference instead of the single
parts. But this is only half of the story because in other integral classes there appear
sums Inα− + Inα− of the same terms. Therefore, the parts should be calculated separately.

Inw :=
∫

dw

wn
(only appearing for the integral classes T and K)

In1± := (
√

ξ)n−1
∫

dw

(1 ± w)n
, Inab± :=

( √
ξ

2 +
√
ξ

)n−1
∫

a dw

(b± aw)n
, (C.21)

In0± :=

( √
ξ

1 +
√
ξ

)n−1
∫

dw

(w0 ± w)n
, Inλ± :=

( √
ξ

1 − 2λ+
√
ξ

)n−1
∫

dw

(wλ ± w)n

are the non-logarithmic terms. The logarithmic terms carry an additional upper index
and in combination with this an additional logarithmic factor. This factor is given

for Iba nα(±) by ln

(

(1 + w)(b+ aw)

(1 − w)(b− aw)

)

, for Iz nα(±) by ln

(

w2
0 − w2

1 − w2

)

,

for Iab nα(±) by ln

(

b2 − a2w2

1 − w2

)

, for Iλnα(±) by ln

(

w2 − w2
λ

1 − w2

)

. (C.22)

where α ∈ {w, 1, 0} and the paranthesis in the index indicates that in the case α = w the
“±” argument disappears. Logarithmic integrals to α = ba and α = λ do not contribute.

C.1.5 Newly classified decay rate terms

All integrals of the last step which lead to polylogarithms shall be used in closed form.
These are those logarithmic integrals with a power n = 1 of the denominator. Therefore,
one defines

tβα(±)(w) := Iβ 1
α(±)(w). (C.23)

where the new decay rate terms are given in the following section. Using these decay rate
terms, the cascade can be followed upwards and will lead to the final result. It is a matter
of organization to obtain a short form for it. Appropriate abbreviations have been found.
Logarithmic expressions with the same prefactor figure out to be always combined in a
few fixed kinds. These terms are denoted by ℓ and found in Appendix C.2.1. The terms
ℓm+ (m ∈ {4, 5, 6, 7, 8, 9}) occur in the hadron tensor components with even parity and
the terms ℓm− in the components with odd parity. Also the decay rate terms combine
almost in the same way. For this reason one defines the combinations tw, t0±, and t1±
which are given in Appendix C.2.2 as well.
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C.2 Decay rate terms for the exact gluon energy cut

As already mentioned in the main part of the text, the global substitution

y = 1 −
√

ξ
1 + w2

1 − w2
(C.24)

has been used, leading to v =
√

1 − ξ, vi =
√

(1 − yi)2 − ξ, vλ =
√

(1 − 2λ)2 − ξ,

w0 =

√

√

√

√

1 −
√
ξ

1 +
√
ξ
, wi =

√

√

√

√

1 − yi −
√
ξ

1 − yi +
√
ξ
, wλ =

√

√

√

√

1 − 2λ−
√
ξ

1 − 2λ+
√
ξ

(C.25)

as well as a = 2 +
√
ξ and b = 2 −

√
ξ for limits and constants.

C.2.1 Logarithmic decay rate terms

The logarithmic decay rate terms ℓi are given by

ℓ1 = ln

(

w2
1 − w2

λ

w2
0 − w2

1

)

− ln
(

1 + w1

b− aw1

)

− ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

(C.26)

ℓ2 = ln

(

w2
2 − w2

λ

w2
0 − w2

2

)

+ ln

(

b+ aw2

1 − w2

)

− ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

(C.27)

ℓ3 = ln
(

w2

w1

)

(C.28)

ℓ4+ = −λξ
y1

+
λξ

y2
+ 2v

[

4 − 2 ln

(

4w0y1√
ξ

)

+ ln
(

w0 + w1

w0 − w1

)

+ ln
(

w0 + w2

w0 − w2

)

]

+ (C.29)

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

[

ln

(

ξΛ

v2

)

+ 2 ln

(

w2
0 − w2

1

1 − w2
1

)

− 1

]

ℓ4− = 2v

[

2 − 2 ln

(

2
√
ξy1

v

)

+ ln

(

(1 + w1)(b− aw1)

w2
0 − w2

1

)

+ ln

(

(b+ aw2)(1 − w2)

w2
0 − w2

2

) ]

+

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

[

ln

(

ξΛ

v2

)

+ 2 ln

(

w2
0 − w2

1

1 − w2
1

)

− 1

]

(C.30)

ℓ5+ = ln
(

1 − w2

1 − w0

)

− ln
(

1 + w1

1 + w0

)

, ℓ5− = 2 ln
(

1 + v

1 − v

)

(C.31)

ℓ6+ = 2 ln
(

1 + v

1 − v

)

− ln
(

1 + w1

b− aw1

)

− ln

(

b+ aw2

1 − w2

)

(C.32)

ℓ6− = ln ξ + ln
(

1 + w1

b− aw1

)

− ln

(

b+ aw2

1 − w2

)

(C.33)

ℓ7+ = ln

(

w2
2 − w2

λ

w2
1 − w2

λ

)

, ℓ7− = ln
(

w2 − wλ
w1 − wλ

)

− ln
(

w2 + wλ
w1 + wλ

)

(C.34)

ℓ8+ = ln

(

w2
0 − w2

2

w2
0 − w2

1

)

, ℓ8− = ln
(

w0 − w2

w0 − w1

)

− ln
(

w0 + w2

w0 + w1

)

(C.35)

ℓ9+ = ln

(

1 − w2
2

1 − w2
1

)

, ℓ9− = ln
(

1 − w2

1 − w1

)

− ln
(

1 + w2

1 + w1

)

. (C.36)
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C.2.2 Dilogarithmic decay rate terms

For the double logarithmic and dilogarithmic decay rate terms one obtains

tw =
1

2
(2tbaw (w0) − tbaw (w1) − tbaw (w2)) + (tzw(w2) − tzw(w1)) +

−1

2
(tabw (w2) − tabw (w1)) − (tλw(w2) − tλw(w1)) + ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

ln
(

w2

w1

)

(C.37)

t0± =
1

2
(2tba0±(w0) − tba0±(w1) − tba0±(w2)) + (tz0±(w2) − tz0±(w1)) + (C.38)

−1

2
(tab0±(w2) − tab0±(w1)) − (tλ0±(w2) − tλ0±(w1)) ± ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

ln
(

w0 ± w2

w0 ± w1

)

t1± =
1

2
(2tba1±(w0) − tba1±(w1) − tba1±(w2)) + (tz1±(w2) − tz1±(w1)) + (C.39)

−1

2
(tab1±(w2) − tab1±(w1)) − (tλ1±(w2) − tλ1±(w1)) ± ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

ln
(

1 ± w2

1 ± w1

)

where

tbaw (w) = Li2(w) − Li2(−w) + Li2

(

aw

b

)

− Li2

(−aw
b

)

,

tzw(w) = 2 ln(w0) ln(w) + Li2(w) − Li2(−w) − Li2

(

w

w0

)

− Li2

(−w
w0

)

,

tabw (w) = 2 ln(b) ln(w) + Li2(w) − Li2(−w) − Li2

(

aw

b

)

− Li2

(−aw
b

)

,

tλw(w) = ln2(w) + Li2(w) + Li2(−w) + Li2

(

wλ
w

)

+ Li2

(−wλ
w

)

, (C.40)

tba0−(w) = −2 ln
(

1 + v

1 − v

)

ln(w0 − w) +

+ Li2

(

w0 − w

w0 + 1

)

− Li2

(

w0 − w

w0 − 1

)

+ Li2

(

a(w0 − w)

aw0 + b

)

− Li2

(

a(w0 − w)

aw0 − b

)

,

tba0−(w0) = 2 ln

(

y1√
ξ

)

ln
(

1 + v

1 − v

)

− Li2

(

2v

(1 + v)2

)

+ Li2

(

−2v

(1 − v)2

)

+

+
1

2
Li2

(

−(1 − v)2

(1 + v)2

)

− 1

2
Li2

(

−(1 + v)2

(1 − v)2

)

,

tba0+(w) = −2 ln
(

1 + v

1 − v

)

ln(w0 + w) +

+ Li2

(

w0 + w

w0 + 1

)

− Li2

(

w0 + w

w0 − 1

)

+ Li2

(

a(w0 + w)

aw0 + b

)

− Li2

(

a(w0 + w)

aw0 − b

)

,

tz0−(w) =
1

2
ln

(

ξ

1 − ξ

)

ln(w0 − w) − 1

2
ln2(w0 − w) +

+ Li2

(

w0 − w

2w0

)

− Li2

(

w0 − w

w0 − 1

)

− Li2

(

w0 − w

w0 + 1

)

,

tz0+(w) = −1

2
ln

(

ξ

1 − ξ

)

ln(w0 + w) +
1

2
ln2(w0 + w) +
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−Li2

(

w0 + w

2w0

)

+ Li2

(

w0 + w

w0 − 1

)

+ Li2

(

w0 + w

w0 + 1

)

,

tab0−(w) = − ln ξ ln(w0 − w) +

+ Li2

(

a(w0 − w)

aw0 − b

)

+ Li2

(

a(w0 − w)

aw0 + b

)

− Li2

(

w0 − w

w0 − 1

)

− Li2

(

w0 − w

w0 + 1

)

,

tab0+(w) = ln ξ ln(w0 + w) +

−Li2

(

a(w0 + w)

aw0 − b

)

− Li2

(

a(w0 + w)

aw0 + b

)

+ Li2

(

w0 + w

w0 − 1

)

+ Li2

(

w0 + w

w0 + 1

)

,

tλ0−(w) = − ln

(

2λ

1 − 2λ+
√
ξ

)

ln(w0 − w) +

+ Li2

(

w0 − w

w0 − wλ

)

+ Li2

(

w0 − w

w0 + wλ

)

− Li2

(

w0 − w

w0 − 1

)

− Li2

(

w0 − w

w0 + 1

)

,

tλ0+(w) = ln2(w0 + w) − ln(1 − w2
0) ln(w0 + w) +

+ Li2

(

w0 − wλ
w0 + w

)

+ Li2

(

w0 + wλ
w0 + w

)

+ Li2

(

w0 + w

w0 − 1

)

+ Li2

(

w0 + w

w0 + 1

)

,

(C.41)

tba1−(w) = ln2(1 − w) + ln
(

a

8

)

ln(1 − w) +

+ Li2

(

2
√
ξ

a(1 − w)

)

+ Li2

(

a(1 − w)

4

)

+ Li2

(

1 − w

2

)

,

tba1+(w) = ln2(1 + w) + ln
(

a

8

)

ln(1 + w) +

+ Li2

(

2
√
ξ

a(1 + w)

)

+ Li2

(

a(1 + w)

4

)

+ Li2

(

1 + w

2

)

,

tz1−(w) = − ln
(

1 + w0

2

)

ln(1 − w) − Li2

(

1 − w0

1 − w

)

+ Li2

(

1 − w

1 + w0

)

− Li2

(

1 − w

2

)

,

tz1+(w) = ln
(

1 + w0

2

)

ln(1 + w) − Li2

(

1 + w

1 − w0

)

+ Li2

(

1 + w0

1 + w

)

+ Li2

(

1 + w

2

)

,

tab1−(w) = − ln(2a) ln(1 − w) − Li2

(

2
√
ξ

a(1 − w)

)

+ Li2

(

a(1 − w)

4

)

− Li2

(

1 − w

2

)

,

tab1+(w) = ln(2a) ln(1 + w) + Li2

(

2
√
ξ

a(1 + w)

)

− Li2

(

a(1 + w)

4

)

+ Li2

(

1 + w

2

)

,

tλ1−(w) =
1

2
ln2(1 − w) + ln 2 ln(1 − w) − ln(1 − w2

λ) ln(1 − w) +

+ Li2

(

1 − w

1 − wλ

)

+ Li2

(

1 − w

1 + wλ

)

− Li2

(

1 − w

2

)

,

tλ1+(w) =
1

2
ln2(1 + w) − ln 2 ln(1 + w) +
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+ Li2

(

1 − wλ
1 + w

)

+ Li2

(

1 + wλ
1 + w

)

+ Li2

(

1 + w

2

)

. (C.42)

C.3 Decay rate terms in the limit λ→ 0

The limit λ → 0 is the soft gluon limit. One can take this limit and compare with the
results obtained in the main text. The result must be the Born result multiplying a
universal factor. Actually, the result has this form. The most basic expressions are the
parameters yi. They satisfy

y1 → (1 − v)λ, y2 → (1 + v)λ. (C.43)

One next calculates the limiting values of the wi,

wi =

√

√

√

√

1 − yi −
√
ξ

1 − yi +
√
ξ
≈ w0

√

1 − yi
1 −

√
ξ

+
yi

1 +
√
ξ

= w0

√

√

√

√1 − 2yi
√
ξ

1 − ξ
≈ w0

(

1 − yi
√
ξ

v2

)

(C.44)
and similarly

w2
i ≈ w2

0

(

1 − 2yi
√
ξ

v2

)

. (C.45)

These equations can also be applied to yλ = 2λ. In addition one uses

ln(1 − w2
0) = ln

(

2
√
ξ

1 +
√
ξ

)

, ln
(

1 + w0

1 − w0

)

=
1

2
ln
(

1 + v

1 − v

)

,

ln(b2 − a2w2
0) = ln

(

2ξ
√
ξ

1 +
√
ξ

)

, ln

(

b+ aw0

b− aw0

)

=
3

2
ln
(

1 + v

1 − v

)

. (C.46)

together with the simplifying identities

ln(1 ± w0) =
1

2

(

ln(1 − w2
0) ± ln

(

1 + w0

1 − w0

))

, ln(1 ± v) =
1

2

(

ln ξ ± ln
(

1 + v

1 − v

))

,

ln(b± aw0) =
1

2

(

ln(b2 − a2w2
0) ± ln

(

b+ aw0

b− aw0

))

, lnw0 = ln v − ln(1 +
√

ξ),

b

b± aw0
=

1

ξ
√
ξ
((1 +

√

ξ)(2 −
√

ξ)2 ∓ (4 − ξ)v),
ξ

1 ± v
= 1 ∓ v. (C.47)

C.3.1 Logarithmic decay rate terms for λ→ 0

ℓ1 = ln

(

w2
1 − w2

λ

w2
0 − w2

1

)

− ln
(

1 + w1

b− aw1

)

− ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

= (C.48)

≈ ln

(

4λ− 2y1

2y1

)

− ln
(

1 + w0

b− aw0

)

− ln
√

ξ ≈ ln
(

1 + v

1 − v

)

− ln

(√
ξ(1 + w0)

b− aw0

)

,

ℓ2 = ln

(

w2
2 − w2

λ

w2
0 − w2

2

)

+ ln

(

b+ aw2

1 − w2

)

− ln

(

(1 +
√
ξ)
√
ξ

1 − 2λ+
√
ξ

)

= (C.49)

≈ ln

(

4λ− 2y2

2y2

)

+ ln

(

b+ aw0

1 − w0

)

− ln
√

ξ ≈ − ln
(

1 + v

1 − v

)

+ ln

(

b+ aw0√
ξ(1 − w0)

)

,
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ℓ3 = ln
(

w2

w1

)

≈ ln
(

w0

w0

)

= 0, (C.50)

ℓ4+ = −λξ
y1

+
λξ

y2
+

+2v

[

4 − 2 ln

(

4w0y1√
ξ

)

+ ln
(

w0 + w1

w0 − w1

)

+ ln
(

w0 + w2

w0 − w2

)

]

+ (C.51)

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

[

ln

(

ξΛ

v2

)

+ 2 ln

(

w2
0 − w2

1

1 − w2
1

)

− 1

]

=

≈ 2v
[

3 − 4 ln(2λ) + 2 ln 2 + 2 ln(1 +
√

ξ) − 2 ln ξ + 2 ln v + ln
(

1 + v

1 − v

)]

+

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

× (C.52)

×
[

ln Λ + 2 ln(2λ) − 2 ln 2 − 2 ln(1 +
√

ξ) + 2 ln ξ − 2 ln v − ln
(

1 + v

1 − v

)

− 1
]

,

ℓ4− = 2v

[

2 − 2 ln

(

2
√
ξy1

v

)

+ (C.53)

+ ln

(

(1 + w1)(b− aw1)

w2
0 − w2

1

)

+ ln

(

(b+ aw2)(1 − w2)

w2
0 − w2

2

)]

+

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

[

ln

(

ξΛ

v2

)

+ 2 ln

(

w2
0 − w2

1

1 − w2
1

)

− 1

]

=

≈ 2v
[

2 − 4 ln(2λ) + 2 ln 2 + 2 ln(1 +
√

ξ) − 2 ln ξ + 2 ln v + ln
(

1 + v

1 − v

)]

+

+
(

2v − (2 − ξ) ln
(

1 + v

1 − v

))

× (C.54)

×
[

ln Λ + 2 ln(2λ) − 2 ln 2 − 2 ln(1 +
√

ξ) + 2 ln ξ − 2 ln v − ln
(

1 + v

1 − v

)

− 1
]

,

ℓ5+ = ln
(

1 − w2

1 − w0

)

− ln
(

1 + w1

1 + w0

)

≈ ln

(

(1 − w0)(1 + w0)

(1 − w0)(1 + w0)

)

= 0, (C.55)

ℓ5− = 2 ln
(

1 + v

1 − v

)

, (C.56)

ℓ6+ = 2 ln
(

1 + v

1 − v

)

− ln
(

1 + w1

b− aw1

)

− ln

(

b+ aw2

1 − w2

)

=

≈ 2 ln
(

1 + v

1 − v

)

− ln

(

(1 + w0)(b+ aw0)

(1 − w0)(b− aw0)

)

= 0, (C.57)

ℓ6− = ln ξ + ln
(

1 + w1

b− aw1

)

− ln

(

b+ aw2

1 − w2

)

=

≈ ln ξ + ln

(

(1 + w0)(1 − w0)

(b− aw0)(b+ aw0)

)

= ln ξ − ln ξ = 0, (C.58)

ℓ7+ = ln

(

w2
2 − w2

λ

w2
1 − w2

λ

)

≈ ln

(

4λ− 2(1 + v)λ

4λ− 2(1 − v)λ

)

= − ln
(

1 + v

1 − v

)

, (C.59)
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ℓ7− = ln
(

w2 − wλ
w1 − wλ

)

− ln
(

w2 + wλ
w1 + wλ

)

≈ ln

(

2λ− (1 + v)λ

2λ− (1 − v)λ

)

= − ln
(

1 + v

1 − v

)

,(C.60)

ℓ8+ = ln

(

w2
0 − w2

2

w2
0 − w2

1

)

≈ ln

(

2(1 + v)λ

2(1 − v)λ

)

= ln
(

1 + v

1 − v

)

, (C.61)

ℓ8− = ln
(

w0 − w2

w0 − w1

)

− ln
(

w0 + w2

w0 + w1

)

≈ ln

(

2(1 + v)λ

2(1 − v)λ

)

= ln
(

1 + v

1 − v

)

, (C.62)

ℓ9+ = ln

(

1 − w2
2

1 − w2
1

)

≈ ln

(

1 − w2
0

1 − w2
0

)

= 0, (C.63)

ℓ9− = ln
(

1 − w2

1 − w1

)

− ln
(

1 + w2

1 + w1

)

≈ ln
(

1 − w0

1 − w0

)

− ln
(

1 + w0

1 + w0

)

= 0. (C.64)

C.3.2 Dilogarithmic decay rate terms for λ→ 0

It is too involved to go into all details here. However, it should be noted here again that
one has to use tba0−

′
(w0) instead of tba0−(w0). The final limiting results for the decay rate

terms are

tw ≈ 0, t1+ ≈ 0, t1− ≈ 0, t0+ ≈ 0, (C.65)

t0− ≈
(

4 ln(2λ) − 2 ln 2 + 2 ln ξ − 2 ln v − 2 ln(1 +
√

ξ) − ln
(

1 + v

1 − v

))

ln
(

1 + v

1 − v

)

− t0

where

t0 := ln
(

1 + v

1 − v

)

ln(2
√

ξ) +

+ Li2

(

1 + v

2

)

− Li2

(

1 − v

2

)

+ Li2

(

2v

(1 + v)2

)

− Li2

(

−2v

(1 − v)2

)

+

+
1

2
Li2

(

−(1 + v)2

(1 − v)2

)

− 1

2
Li2

(

−(1 − v)2

(1 + v)2

)

. (C.66)

It is possible to show that the decay rate term t0 can be expressed in a more closed way,
namely

t0 = 2 Li2

(

2v

1 + v

)

+
1

2
ln2

(

1 + v

1 − v

)

. (C.67)

C.4 The full phase space integration limit

In order to calculate the contributions for the full phase space (where λ = (1− ξ)/2 is the
maximal value for the gluon energy divided by

√
q2). An additional phase space region has

to be calculated. The corrected logarithmic and dilogarithmic decay rate terms including
these additions are given in the following.

C.4.1 Logarithmic decay rate terms

ℓc2 = ln
(

1 + w2

1 − w2

)

+ ln

(

b+ aw2

b− aw2

)

,
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ℓc4− = ln(1 − w2
2) + ln(b2 − a2w2

2), ℓc4+ = ln
(

w0 + w2

w0 − w2

)

,

ℓc5− = ln b = ln(2 −
√

ξ), ℓc5+ = ln
(

1 + w2

1 − w2

)

,

ℓc6− = ln(1 − w2
2) − ln(b2 − a2w2

2), ℓc7− = ln

(

w2
0

w2
0 − w2

2

)

. (C.68)

C.4.2 Dilogarithmic decay rate terms

For the additional phase space contribution one obtains

tcw = tbaw (w2) − tbaw (0), tc0± = tba0±(w2) − tba0±(0), tc1± = tba1±(w2) − tba1±(0) (C.69)

where the different parts are given as before.



Appendix D

Special function families

D.1 Bessel functions

Bessel functions Zλ are solutions of the differential equation

d2

dz2
Zλ +

1

z

d

dz
Zλ +

(

1 − λ2

z2

)

Zλ = 0. (D.1)

Special cases are the Bessel functions of the first kind (simply called Bessel functions)
Jλ(z), the Bessel functions of the second kind (Neumann or Weber functions) Nλ(z), and

the Bessel functions of the third kind (Hankel functions)H
(+)
λ (z) andH

(−)
λ (z). In addition,

there are the modified Bessel functions Iλ(z) and the so-called McDonald functions Kλ(z)
related to the Hankel functions. Only a few features of these functions can be presented
in this Appendix. For a more general review see Refs. [85, 101, 126].

D.1.1 Bessel and Neumann function

The general solution of Eq. (D.1) is given by

Zλ(z) = c1Jλ(z) + c2J−λ(z), (D.2)

if λ is non-integer, and

Zλ(z) = c1Jλ(z) + c2Nλ(z), (D.3)

if λ is an integer. In this case J−λ(z) = (−1)λJλ(z) and N−λ(z) = (−1)λNλ(z). The
(ordinary) Bessel function Jλ(z) is regular at the origin while the Neumann function
Nλ(z) is singular. The series expansion of the two trigonometric Bessel functions is given
by

Jλ(z) = (z/2)λ
∞
∑

k=0

(−z2/4)k

k!Γ(λ+ k + 1)
(D.4)

while

Nλ(z) =
1

sin(πλ)
(cos(πλ)Jλ(z) − J−λ(z)) (| arg z| < π) (D.5)

where the case of integer λ = n can be obtained by taking the limit λ→ n.
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D.1.2 Hankel functions

The Hankel functions (complex valued exponential Bessel functions) are given by

H
(±)
λ (z) = Jλ(z) ± iNλ(z) (D.6)

where the compact notation H
(±)
λ (z) is favoured instead of H

(1)
λ (z) and H

(2)
λ (z) as used in

the literature. The relation H̄
(±)
λ (z) = H

(∓)

λ̄
(z̄) is obvious.

D.1.3 Modified Bessel functions

The modified Bessel functions (real valued exponential Bessel functions) are given by

Iλ(z) =

{

e−iπλ/2Jλ(e
iπ/2z) for −π < arg z ≤ π/2

e+3iπλ/2Jλ(e
−3iπ/2z) for π/2 < arg z ≤ π.

(D.7)

For integer λ = n one obtains In(z) = i−nJn(iz) using a short notation. Finally, the
McDonald functions are defined via the Hankel functions,

Kλ(z) =
iπ

2
eiπλ/2H

(1)
λ (eiπ/2z) =

iπ

2
e−iπλ/2H

(1)
−λ(e

iπ/2z). (D.8)

D.1.4 Asymptotic expansions

The asymptotic expansions for the trigonometric Bessel functions are given by

J±λ(z) =

√

2

πz

{

cos
(

z ∓ π

2
λ− π

4

)

∑

k=0

(−1)k

(2z)2k

Γ(λ+ 2k + 1/2)

Γ(λ− 2k + 1/2)(2k)!
+

− sin
(

z ∓ π

2
λ− π

4

)

∑

k=0

(−1)k

(2z)2k+1

Γ(λ+ 2k + 3/2)

Γ(λ− 2k − 1/2)(2k + 1)!

}

, (D.9)

N±λ(z) =

√

2

πz

{

sin
(

z ∓ π

2
λ− π

4

)

∑

k=0

(−1)k

(2z)2k

Γ(λ+ 2k + 1/2)

Γ(λ− 2k + 1/2)(2k)!
+

+ cos
(

z ∓ π

2
λ− π

4

)

∑

k=0

(−1)k

(2z)2k+1

Γ(λ+ 2k + 3/2)

Γ(λ− 2k − 1/2)(2k + 1)!

}

, (D.10)

both for | arg z| < π. The upper limit of the sums are not specified and should be replaced
by an appropiate limit. For the complex valued exponential Bessel functions one finds

H
(±)
λ (z) =

√

2

πz
exp

(

±i
(

z − π

2
λ− π

4

))

∑

k=0

(∓1)k

(2iz)k
Γ(λ+ k + 1/2)

Γ(λ− k + 1/2)k!
(D.11)

for Re ν > −1/2 and | arg z| < π. The real valued exponential Bessel functions, finally,
have the asymptotics

Iλ(z) =
ez√
2πz

∑

k=0

(−1)k

(2z)k
Γ(λ+ k + 1/2)

Γ(λ− k + 1/2)k!
+

+
e−z±(λ+1/2)πi

√
2πz

∑

k=0

1

(2z)k
Γ(λ+ k + 1/2)

Γ(λ− k + 1/2)k!
, (D.12)
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where the plus sign is valid for −π/2 < arg z < 3π/2 while the minus sign has to be taken
for −3π/2 < arg z < π/2, and

Kλ(z) =

√

π

2z
e−z

∑

k=0

1

(2z)k
Γ(λ+ k + 1/2)

Γ(λ− k + 1/2)k!
. (D.13)

The apparent contradiction in the ranges of definition for Iλ(z) is explained by Stokes’
phenomenon. One can immediately see that the combination Kλ(z) − e±iπ(λ+1/2)Iλ(z) is
a purely exponentially increasing function in the upper resp. lower complex half plane.

D.1.5 Bessel functions with half integer index

For λ = n+1/2 where n is an integer, the asymptotic expansions for the Bessel functions
simplify essentially, they read

Jn+1/2(z) =

√

2

πz

{

sin(z − πn/2)
[n/2]
∑

k=0

(−1)k(n+ 2k)!

(2k)!(n− 2k)!(2z)2k
+

+ cos(z − πn/2)
[(n−1)/2]
∑

k=0

(−1)k(n+ 2k + 1)!

(2k + 1)!(n− 2k − 1)!(2z)2k+1

}

=

= (−1)nzn+1/2

√

2

π

(

d

z dz

)n
sin z

z
, (D.14)

J−n−1/2(z) =

√

2

πz

{

cos(z + πn/2)
[n/2]
∑

k=0

(−1)k(n + 2k)!

(2k)!(n− 2k)!(2z)2k
+

− sin(z + πn/2)
[(n−1)/2]
∑

k=0

(−1)k(n+ 2k + 1)!

(2k + 1)!(n− 2k − 1)!(2z)2k+1

}

=

= zn+1/2

√

2

π

(

d

z dz

)n
cos z

z
(D.15)

([x] is the largest integer less or equal to x). For the Neumann functions one obtains

Nn+1/2 = (−1)n−1J−n−1/2(z), N−n−1/2 = (−1)nJn+1/2(z). (D.16)

For the Hankel functions (complex valued exponential Bessel functions) one obtains

H
(±)
n−1/2(z) =

√

2

πz
e±i(z−πn/2)

n−1
∑

k=0

(n+ k − 1)!

k!(n− k − 1)!

(∓1

2iz

)k

. (D.17)

The real valued exponential Bessel functions for half integer index finally read

I±(n+1/2)(z) =
1√
2πz

{

ez
n
∑

k=0

(−1)k(n+ k)!

k!(n− k)!(2z)k
+ (−1)n+1e−z

n
∑

k=0

(n+ k)!

k!(n− k)!(2z)k

}

,

Kn+1/2(z) =

√

π

2z
e−z

n
∑

k=0

(n+ k)!

k!(n− k)!(2k)k
. (D.18)
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D.1.6 Bessel functions as multi-valued functions

The Bessel functions, except for Jλ(z), are multi-valued starting with the branch point
z = 0. The branches of the functions on different sides of the cut along the negative real
axis are related by

Jλ(e
iπµz) = eiπµλJλ(z),

Nλ(e
iπµz) = e−iπµλNλ(z) + 2i sin(πµλ) cot(πλ)Jλ(z),

H
(±)
λ (eiπµz) = e−iπµλH

(±)
λ (z) ∓ 2e∓iπλ

sin(πµλ)

sin(πλ)
Jλ(z),

Iλ(e
iπµz) = eiπµλIλ(z),

Kλ(e
iπµz) = e−iπµλKλ(z) − iπ

sin(πµλ)

sin(πλ)
Iλ(z). (D.19)

For special cases one has useful relations following from thes general formulas. They are

H
(±)
λ (e±iπz) = −H(∓)

−λ (z) = −e∓iπλH(∓)
λ (z) (D.20)

and

Jλ(z)Nλ+1(z) − Jλ+1(z)Nλ(z) = − 2

πz
, (D.21)

Iλ(z)Kλ+1(z) + Iλ+1(z)Kλ(z) =
1

z
. (D.22)

D.1.7 Functional equations

Functional equations are of help in order to relate Bessel functions of different degree. In
the following the notation Zλ(z) can be used for Jλ(z), Nλ(z), and H

(±)
λ (z) if no special

choice is specified. The fundamental recursion formulas are given by

zZλ−1(z) + zZλ+1(z) = 2λZλ(z), Zλ−1(z) − Zλ+1(z) = 2
d

dz
Zλ(z). (D.23)

As a consequence, recursion formulas for the real valued exponential Bessel functions (not
included in the notation Zλ(z)) can be derived as well,

zIλ+1(z) − zIλ+1(z) = 2λIλ(z), Iλ−1(z) + Iλ+1(z) = 2
d

dz
Iλ(z),

zKλ+1(z) − zKλ+1(z) = −2λKλ(z), Kλ−1(z) +Kλ+1(z) = −2
d

dz
Kλ(z), (D.24)

The recursion equations can be reformulated as

z
d

dz
Zλ(z) + λZλ(z) = zZλ−1(z), z

d

dz
Zλ(z) − λZλ(z) = −zZλ+1(z). (D.25)

and accordingly

z
d

dz
Iλ(z) + λIλ(z) = zIλ−1(z), z

d

dz
Iλ(z) − λIλ(z) = zIλ+1(z),

z
d

dz
Kλ(z) + λKλ(z) = −zKλ−1(z), z

d

dz
Kλ(z) − λKλ(z) = −zKλ+1(z). (D.26)
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D.2 Hypergeometric functions

Hypergeometric functions are solutions of the hypergeometric differential equation

z(1 − z)
d2

dz2
F + (c− (a + b+ 1)z)

d

dz
F − abF = 0. (D.27)

The series expansion of the hypergeometric function F = F (a, b; c; z) is given by

F (a, b; c; z) =
∞
∑

k=0

(a)k(b)k
k!(c)k

zk (D.28)

where

(a)0 = 1, (a)k = a(a + 1) · · · (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (D.29)

while the integral representation for c > a > 0 reads

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
xa−1(1 − x)c−a−1(1 − zx)−bdx (D.30)

These hypergeometric functions are also often written as 2F1(a, b; c; z) as a special case of
the generalized hypergeometric functions

pFq(a1, . . . , ap; c1, . . . , cq; z) =
∞
∑

k=0

(a1)k · · · (ap)k
k!(c1)k · · · (cq)k

zk. (D.31)

The hypergeometric functions appear for instance in integrals of Bessel functions. At this
point an integral representation will be derived which is useful for the expansion near the
production threshold in Sec. 3.5.

D.2.1 Spectral density of the hypergeometric function

It is useful to calculate the discontinuity for the hypergeometric function. This can ac-
tually be done for the integral representation before the integration is performed. The
starting point is the observation that for xt > 1

Disc(1 − zx)−b = (1 − zxei0)−b − (1 − zxe−i0)−b=
(

(zx− 1)e−iπ
)−b −

(

(zx − 1)eiπ
)−b

=

= (zx− 1)−beiπb − (zx− 1)−be−iπb = 2i sin(πb)(zx− 1)−b (D.32)

while for xt ≤ 1 the discontinuity vanishes. Therefore, one obtains

ρF (a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

sin(πb)

π

∫ 1

1/z
ta−1(1 − x)c−a−1(zx− 1)−bdx =

=
Γ(c)

Γ(a)Γ(c− a)Γ(b)Γ(1 − b)

∫ 1

1/z
xa−1(1 − x)c−a−1(zx− 1)−bdx (D.33)

(note that Γ(1 − b)Γ(b) = π/ sin(πb)). Using the substitution

x = 1 − x′ ⇒ dx = −dx′, x′ =
(

1 − 1

z

)

x′′ ⇒ dx′ =
(

1 − 1

z

)

dx′′ (D.34)
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one obtains
∫ 1

1/z
xa−1(1 − x)c−a−1(zx− 1)−bdx =

=
∫ 1−1/z

0
(1 − x′)a−1x′c−a−1(z − 1 − zx′)−bdx′ =

=
∫ 1

0

(

1 −
(

1 − 1

z

)

x′′
)a−1 (

1 − 1

z

)c−a−1

x′′c−a−1(z − 1)−b(1 − x′′)−b
(

1 − 1

z

)

dx′′ =

=
(

1 − 1

z

)c−a
(z − 1)−b

∫ 1

0
x′′c−a−1(1 − x′′)−b

(

1 −
(

1 − 1

z

)

x′′
)a−1

dx′′ =

= z−b
(

1 − 1

z

)c−a−b Γ(c− a)Γ(1 − b)

Γ(c− a− b+ 1)
F
(

c− a, 1 − a; c− a− b+ 1; 1 − 1

z

)

(D.35)

and therefore

ρF (a, b; c; z) =
Γ(c)x−b(1 − 1/z)c−a−b

Γ(a)Γ(b)Γ(c− a− b+ 1)
F
(

c− a, 1 − a; c− a− b+ 1; 1 − 1

z

)

. (D.36)

D.2.2 Spectral density of a Bessel function integral

The starting point is the integral given by Eq. (6.621.3) in Ref. [101],
∫ ∞

0
xµ−1e−αxKν(βx)dx =

=

√
π(2β)ν

(α + β)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
F

(

µ+ ν, ν +
1

2
;µ+

1

2
;
α− β

α+ β

)

(D.37)

which is valid for Reµ > |Re ν| and Re(α+ β) > 0. At first sight, this integral represen-
tation seems to be useful. However, one leaves the range of validity if one continues to the
complex plane in order to calculate the spectral density of this expression. In addition
there can also be discontinuities in the prefactor. Finally,

α = ∆ −m0, β = m0 ⇒ α− β

α + β
= 1 − 2m0

∆
(D.38)

means that the the latter ratio takes values in the interval [−1, 1] only for 0 < ∆ < m0.
However, one can find a better representation because, as stated in Ref. [126] for the
three numbers ±(1 − c), ±(a − b), and ±(a + b− c), there is a quadratic transformation
available if either two of these numbers are equal or one of them is equal to 1. In the
present case one has a− c = −(a− b) or c = a− b+ 1 which gives rise to the possibilities
(Eqs. (15.3.26–28) in Ref. [126])

F (a, b; a− b+ 1; z) =

= (1 + z)−aF

(

a

2
,
a

2
+

1

2
; a− b+ 1;

4z

(1 + z)2

)

(D.39)

=
(

1 ±
√
z
)−2a

F

(

a, a− b+
1

2
; 2a− 2b+ 1;

±4
√
z

(1 ±√
z)2

)

(D.40)

= (1 − z)−aF

(

a

2
,
a

2
− b+

1

2
; a− b+ 1;

−4z

(1 − z)2

)

. (D.41)
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One can take the quadratic transformation in Eq. (D.39). Then the argument of the
hypergeometric function reads

4
α− β

α + β

(

α+ β

2α

)2

=
α2 − β2

α2
= 1 − β2

α2
. (D.42)

Using this one obtains
∫ ∞

0
xµ−1e−αxKν(βx)dx =

=

√
π(2β)ν

(2α)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
F

(

µ+ ν

2
,
µ+ ν + 1

2
;µ+

1

2
; 1 − β2

α2

)

(D.43)

where the prefactor is now regular unless ∆ is greater than m0. But still, this is not the
expression which is most appropriate for the purpose on hand. Instead, one uses a further
relation (see Ref. [126], Eq. (15.3.8))

F (a, b; c; z) = (1 − z)−a
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
F
(

a, c− b; a− b+ 1;
1

1 − z

)

+

+(1 − z)−b
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
F
(

b, c− a; b− a + 1;
1

1 − z

)

. (D.44)

With this one obtains
∫ ∞

0
xµ−1e−αxKν(βx)dx =

=

√
π(2β)ν

(2α)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
F

(

µ+ ν

2
,
µ+ ν + 1

2
;µ+

1

2
; 1 − β2

α2

)

=

=

√
π(2β)ν

(2α)µ+ν
×

×
[

αµ+ν

βµ+ν

Γ(µ+ 1/2)Γ(1/2)

Γ((µ+ ν + 1)/2)Γ((µ− ν + 1)/2)
F

(

µ+ ν

2
,
µ+ ν

2
;
1

2
;
α2

β2

)

+

+
αµ+ν+1

βµ+ν+1

γ(µ+ 1/2)Γ(−1/2)

Γ((µ+ ν)/2)Γ((µ− ν)/2)
F

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

) ]

=

=

√
πΓ(1/2)Γ(µ+ ν)Γ(µ− ν)

(2β)µΓ((µ+ ν + 1)/2)Γ((µ− ν + 1)/2)
F

(

µ+ ν

2
,
µ− ν

2
;
1

2
;
α2

β2

)

+

+

√
πΓ(−1/2)αΓ(µ+ ν)Γ(µ − ν)

(2β)µβΓ((µ+ ν)/2)Γ((µ− ν)/2)
F

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

)

=

=
π

(2β)µ

[

Γ(µ+ ν)Γ(µ− ν)

Γ((µ+ ν + 1)/2)Γ((µ− ν + 1)/2)
F

(

µ+ ν

2
,
µ− ν

2
;
1

2
;
α2

β2

)

+

−2α

β

Γ(µ+ ν)Γ(µ− ν)

Γ((µ+ ν)/2)Γ((µ− ν)/2)
F

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

)]

=

=
π

(2β)µ
Γ(µ+ ν)Γ(µ− ν)

Γ((µ+ ν + 1)/2)Γ((µ+ ν)/2)Γ((µ− ν + 1)/2)Γ((µ− ν)/2)
×

×
[

Γ
(

µ+ ν

2

)

Γµ− ν2F

(

µ+ ν

2
,
µ− ν

2
;
1

2
;
α2

β2

)

+

−2α

β
Γ
(

µ+ ν + 1

2

)

Γµ− ν + 12F

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

)]

. (D.45)
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One can now use

Γ
(

µ+ 1

2

)

Γ
(

µ

2

)

=
(µ− 1)!

2µ−1

√
π, Γ(µ) = (µ− 1)! (D.46)

to obtain

Γ(µ+ ν)Γ(µ− ν)

Γ((µ+ ν + 1)/2)Γ((µ+ ν)/2)Γ((µ− ν + 1)/2)Γ((µ− ν)/2)
=

22µ−2

π
(D.47)

and therefore
∫ ∞

0
xµ−1e−αxKν(βx)dx =

=
2µ−2

βµ

[

Γ
(

µ+ ν

2

)

Γ
(

µ− ν

2

)

F

(

µ+ ν

2
,
µ− ν

2
;
1

2
;
α2

β2

)

+

−2α

β
Γ
(

µ+ ν + 1

2

)

Γ
(

µ− ν + 1

2

)

F

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

) ]

. (D.48)

This expression is much more convenient because it contains no outer dicontinuity at all
and also only common Gamma factors depending only on the first two arguments of the
hypergeometric functions. For this expression one now can determine the spectral density
by using the transformations worked out in Eq. (D.36). These transformations apply to
the two parts and results in the same hypergeometric function,

ρF

(

µ+ ν

2
,
µ− ν

2
;
1

2
;
α2

β2

)

=

(

|β|
|α|

)µ−ν (

1 − β2

α2

)1/2−µ
×

× Γ(1/2)

Γ((µ+ ν)/2)Γ((µ− ν)/2)Γ(3/2 − µ)
×

× F

(

1 − µ− ν

2
,
2 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

, (D.49)

ρF

(

µ+ ν + 1

2
,
µ− ν + 1

2
;
3

2
;
α2

β2

)

=

(

|β|
|α|

)µ−ν+1 (

1 − β2

α2

)1/2−µ
×

× Γ(3/2)

Γ((µ+ ν + 1)/2)Γ((µ− ν + 1)/2)Γ(3/2− µ)
×

× F

(

2 − µ− ν

2
,
1 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

. (D.50)

Therefore, one ends up with

1

2πi
Disc

∫ ∞

0
xµ−1e−αxKν(βx)dx =

=
2µ−2

βµ

(

|β|
|α|

)µ−ν (

1 − β2

α2

)1/2−µ
×

×
[

Γ(1/2)

Γ(3/2 − µ)
F

(

1 − µ− ν

2
,
2 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

+

−2α|β|
β|α|

Γ(3/2)

Γ(3/2 − µ)
F

(

2 − µ− ν

2
,
1 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)]

=
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=
2µ−2

βµ

(

|β|
|α|

)µ−ν (

1 − β2

α2

)1/2−µ
Γ(1/2)

Γ(3/2 − µ)
×

×
[

F

(

1 − µ− ν

2
,
2 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

+

+F

(

2 − µ− ν

2
,
1 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

) ]

= (D.51)

=
2µ−1

βµ

(

β

−α

)µ−ν (

1 − β2

α2

)1/2−µ
Γ(1/2)

Γ(3/2 − µ)
F

(

1 − µ− ν

2
,
2 − µ− ν

2
;
3

2
− µ; 1 − β2

α2

)

.

Note that on the right hand side one has α = −E − m0 so that |α| = E + m0 = −α.
This final expression solves the problem completely. For integer values of µ there are no
Gamma functions with negative integer argument. Therefore, there are no singularities
at all, so that one can set ε = 0 in this expression. Thus, a direct transition from the
integrand to the spectral density in terms of only one hypergeometric function is found.
There is no need to use the recurrence relations for the hypergeometric functions.

D.2.3 Explicit series for hypergeometric functions

Hypergeometric functions did not only occur in Chapter 3 but also in the HQET calcula-
tions of Section 5.5. Besides the two-point HQET integrals I(a, b, c, p, q) one encounters
also three-point modifications of these, denoted by I ′(a, b, c, p, q;ω′/ω). The integrals for
a = 0 or b = 0 were expressed in terms of hypergeometric functions, and the aim of this
part of the appendix is to extract the singular part. The result obtained for the integrals
I ′(0, b, c, p, q;ω′/ω) and I ′(a, 0, c, p, q;ω′/ω) in Eqs. (5.211) and (5.213) in Section 5.5 can
be written in a more closed form by using the identity

F (a, b; c; x) = (1 − x)c−a−bF (c− a, c− b; c; x) (D.52)

for hypergeometric functions. In the case considered here one obtains

(−2ω)D−2c(−2ω′)D−2b
(

ω

ω′

)2c+p−D
×

×F
(

p+ q + 2b+ 2c−D, p+ 2c−D; p+ q + 2c−D; 1 − ω

ω′

)

=

= (−2ω)D−2c(−2ω′)D−2b
(

ω

ω′

)2c+p−D ( ω

ω′

)−p−2b−2c+2D

×

× F
(

D − 2b, q; p+ q + 2c−D; 1 − ω

ω′

)

=

= (−2ω)2D−2b−2cF
(

D − 2b, q; p+ q + 2c−D; 1 − ω

ω′

)

. (D.53)

There are two improvements. The second entry has become an integer number and the
prefactor no longer depends on ω′. The hypergeometric function itself will now be worked
on. Inserting D = 4 − 2ε, one obtains functions such as F (n1 − 2ε, n2;n3 + 2ε; x) where
n1, n2 and n3 are integers. One has to look at ten different cases to obtain explicit series
expressions up to O(ε0).
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The case n2 ≤ 0

For n2 = −m2 ≤ 0, the Taylor series breaks down even in the case where one does not
restrict to O(ε0). One obtains

F (n1 − 2ε, n2;n3 + 2ε; x) =

= 1 +
(n1 − 2ε)n2

n3 + 2ε
x+

(n1 − 2ε)(n1 + 1 − 2ε)n2(n2 + 1)

2(n3 + 2ε)(n3 + 1 + 2ε)
x2 + . . .

. . . +
(n1 − 2ε)m2(n2)m2

m2!(n3 + 2ε)m3

xm2 =
−n2
∑

s=0

(n1 − 2ε)s(n2)s
s!(n3 + 2ε)s

xs =

= 1 +
(n1 − 2ε)n2

n3 + 2ε
x

(

1 +
(n1 + 1 − 2ε)(n2 + 1)

2(n3 + 1 + 2ε)
x+ . . .

)

=

=: F−n2(n1 − 2ε, n2;n3 + 2ε; x). (D.54)

The case n2 > 0, n1 = n3 < 0

With m1 = −n1 = −n3 one has n1 +m1 = 0, (n1 − 2ε)m1+1 ∼ 2ε. One therefore obtains

1 +
(n1 − 2ε)n2

n1 + 2ε
x+ . . . +

(n1 − 2ε)m1(n2)m1

m1!(n1 + 2ε)m1
xm1 +

+
(n1 − 2ε)n1+1(n2)m1+1

(m1 + 1)!(n1 + 2ε)m1+1
xm1+1

(

1 +
(n1 +m1 + 1 − 2ε)(n2 +m1 + 1)

(m1 + 2)(n1 +m1 + 1 + 2ε)
x+ . . .

)

=

= F−n1(n1 − 2ε, n2;n1 + 2ε; x) +

+
(n1 − 2ε)1−n1(n2)1−n1

(1 − n1)!(n1 + 2ε)1−n1

x1−n1
3F2(1 − 2ε, n2 − n1 + 1, 1; 2 − n1, 1 + 2ε; x) (D.55)

The case n2 > 0, n1 < n3 < 0

If one choses m1 = −n1 and m3 = −n3, one obtains two critical points in the series,

1 +
(n1 − 2ε)n2

n3 + 2ε
x+ . . . +

(n1 − 2ε)m3(n2)m3

m3!(n3 + 2ε)m3

xm3 +

+
(n1 − 2ε)m3+1(n2)m3+1

(m3 + 1)!(n3 + 2ε)m3+1

xm3+1

(

1 +
(n1 +m3 + 1 − 2ε)(n2 +m3 + 1)

(m3 + 2)(n3 +m+ 3 + 1 + 2ε)
x+ . . .

. . . +
(n1 +m3 + 1 − 2ε)m1−m3−1(n2 +m3 + 1)m1−m3−1

(m3 + 2)m1−m3−1(1 + 2ε)m1−m3−1

)

+

+
(n1 − 2ε)m1+1(n2)m1+1

(m1 + 1)!(n3 + 2ε)m1+1
xm1+1

(

1 +
(n1 +m+ 1 + 1 − 2ε)(n2 +m1 + 1)

(m1 + 2)(n3 +m1 + 1 + 2ε)
x+ . . .

)

=

= F−n3(n1 − 2ε, n2;n3 + 2ε; x) +

+
(n1 − 2ε)1−n3(n2)1−n3

(1 − n3)!(n3 + 2ε)1−n3

x1−n3 ×

× 3F2
n3−n1−1(n1 − n3 + 1 − 2ε, n2 − n3 + 1, 1; 2 − n3, 1 + 2ε; x) +

+
(n1 − 2ε)1−n1(n2)1−n1

(1 − n1)!(n3 + 2ε)1−n1

x1−n1
3F2(1 − 2ε, n2 − n1 + 1, 1; 2 − n1, n3 − n1 + 1 + 2ε; x).

(D.56)
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The case n2 > 0, n3 < n1 < 0

In a similar fashion one obtains

1 +
(n1 − 2ε)n2

n3 + 2ε
x+ . . . +

(n1 − 2ε)m1(n2)m1

m!(n3 + 2ε)m1

xm1 +

+
(n1 − 2ε)m1+1(n2)m1+1

(m1 + 1)!(n3 + 2ε)m1+1
xm1+1

(

1 +
(n1 +m1 + 1 − 2ε)(n2 +m1 + 1)

(m1 + 2)(n3 +m1 + 1 + 2ε)
x+ . . .

+
(1 − 2ε)m3−m1−1(n2 +m1 + 1)m3−m1−1

(m1 + 2)m3−m1−1(n3 +m1 + 1 + 2ε)m3−m1−1

xm3−m1−1

)

+

+
(n1 − 2ε)m3+1(n2)m3+1

(m3 + 1)!(n3 + 2ε)m3+1

xm3+1

(

1 +
(n1 +m3 + 1 − 2ε)(n2 +m3 + 1)

(m3 + 2)(n2 +m3 + 1 + 2ε)
x+ . . .

)

=

= F−n1(n1 − 2ε, n2;n3 + 2ε; x) +

+
(n1 − 2ε)1−n1(n2)1−n1

(1 − n1)!(n3 + 2ε)1−n1

x1−n1 ×

× 3F2
n1−n3−1(1 − 2ε, n2 − n1 + 1, 1; 2 − n1, n3 − n1 + 1 + 2ε; x) +

+
(n1 − 2ε)1−n3(n2)1−n3

(1 − n3)!(n3 + 2ε)1−n3

x1−n3
3F2(n1 − n3 + 1 − 2ε, n2 − n3 + 1, 1; 2− n3, 1 + 2ε; x).

(D.57)

The case n2 > 0, n1 = n2 = 0

Here one simply obtains

1 +
(−2ε)n2

2ε
x

(

1 +
(1 − 2ε)(n2 + 1)

2(1 + 2ε)
+ . . .

)

=

= 1 − n2x 3F2(1 − 2ε, n2 + 1, 1; 2, 1 + 2ε; x). (D.58)

The case n3 > 0, n1 < n3 = 0

With m1 = −n1 one has

1 +
(n1 − 2ε)n2

2ε
x

(

1 +
(n1 + 1 − 2ε)(n2 + 1)

2(1 + 2ε)
x+ . . .

. . . +
(n1 + 1 − 2ε)m1−1(n2 + 1)m1−1

(2)m1−1(1 + 2ε)m1−1

xm1−1

)

+

+
(n1 − 2ε)m1+1(n2)m1+1

(m1 + 1)!(2ε)m1+1
xm1+1

(

1 +
(n1 +m1 + 1 − 2ε)(n2 +m1 + 1)

(m1 + 2)(m1 + 1 + 2ε)
x+ . . .

)

=

= 1 +
(n1 − 2ε)n2

2ε
x 3F2

−1−n1(n1 + 1 − 2ε, n2 + 1, 1; 2, 1 + 2ε; x) +

+
(n1 − 2ε)1−n1(n2)1−n1

(1 − n1)!(2ε)1−n1

x1−n1
3F2(1 − 2ε, n2 − n1 + 1, 1; 2 − n1, 1 − n1 + 2ε; x).

(D.59)
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The case n2 > 0, n3 < n1 = 0

In using m3 = −n3 one obtains

1 +
(−2ε)n2

n3 + 2ε
x

(

1 +
(1 − 2ε)(n2 + 1)

2(n3 + 1 + 2ε)
x . . .

. . . +
(1 − 2ε)m3−1(n2 + 1)m3−1

(2)m3−1(n3 + 1 + 2ε)m3−1
xm3−1

)

+

+
(−2ε)m3+1(n2)m3+1

(m3 + 1)!(n3 + 2ε)m3+1

xm3+1

(

1 +
(m3 + 1 − 2ε)(n2 +m3 + 1)

(m3 + 2)(n3 +m3 + 1 + 2ε)
x+ . . .

)

=

= 1 − 2εn2

n3 + 2ε
x 3F2

−1−n3(1 − 2ε, n2 + 1, 1; 2, n3 + 1 + 2ε, x) +

+
(−2ε)1−n3(n2)1−n3

(1 − n3)!(n3 + 2ε)1−n3

x1−n3
3F2(1 − n3 − 2ε, n2 − n3 + 1, 1; 2 − n3, 1 + 2ε; x).

(D.60)

The case n2 > 0, n3 > n1 = 0

1 +
(−2ε)n2

n3 + 2ε
x

(

1 +
(1 − 2ε)(n2 + 1)

2(n3 + 1 + 2ε)
x+ . . .

)

=

= 1 − 2εn2

n3 + 2ε
x 3F2(1 − 2ε, n2 + 1, 1; 2, n3 + 1 + 2ε; x) (D.61)

The case n2 > 0, n1 > n3 = 0

1 +
n1 − 2ε)n2

2ε
x

(

1 +
(n1 + 1 − 2ε)(n2 + 1)

2(1 + 2ε)
x+ . . .

)

=

= 1 +
(n1 − 2ε)n2

2ε
x 3F2(n1 + 1 − 2ε, n2 + 1, 1; 2, 1 + 2ε; x) (D.62)

The case n2 > 0, n1 > 0, n3 > 0

In this case there are no critical points in the series, the result is simply the starting
expression F (n1 − 2ε, n2;n3 + 2ε; x).

D.3 Integrals containing Bessel functions

Two examples for integrals containing three Bessel functions are cited here. The first
example is given by [91]

∫ ∞

0
xα−1Kµ(mx)Kν(mx)dx =

=
2α−3

mαΓ(α)
Γ
(

α+ µ+ ν

2

)

Γ
(

α + µ− ν

2

)

Γ
(

α− µ+ ν

2

)

Γ
(

α− µ− ν

2

)

. (D.63)
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The second example is used to calculate Eq. (3.88) and is found in Eq. (2.16.42) of Ref. [91],
∫ ∞

0
xα−1Iλ(ax)Iµ(bx)Kν(cx)dx =

=
2α−1aλbµ

cα+λ+µ
Γ

[

(α + λ+ µ− ν)/2, (α + λ+ µ+ ν)/2

λ+ 1, µ+ 1

]

×

× F4

(

α + λ+ µ− ν

2
,
α + λ+ µ+ ν

2
;λ+ 1, µ+ 1;

a2

c2
,
b2

c2

)

, (D.64)

the elements are

Γ

[

a1, . . . , am
b1, . . . , bn

]

=

m
∏

k=1

Γ(ak)

n
∏

l=1

Γ(bl)

, F4(a, b; c, c
′; z, ζ) =

∞
∑

k,l=0

(a)k+l(b)k+l
(c)k(c′)l

zkζ l

k!l!
, (D.65)

valid for
√

|z| +
√

|ζ | < 1. For α = 2, λ = µ = ν = 0 and a = m1, b = m2 and c = m one
obtains the integral needed,

∫ ∞

0
rK0(mr)I0(m1r)I0(m2r)dr =

2

m2

∞
∑

k,l=0

((k + l)!)2

(k!)2(l!)2

(

m2
1

m2

)k (
m2

2

m2

)l

. (D.66)

What remains to be calculated are integrals containing four Bessel functions such as
∫ ∞

0
x3K4

0 (x)dx = − 3

16
+

7

32
ζ(3). (D.67)

D.4 Gegenbauer polynomials

A few relations for the Gegenbauer polynomials are listed here, an extensive treatment
of these polynomials can be found in Refs. [61, 87, 101]. The Gegenbauer polynomials
satisfy the orthogonality relations (x̂i = xi/|xi|)
∫

Cλ
m(x̂1 · x̂2)C

λ
n(x̂2 · x̂3)dΩ2 =

2πλ+1

Γ(λ+ 1)

λδmn
λ+ n

Cλ
n(x̂1 · x̂3),

∫

dΩ2 =
2πλ+1

Γ(λ+ 1)
, (D.68)

or, normalized differently,
∫

Cλ
m(x̂1 · x̂2)C

λ
n(x̂2 · x̂3)dx̂2 =

λδmn
λ+ n

Cλ
n(x̂1 · x̂3) (

∫

dx̂2 = 1) (D.69)

Especially, one has Cλ
0 (x) = 1, Cλ

1 (x) = 2λx, and

(j + 1)Cλ
j+1(x) = 2(j + λ)xCλ

j (x) − (j + 2λ− 1)Cλ
j−1(x). (D.70)

Moreover

Cλ
j (1) =

Γ(j + 2λ)

j!Γ(2λ)
. (D.71)

The corresponding characteristic polynomial is given by

(t2 − 2tx+ 1)−λ =
∞
∑

j=0

tjCλ
j (x). (D.72)
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D.5 Gamma and polygamma function relations

The calculations presented here were done in the context of arriving at a closed form
expression for the δn part of the moments in Section 4.7. Starting from

Γ(x)Γ(1 − x) =
π

sin(πx)
⇔ sin(πx)Γ(x)Γ(1 − x) = π (D.73)

one can derive relations for the polygamma functions

ψ(0)(x) := ψ(x) :=
Γ′(x)

Γ(x)
, ψ(n)(x) := ψ(n−1)′(x) (D.74)

by simply calculating derivatives of it. Taking the first derivative, one obtains

0 = π cos(πx)Γ(x)Γ(1 − x) + sin(πx)Γ′(x)Γ(1 − x) − sin(πx)Γ(x)Γ′(1 − x) (D.75)

and by dividing this by sin(πx)Γ(x)Γ(1 − x) finally

0 = π cot(πx) +
Γ′(x)

Γ(x)
− Γ′(1 − x)

Γ(1 − x)
⇔ ψ(x) − ψ(1 − x) = −π cot(πx). (D.76)

Note that the derivative denoted by the prime acts on the argument of the function. Note
further that one can use

cot(π(x+ 1)) =
cos(πx) cosπ − sin(πx) sin π

sin(πx) cosπ + cos(πx) sin π
=

cos(πx)

sin(πx)
= cot(πx) (D.77)

to extend the validity of the starting equation from the interval [0, 1] for x to arbitrary
(real) values. The second derivative results in

0 = −π2 sin(πx)Γ(x)Γ(1 − x) + π cos(πx)Γ′(x)Γ(1 − x) +

−π cos(πx)Γ(x)Γ′(1 − x) + π cos(πx)Γ′(x)Γ(1 − x) +

+ sin(πx)Γ′′(x)Γ(1 − x) − sin(πx)Γ′(x)Γ′(1 − x) +

−π cos(πx)Γ(x)Γ′(1 − x) − sin(πx)Γ′(x)Γ′(1 − x) +

+ sin(πx)Γ(x)Γ′′(1 − x). (D.78)

One now uses

ψ′(x) =

(

Γ′(x)

Γ(x)

)′
=

Γ′′(x)

Γ(x)
−
(

Γ′(x)

Γ(x)

)2

⇒ Γ′′(x)

Γ(x)
= ψ′(x) + ψ(x)2 (D.79)

to obtain

0 = −π2 + 2π cot(πx)ψ(x) − 2π cot(πx)ψ(1 − x) +

+
Γ′′(x)

Γ(x)
− 2ψ(x)ψ(1 − x) +

Γ′′(1 − x)

Γ(1 − x)
=

= −π2 + 2π cot(πx) (ψ(x) − ψ(1 − x)) +

+ (ψ(x) − ψ(1 − x))2 + ψ′(x) + ψ′(1 − x) (D.80)
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and therefore

ψ′(x) + ψ′(1 − x) = π2 − 2π cot(πx) (ψ(x) − ψ(1 − x)) − (ψ(x) − ψ(1 − x))2 =

= π2 + 2π2 cot2(πx) − π2 cot2(πx) = π2
(

1 + cot2(πx)
)

. (D.81)

This can be used to replace polygamma functions with negative arguments by the cotan-
gens function and polygamma functions with positive arguments,

ψ(−4 − n) = ψ(n+ 5) + π cot(πn),

ψ(−3 − n) = ψ(n+ 4) + π cot(πn),

ψ(−2 − n) = ψ(n+ 3) + π cot(πn),

ψ(−1 − n) = ψ(n+ 2) + π cot(πn),

ψ(−n) = ψ(n+ 1) + π cot(πn),

ψ′(−1 − n) = −ψ′(n + 2) + π2
(

1 + cot2(πn)
)

,

ψ′(−2 − n) = −ψ′(n + 3) + π2
(

1 + cot2(πn)
)

. (D.82)

In general, the asymptotic expansion

ψ(n)(z) = (−1)n−1

[

(n− 1)!

zn
+

n!

2zn+1
+
∞
∑

k=1

B2k
(2k + n− 1)!

(2k)!z2k+n

]

,

ψ(z) = ln z − 1

2z
−
∞
∑

k=1

B2k

2kz2k
(Bk are Bernoulli’s numbers) (D.83)

holds, as well as ψ(n)(1) = (−1)n+1n!ζ(n + 1), ψ(1) = −γE. The most useful relation,
however, is

ψ(n+ 1) = ψ(n) +
1

n
, ψ′(n+ 1) = ψ′(n) − 1

n2
(D.84)

which allows for a collection of the polygamma functions. All these relations have been
numerically checked and implemented in the module moments.add. Using these replace-
ments, one finally obtains the results used in Section 4.7,

Mm(1)
n

M
m(0)
n

=
1

3(n− 1)(n− 2)(n− 3)

[

(n− 1)(n− 5)(5n− 14) +

+4(3n3 − 21n2 + 45n− 29)(ψ(n− 1) + γE) +

−4(n− 1)(n− 2)(n− 3)

(

ψ′(n− 1) − π2

3

)]

, (D.85)

M q(1)
n

M
q(0)
n

=
1

3(n− 1)(n− 2)(n− 3)

[

(n− 1)(5n2 − 33n+ 55) +

+4(3n3 − 21n2 + 45n− 29)(ψ(n− 1) + γE) +

−4(n− 1)(n− 2)(n− 3)

(

ψ′(n− 1) − π2

3

)]

(D.86)

for the relative moments.



Appendix E

Polylogarithms and their relations

Besides the shuffling methods explained in Appendix F, only two relations are used for
the dilogarithm function defined by

Li2(z) = −
∫ z

0

dz

z
ln(1 − z), (E.1)

namely [289]

Li2(z) + Li2

(

1

z

)

= −π
2

6
− 1

2
ln2(−z) for z 6∈ [0, 1[, (E.2)

Li2(z) + Li2(1 − z) =
π2

6
− ln z ln(1 − z) (E.3)

These relations are used to obtain an argument z ≤ 1 for the dilogarithm function. If the
initial expression was real valued, the consequent application of these rules leads to real
valued dilogarithms while possible imaginary parts cancel among the double logarithmic
expressions. Because of this complete cancellation, nothing has to be done in order
to determine the Riemann sheet for the complex continuation of the logarithms and
dilogarithms.

E.1 Indefinite dilogarithms

Dilogarithms occur in most of the cases before the limits of the integration are inserted.
Therefore, only indefinite expressions (without constant terms) are necessary here. One
can define an indefinite dilogarithm function

li2(z) = −
∫

dz

z
ln(1 − z) (E.4)

and can use the dilogarithm identities in Eq. (E.2) and (E.3) without the constant ±π2/6.

E.2 “Zig-zag” shuffles for dilogarithms

In applying Eq. (E.2) and (E.3) in turn, one is led to a “zig-zag” shuffle of the arguments.
Typical examples used in practise are shown in the following scheme. Only the arguments

421
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of the dilogarithms are displayed. The (trivial) double logarithms are not mentioned but
can be identified easily.

−
√
ξ − 1 + v

1 − v
↔ 1 − v +

√
ξ − 1 + v

1 − v
=

√
ξ

1 − v
↔

1 − v√
ξ

↔ 1 − 1 − v√
ξ

=

√
ξ − 1 + v√

ξ
↔

√
ξ(1 + v)

2(
√
ξ − 1 + v)

↔
√
ξ − 1 + v −

√
ξ√

ξ − 1 + v
=

−(1 − v)√
ξ − 1 + v

↔ (E.5)

√
ξ − 1 + v

1 + v
↔ 1 + v −

√
ξ + 1 − v

1 + v
=

2 −√
ξ

1 + v
↔

1 + v

2 −
√
ξ

↔ 2 −√
ξ − 1 − v

2 −
√
ξ

= −
√
ξ − 1 + v

2 −
√
ξ

↔

−(2 −
√
ξ)√

ξ − 1 + v
↔

√
ξ − 1 + v + 2 −

√
ξ√

ξ − 1 + v
=

1 + v√
ξ − 1 + v

↔ (E.6)

−2(
√
ξ − 1 + v)

(1 − v)2 ↔ 1 − 2v + v2 + 2
√
ξ − 2 + 2v

(1 − v)2
=

√
ξ(2 −

√
ξ)

(1 − v)2
↔

(1 − v)2

√
ξ(2 −√

ξ)
↔ 2

√
ξ − 1 + v2 − 1 + 2v − v2

√
ξ(2 −√

ξ)
=

2(
√
ξ − 1 + v)√
ξ(2 −

√
ξ)

↔
√
ξ(2 −

√
ξ)

2(
√
ξ − 1 + v)

↔ 2
√
ξ − 2 + 2v − 2

√
ξ + 1 − v2

2(
√
ξ − 1 + v)

=
−(1 − v)2

2(
√
ξ − 1 + v)

↔ (E.7)

− 2(
√
ξ − 1 + v)

(2 −
√
ξ)(1 − v)

↔ (2 −
√
ξ)(1 − v) + 2

√
ξ − 2 + 2v

(2 −
√
ξ)(1 − v)

=

√
ξ(1 + v)

(2 −
√
ξ)(1 − v)

↔

(2 −
√
ξ)(1 − v)√

ξ(1 + v)
↔

√
ξ + v

√
ξ − 2 + 2v +

√
ξ − v

√
ξ√

ξ(1 + v)
=

2(
√
ξ − 1 + v)√
ξ(1 + v)

↔
√
ξ(1 + v)

2(
√
ξ − 1 + v)

↔ 2
√
ξ − 2 + 2v −√

ξ − v
√
ξ

2(
√
ξ − 1 + v)

= −(2 −√
ξ)(1 − v)

2(
√
ξ − 1 + v)

↔ (E.8)

√
ξ(
√
ξ − 1 + v)

(2 −
√
ξ)(1 − v)

↔ 2 − 2v −
√
ξ + v

√
ξ − 1 + v2 +

√
ξ − v

√
ξ

(2 −
√
ξ)(1 − v)

=
1 − v

2 −
√
ξ

↔

2 −√
ξ

1 − v
↔ 1 − v − 2 +

√
ξ

1 − v
=

√
ξ − 1 − v

1 − v
= −

√
ξ(
√
ξ − 1 + v)

(1 − v)2 ↔

−(1 − v)2

√
ξ(
√
ξ − 1 + v)

↔ 1 − v2 −
√
ξ + v

√
ξ + 1 − 2v + v2

√
ξ(
√
ξ − 1 + v)

=
(2 −

√
ξ)(1 − v)√

ξ − 1 + v
↔

(E.9)

In this scheme elements are indicated by a box which should be unified by the shuffle,
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while the double box indicates the desired argument with a value less than 1.

E.3 Representations for polylogarithms

The dilogarithm function is only one member of the family of polylogarithm functions.
The polylogarithms Lip(z) are in general defined by the series representation

Lip(z) :=
∞
∑

n=1

zn

np
. (E.10)

It is easy to see that z Li′p(z) = Lip−1(z). This relation leads to the iterative integral
representation

Li1(z) = − ln(1 − z), Lip(z) =
∫ dz

z
Lip−1(z) (p > 1). (E.11)

Note that for z = 1 the polylogarithms reduce to Euler’s zeta function,

Lip(1) =
∞
∑

n=1

1

np
= ζ(p). (E.12)

For further explicit representations see Appendix F.

E.4 The Clausen polylogarithms

For arguments of the polylogarithm function lying on the unit circle one can use the
Clausen polylogarithm defined as

Clp(x) := Im Lip(e
ix). (E.13)

These polylogarithms are used in Appendix F.

E.5 A trilogarithm relation

In integrating the dilogarithm identity in Eq. (E.2) it is possible to obtain a trilogarithm
identity. This identity reads

Li3(z) − Li3

(

1

z

)

= −π
2

3
ln z +

iπ

2
ln2 z +

1

6
ln3 z (z > 1). (E.14)

Further relations can be found by using the shuffle methods in Appendix F.



Appendix F

The shuffle algebra of nested
integrals

In connection with the calculation of master integrals for the three-loop bubble diagrams of
the water melon and spectacle topology (see Sec. 3.4). Much work has been invested in the
calculation of integrals containing logarithms and polylogarithms. These integrals can be
represented by nested integrals (or, when expanded into their arguments, as nested sums).
Integration-by-parts then allows one to “shuffle” these integrals in order to transform them
into a standard form. The principles of the algebra of such shuffling methods can be found
in Ref. [111] while the explicit calculations for the cases relevant for the present work are
found in this Appendix. They do not appear in the main text because the shuffle algebra of
nested integrals itself is a pure mathematical concept without any relation to the concrete
physical problem.

F.1 Foundations of the shuffle method

There are in general three steps one has to consider, namely

1. how to enter the shuffle algebra from the side of the physical problem

2. how to organize the shuffling in a straightforward way

3. how to interprete the result in terms of basic elements

The following subsections are dedicated to these three steps.

F.1.1 Getting into the shuffle

In order to enter the shuffle algebra which will then enshuffle the given integral expression,
the integral representations

ln(z′) =
∫ z′

1

dz

z
, lnn(z2) − lnn(z1) = n

∫ z2

z1

dz

z
lnn−1(z) (F.1)

and

Li1(z
′) := − ln(1 − z′) =

∫ z′

0

dz

1 − z
, Lin(z2) − Lin(z1) =

∫ z2

z1

dz

z
Lin−1(z) (F.2)

424
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(with the integer n > 1) are of importance here. Using these relations, every integral
containing logarithms, polylogarithms and single pole functions can finally be represented
by a more or less nested integral chain. To give a fairly complicated example, the integral
from z = 0 to 1 over ln2(z) Li3(z), divided by 1 + z, can be represented as

∫ 1

0

ln2(z) Li3(z)

1 + z
dz =

∫ 1

0

dz

1 + z

(

2
∫ z

1

dz1
z1

ln(z1)

)(

∫ z

0

dz3
z3

Li2(z3)

)

=

=
∫ 1

0

dz

1 + z

(

2
∫ z

1

dz1
z1

∫ z1

1

dz2
z2

)(

∫ z

0

dz3
z3

∫ z3

0

dz4
z4

Li1(z4)

)

=

=
∫ 1

0

dz

1 + z

(

2
∫ z

1

dz1
z1

∫ z1

1

dz2
z2

)(

∫ z

0

dz3
z3

∫ z3

0

dz4
z4

∫ z4

0

dz5
1 − z5

)

. (F.3)

F.1.2 Doing the shuffle

The previous example shows two features of the starting expression which will be handled
by the shuffle method. First, shuffled integrals by definition always have a common lower
boundary (normally, this limit is given by 0). For this reason, integrals not including this
common limit have to be changed. This is done by the identity

∫ z2

z1
dz χ(z) =

∫ z2

0
dz χ(z) −

∫ z1

0
dz χ(z) (F.4)

where χ(z) can contain a nested integral expression. For the first part in parentheses in
the above example, one has z1 = 1 and z2 = z. The second feature of the nested integrals
of the shuffle is that they are totally nested. This is not the case for the example as well.
Therefore, a procedure has to be applied which reminds one of knitting in the sense that
not threads but integrals have to be interchanged,

∫ z

z0
dz1χ1(z1)

∫ z

z1
dz2χ2(z2) =

∫ z

z0
dz2χ2(z2)

∫ z2

z0
dz1χ1(z1). (F.5)

Using these two methods interchangingly, the goal of totally nested (enshuffled) integrals
can be reached. The last method, by the way, can of course be used in the opposite
direction to deshuffle (i.e. un-nest) a nested integral expression. Speaking in terms of the
knitting technique again, this can be called “taking off the thread”.

F.1.3 Interpreting the shuffle

In the above example the denominator of the starting integrand took the form (1 + z).
Generally, the whole concept is based on denominator factors of the kind z or (λ−p − z)
where λ−p with λ = eiπ/3 are the sixth roots of unity (so ζ = −1 is one example, cf.
Section 3.4). Following Ref. [111], the final result can be read as a sum (“sentence”) of
so-called “words” (representing the nested integrals) which themselves are built up by
“letters”. More formally, these “letters” are one-forms taken from the set (“alphabet”)
Aλ := {Ω, ω0, ω1, ω2, ω3, ω4, ω5} where Ω := dz/z, ωp := dz/(λ−p − z), and ωp+6 = ωp.
Examples for such “words” will not be given here because they follow én masse afterwards.
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F.2 The shuffle for M(λp)

Starting point is the already nested integral M(λp) of Eq. (3.182) for λ = eiπ/3,

M(λp) =
∫ 1

0

dt

λ−p − t
ln t

∫ t

0

du

1 + u
ln u =

∫ 1

0

du

1 + u
lnu

∫ 1

u

dt

λ−p − t
ln t = (F.6)

=
∫ 1

0

du

1 + u
ln u

∫ 1

0

dt

λ−p − t
ln t−

∫ 1

0

du

1 + u
ln u

∫ u

0

dt

λ−p − t
ln t = M0 +M1.

The first part M0 is simple and results in the product of two integrals or words,
∫ 1

0

dz

λ−p − z
ln z = −

∫ 1

0

dz1
λ−p − z1

∫ 1

z1

dz2
z2

= −
∫ 1

0

dz2
z2

∫ z2

0

dz1
λ−p − z1

=: −ζ(Ωωp). (F.7)

and (as special case of this)
∫ 1

0

dz

1 + z
ln z = −

∫ 1

0

dz

λ−3 − z
ln z = ζ(Ωω3) (F.8)

One therefore continues with

M1 = −
∫ 1

0

du

1 + u
ln u

∫ u

0

dt

λ−p − t
ln t = −

∫ 1

0

dz1
1 + z1

ln(z1)χ1(z1) =

= −
∫ 1

0

dz1
1 + z1

χ1(z1)

(

ln 1 −
∫ 1

z1

dz2
z2

)

=

(the “ln 1” is only written down to show the general procedure)

=
∫ 1

0

dz1
1 + z1

χ1(z1)
∫ 1

z1

dz2
z2

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

χ1(z1) =

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

ln(z3) =

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

(

ln(z1) −
∫ z1

z3

dz4
z4

)

= (F.9)

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

ln(z1)
∫ z1

0

dz3
λ−p − z3

−
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

∫ z1

z3

dz4
z4

=

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

ln(z1)
∫ z1

0

dz3
λ−p − z3

−
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

∫ z1

0

dz4
z4

∫ z4

0

dz3
λ−p − z3

.

The second part is already enshuffled, resulting in a word ζ(Ωω3Ωωp). Therefore, one
looks on the first term which will be called M2 henceforth. There was some ln(z1) flown
back which have to be resettled. One obtains

M2 =
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

ln(z1)
∫ z1

0

dz3
λ−p − z3

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

ln(z1)χ2(z1) =

=
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

χ2(z1)

(

ln(z2) −
∫ z2

z1

dz4
z4

)

=

=
∫ 1

0

dz2
z2

ln(z2)
∫ z2

0

dz1
1 + z1

χ2(z1) −
∫ 1

0

dz2
z2

∫ z2

0

dz1
1 + z1

χ2(z1)
∫ z2

z1

dz4
z4

=

=
∫ 1

0

dz2
z2

ln(z2)
∫ z2

0

dz1
1 + z1

χ2(z1) −
∫ 1

0

dz2
z2

∫ z2

0

dz4
z4

∫ z4

0

dz1
1 + z1

χ2(z1) = (F.10)

=
∫ 1

0

dz2
z2

ln(z2)
∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

−
∫ 1

0

dz2
z2

∫ z2

0

dz4
z4

∫ z4

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

.
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Again, the second part is enshuffled, resulting in the word ζ(Ω2ω3ωp) while the first (called
M3) has to be treated again separately,

M3 =
∫ 1

0

dz2
z2

ln(z2)
∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

=
∫ 1

0

dz2
z2

ln(z2)χ3(z2) =

=
∫ 1

0

dz2
z2
χ3(z2)

(

ln 1 −
∫ 1

z2

dz4
z4

)

= (F.11)

= −
∫ 1

0

dz2
z2
χ3(z2)

∫ 1

z2

dz4
z4

= −
∫ 1

0

dz4
z4

∫ z4

0

dz2
z2
χ3(z2) =

= −
∫ 1

0

dz4
z4

∫ z4

0

dz2
z2

∫ z2

0

dz1
1 + z1

∫ z1

0

dz3
λ−p − z3

which is again the word ζ(Ω2ω3ωp). Finally, one ends up with the sentence

M(λp) = M0 +M1 = −ζ(Ωω3)ζ(Ωωp) + ζ(Ωω3Ωωp) +M2 =

= −ζ(Ωω3)ζ(Ωωp) + ζ(Ωω3Ωωp) + ζ(Ω2ω3ωp) +M3 =

= −ζ(Ωω3)ζ(Ωωp) + ζ(Ωω3Ωωp) + 2ζ(Ω2ω3ωp). (F.12)

Note that this procedure is straightforward. This is essential for an implementation in a
computer program. Furthermore, note that the functions χ1(z), χ2(z) and χ3(z) are only
intermediate replacements. Therefore, they will be no longer distinguished explicitly in
the following, such that χ(z) just stands for the intermediate replacement.

F.3 Words of depth one and two and a formalization

Words of depth one are words ζ(Ωnωp) with only one single letter ωp. All of those are
easily seen to be polylogarithms with the argument λp,

ζ(ωp) =
∫ 1

0

dz1
λ−p − z1

=
∫ λp

0

dz1
1 − z1

=

=
[

− ln(1 − z1)
]λp

0
= − ln(1 − λp) = Li1(λ

p), (F.13)

ζ(Ωωp) =
∫ 1

0

dz1
z1

∫ z1

0

dz2
λ−p − z2

= −
∫ 1

0

dz1
z1

∫ z1λp

0

dz2
1 − z2

=

=
∫ 1

0

dz1
z1

Li1(z1λ
p) =

∫ λp

0

dz1
z1

Li1(z1) =
[

Li2(z1)
]λp

0
= Li2(λ

p), (F.14)

ζ(Ω2ωp) =
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

dz3
λ−p − z3

= . . . = Li3(λ
p) and (F.15)

ζ(Ω3ωp) =
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

dz3
z3

∫ z3

0

dz4
λ−p − z4

= . . . = Li4(λ
p). (F.16)

In general, the depth of a word indicates the number of elements ωp. There are in total
three different types of words of depth two, namely

ζ(Ω2ωpωq), ζ(ΩωpΩωq) and ζ(ωpΩ
2ωq) (F.17)

(the last one is not relevant for reducing the expression M(λp) but it is included for
completeness). And there are ways to reduce them to words of depth one and a limited
set of words of depth two. But before one is able to understand the formalized procedures
called depth-length shuffle and weight-length shuffle in Ref. [111], one has to switch to a
different representation of words, namely the representation by nested sums.
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F.3.1 Nested sum representation of words

The transition from nested integral to nested sums is done by expanding the integrands.
Taking for example the trilogarithm Li3(λ

p), one obtains

Li3(λ
p) = ζ(Ω2ωp) =

∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

dz3
λ−p − z3

=

=
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2λp

0

dz3
1 − z3

=
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2λp

0
dz3

∞
∑

n=0

zn3 =

=
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∞
∑

m=0

1

n+ 1
(z2λ

p)n+1 =
∫ 1

0

dz1
z1

∫ z1

0
dz2

∞
∑

n+0

(λp)n+1

n + 1
zn2 =

=
∫ 1

0

dz1
z1

∞
∑

n=0

(λp)n+1

(n+ 1)2
zn+1
1 =

∫ 1

0
dz1

∞
∑

n=0

(λp)n+1

(n+ 1)2
zm1 =

=
∞
∑

n=0

(λp)n+1

(n+ 1)3
=

∑

n>0

(λp)n

n3
. (F.18)

This last expression is known as the Taylor series representation of the trilogarithm. To
give an example for a word of depth two, the expression

U3,1 = ζ(Ω2ω3ω0) = −
∫ 1

0

dz1
z1

∫ z1

0

dz2
z1

∫ z2

0

dz3
1 + z3

∫ z3

0

dz4
1 − z4

=

= −
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

dz3
1 + z3

∞
∑

n=0

zn+1
3

n+ 1
=

= −
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0
dz3

∞
∑

m,n=0

(−1)m

n + 1
zm+n+1
3 =

= −
∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∞
∑

m,n=0

(−1)mzm+n+2
2

(m+ n+ 2)(n+ 1)
=

= −
∫ 1

0

dz1
z1

∞
∑

m,n=0

(−1)mzm+n+2
1

(m+ n+ 2)2(n + 1)
= −

∞
∑

m,n=0

(−1)m

(m+ n+ 2)3(n+ 1)
=

=
∞
∑

m,n=1

(−1)m

(m+ n)3n
=

∞
∑

n=1

∞
∑

m′=n+1

(−1)m
′−n

(m′)3n
=

∑

m>n>0

(−1)m+n

m3n
(F.19)

is shown. In general one defines

ζ
(

s1 · · · sk
λp1 · · · λpk

)

:=
∑

ni>ni+1>0

k
∏

i=1

λpini

nsi
i

, (F.20)

It is not difficult to find the translation between the words and the nested sums,

ζ
(

Ωs1−1ωp1Ω
s2−1ωp2 · · ·Ωsk−1ωpk

)

:= ζ
(

s1 s2 · · · sk
λp1 λp2−p1 · · · λpk−pk−1

)

. (F.21)

The depth of the word in general is given by the number of letters ωp. In this case it
is given by k. On the other hand, the weight of a word is given by the total number of
letters which in terms of the nested sums is equivalent to the total power of the numerator
factor. In this case one has s1 + . . . + sk. The weight is conserved in the shuffles that
follow.
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F.3.2 Depth-length shuffles

If one multiplies two infinite sums with summation indices n1 and n2, they can be written
as the sum of two nested sums (for n1 > n2 and n2 > n1, resp.) plus a residual term (for
n1 = n2) containing only one sum,

ζ
(

s1

λp1

)

ζ
(

s2

λp2

)

=
∑

n1>0

λp1n1

ns11

∑

n2>0

λp2n2

ns22
=

=
∑

n1>n2>0

λp1n1λp2n2

ns11 n
s2
2

+
∑

n2>n1>0

λp1n1λp2n2

ns11 n
s2
2

+
∑

n1>0

λ(p1+p2)n1

ns1+s21

=

= ζ
(

s1 s2

λp1 λp2

)

+ ζ
(

s2 s1

λp2 λp1

)

+ ζ
(

s1 + s2

λp1+p2

)

. (F.22)

This can of course be extended also to products including words of depth two,

ζ
(

s1

λp1

)

ζ
(

s2 s3

λp2 λp3

)

=
∑

n1>0

λp1n1

ns11

∑

n2>n3>0

λp2n2λp3n3

ns22 n
s3
3

=

=
∑

n1>n2>n3>0

λp1n1λp2n2λp3n3

ns11 n
s2
2 n

s3
3

+
∑

n2>n3>0

λ(p1+p2)n2λp3n3

ns1+s2
2 ns33

+

+
∑

n2>n1>n3>0

λp2n2λp1n1λp3n3

ns22 n
s1
1 n

s3
3

+
∑

n2>n3>0

λp2n2λ(p1+p3)n3

ns22 n
s1+s3
3

+
∑

n2>n3>n1>0

λp2n2λp3n3λp1n1

ns22 n
s3
3 n

s1
1

=

= ζ
(

s1 s2 s3

λp1 λp2 λp3

)

+ ζ
(

s1 + s2 s3

λp1+p2 λp3

)

+

+ζ
(

s2 s1 s3

λp2 λp1 λp3

)

+ ζ
(

s2 s1 + s3

λp2 λp1+p3

)

+ ζ
(

s2 s3 s1

λp2 λp3 λp1

)

. (F.23)

Relations such as Eq. (F.22) are called depth-length shuffles. The final terms have the
same weight but different depth. In terms of words, for instance, the depth-length shuffle
of the word ζ(ωp) with the word ζ(Ω2ωq) is given by

ζ(ωp)ζ(Ω
2ωq) = ζ(ωpΩ

2ωp+q) + ζ(Ω2ωqωp+q) + ζ(Ω3ωp+q) (F.24)

F.3.3 Weight-length shuffles

The second kind of shuffles is the analogue of the depth-length shuffle on the nested
integral level. The weight-length shuffle can best be defined at the level of words,

ζ(W1)ζ(W2) =
∑

Wi∈S1,2

ζ(Wi) (F.25)

where S1,2 obtains all shufflings of W1 and W2 by preserving the order of each of these
words. Two examples are in order to illustrate the main procedure,

ζ(Ωωp)ζ(Ω
′ωq) = ζ(ΩωpΩ

′ωq) + ζ(ΩΩ′ωpωq) + ζ(ΩΩ′ωqωp) +

+ζ(Ω′Ωωpωq) + ζ(Ω′Ωωqωp) + ζ(Ω′ωqΩωp) =

= ζ(ΩωpΩωq) + ζ(ΩωqΩωp) + 2ζ(Ω2ωpωq) + 2ζ(Ω2ωqωp) (F.26)

(the prime is used only to indicate the position) and

ζ(ωp)ζ(Ω
2ωp+q) = ζ(ωpΩ

2ωp+q) + ζ(ΩωpΩωp+q) + ζ(Ω2ωpωp+q) + ζ(Ω2ωp+qωp). (F.27)
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F.3.4 The reduction procedure

Both shuffle methods, the depth-length and the weight-length shuffle, are implemented
in a procedure to reduce depth-two words down to depth-one words and some basic
elements of depth two. The MATHEMATICA package shuffle.add will be explained
in the following. The set of words of depth one is already given in Eq. (F.13), they are
denoted by zeta[p], zeta[Om,p], zeta[Om^2,p], and zeta[Om^3,p], respectively. As
was mentioned earlier, there are three kinds of depth-two words, given in Eq. (F.17).
They are denoted by zeta1[p,q], zeta2[p,q], and zeta3[p,q], respectively.

Now the weight-length shuffle in Eq. (F.27) can be used to reduce zeta2[p,q] to
zeta3[p,q] and zeta1[p,q], while the depth-length shuffle in Eq. (F.24) can be used
to reduce zeta3[p,q] to zeta1[p,q]. These reductions are subsequently implemented
in the package, where the final results of these are obtained by calling zeta2sol resp.
zeta3sol. Therefore, the systems of equations for 36 equations with 36 unknowns can
be solved fully and one is left with depth-two words of the kind ζ(Ω2ωpωq).

These 36 depth-two words can be calculated by using the depth-length and weight-
length shuffle of ζ(Ωωp) and ζ(Ωωq). This is done by the procedure zeta1sol. Even
though the system of 72 equations containing 36 unknown quantities seems to be highly
over-determined, one cannot express all the quantities by depth-one words. Instead one
is left with seven terms, a number which cannot be obtained by any counting method.
But there are also some relations between the depth-one words themselves which had to be
checked. They make the programming of this reduction a quite complicated task because
formally contradictionary equations can “kill” the reduction obtained up to this point.
Therefore, one has to be very careful in ruling out the equations which are “deadly” for the
whole system. This problem does not appear when all depth-one words are (artifically)
set to zero, as one can see by running the procedure zeta1pur.

In a first step zeta1sol reduces the words to a basis of seven words which MATH-
EMATICA selects by its own choice. Simultaneously, the procedure writes a file called
shuffle.m which is executable and contains the relations between the depth-one words
which can be tested numerically by simply executing this file under MATHEMATICA
(all rest terms have to vanish). Finally, the procedure result expresses the zeta2 and
zeta3 functions by depth-one words and the depth-two word basis which is given by

ζ(Ω2ω1ω0) = zeta1[1, 0], ζ(Ω2ω1ω3) = zeta1[1, 3],

ζ(Ω2ω2ω0) = zeta1[2, 0], ζ(Ω2ω2ω3) = zeta1[2, 3], (F.28)

ζ(Ω2ω3ω0) = zeta1[3, 0], ζ(Ω2ω3ω1) = zeta1[3, 1], ζ(Ω2ω3ω5) = zeta1[3, 5].

The final result is written to the file shuffle.dat (or shuffle6.dat, see below). In the
file shuffle6.con this final result is used in order to express the integrals M(λp) and
thereby the water melon and the spectacle integral in terms of the primitives.

Finally, note that there is a further parameter num introduced in all procedures in
shuffle.add which indicates the order of the root of unity. Therefore, the procedures
are applicable for instance also to the fourth roots of unity. The different sets of results
are found in shuffle1.dat to shuffle6.dat.
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F.4 Back to the integrals

At this point one can return to the integrals which are to be calculated using the concept
of the shuffle algebra. These are the (generalized) water melon contribution

M =
∫ 1

0

2f(t) ln t

1 − t2
= S(1) − S(−1) (F.29)

and the spectacle contribution

S =
∫ 1

0

2tf(t) ln t dt

(1 − t2)(λ− t)(λ−1 − t)
= S(1) +

1

3
S(−1) − 2

3
S(λ) − 2

3
S(λ−1) (F.30)

where

S(λp) =
∫ 1

0

f(t) ln t

λ−p − t
dt = 2M(λp) + 3 Li4(λ

p) − ζ(2) Li2(λ
p) (F.31)

and

M(λp) =
∫ 1

0

dt

λ−p − t
ln t

∫ t

0

du

1 + u
ln u. (F.32)

The function f(t) of the integrand is given by

f(t) = 2 Li2(−t) + 2 ln t ln(1 + t) − 1

2
ln2 t+ ζ(2). (F.33)

According to the package shuffle6.con there are three steps which finally lead to the
results for M and S. These are dealt with in the following subsections.

F.4.1 Reduction to depth-one words

The values for the seven basic elements for the depth-two words (cf. Ref. [111]) read

Re
(

ζ(Ω2ω1ω0)
)

=
π4

3240
,

Re
(

ζ(Ω2ω1ω3)
)

=
29π4

9720
− 7

9
ζ(3) ln(2) +

1

3
Cl22

(

π

3

)

+
4

9
U3,1 − V3,1,

Re
(

ζ(Ω2ω2ω0)
)

=
127π4

29160
− 4

9
Cl22

(

π

3

)

+
4

3
V3,1,

Re
(

ζ(Ω2ω2ω3)
)

= −17π4

2592
+

7

9
ζ(3) ln(2) − 4

9
U3,1,

Re
(

ζ(Ω2ω3ω0)
)

= U3,1, Re
(

ζ(Ω2ω3ω1)
)

= V3,1, (F.34)

and

2i Im
(

ζ(Ω2ω1ω3)
)

= ζ(Ω2ω1ω3) − ζ(Ω2ω5ω3) = (F.35)

= 2ζ(Ωω2)ζ(Ωω3) + ζ(ω2)
(

ζ(Ω2ω1) − ζ(Ω2ω5)
)

− ζ(Ω3ω2) − ζ(Ω3ω3) − 3ζ(Ω3ω5),

2i Im
(

ζ(Ω2ω2ω3)
)

= ζ(Ω2ω2ω3) − ζ(Ω2ω4ω3) = (F.36)

= 2ζ(Ωω1)ζ(Ωω3) + ζ(ω1)
(

ζ(Ω2ω2) − ζ(Ω2ω4)
)

− ζ(Ω3ω1) − ζ(Ω3ω3) − 3ζ(Ω3ω4),

2i Im
(

ζ(Ω2ω3ω1)
)

= ζ(Ω2ω3ω1) − ζ(Ω2ω3ω5) =

= −ζ(Ωω2) (ζ(Ωω1) + ζ(Ωω5)) − ζ(ω2)
(

ζ(Ω2ω1) − ζ(Ω2ω5)
)

+

− (ζ(ω1) − ζ(ω5))
(

ζ(Ω2ω2) − ζ(Ω2ω3)
)

+ ζ(Ω3ω2) + 3ζ(Ω3ω3) + ζ(Ω3ω5). (F.37)
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The results in shuffle6.dat can be used to reduce the rest of the expressions for M(λp)
to depth-one words (the results have already been used to calculate the imaginary parts
just shown). The results read

M(1) = 2U3,1 − ζ(Ωω0)ζ(Ωω3) +
1

2

(

ζ(Ωω3)
2 − ζ(Ω3ω0)

)

,

M(λ) =
139π4

38880
− 1

3
Cl22

(

π

3

)

+ 2V3,1 +

+ζ(ω1)
(

ζ(Ω2ω2) − ζ(Ω2ω3)
)

− 1

2
ζ(ω1)

(

ζ(Ω2ω2) − ζ(Ω2ω4)
)

+

−ζ(ω2)
(

ζ(Ω2ω1) − ζ(Ω2ω5)
)

− 1

2
(ζ(ω1) − ζ(ω5))

(

ζ(Ω2ω2) − ζ(Ω2ω3)
)

+

−ζ(Ωω3) (ζ(Ωω1) + ζ(Ωω2)) −
1

2
ζ(Ωω2) (ζ(Ωω1) + ζ(Ωω5)) +

+
1

2
ζ(Ω3ω1) + ζ(Ω3ω2) +

3

2
ζ(Ω3ω3) +

3

2
ζ(Ω3ω4) + 2ζ(Ω3ω5),

M(λ2) =
139π4

38880
− 1

3
Cl22

(

π

3

)

+

−1

2
(ζ(Ωω1) − ζ(Ωω5)) ζ(Ωω2) − (ζ(Ωω1) + ζ(Ωω2)) ζ(Ωω3) +

−ζ(ω1)ζ(Ω
2ω2) −

1

2
ζ(ω5)ζ(Ω

2ω2) +
1

2
ζ(ω1)ζ(Ω

2ω3) +
1

2
ζ(ω5)ζ(Ω

2ω3) +

+
1

2
ζ(ω1)ζ(Ω

2ω4) +
1

2
ζ(Ω3ω1) +

3

2
ζ(Ω3ω3) +

3

2
ζ(Ω3ω4) + ζ(Ω3ω5),

M(λ3) = −3

2
ζ(Ωω3)

2 +
3

2
ζ(Ω3ω0) + ζ(Ω3ω3). (F.38)

F.4.2 Insertion of the depth-one words

The depth-one words are known as polylogarithms. However, one has to deal with the
fact that the arguments are given by the roots of unity which take complex values in
general. The reduction to polylogarithms with real arguments is done by considering the
Taylor series expansion

Lip(z) =
∞
∑

n=1

zn

np
. (F.39)

The sixth roots of unity are made explicit,

λ = eiπ/3 =
1

2
+ i

√

3

4
, λ2 = e2iπ/3 = −1

2
+ i

√

3

4
, λ3 = eiπ = −1,

λ4 = e4iπ/3 = −1

2
− i

√

3

4
, λ5 = e5iπ/3 =

1

2
− i

√

3

4
, λ6 = e2iπ = 1.

(F.40)

For the argument λx one obtains

Lip(λx) =
∞
∑

n=0

λx6n+1

(6n+ 1)p
+
∞
∑

n=0

λ2x6n+2

(6n+ 2)p
+
∞
∑

n=0

λ3x6n+3

(6n+ 3)p
+
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+
∞
∑

n=0

λ4x6n+4

(6n+ 4)p
+
∞
∑

n=0

λ5x6n+5

(6n+ 5)p
+
∞
∑

n=0

λ6x6n+6

(6n+ 6)p
=

=
1

2

( ∞
∑

n=0

x6n+1

(6n + 1)p
−
∞
∑

n=0

x6n+2

(6n+ 2)p
−
∞
∑

n=0

x6n+4

(6n+ 4)p
+
∞
∑

n=0

x6n+5

(6n+ 5)p

)

+

−
∞
∑

n=0

x6n+3

(6n+ 3)p
+
∞
∑

n=0

x6n+6

(6n+ 6)p
+ (F.41)

+i

√

3

4

( ∞
∑

n=0

x6n+1

(6n+ 1)p
+
∞
∑

n=0

x6n+2

(6n+ 2)p
−
∞
∑

n=0

x6n+4

(6n+ 4)p
−
∞
∑

n=0

x6n+5

(6n+ 5)p

)

.

The imaginary part cannot be converted into polylogarithms again, but for the real part
one can use a supplementary procedure explained later to obtain

Re (Lip(λx)) =
1

2

( ∞
∑

n=1

xn

np
− 2

∞
∑

n=0

x6n+2

(6n + 2)p
− 2

∞
∑

n=0

x6n+4

(6n+ 4)p
+

−3
∞
∑

n=0

x6n+3

(6n+ 3)p
+
∞
∑

n=0

x6n+6

(6n + 6)p

)

=

=
1

2

( ∞
∑

n=1

xn

np
− 2

∞
∑

n=1

(x2)n

2pnp
− 3

∞
∑

n=0

x6n+3

(6n+ 3)p
+ 3

∞
∑

n=0

x6n+6

(6n+ 6)p

)

=

=
1

2

( ∞
∑

n=1

xn

np
− 2

∞
∑

n=1

(x2)n

2pnp
− 3

∞
∑

n=1

(x3)n

3pnp
+ 6

∞
∑

n=0

x6n+6

(6n+ 6)p

)

=

=
1

2

( ∞
∑

n=1

xn

np
− 2

∞
∑

n=1

(x2)n

2pnp
− 3

∞
∑

n=1

(x3)n

3pnp
+ 6

∞
∑

n=1

(x6)n

6pnp
=

=
1

2

(

61−p Lip(x
6) − 31−p Lip(x

3) − 21−p Lip(x
2) + Lip(x)

)

. (F.42)

For the argument z = λ2x one ends up with

Lip(λ
2x) =

∞
∑

n=0

λ2x3n+1

(3n+ 1)p
+
∞
∑

n=0

λ4x3n+2

(3n+ 2)p
+
∞
∑

n=0

λ6x3n+3

(3n+ 3)p
=

= −1

2

( ∞
∑

n=0

x3n+1

(3n+ 1)p
+
∞
∑

n=0

x3n+2

(3n + 2)p

)

+
∞
∑

n=0

x3n+3

(3n+ 3)p
+

+i

√

3

4

( ∞
∑

n=0

x3n+1

(3n+ 1)p
−
∞
∑

n=0

x3n+2

(3n+ 2)p

)

(F.43)

and thus

Re
(

Lip(λ
2x)

)

= −1

2

∞
∑

n=1

xn

np
+

3

2

∞
∑

n=0

x3n+3

(3n+ 3)p
= −1

2

∞
∑

n=1

xn

np
+

3

2

∞
∑

n=1

(x3)n

3pnp
=

=
1

2

(

31−p Lip(x
3) − Lip(x)

)

. (F.44)

Finally,

Lip(λ
3x) =

∞
∑

n=0

λ3x2n+1

(2n+ 1)p
+
∞
∑

n=0

λ6x2n+2

(2n+ 2)p
= −

∞
∑

n=0

x2n+1

(2n+ 1)p
+
∞
∑

n=0

x2n+2

(2n+ 2)p
=

= −
∞
∑

n=1

xn

np
+ 2

∞
∑

n=1

(x2)n

2pnp
= 21−p Lip(x

2) − Lip(x). (F.45)
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The supplementary procedure mentioned earlier is best understood by looking at the last
calculation. In the expression

−
∞
∑

n=0

x2n+1

(2n+ 1)p
+
∞
∑

n=0

x2n+2

(2n + 2)p
(F.46)

the second part can already been written as a simpler sum,

∞
∑

n=0

x2n+2

(2n+ 2)p
=
∞
∑

n=1

x2n

(2n)p
=
∞
∑

n=1

(x2)n

2pnp
(F.47)

while one has to find the “missing” parts of the first sum,

−
∞
∑

n=0

x2n+1

(2n+ 1)p
= − x

1p
− x3

3p
− x5

5p
+ . . . = −

∞
∑

n=1

xn

np
+
∞
∑

n=1

x2n

(2n)p
. (F.48)

Using these expressions for the polylogarithms as well as the relations

Im ζ(Ω2ω1) =
(Re ζ(Ωω0) − Re ζ(Ωω1))(Re ζ(Ωω0) + 2 Re ζ(Ωω1))

3 Im ζ(ω1)
,

Im ζ(Ω2ω2) =
(Re ζ(Ωω0) − Re ζ(Ωω2))(Re ζ(Ωω0) − 4 Re ζ(Ωω2))

21 Im ζ(ω2)
,

Re ζ(Ω3ω0) =
2

5
(Re ζ(Ωω0))

2 ,

Re ζ(Ω3ω1) =
1

3

(

1

5
(Re ζ(Ωω0))

2 + 2 Re ζ(Ωω0) Re ζ(Ωω1) − (Re ζ(Ωω1))
2
)

,

Re ζ(Ω3ω2) = − 2

21

(

4

5
(Re ζ(Ωω0))

2 − 4 Re ζ(Ωω0) Re ζ(Ωω2) − (Re ζ(Ωω2))
2
)

,

Re ζ(Ω3ω3) = −1

2
Re ζ(Ωω0)

(

1

5
Re ζ(Ωω0) − Re ζ(Ωω3)

)

(F.49)

between depth-one words which are found in shuffle6.m, one ends up with

Re ζ(ω0) = Li1(1) = − ln(1 − 1) = ∞,

Re ζ(ω1) = Re (Li1(λ)) = Re (− ln(1 − λ)) = ln(1) = 0,

Re ζ(ω2) = Re
(

Li1(λ
2)
)

= Re
(

− ln(1 − λ2)
)

= ln(
√

3) =
1

2
ln(3),

Re ζ(ω3) = Li1(λ
3) = − ln(1 + 1) = − ln(2),

Re ζ(Ωω0) = Li2(1) = ζ(2),

Re ζ(Ωω1) = Re (Li2(λ)) =
1

2

(

Li2(λ
1) + Li2(λ

5)
)

=

=
1

2

(

1

6
Li2(1) − 1

3
Li2(1) − 1

2
Li2(1) + Li2(1)

)

=
1

6
Li2(1) =

1

6
ζ(2),

Re ζ(Ωω2) = Re
(

Li2(λ
2)
)

=
1

2

(

Li2(λ
2) + Li2(λ

4)
)

=

=
1

2

(

1

3
Li2(1) − Li2(1)

)

= −1

3
Li2(1) = −1

3
ζ(2),

Re ζ(Ωω3) = Li2(−1) =
1

2
Li2(1) − Li2(1) = −1

2
Li2(1) = −1

2
ζ(2),
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Re ζ(Ω2ω0) = Li3(1) = ζ(3),

Re ζ(Ω2ω1) = Re (Li3(λ)) =
1

2

(

1

36
Li3(1) − 1

9
Li3(1) − 1

4
Li3(1) + Li3(1)

)

=
1

3
ζ(2),

Re ζ(Ω2ω2) = Re
(

Li3(λ
2)
)

=
1

2

(

1

9
Li3(1) − Li3(1)

)

= −4

9
ζ(3),

Re ζ(Ω2ω3) = Li3(λ
3) =

1

4
Li3(1) − Li3(1) = −3

2
ζ(3),

Re ζ(Ω3ω0) = Li4(1) = ζ(4) =
2

5
ζ(2)2 =

π4

90
,

Re ζ(Ω3ω1) =
1

3

(

1

5
ζ(2)2 +

1

3
ζ(2)2 − 1

36
ζ(2)2

)

=
91

540
ζ(2)2 =

91π4

19440
,

Re ζ(Ω3ω2) = − 2

21

(

4

5
ζ(2)2 +

4

3
ζ(2)2 − 1

9
ζ(2)2

)

= − 26

135
ζ(2)2 = −13π4

2430
,

Re ζ(Ω3ω3) = Li4(−1) = −1

2
ζ(2)

(

1

5
ζ(2) +

1

2
ζ(2)

)

= − 7

20
ζ(2)2 = −7π4

720
(F.50)

and

Im ζ(ω1) = Cl1

(

π

3

)

= Im (Li1(λ)) = Im (− ln(1 − λ)) =
π

3
,

Im ζ(ω2) = Cl1

(

2π

3

)

= Im
(

Li1(λ
2)
)

= Im
(

− ln(1 − λ2)
)

=
π

6
,

Im ζ(Ωω1) = Im (Li2(λ)) = Cl2

(

π

3

)

,

Im ζ(Ωω2) = Im
(

Li2(λ
2)
)

= Cl2

(

2π

3

)

,

Im ζ(Ω2ω1) = Cl3

(

π

3

)

=
1

π

(

ζ(2) − 1

6
ζ(2)

)(

ζ(2) +
1

3
ζ(2)

)

=
10

9π
ζ(2)2 =

5π3

162
,

Im ζ(Ω2ω2) = Cl3

(

2π

3

)

=
2

7π

(

ζ(2) +
1

3
ζ(2)

)(

ζ(2) +
4

3
ζ(2)

)

=
8

9π
ζ(2)2 =

2π3

81
,

Im ζ(Ω3ω1) = Im (Li4(λ)) = Cl4

(

π

3

)

,

Im ζ(Ω3ω2) = Im
(

Li4(λ
2)
)

= Cl4

(

2π

3

)

. (F.51)

The relations

1 − λ =
1

2
− i

√

3

4
= e−iπ/3, 1 − λ2 =

3

2
− i

√

3

4
=

√
3 e−iπ/6, (F.52)

have been used. Fortunately, ζ(ω0) does not occur at all in the final contributions. The
Clausen polylogarithms (see Appendix E.4) with even index are related by

Cl2m

(

π

3

)

=
(

1 +
1

22m−1

)

Cl2m

(

2π

3

)

. (F.53)

Using all these results, one obtains the results shown in Sec. 3.4.12.



Appendix G

Effective vertex integrals

This appendix contains integrals that are used in Appendix H to calculate contributions
to the soft part of the self energy of the quark. First of all, two basic integral identities
are needed. The first one holds for the tensorial integral. It reads

∫

dDl

(2π)D
lµlνg(l

2) =
1

D
gµν

∫

dDl

(2π)D
l2g(l2), (G.1)

no matter whether the function g still depends on an additional outer momentum p or
not. If this expression would also contribute to terms for instance such as pµpνI

v1
pp , the

inspection of the case µ 6= ν would let Iv1pp vanish. Next the result for the general integral
given by

I(α, β) =
∫

dDk

(2π)D
(−k2)β

(−k2 +m2)α
(G.2)

has to be found. The first step is to perform a Wick rotation for k0. In the second step
one integrates over the angular components which results in 2πD/2/Γ(D/2). Proceeding
in this way one obtains

I(α, β) = i
∫

dDk

(2π)D
(k2)β

(k2 +m2)α
=

2i

(4π)D/2Γ(D/2)

∫ ∞

0

k2βkD−1dk

(k2 +m2)α
. (G.3)

Now one substitutes the dimensionless variable

y =
k2

k2 +m2
, dy =

2km2dk

(k2 +m2)2
, k2 =

m2y

1 − y
, k2 +m2 =

m2

1 − y
(G.4)

where the limits are given by y = 0 and y = 1 and obtains

I(α, β) =
i

(4π)D/2Γ(D/2)

∫ ∞

0

2k dk

(k2 +m2)2
kD+2β−2(k2 +m2)2−α =

=
i

(4π)D/2Γ(D/2)

∫ 1

0

dy

m2

(

m2y

1 − y

)D/2+β−1 (
m2

1 − y

)2−α
=

=
i(m2)D/2+β−α+1−1

(4π)D/2Γ(D/2)

∫ 1

0
yD/2+β−1(1 − y)α−β−D/2−1dy =

=
iΓ(D/2 + β)Γ(α− β −D/2)

(4π)D/2Γ(D/2)Γ(α)
(m2)D/2−α+β . (G.5)

436
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For the case β = 0 this integral simplifies to

I(α) = I(α, 0) =
iΓ(α−D/2)

(4π)D/2Γ(α)
(m2)D/2−α, (G.6)

while for β = 1 one can combine this result with Eq. (G.1) to obtain
∫

dDk

(2π)D
kµkν

(−k2 +m2)α
=

∫

dDk

(2π)D
gµνk

2/D

(−k2 +m2)α
=

= −iΓ(D/2 + 1)Γ(α− 1 −D/2)

(4π)D/2Γ(D/2)Γ(α)D
gµν(m

2)D/2−α+1 =

= − i(D/2)Γ(D/2)Γ(α−D/2)

(4π)D/2Γ(D/2)Γ(α)(α− 1 −D/2)D
gµν(m

2)D/2−α+1 =

=
iΓ(α−D/2)

(4π)D/2Γ(α)(D − 2α + 2)
gµν(m

2)D/2−α+1. (G.7)

Comparing this result with Eq. (G.6), the effective replacement rule

kµkν →
m2gµν

D − 2α + 2
(G.8)

is obtained which turns out to be quite helpful in the following.

G.1 Integral class for the abelian diagram

The integrals Iv1, Iv1µ , and Iv1µν in Sec. H.1.1 can be subsummed by the generic integral

Iv1f =
∫

dDl

(2π)D
f(l)

((p1 + l)2 −m2)((p2 + l)2 −m2)l2
(G.9)

where f(l) is a scalar, vectorial, or tensorial expression in l. Now one has to use the
Feynman parametrization with the three parameters x1, x2, and 1 − x1 − x2,

1

ABC
=

Γ(3)

Γ(1)3

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

(x1A + x2B + (1 − x1 − x2)C)3
(G.10)

to obtain

Iv1f =
∫

dDl

(2π)D
f(l)

((p1 + l)2 −m2)((p2 + l)2 −m2)l2
= (G.11)

=
Γ(3)

Γ(1)3

∫ 1

0
dx1

∫ 1−x1

0
dx2 ×

×
∫

dDl

(2π)D
1

(x1((p1 + l)2 −m2) + x2((p2 + l)2 −m2) + (1 − x1 − x2)l2)3
=

= 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
f(l)

(l2 + 2x1p1l + 2x2p2l + x1(p2
1 −m2) + x2(p2

2 −m2))3
=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2 ×

×
∫

dDl

(2π)D
f(l)

(−(l + x1p1 + x2p2)2 + (x1p1 + x2p2)2 − x1(p
2
1 −m2) − x2(p2 −m2))3

=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
f(l − x1p1 − x2p2)

(−l2 + (x1p1 + x2p2)2 − x1(p2
1 −m2) − x2(p2

2 −m2))3
.
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The second term in the denominator is the square of the effective mass mx. At this point
one inserts p1 = p + k and p2 = p and neglects terms proportional to k2 to obtain

m2
x = (x1p1 + x2p2)

2 − x1(p
2
1 −m2) − x2(p

2
2 −m2) =

= x2
1p

2
1 + 2x1x2(p1p2) + x2

2p
2
2 − x1(p

2
1 −m2) − x2(p

2
2 −m2) =

≈ x2
1(p

2 + 2pk) + 2x1x2(p
2 + pk) + x2

2p
2 + x1(m

2 − p2 − 2pk) + x2(m
2 − p2) =

= (x1 + x2)
2p2 + (x1 + x2)(m

2 − p2) − 2x1(1 − x1 − x2)pk. (G.12)

For matter of convenience one denotes m2 − p2 =: ωp2 and 2pk =: −ηp2. One can also
replace the parameter x2 by z = x1 + x2 with x1 < z < 1. The argument of f changes
accordingly to l− x1p1 − x2p2 = l− zp− x1k. For the squared effective mass one obtains

m2
x = p2

(

z2 + zω + x1(1 − z)η
)

. (G.13)

Finally, for the applications it is sufficient to consider the case ω = 0, therefore

m2
x = p2

(

z2 + x1(1 − z)η
)

. (G.14)

For the general integral

Iv1f = −2
∫ 1

0
dx1

∫ 1

x1

dz
∫

dDl

(2π)D
f(l − zp− x1k)

(−l2 + p2(z2 + x1(1 − z)η))3
=

= −2
∫ 1

0
dz
∫ z

0
dx1

∫

dDl

(2π)D
f(l − x1k − zp)

(−l2 + p2(x1(1 − z)η + z2))3
(G.15)

one now has to discuss the different cases according to the specific form of f .

G.1.1 The scalar integral Iv1

The case f(l) = 1 defines the scalar integral. Using Eq. (G.6) for α = 3 one obtains

Iv1 =
−2i

(4π)D/2
Γ(3 −D/2)

Γ(3)

∫ 1

0
dz
∫ z

0
dx1

(

p2(x1(1 − z)η + z2)
)D/2−3

=

=
−iΓ(1 + ε)

(4π)2−ε (p2)−1−ε
∫ 1

0
dz
∫ z

0
dx1

(

x1(1 − z)η + z2
)−1−ε

. (G.16)

For this integral one can set ε = 0 to end up with

Iv1 =
−i

(4π)2p2

∫ 1

0
dz
∫ z

0

dx1

x1(1 − z)η + z2
. (G.17)

One can even derive an exact formula for this integral. Starting with
∫ z

0

dx1

x1(1 − z)η + z2
=

1

(1 − z)η

∫ z

0

dx1

x1 + z2/((1 − z)η)
=

=
1

(1 − z)η
ln

(

x1 +
z2

(1 − z)η

) ∣

∣

∣

∣

∣

z

0

=

=
1

(1 − z)η

(

ln

(

z +
z2

(1 − z)η

)

− ln

(

z2

(1 − z)η

))

=

=
1

(1 − z)η
ln

(

(1 − z)η

z
+ 1

)

=
1

(1 − z)η
ln

(

η + (1 − η)z

z

)

(G.18)
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the integration over z can be done, resulting in

∫ 1

0

dz

(1 − z)η
ln

(

η + (1 − η)z

z

)

=
∫ 1

0

dz

ηz
ln

(

1 − (1 − η)z

1 − z

)

= (G.19)

=
1

η

(

∫ 1

0

dz

z
ln (1 − (1 − η)z) −

∫ 1

0

dz

z
ln(1 − z)

)

=
1

η
(Li2(1) − Li2(1 − η))

and therefore

Iv1 =
−i

(4π)2p2η
(Li2(1) − Li2(1 − η)) =

−i
(4π)2p2

{

1 − ln η +
(

1

4
− 1

2
ln η

)

η +O(η2)
}

.

(G.20)

G.1.2 The vector integral Iv1
µ

The vector integral Iv1µ is given by

Iv1µ =
i

(4π)2p2

∫ 1

0
dz
∫ z

0
dx1

x1kµ + zpµ
x1(1 − z)η + z2

= Iv1k kµ + Iv1p pµ (G.21)

where

Iv1k =
i

(4π)2p2

∫ 1

0
dz
∫ z

0

x1dx1

x1(1 − z)η + z2
, (G.22)

Iv1p =
i

(4π)2p2

∫ 1

0
z dz

∫ z

0

dx1

x1(1 − z)η + z2
. (G.23)

In order to evaluate Iv1k one first calculates

∫ z

0

x1dx1

x1(1 − z)η + z2
=

1

(1 − z)η

∫ z

0

x1dx1

x1 + z2/((1 − z)η)
=

=
1

(1 − z)η

(

∫ z

0
dx1 −

z2

(1 − z)η

∫ z

0

dx1

x1 + z2/((1 − z)η)

)

=

=
1

(1 − z)η

(

z − z2

(1 − z)η
ln

(

η + (1 − η)z

z

))

. (G.24)

Therefore, the next step is to calculate

Iv1k =
i

(4π)2p2

∫ 1

0

dz

(1 − z)η

(

z − z2

(1 − z)η
ln

(

η + (1 − η)z

z

))

=

=
i

(4π)2p2

∫ 1

0

dz

ηz

(

(1 − z) − (1 − z)2

ηz
ln

(

1 − (1 − η)z

1 − z

))

. (G.25)

The different parts of this integral will be determined as indefinite integrals because they
contain divergences which cancel among the contributions. The contributions are given
by

∫ dz

z
(1 − z) = ln z − z,
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∫

dz

z2
ln

(

1 − (1 − η)z

1 − z

)

=

= −(1 − η) ln z −
(

1

z
− (1 − η)

)

ln(1 − (1 − η)z) + ln z +
(

1

z
− 1

)

ln(1 − z) =

= η ln z − 1

z
ln

(

(1 − (1 − η)z

1 − z

)

+ (1 − η) ln(1 − (1 − η)z) − ln(1 − z),

∫

dz

z
ln

(

1 − (1 − η)z

1 − z

)

= Li2(z) − Li2((1 − η)z),

∫

ln

(

1 − (1 − η)z

1 − z

)

dz =

=

(

z − 1

1 − η

)

ln(1 − (1 − η)z) − z − (z − 1) ln(1 − z) + z =

= z ln

(

1 − (1 − η)z

1 − z

)

− 1

1 − η
ln(1 − (1 − η)z) + ln(1 − z). (G.26)

One therefore obtains
∫

dz

ηz

(

(1 − z) − (1 − z)2

ηz
ln

(

1 − (1 − η)z

1 − z

))

=

=
1

η2

{

η ln z − ηz + 2 (Li2(z) − Li2((1 − η)z)) +

−η ln z +
1

z
ln

(

1 − (1 − η)z

1 − z

)

− (1 − η) ln(1 − (1 − η)z) + ln(1 − z) +

−z ln

(

1 − (1 − η)z

1 − z

)

+
1

1 − η
ln(1 − (1 − η)z) − ln(1 − z)

}

=

=
1

η

{

2

η
(Li2(z) − Li2((1 − η)z)) +

+
1 − z2

ηz
ln

(

1 − (1 − η)z

1 − z

)

+
2 − η

1 − η
ln(1 − (1 − η)z) − ηz

}

. (G.27)

Using

ln

(

1 − (1 − η)z

1 − z

)

→ −(1 − η)z + z = ηz for z → 0 (G.28)

one can finally insert the limits and obtains

∫ 1

0

dz

ηz

(

(1 − z) − (1 − z)2

ηz
ln

(

1 − (1 − η)z

1 − z

))

=

=
1

η

{

2

η
(Li2(1) − Li2(1 − η)) +

2 − η

1 − η
ln η − 1 − 1

}

=

=
2

η2
(Li2(1) − Li2(1 − η)) +

2 − η

(1 − η)η
ln η − 2

η
. (G.29)

Therefore

Iv1k =
i

(4π)2p2η

{

2

η
(Li2(1) − Li2(1 − η)) +

2 − η

1 − η
ln η − 2

}

(G.30)
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which again can be expanded in η (see below). For Iv1p one finally obtains

Iv1p =
i

(4π)2p2

∫ 1

0
z dz

∫ z

0

dx1

x1(1 − z)η + z2
=

=
i

(4π)2p2

∫ 1

0

z dz

(1 − z)η
ln

(

η + (1 − η)z

z

)

=

=
i

(4π)2p2

∫ 1

0

(1 − z)dz

ηz
ln

(

1 − (1 − η)z

1 − z

)

=

=
i

(4π)2p2η

[

(Li2(z) − Li2 ((1 − η)z)) − z ln

(

1 − (1 − η)z

1 − z

)

+

+
1

1 − η
ln (1 − (1 − η)z) − ln(1 − z)

]1

0

=

=
i

(4π)2p2η

{

Li2(1) − Li2(1 − η) − ln η +
1

1 − η
ln η

}

=

=
i

(4π)2p2

{

1

η
(Li2(1) − Li2(1 − η)) +

1

1 − η
ln η

}

. (G.31)

The expansion in η is given by

Iv1k =
i

(4π)2p2

{

1

2
+
(

2

9
+

1

3
ln η

)

η +O(η2)
}

,

Iv1p =
i

(4π)2p2

{

1 +
(

1

4
+

1

2
ln η

)

η +O(η2)
}

. (G.32)

G.1.3 The tensor integral Iv1
µν

Because odd powers of l vanish, f(l − x1k − zp) is effectively given by

lµlν + (x1kµ + zpµ)(x1kν + zpν) →
m2gµν
D − 4

+ (x1kµ + zpµ)(x1kν + zpν), (G.33)

one therefore obtains

Iv1µν = Iv1g gµν + Iv1′µν with

Iv1′µν =
−i

(4π)2p2

∫ 1

0
dz
∫ z

0
dx1

(x1kµ + zpµ)(x1kν + zpν)

x1(1 − z)η + z2
=

= Ikkkµkν + Ikp(kµpν + pµkν) + Ipppµpν where (G.34)

Iv1kk =
−i

(4π)2p2

∫ 1

0
dz
∫ z

0

x2
1dx1

x1(1 − z)η + z2
,

Iv1kp =
−i

(4π)2p2

∫ 1

0
z dz

∫ z

0

x1dx1

x1(1 − z)η + z2
,

Iv1pp =
−i

(4π)2p2

∫ 1

0
z2dz

∫ z

0

dx1

x1(1 − z)η + z2
,

Iv1g =
−2iΓ(3 −D/2)

(4π)D/2Γ(3)(D − 4)
(p2)D/2−2

∫ 1

0
dz
∫ z

0
dx1

(

x1(1 − z)η + z2
)D/2−2

. (G.35)
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For the first three integrals the results read

Iv1kk =
−i

(4π)2p2η2

{

6

η
(Li2(1) − Li2(1 − η)) +

+(2 − η)
6 − 6η − η2

2(1 − η)2
ln η − 12 − 9η − 2η2

2(1 − η)

}

,

Iv1kp =
−i

(4π)2p2η

{

3

η
(Li2(1) − Li2(1 − η)) +

6 − 9η + 2η2

2(1 − η)2
ln η − 6 − 5η

2(1 − η)

}

,

Iv1pp =
−i

(4π)2p2

{

1

η
(Li2(1) − Li2(1 − η)) +

2 − 3η

2(1 − η)2
ln η − 1

2(1 − η)

}

. (G.36)

For the series expansions one obtains

Iv1kk =
−i

(4π)2p2

{

1

6
− 1

8
η +O(η2)

}

,

Iv1kp =
−i

(4π)2p2

{

1

4
− 1

6
η +O(η2)

}

,

Iv1pp =
−i

(4π)2p2

{

1

2
− 1

4
η +O(η2)

}

, (G.37)

so that in the actual combination of these terms there are no ln η contributions. Finally,
Iv1g is given by

Iv1g =
iΓ(1 + ε)

2(4π)2−εε
(p2)−ε

∫ 1

0
dz
∫ z

0
dx1

(

x1(1 − z)η + z2
)−ε

=

=
iΓ(1 + ε)

2(4π)2−εε
(p2)−ε

∫ 1

0
dz
∫ z

0
dx1

(

1 − ε ln(x1(1 − z)η + z2) +O(ε2)
)

=

=
iΓ(1 + ε)

4(4π)2−εε
(p2)−ε − i

2(4π)2

∫ 1

0
dz
∫ z

0
dx1 ln

(

x1(1 − z)η + z2
)

+O(ε) (G.38)

where
∫ 1

0
dz
∫ z

0
dx1 =

∫ 1

0
z dz =

1

2
(G.39)

has been used. One can calculate the finite part by using x′1 = x1(1 − z)η + z2 to obtain

∫ 1

0
dz
∫ z

0
ln(x1(1 − z)η + z2)dx1 =

∫ 1

0

dz

(1 − z)η

∫ z(1−z)η+z2

z2
ln x′1dx

′
1 = (G.40)

=
∫ 1

0

dz

(1 − z)η

[

x′1 ln x′1 − x′1
]z(1−z)η+z2

z2
=

=
∫ 1

0

[(

z(1 − z)η + z2
)

ln
(

z(1 − z)η + z2
)

− z(1 − z)η − z2 − z2 ln z2 + z2
] dz

(1 − z)η
=

=
∫ 1

0

[

z(1 − z)η
(

ln
(

z(1 − z)η + z2
)

− 1
)

+ z2 ln

(

z(1 − z)η + z2

z2

)]

dz

(1 − z)η
=

=
∫ 1

0
(ln z − 1 + ln ((1 − z)η + z)) z dz +

∫ 1

0
ln

(

(1 − z)η + z

z

)

z2dz

(1 − z)η
=

=
∫ 1

0
(ln z − 1)z dz +

∫ 1

0
ln (1 − (1 − η)z) (1 − z)dz +

∫ 1

0
ln

(

1 − (1 − η)z

1 − z

)

(1 − z)2dz

ηz
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where in the last step the substitution z → 1− z was used for the last two integrals. Now

∫ 1

0
(ln z − 1)z dz =

[

1

2
z2(ln z − 1)

]1

0
− 1

2

∫ 1

0
z dz =

=
[

1

2
z2(ln z − 1) − 1

4
z2
]1

0
= −1

2
− 1

4
= −3

4
, (G.41)

∫ 1

0
(1 − (1 − η)z) (1 − z)dz =

=

[

z ln (1 − (1 − η)z) − 1

1 − η
ln (1 − (1 − η)z) − z +

−1

2
z2 ln (1 − (1 − η)z) +

1

2(1 − η)2
ln (1 − (1 − η)z) +

1

4
z2 +

z

2(1 − η)

]1

0

=

= ln η − 1

1 − η
ln η − 1 − 1

2
ln η +

1

2(1 − η)2
ln η +

1

4
+

1

2(1 − η)
=

=

(

1

2
− 1

1 − η
+

1

2(1 − η)2

)

ln η +
1

2(1 − η)
− 3

4
= (G.42)

=
1 − 2η + η2 − 2 + 2η + 1

2(1 − η)2
ln η +

2 − 3(1 − η)

4(1 − η)
=

η2

2(1 − η)2
ln η − 1 − 3η

4(1 − η)
,

∫ 1

0
ln

(

1 − (1 − η)z

1 − z

)

(1 − z)2dz

ηz
=

=
1

η

[

− Li2 ((1 − η)z) Li2(z) − 2z ln (1 − (1 − η)z) +
2

1 − η
ln (1 − (1 − η)z) +

+2z + 2z ln(1 − z) − 2 ln(1 − z) − 2z +

+
1

2
z2 ln (1 − (1 − η)z) − 1

2(1 − η)2
ln (1 − (1 − η)z) − 1

4
z2 − z

2(1 − η)
+

−1

2
z2 ln(1 − z) +

1

2
ln(1 − z) +

1

4
z2 +

1

2
z

]1

0

=

=
1

η

(

− Li2(1 − η) + Li2(1) − 2 ln η +
2

1 − η
ln η + 2 − 2 +

+
1

2
ln η − 1

2(1 − η)2
ln η − 1

4
− 1

2(1 − η)
+

1

4
+

1

2

)

=

=
1

η

(

Li2(1) − Li2(1 − η) +

(

−3

2
+

2

1 − η
− 1

2(1 − η)2

)

ln η +
1 − η − 1

2(1 − η)

)

=

=
1

η

(

Li2(1) − Li2(1 − η) +
−3 + 6η − 3η2 + 4 − 4η − 1

2(1 − η)2
ln η − η

2(1 − η)

)

=

=
1

η
(Li2(1) − Li2(1 − η)) +

2 − 3η

2(1 − η)2
ln η − 1

2(1 − η)
. (G.43)

In adding all these parts one obtains

∫ 1

0
dz
∫ z

0
ln(x1(1 − z)η + z2)dx1 =
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= −3

4
+

η2

2(1 − η)2
ln η − 1 − 3η

4(1 − η)
+

+
1

η
(Li2(1) − Li2(1 − η)) +

2 − 3η

2(1 − η)2
ln η − 1

2(1 − η)
=

=
1

η
(Li2(1) − Li2(1 − η)) +

2 − 3η + η2

2(1 − η)2
ln η − 1 − 3η + 3(1 − η) + 2

4(1 − η)
=

=
1

η
(Li2(1) − Li2(1 − η)) +

2 − η

2(1 − η)
ln η − 3

2
(G.44)

which can also be obtained by using MATHEMATICA. The series expansion in η results
in

Iv1g =
iΓ(1 + ε)

4(4π)2−εε
(p2)−ε +

i

(4π)2

(

1

4
− 1

8
η +O(η2)

)

. (G.45)

G.2 Integral class for the non-abelian diagram

The generic integral in Sec. H.1.2 is given by

Iv2f =
∫

dDl

(2π)D
f(l)

((p+ l)2 −m2)l2(k − l)2
=

= 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
f(l)

(x1((p+ l)2 −m2) + x2(k − l)2 + (1 − x1 − x2)l2)2
=

= 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
f(l)

(l2 + 2x1pl + x1(p2 −m2) − 2x2kl + x2k2)3
=

= 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
f(l)

((l + x1p− x2k)2 − (x1p− x2k)2)3
=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
f(l − x1p+ x2k)

(−l2 + (x1p− x2k)2)3
(G.46)

where (p2 −m2) and k2 are neglected and the inner momentum is shifted. f(l) could be
1, lµ, or lµlν . Therefore one obtains

Iv2 = −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
1

(−l2 + (x1p− x2k)2)3
, (G.47)

Iv2µ = −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
lµ − x1pµ + x2kµ

(−l2 + (x1p− x2k)2)3
=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
x2kµ − x1pµ

(−l2 + (x1p− x2k)2)3
, (G.48)

Iv2µν = −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
(lµ − x1pµ + x2kµ)(lν − x1pν + x2kν)

(−l2 + (x1p− x2k)2)3
=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
lµlν + (x1pµ − x2kµ)(x1pν − x2kν)

(−l2 + (x1p− x2k)2)3
=

= −2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
l2gµν/D + (x2kµ − x1pµ)(x2kν − x1pν)

(−l2 + (x1p− x2k)2)3
, (G.49)
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thus

Iv2 = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
−1

(−l2 + (x1p− x2k)2)3
,

Iv2k = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
−x2

(−l2 + (x1p− x2k)2)3
,

Iv2p = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
x1

(−l2 + (x1p− x2k)2)3
,

Iv2kk = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
−x2

2

(−l2 + (x1p− x2k)2)3
,

Iv2kp = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
x1x2

(−l2 + (x1p− x2k)2)3
,

Iv2pp = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ dDl

(2π)D
−x2

1

(−l2 + (x1p− x2k)2)3
,

Iv2g =
2

D

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

dDl

(2π)D
−l2

(−l2 + (x1p− x2k)2)3
. (G.50)

Next one uses Eq. (G.5) and (x2k − x1p)
2 = x1p

2(x1 + x2η) (as well as the interchange of
the integrations) to obtain

Iv2 =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

−1

x1(x1 + x2η)
,

Iv2k =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

−x2

x1(x1 + x2η)
,

Iv2p =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

x1

x1(x1 + x2η)
,

Iv2kk =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

−x2
2

x1(x1 + x2η)
,

Iv2kp =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

x1x2

x1(x1 + x2η)
,

Iv2pp =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0
dx1

−x2
1

x1(x1 + x2η)
, (G.51)

where ε = 0 can be used, and

Iv2g =
2iΓ(D/2 − 1)Γ(2 −D/2)

(4π)D/2DΓ(D/2)Γ(3)
(p2)D/2−2

∫ 1

0
dx2

∫ 1−x2

0
dx1 (x1(x1 + x2η))

D/2−2 =

=
iΓ(3 − ε)Γ(ε)

(4π)D/2DΓ(2 − ε)
(p2)−ε

∫ 1

0
dx2

∫ 1−x2

0
dx1 (x1(x1 + x2η))

−ε =

=
i(2 − ε)Γ(1 + ε)

(4π)2−ε(4 − 2ε)ε
(p2)−ε

∫ 1

0
dx2

∫ 1−x2

0
dx1

(

1 − ε ln (x1(x1 + x2η)) +O(ε2)
)

=

=
iΓ(1 + ε)

4(4π)2−εε
(p2)−ε − i

2(4π)2

∫ 1

0
dx2

∫ 1−x2

0
dx1 ln (x1(x1 + x2η)) +O(ε) (G.52)

where
∫ 1

0
dx2

∫ 1−x2

0
dx1 =

1

2
(G.53)
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is used. The integrals Iv2, Iv2k , and Iv2kk , however, cannot be regularized by keeping ε 6= 0.
In the cases with at least one p the critical x1 factor in the denominator cancels out, but
this does not happen in the other cases. The partial fractioning of the integrand, therefore,
results in a term 1/x1, and the integration diverges at the lower boundary without being
tempered by some other term. One is lucky in realizing that these terms do not occur.

G.2.1 The scalar integral Iv2
p

For the first scalar integral one obtains

Iv2p =
i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0

dx1

x1 + x2η
=

i

(4π)2p2

∫ 1

0
dx2

[

ln(x1 + x2η)
]1−x2

0
=

=
i

(4π)2p2

∫ 1

0
ln

(

1 − x2 + x2η

x2η

)

dx2 =
i

(4π)2p2

∫ 1

0
ln

(

1 − (1 − η)x2

x2η

)

dx2 =

=
i

(4π)2p2

[

x2 ln (1 − (1 − η)x2) +

− 1

1 − η
ln (1 − (1 − η)x2) − x2 +

−x2 ln x2 + x2 − x2 ln η

]1

0

=

=
i

(4π)2p2

[

ln η − 1

1 − η
ln η − ln η

]

=
−i

(4π)2p2

1

1 − η
ln η. (G.54)

G.2.2 The scalar integral Iv2
kp

Next one calculates

Iv2kp =
i

(4π)2p2

∫ 1

0
dx2x2

∫ 1−x2

0

dx1

x1 + x2η
=

i

(4π)2p2

∫ 1

0
dx2x2

[

ln(x1 + x2η)
]1−x2

0
=

=
i

(4π)2p2

∫ 1

0
x2 ln

(

1 − x2 + x2η

x2η

)

dx2 =
i

(4π)2p2

∫ 1

0
x2 ln

(

1 − (1 − η)x2

x2η

)

dx2 =

=
i

(4π)2p2

[

1

2
x2

2 ln (1 − (1 − η)x2) −
1

2(1 − η)2
ln (1 − (1 − η)x2) +

−1

4
x2

2 −
1

2(1 − η)
x2 −

1

2
x2

2 ln x2 +
1

4
x2

2 −
1

2
x2

2 ln η

]1

0

=

=
i

(4π)2p2

(

1

2
ln η − 1

2(1 − η)2
ln η − 1

4
− 1

2(1 − η)
+

1

4
− 1

2
ln η

)

=

=
−i

(4π)2p2

(

1

2(1 − η)
+

1

2(1 − η)2
ln η

)

. (G.55)

G.2.3 The scalar integral Iv2
pp

Now one has

Iv2pp =
−i

(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0

x1dx1

x1 + x2η
=

−i
(4π)2p2

∫ 1

0
dx2

∫ 1−x2

0

(

1 − x2η

x1 + x2η

)

dx1 =
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=
−i

(4π)2p2

∫ 1

0
dx2

[

x1 − x2η ln(x1 + x2η)
]1−x2

0
=

=
−i

(4π)2p2

∫ 1

0
(1 − x2 − x2η ln (1 − (1 − η)x2) + x2η ln(x2η)) dx2 =

=
−i

(4π)2p2

[

x1 −
1

2
x2

2 −
1

2
ηx2

2 ln (1 − (1 − η)x2) +
η

2(1 − η)2
ln (1 − (1 − η)x2) +

+
1

4
ηx2

2 +
ηx2

2(1 − η)
+

1

2
ηx2

2 ln x2 −
1

4
ηx2

2 +
1

2
ηx2

2 ln η

]1

0

= (G.56)

=
−i

(4π)2p2

(

1 − 1

2
− 1

2
η ln η +

η

2(1 − η)2
ln η +

1

4
η +

η

2(1 − η)
− 1

4
η +

1

2
η ln η

)

=

=
−i

(4π)2p2

(

1

2
+

η

2(1 − η)
+

η

2(1 − η)2
ln η

)

=
−i

(4π)2p2

(

1

2(1 − η)
+

η

2(1 − η)2
ln η

)

.

G.2.4 The scalar integral Iv2
g

For the last integral one begins with

∫ 1

0
dx2

∫ 1−x2

0
ln x1dx1 =

∫ 1

0

[

x1 ln x1 − x1

]1−x2

0
dx2 =

=
∫ 1

0
((1 − x2) ln(1 − x2) − (1 − x2)) dx2 =

∫ 1

0
(x2 ln x2 − x2) dx2 =

=
[

1

2
x2

2 ln x2 −
1

4
x2

2 −
1

2
x2

2

]1

0
= −1

4
− 1

2
= −3

4
(G.57)

and

∫ 1

0
dx2

∫ 1−x2

0
ln(x1 + x2η)dx1 =

∫ 1

0
dx2

[

(x1 + x2η) ln(x1 + x2η) − (x1 + x2η)
]1−x2

0
=

=
∫ 1

0

(

(1 − (1 − η)x2) ln (1 − (1 − η)x2) − 1 + (1 − η)x2 − x2η ln(x2η) + x2η
)

dx2 =

=

[

x2 ln (1 − (1 − η)x2) −
1

1 − η
ln (1 − (1 − η)x2) − x2 +

−1

2
(1 − η)x2

2 ln (1 − (1 − η)x2) +
1

2(1 − η)
ln (1 − (1 − η)x2) +

+
1

4
(1 − η)x2

2 +
1

2
x2 − x2 +

1

2
(1 − η)x2

2 −
1

2
ηx2

2 ln x2 +

+
1

4
ηx2

2 −
1

2
ηx2

2 ln η +
1

2
ηx2

2

]1

0

=

= ln η − 1

1 − η
ln η − 1 − 1

2
(1 − η) ln η +

1

2(1 − η)
ln η +

+
1

4
(1 − η) +

1

2
− 1 +

1

2
(1 − η) +

1

4
η − 1

2
η ln η +

1

2
η = (G.58)

=
1

2(1 − η)

(

1 + 2(1 − η) − 2 − (1 − η)2 − (1 − η)η
)

ln η − 3

4
=

=
1

2(1 − η)

(

1 + 2 − 2η − 2 − 1 + 2η − η2 − η + η2
)

ln η − 3

4
=

−η
2(1 − η)

ln η − 3

4
.
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One therefore obtains

Iv2g =
iΓ(1 + ε)

4(4π)2−εε
(p2)−ε − i

2(4π)2

∫ 1

0
dx2

∫ 1−x2

0
dx1 ln (x1(x1 + x2η)) =

=
iΓ(1 + ε)

4(4π)2−εε
(p2)−ε +

i

(4π)2

(

3

4
+

η

4(1 − η)
ln η

)

. (G.59)

For an expansion in η, finally, the integrals (for p2 = m2) result in

Iv2p =
−i

(4π)2m2

{

ln η + η ln η +O(η2)
}

,

Iv2kp =
−i

(4π)2m2

{(

1

2
+

1

2
ln η

)

+
(

1

2
+ ln η

)

η +O(η2)
}

,

Iv2pp =
−i

(4π)2m2

{

1

2
+
(

1

2
+

1

2
ln η

)

η +O(η2)
}

,

Iv2g =
iΓ(1 + ε)µ−2ε

4(4π)2−ε cs +
i

(4π)2

{

3

4
+

1

4
η ln η +O(η2)

}

. (G.60)

G.3 Integral class for the gluon self energy diagrams

The self energy correction at next-to-leading order consists of four different contributions:
the massive and massless quark loops, the gluon loop and the ghost loop (for the Feynman
gauge). The integral classes needed for the calculation of these contributions are presented
in the following.

G.3.1 Integral class for the massive quark loop diagram

One begins with the generic integral in Sec. H.2.1

L1f =
∫

dDl

(2π)D
f(l)

((k + l)2 −m2)(l2 −m2)
=

=
∫ 1

0
dx
∫ dDl

(2π)D
f(l)

(l2 + 2xkl + xk2 −m2)2
=

=
∫ 1

0
dx
∫

dDl

(2π)D
f(l)

((l + xk)2 + x(1 − x)k2 −m2)2
=

=
∫ 1

0
dx
∫

dDl

(2π)D
f(l − xk)

(−l2 +m2 − x(1 − x)k2)2
. (G.61)

The scalar integral L1 and the integrals given in the covariant representations

L1α = L1kkα, L1αβ = L1ggαβ + L1kkkαkβ (G.62)

will be calculated in the following, using the integration rule

∫ 1

0
xndx =

1

n + 1
,

∫ 1

0
xn(1 − x)dx =

1

(n+ 1)(n+ 2)
. (G.63)
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and the expansion in k2/m2 at the end. For the basic scalar integral (with f(l) = 1) one
obtains

L1 =
∫ 1

0
dx
∫

dDl

(2π)D
1

(−l2 +m2 − x(1 − x)k2)2
=

=
iΓ(2 −D/2)

(4π)D/2Γ(2)

∫ 1

0
(m2 − x(1 − x)k2)D/2−2 =

=
iΓ(ε)

(4π)2−ε (m
2)−ε

∫ 1

0

(

1 − ε ln

(

1 − x(1 − x)k2

m2

))

dx =

≈ iΓ(ε)

(4π)2−ε (m
2)−ε

∫ 1

0

(

1 + ε
x(1 − x)k2

m2

)

dx =

=
iΓ(1 + ε)

(4π)2−ε (m2)−ε
(

1

ε
+

k2

6m2

)

+O

(

k4

m4

)

. (G.64)

The next integral is given by

L1k =
∫ 1

0
dx
∫

dDl

(2π)D
−x

(−l2 +m2 − x(1 − x)k2)2
=

= − iΓ(ε)

(4π)2−ε (m
2)−ε

∫ 1

0

(

1 − ε ln

(

1 − x(1 − x)k2

m2

))

x dx =

= −iΓ(1 + ε)

(4π)2−ε (m2)−ε
(

1

2ε
+

k2

12m2

)

+O

(

k4

m4

)

. (G.65)

Next one obtains

L1kk =
∫ 1

0
dx
∫

dDl

(2π)D
x2

(−l2 +m2 − x(1 − x)k2)2
=

=
iΓ(ε)

(4π)2−ε (m
2)−ε

∫ 1

0

(

1 − ε ln

(

1 − x(1 − x)k2

m2

))

x2dx =

=
iΓ(1 + ε)

(4π)2−ε (m2)−ε
(

1

3ε
+

k2

20m2

)

+O

(

k4

m4

)

. (G.66)

Finally, one obtains

L1g =
1

D

∫ 1

0
dx
∫

dDl

(2π)D
l2

(−l2 +m2 − x(1 − x)k2)2
=

= −iΓ(D/2 + 1)Γ(1 −D/2)

(4π)D/2Γ(D/2)D
(m2)D/2−1

∫ 1

0
dx

(

1 − x(1 − x)k2

m2

)D/2−1

=

= − iΓ(3 − ε)Γ(ε− 1)

(4π)2−εΓ(2 − ε)(4 − 2ε)
(m2)1−ε

∫ 1

0
dx

(

1 − x(1 − x)k2

m2

)1−ε
. (G.67)

For the integrand one can use the expansion

(

1 − x(1 − x)k2

m2

)1−ε
≈ 1 − (1 − ε)

x(1 − x)k2

m2
, (G.68)



450 APPENDIX G. EFFECTIVE VERTEX INTEGRALS

and with Γ(ε− 1) = −Γ(1 + ε)/(ε(1 − ε))

L1g =
−iΓ(ε− 1)

2(4π)2−ε (m2)1−ε
(

1 − (1 − ε)
k2

6m2

)

+O

(

k4

m4

)

=

=
iΓ(1 + ε)

2(4π)2−ε (m2)1−ε
(

1

ε
+ 1

)

(

1 − k2

6m2
+ ε

k2

6m2

)

+O

(

k4

m4

)

=

=
iΓ(1 + ε)

2(4π)2−ε (m2)1−ε
{(

1 − k2

6m2

)

1

ε
+ 1

}

+O

(

k4

m4

)

. (G.69)

G.3.2 Integral class for the massless quark loop diagram

The generic integral in Sec. H.2.2 is given by

L0
1f =

∫ 1

0
dx
∫ dDl

(2π)D
f(l − xk)

(−l2 − x(1 − x)k2)2
. (G.70)

For the different special cases one obtains

L0
1 =

∫ 1

0
dx
∫

dDl

(2π)D
1

(−l2 − x(1 − x)k2)2
=
iΓ(2 −D/2)

(4π)D/2Γ(2)

∫ 1

0
(−x(1 − x)k2)D/2−2dx =

=
iΓ(ε)

(4π)2−ε (−k
2)−ε

∫ 1

0
x−ε(1 − x)−εdx =

iΓ(ε)

(4π)2−ε (−k
2)−ε

Γ(1 − ε)2

Γ(2 − 2ε)
=

=
iΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

ε
+ 2

}

(G.71)

and in the same manner

L0
1k = −iΓ(1 + ε)(−k2)−ε

(4π)2−εε

Γ(2 − ε)Γ(1 − ε)

Γ(3 − 2ε)
= −iΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

2ε
+ 1

}

,

L0
1kk =

iΓ(1 + ε)(−k2)−ε

(4π)2−εε

Γ(3 − ε)Γ(1 − ε)

Γ(4 − 2ε)
=

iΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

3ε
+

13

18

}

,

L0
1k + L0

1kk = −iΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

6ε
+

5

18

}

.

(G.72)

For L0
1g one obtains

L0
1g =

1

D

∫ 1

0
dx
∫

dDl

(2π)D
l2

(−l2 − x(1 − x)k2)2
=

= −iΓ(D/2 + 1)Γ(1 −D/2)

(4π)D/2Γ(D/2)D

∫ 1

0
(−x(1 − x)k2)D/2−1dx =

= − iΓ(3 − ε)Γ(ε− 1)

(4π)2−εΓ(2 − ε)(4 − 2ε)
(−k2)1−ε

∫ 1

0
x1−ε(1 − x)1−εdx =

= −Γ(ε− 1)(−k2)1−ε

2(4π)2−ε
Γ(2 − ε)2

Γ(4 − 2ε)
=

iΓ(1 + ε)(−k2)1−ε

2(4π)2−ε(1 − ε)ε

Γ(2 − ε)2

Γ(4 − 2ε)
=

=
iΓ(1 + ε)

2(4π)2−ε (−k2)1−ε
{

1

6ε
+

4

9

}

. (G.73)
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G.3.3 Integral class for the gluon loop diagram

One applies the Passarino–Veltman method. In making the ansatz

L2αβ =: L2gk
2gαβ + L2kkkαkβ (G.74)

one solves for L2g and L2kk by contracting with gαβ and kαkβ, respectively,

Dk2L2g + k2L2kk = gαβL2αβ =: k2Lg2, (G.75)

k4L2g + k4L2kk = kαkβL2αβ =: k4Lkk2 . (G.76)

This results in

L2g =
Lg2 − Lkk2
D − 1

, L2kk =
DLkk2 − Lg2
D − 1

. (G.77)

For the first contracted integral one obtains

k2Lg2 = g2
sCAδab

∫ dDl

(2π)D
1

l2
k2(k + l)2

[

D
(

4k2 + l2 + (k + l)2
)

+

+(D − 6)k2 + 2(2D − 3)kl + 2(2D − 3)l2
]

=

= g2
sCAδab

∫ dDl

(2π)D
1

l2
k2(k + l)2

[

D
(

4k2 + l2 + (k + l)2
)

+

−(D + 3)k2 + (2D − 3)l2 + (2D − 3)(k + l)2
]

=

= g2
sCAδab

∫

dDl

(2π)D
1

l2
k2(k + l)2

[

3(D − 1)k2 + 3(D − 1)l2 + 3(D − 1)(k + l)2
]

=

= 3(D − 1)g2
sCAδab

∫

dDl

(2π)D
k2 + l2 + (k + l)2

l2(k + l)2
=

=
3i(D − 1)g2

s

(4π)D/2
(−k2)D/2−2CAδabG(1, 1)k2 (G.78)

where G(n1, n2) is the standard massless integral with denominator powers n1 and n2 (cf.
Sec. 4.1.1). G(1, 1) is the only surviving integral while G(1, 0) and G(0, 1) vanish. For
the second contracted integral one obtains

k4Lkk2 = g2
sCAδab

∫

dDl

(2π)D
1

l2(k + l)2

[ (

4k2 + l2 + (k + l)2
)

k2 +

+(D − 6)k4 + 2(2D − 3)(kl)k2 + 2(2D − 3)(kl)2
]

=

=
1

2
g2
sCAδab

∫

dDl

(2π)D
1

l2(k + l)2

[

8k4 + 2k2l2 + 2k2(k + l)2 +

+2(D − 6)k4 + 2(2D − 3)k2(k + l)2 − 2(2D − 3)k4 − 2(2D − 3)k2l2 +

+(2D − 3)(k + l)4 − 2(2D − 3)k2(k + l)2 − 2(2D − 3)l2(k + l)2 +

+(2D − 3)k4 + 2(2D − 3)k2l2 + (2D − 3)l4
]

=

=
1

2
g2
sCAδab

∫

dDl

(2π)D
1

l2(k + l)2
×

×
[

− k4 + 2k2l2 + 2k2(k + l)2 + (2D − 3)
(

l2 − 2l2(k + l)2 + l4
) ]

=

= − ig2
sCA

2(4π)D/2
(−k2)D/2−2δabG(1, 1)k4. (G.79)
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With

G(1, 1) =
−2Q1

(D − 4)(D − 3)
, Q1 = Γ(1 + ε)

Γ(1 − ε)2

Γ(1 − 2ε)
(G.80)

one obtains

L2g =
ig2
sCA

2(4π)D/2
(−k2)D/2−2δab

(

6(D − 1) + 1

D − 1

)

G(1, 1) =

=
ig2
sCA

2(4π)D/2
(−k2)D/2−2δab

6D − 5

D − 1
G(1, 1) =

=
ig2
sCAΓ(1 + ε)

2(4π)D/2
(−k2)D/2−2δab

−2(6D − 5)

(D − 4)(D − 3)(D − 1)

Γ(1 − ε)2

Γ(1 − 2ε)
=

=
ig2
sCAΓ(1 + ε)

2(4π)D/2
(−k2)D/2−2δab

{

19

3ε
+

116

9
+O(ε)

}

(G.81)

and

L2kk = − ig2
sCA

2(4π)D/2
(−k2)D/2−2δab

(

D + 6(D − 1)

D − 1

)

G(1, 1) =

= − ig2
sCA

2(4π)D/2
(−k2)D/2−2δab

7D − 6

D − 1
G(1, 1) =

=
ig2
sCAΓ(1 + ε)

2(4π)D/2
(−k2)D/2−2δab

2(7D − 6)

(D − 4)(D − 3)(D − 1)

Γ(1 − ε)2

Γ(1 − 2ε)
=

=
ig2
sCAΓ(1 + ε)

2(4π)D/2
(−k2)D/2−2δab

{

−22

3ε
− 134

9
+O(ε)

}

. (G.82)

G.3.4 Integral class for the ghost loop diagram

Again, the Passarino–Veltman method is employed, calculating the coefficient functions
in

L3αβ = L3gk
2gαβ + L3kkkαkβ (G.83)

again by contraction. The result reads

k2Lg3 = g2
sCAδab

∫

dDl

(2π)D
(kl + l2)

l2(k + l)2
=

1

2
g2
sCAδab

∫

dDl

(2π)D
((k + l)2 − k2 + l2)

l2(k + l)2
=

= − ig2
sCA

(4π)D/2
δab(−k2)D/2−2G(1, 1)k2, (G.84)

k4Lkk3 = g2
sCAδab

∫ dDl

(2π)D
(kl)(k2 + kl)

l2(k + l)2
=

=
1

4
g2
sCAδab

∫

dDl

(2π)D
((k + l)2 − k2 − l2)((k + l)2 + k2 − l2)

l2(k + l)2
=

= − ig2
sCA

4(4π)D/2
δab(−k2)D/2−2G(1, 1)k4. (G.85)

One obtains

L3g =
Lg3 − Lkk3
D − 1

= − ig2
sCA

4(4π)D/2
(−k2)D/2−2δab

1

D − 1
G(1, 1) =
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= −ig
2
sCAΓ(1 + ε)

2(4π)2−ε (−k2)−εδab

{

1

6ε
+

4

9
+O(ε)

}

, (G.86)

L3kk =
DLkk3 − Lg3
D − 1

= − ig2
sCA

2(4π)D/2
(−k2)D/2−2δab

D − 2

D − 1
G(1, 1) =

= −ig
2
sCAΓ(1 + ε)

2(4π)2−ε (−k2)−εδab

{

1

3ε
+

5

9
+O(ε)

}

. (G.87)

Like in the case of the gluon loop diagram, one can also use the direct method starting
from Eq. (H.52) to obtain

L3 = g2
sCAδab

∫ 1

0
dx
∫ dDl

(2π)D
lα(k + l)β

(l2 + 2xkl + xk2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
(l − xk)α(l + (1 − x)k)β

(−l2 − x(1 − x)k2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
−x(1 − x)kαkβ + l2gαβ/D

(−l2 − x(1 − x)k2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
−x(1 − x)kαkβ − x(1 − x)k2gαβ/(D − 2)

(−l2 − x(1 − x)k2)2
=

= − ig
2
sΓ(ε)

(4π)2−ε (−k
2)−ε

(

2kαkβ +
k2gαβ
1 − ε

)

∫ 1

0
(x(1 − x))1−εdx =

= − ig
2
sΓ(ε)

(4π)2−ε (−k
2)−ε

(

2kαkβ +
k2gαβ
1 − ε

)

Γ(2 − ε)2

Γ(4 − 2ε)
(G.88)

G.4 Integral class for the quark self energy diagram

The generic integral for the quark self energy diagram in Sec. H.3 with quark momentum
p is given by

Sf (p) =
∫

dDl

(2π)D
f(l)

((p+ l)2 −m2)l2
=

∫ 1

0
dx
∫

dDl

(2π)D
f(l)

(l2 + 2xpl + xp2 − xm2)2
=

=
∫ 1

0
dx
∫

dDl

(2π)D
f(l)

((l + xp)2 + x(1 − x)p2 − xm2)2
=

=
∫ 1

0
dx
∫

dDl

(2π)D
f(l − xp)

(−l2 + xm2 − x(1 − x)p2)2
. (G.89)

If one changes from p to p+ k, one can expand in k to obtain

mx = xm2 − x(1 − x)(p + k)2 ≈ xm2 − x(1 − x)p2 − 2x(1 − x)pk =

= xωp2 + x2p2 − x(1 − x)ηp2 = x ((1 − η)x+ ω + η) p2. (G.90)

One now defines pure integral expressions σ(η, ω) and σp(η, ω) by

S(p+ k) =
∫ 1

0
dx
∫ dDl

(2π)D
1

(−l2 + x((1 − η)x+ ω + η)p2)2
=:

iΓ(1 + ε)

(4π)2−ε (p2)−εσ(η, ω),

Sp(p+ k) =
∫ 1

0
dx
∫

dDl

(2π)D
−x

(−l2 + x((1 − η)x+ ω + η)p2)2
=: −iΓ(1 + ε)

2(4π)2−ε (p2)−εσp(η, ω).

(G.91)
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One now proceeds to calculate the two functions σ(η, ω) and σp(η, ω). Introducing the
substitutions

ω̃ :=
ω + η

1 − η
, 1 + ω̃ =

1 + ω

1 − η
(G.92)

and
(1 − η)x+ ω + η = (1 − η)(x+ ω̃) (G.93)

one obtains

σ(η, ω) =
1

ε

∫ 1

0
x−ε ((1 − η)(x+ ω̃))−ε dx =

= (1 − η)−ε
1

ε

∫ 1

0
x−ε (1 − ε ln(x+ ω̃)) dx =

= (1 − η)−ε
[

1

ε

∫ 1

0
x−εdx−

∫ 1

0
ln(x+ ω̃)dx

]

=

= (1 − η)−ε
[

1

ε(1 − ε)
− (1 + ω̃) ln(1 + ω̃) + (1 + ω̃) + ω̃ ln ω̃ − ω̃

]

=

= (1 − η)−ε
[

1

ε
+ 1 +

1

1 − η

(

(η + ω) ln

(

η + ω

1 − η

)

− (1 + ω)

(

1 + ω

1 − η

))

+ 1

]

=

=
1

ε
+ 2 +

1

1 − η

(

(η + ω) ln

(

η + ω

1 − η

)

− (1 + ω)

(

1 + ω

1 − η

)

− (1 − η) ln(1 − η)

)

=

=
1

ε
+ 2 +

1

1 − η
((η + ω) ln(η + ω) − (1 + ω) ln(1 + ω)) =

=
1

ε
+ 2 − ln(η + ω) +

1 + ω

1 − η
ln
(

η + ω

1 + ω

)

. (G.94)

Using
∫ 1

0
x ln(x+ ω̃)dx =

1

2
(1 − ω̃2) ln(1 + ω̃) +

1

2
ω̃2 ln ω̃ +

1

2
ω̃ − 1

4
(G.95)

in the second expression involving σp(η, ω) one obtains

σp(η, ω) =
2

ε

∫ 1

0
x1−ε ((1 − η)(x+ ω̃))−ε dx =

= 2(1 − η)−ε
[

1

ε

∫ 1

0
x1−εdx−

∫ 1

0
x ln(x+ ω̃)dx

]

=

= 2(1 − η)−ε
[

1

ε(2 − ε)
− 1

2
(1 − ω̃2) ln(1 + ω̃) − 1

2
ω̃2 ln ω̃ − 1

2
ω̃ +

1

4

]

=

= (1 − η)−ε
[

1

ε
+

1

2
− (1 − ω̃2) ln(1 + ω̃) − ω̃2 ln ω̃ − ω̃ +

1

2

]

=

= (1 − η)−ε
[

1

ε
+ 1 − ω̃ − ln(1 + ω̃) − ω̃2 ln

(

ω̃

1 + ω̃

)]

=

= (1 − η)−ε
[

1

ε
+ 1 − η + ω

1 − η
− ln

(

1 + ω

1 − η

)

− (η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

]

=

=
1

ε
+ 2 − 1 + ω

1 − η
− ln(1 + ω) − (η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

. (G.96)

In addition one needs

2σ(η, ω) − σp(η, ω) =
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=
1

ε
+ 2 +

1 + ω

1 − η
+ ln(1 + ω) − 2 ln(η + ω) +

+2
1 + ω

1 − η
ln
(

η + ω

1 + ω

)

+
(η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

=

=
1

ε
+ 2 +

1 + ω

1 − η
− ln(1 + ω) − 2 ln

(

η + ω

1 + ω

)

+

+2
1 + ω

1 − η
ln
(

η + ω

1 + ω

)

+
(η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

=

=
1

ε
+ 2 +

1 + ω

1 − η
− ln(1 + ω) + 2

η + ω

1 − η
ln
(

η + ω

1 + ω

)

+
(η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

=

=
1

ε
+ 2 +

1 + ω

1 − η
− ln(η + ω) + ln

(

η + ω

1 + ω

)

+

+2
η + ω

1 − η
ln
(

η + ω

1 + ω

)

+
(η + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

=

=
1

ε
+ 2 +

1 + ω

1 − η
− ln(η + ω) +

(1 + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

. (G.97)



Appendix H

The soft part of the quark self energy

This appendix collects calculations for the two-loop correction of the quark self energy
where one of the gluons is considered as soft. These calculations are not contained in the
main part because they could be replaced by a more elegant way of calculation, namely
the exact cut of the corresponding quark line and the calculation via the residue theorem
(see Chapter 5.3). Nevertheless, it is worthwile to look at these previous calculations
because they already show the main features of the soft part calculations.

p+k p+k+l p+l p

k

l

p+k p+l p

k

k - l - l

Figure H.1: the two diagrams contribution to the effective vertex given by the abelian
diagram (v1, left side) and the non-abelian diagram (v2, right side)

H.1 The effective vertex corrections

Because of the assumption that one of the gluons is soft and the emitting quark remains
on-shell, the calculations can be simplified to a calculation of an effective vertex correction
which afterwards can be combined with the remaining (common) elements of the diagrams.
This is done in the following subsections for the two diagrams in Fig. H.1.

456
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H.1.1 The abelian effective vertex correction

Using the conventional QCD Feynman rules, the integral for the left diagram (v1) of
Fig. H.1 is given by

−igsΛβ
1b =

∫

dDl

(2π)D
(−igsγαTa)

i

p/+ /l −m
(−igsγβTb)

i

p/+ /k + /l −m
(−igsγαTa)

−i
l2

=

= −g3
sTaTbTa

∫

dDl

(2π)D
γα(p/+ /l +m)γβ(p/+ /k + /l +m)γα

((p+ l)2 −m2)((p+ k + l)2 −m2)l2
=

= −g3
sTaTbTa

[

γα(p/ +m)γβ(p/+ /k +m)γαIv1 + γα(p/+m)γβγνγαIv1ν +

+γαγ
µγβ(p/+ /k +m)γαIv1µ + γαγ

µγβγνγαIv1µν
]

. (H.1)

One therefore has to calculate scalar, vector, and tensor integrals with the same denom-
inator. The combination of this effective vertex with the quark propagator (only the
numerator is taken for the moment) and second vertex reads

Λβ
1b(p/ + /k +m)γβTb = −ig2

sC1

[

γα(p/ +m)γβ(p/+ /k +m)γα(p/ + /k +m)γβI
v1 +

+γα(p/ +m)γβγνγα(p/+ /k +m)γβI
v1
ν +

+γαγ
µγβ(p/+ /k +m)γα(p/ + /k +m)γβI

v1
µ +

+γαγ
µγβγνγα(p/+ /k +m)γβI

v1
µν

]

(H.2)

where C1 = TaTbTaTb = CF (CF − CA/2) is the colour factor. The vector and scalar
integrals are expressed in terms of scalar integrals,

Iv1µ = Iv1k kµ + Iv1p pµ,

Iv1µν = Iv1g gµν + Iv1kkkµkν + Iv1kp(kµpν + pµkν) + Iv1pppµpν . (H.3)

Computer packages in MATHEMATICA have been developed to deal with Dirac struc-
tures between spinors. Because of the fact that the quark is close to being on-shell, the
numerator Λβ

1b(p/ + /k +m)γβTb is taken placed between spinors of momentum p, namely

ū(p)Λβ
1b(p/ + /k + m)γβTbu(p). One can use the Dirac equations (p/ − m)u(p) = 0 and

ū(p)(p/ −m) = 0 to simplify the expressions. This is done in the package effvera1.m.
The result in terms of scalar integrals is given by

Λβ
1b(p/+ /k +m)γβTb =

= −ig2
sC1

{

2m(D − 2)2Iv1g + 4mk2(Iv1 + Iv1k + Iv1kk − 2Iv1kp)

+8m(kp)(2Iv1 + Iv1p − Iv1pp ) + 4m3(2Iv1 + 2Iv1p − Iv1pp ) +

−
(

(D − 2)3Iv1g + 8k2(Iv1k + Iv1kk) + 8(kp)(Iv1 + 2Iv1k + Iv1p + Iv1kk + Iv1kp) +

+4m2(2Iv1 − 2Iv1k + 5Iv1p + 2Iv1kp)
)

/k
}

. (H.4)

There is an ambiguity in the representation, given by

ū(p)(m/k)u(p) =
1

2
ū(p)(p//k + /kp/)u(p) = ū(p)(kp)u(p). (H.5)
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Therefore, one can effectively replace /k by kp/m. In doing so one obtains

1

m
Λβ

1b(p/ + /k +m)γβTb = −ig2
sC1

{

2(D − 2)2Iv1g + 4m2(2Iv1 + 2Iv1p − Iv1pp ) +

+
(

1

2
(D − 2)3Iv1g − 2m2(2Iv1 + 2Iv1k − 3Iv1p − 2Iv1kp − 2Iv1pp )

)

η +O
(

η2
)

}

(H.6)

where η = −2kp/m2 and terms of order k2/m2 are omitted. The scalar integrals are
calculated in Appendix G.2.1. They can be expanded in terms of η (where p2 = m2),

Iv1 =
−i

(4π)2m2

{

1 − ln η +
(

1

4
− 1

2
ln η

)

η +O(η2)
}

, (H.7)

Iv1k =
i

(4π)2m2

{

1

2
+
(

2

9
+

1

3
ln η

)

η +O(η2)
}

, (H.8)

Iv1p =
i

(4π)2m2

{

1 +
(

1

4
+

1

2
ln η

)

η +O(η2)
}

, (H.9)

Iv1kk =
−i

(4π)2m2

{

1

6
− 1

8
η +O(η2)

}

, (H.10)

Iv1kp =
−i

(4π)2m2

{

1

4
− 1

6
η +O(η2)

}

, (H.11)

Iv1pp =
−i

(4π)2m2

{

1

2
− 1

4
η +O(η2)

}

, (H.12)

Iv1g =
iΓ(1 + ε)

4(4π)2−εε
(m2)−ε +

i

(4π)2

{

1

4
− 1

8
η +O(η2)

}

. (H.13)

Only the last integral contains a singularity which is extracted according to

Iv1gs =
iΓ(1 + ε)

4(4π)2−εε
(m2)−ε =:

iΓ(1 + ε)µ−2ε

4(4π)2−ε cs, cs =
1

ε
+ ln

(

µ2

m2

)

+O(ε). (H.14)

Inserting these explicit expressions, one obtains

1

m
Λβ

1b(p/+ /k +m)γβTb =
g2
sC1µ

−2ε

(4π)2−ε

{

2
(

1

4
(D − 2)2cs + 2 + 4 ln η

)

+

+
(

1

8
(D − 2)3cs + 4 + 4 ln η

)

η +O(η2)

}

. (H.15)

The contribution from the singular part cs will be later on absorbed by the renormalization
factor. The final result for the effective abelian vertex correction reads

1

m
Λβ

1b(p/+ /k +m)γβTb =
αsCF
4π

(

CF − 1

2
CA

)

{

2

(

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η

)

+

+

(

1

ε
+ ln

(

µ2

m2

)

+ 1 + 4 ln η

)

η +O(η2)

}

. (H.16)
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H.1.2 The non-abelian vertex correction

For the non-abelian vertex correction shown on the right side of Fig. H.1 one obtains

−igsΛβ
2 =

∫

dDl

(2π)D
(−igsγαTa)

i

p/+ /l −m
(−igsγρTc)

−i
l2

−i
(k − l)2

×

× gsfacb
(

(l − 2k)αgρβ + (k + l)ρgβα + (k − 2l)βgαρ
)

=

= ig3
sTaTcfacb

∫

dDl

(2π)D
γα(p/ + /l +m)γρ

((p+ l)2 −m2)l2(k − l)2
×

×
(

(l − 2k)αgρβ + (k + l)ρgβα + (k − 2l)βgαρ
)

=

= ig3
sTaTcfacb

∫

dDl

(2π)D
1

((p+ l)2 −m2)l2(k − l)2

(

(/l − 2/k)(p/+ /l +m)γβ +

+γβ(p/+ /l +m)(/k + /l) + (k − 2l)βγα(p/+ /l +m)γα
)

=

= ig3
sTaTcfacb

[ (

−2/k(p/ +m)γβ + γβ(p/+m)/k + kβγα(p/+m)γα
)

Iv2 +

+
(

γµ(p/ +m)γβ + γβγµ/k − 2gβµγα(p/+m)γα
)

Iv2µ +

+
(

−2/kγνγβ + γβ(p/+m)γν + kβγαγ
νγα

)

Iv2ν +

+
(

γµγνγβ + γβγµγν − 2gβµγαγ
νγα

)

Iv2µν
]

. (H.17)

Again one has to calculate a set of scalar integrals according to

Iv2µ = Iv2k kµ + Iv2p pµ,

Iv2µν = Iv2g gµν + Iv2kkkµkν + Iv2kp(kµpν + pµkν) + Iv2pppµpν . (H.18)

The results can be found in Appendix G.2.2. In terms of these scalar integrals one obtains

Λβ
2b(p/+ /k +m)γβTb =

= −ig2
sC2

{

8(D − 1)mIv2g + 4mk2(Iv2 − Iv2k − 2Iv2p + Iv2kk + 2Iv2kp) +

−4m(kp)(Iv2 − 2Iv2k + 5Iv2p − 4Iv2kp − 2Iv2pp ) + 12m3Iv2pp +

+
(

− 4(D − 2)(D − 1)Iv2g + 8(kp)(Iv2 − Iv2k + Iv2p + Iv2kk − Iv2kp) +

+4m2(Iv2 − 2Iv2k + 2Iv2p + 2Iv2kp − 2Iv2pp )
)

/k
}

(H.19)

where C2 = −iTaTcTbfacb = CFCA/2 is the colour factor. In using the ambiguity and
replacing /k → kp/m (and k2 → 0) one obtains

1

m
Λβ

2b(p/ + /k +m)γβTb = −ig2
sC2

{

8(D − 1)Iv2g + 12m2Iv2pp +

+
(

2(D − 2)(D − 1)Iv2g + 6m2(Iv2p − 2Iv2kp)
)

η +O(η2)

}

. (H.20)

Therefore, only the integrals Iv2p , Iv2kp , I
v2
pp , and Iv2g have to be calculated. The expansion

of these integrals in η (for p2 = m2) can be taken from Appendix G. One has

Iv2p =
−i

(4π)2m2

{

ln η + η ln η +O(η2)
}

, (H.21)



460 APPENDIX H. THE SOFT PART OF THE QUARK SELF ENERGY

Iv2kp =
−i

(4π)2m2

{(

1

2
+

1

2
ln η

)

+
(

1

2
+ ln η

)

η +O(η2)
}

, (H.22)

Iv2pp =
−i

(4π)2m2

{

1

2
+
(

1

2
+

1

2
ln η

)

η +O(η2)
}

, (H.23)

Iv2g =
iΓ(1 + ε)µ−2ε

4(4π)2−ε cs +
i

(4π)2

{

3

4
+

1

4
η ln η +O(η2)

}

(H.24)

with the same definition for cs as before. Inserting these expressions, one ends up with

1

m
Λβ

2b(p/+ /k+m)γβTb =
g2
sC2

(4π)2

{

2 ((D − 1)cs + 6) +

(

(D − 2)(D − 1)

2
cs + 9

)

η+O(η2)

}

.

(H.25)
One now can use the definition of cs and

D − 1 = 3 − 2ε+O(ε2), (D − 2)(D − 1) = 6 − 10ε+O(ε2) (H.26)

to obtain

1

m
Λβ

2b(p/+ /k +m)γβTb =

=
αsCF
2(4π)

CA

{

2

(

3

ε
+ 3 ln

(

µ2

m2

)

+ 4

)

+

(

3

ε
+ 3 ln

(

µ2

m2

)

+ 4

)

η +O(η2)

}

. (H.27)

H.1.3 The effective vertex corrections and their renormalization

The two next-to-leading order effective vertex contributions to the self energy correction
of the quark have to be added to the leading order one, given by

1

m
γβTb(p/ + /k +m)γβTb =

C0

m
(2(p/+ /k) −D(p/+ /k −m)) = (H.28)

=
C0

m
(2(/k +m) −D/k) = C0

(

2 +
2 −D

m
/k
)

= C0

(

2 +
D − 2

2
η
)

= C0 (2 + (1 − ε)η)

where the colour factor is C0 = TbTb = CF . With the bare effective vertex given by
Γβ0
b = γβTb + Λβ

1b + Λβ
2b one therefore obtains

1

m
Γβ0(p/+ /k +m)γβ :=

1

m
Γβ0
b (p/+ /k +m)γβTb = (2 + (1 − ε)η)CF +

+
αsCF
4π

(

CF − 1

2
CA

)

{

2

(

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η

)

+

(

1

ε
+ ln

(

µ2

m2

)

+ 1 + 4 ln η

)

η

}

+

+
αsCF
2(4π)

CA

{

2

(

3

ε
+ 3 ln

(

µ2

m2

)

+ 4

)

+

(

3

ε
+ 3 ln

(

µ2

m2

)

+ 4

)

η

}

+O(α2
s, η

2) =

= (2 + (1 − ε)η)CF +

+
αsC

2
F

4π

{

2

(

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η

)

+

(

1

ε
+ ln

(

µ2

m2

)

+ 1 + 4 ln η

)

η

}

+

+
αsCFCA

4π

{

2

(

1

ε
+ ln

(

µ2

m2

)

+ 2 − 2 ln η

)

+

(

1

ε
+ ln

(

µ2

m2

)

+
3

2
− 2 ln η

)

η

}

+

+O(α2
s, η

2) =
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= (2 + (1 − ε)η)CF

[

1 +
αsCF
4π

{

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η + η

}

+

+
αsCA
4π

{

1

ε
+ ln

(

µ2

m2

)

+ 2 − 2 ln η +
η

4

}

+O(α2
s, η

2)

]

=

= (2 + (1 − ε)η)CFZ1 (H.29)

where

Z1 = 1 +
αs
4π
Z11 = 1 +

αsCF
4π

{

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η + η

}

+

+
αsCA
4π

{

1

ε
+ ln

(

µ2

m2

)

+ 2 − 2 ln η +
η

4

}

+O(α2
s, η

2). (H.30)
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Figure H.2: the gluon self energy corrections, including quark loops (left, diagrams (l1l)
und (l1h)), a gluon loop (middle, diagram (l2)), and a ghost loop (right, diagram (l3))

H.2 The gluon self energy corrections

As next one has to calculate the gluon self energy. This correction consists of the quark
loop (integrals L1i, gluon propagator correction in diagram (d) of Fig. 5.7), the gluon loop
(L2, diagram (e)), and the ghost loop (L3, diagram (f)). All these integrals have Lorentz
indices α and β as well as colour indices a and b at the vertices of the loop. The outer
momentum is k, the loop momentum is l. The diagrams are shown in Fig. H.2.

H.2.1 The massive quark loop integral L1m

The quark loop integral for a single massive quark flavour reads

L1m =
∫ dDl

(2π)D
Tr

(

(−igsγαTa)
i

/k + /l −m
(−igsγβTb)

i

/l −m

)

=

= g2
sTr(TaTb)

∫

dDl

(2π)D
Tr(γα(/k + /l +m)γβ(/l +m))

((k + l)2 −m2)(l2 −m2)
. (H.31)

The colour factor is given by Tr(TaTb) = δab/2 (a, b ∈ {1, . . . , N2
c − 1}). By calculating

the trace one obtains

L1m = 2g2
sδab

{

kαL1β + L1αβ −
(

L1µk
µ + L1µνg

µν − L1m
2
)

gαβ + L1αkβ + L1αβ

}

. (H.32)
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Expressing L1α and L1αβ in terms of covariants,

L1α = L1kkα, L1αβ = L1ggαβ + L1kkkαkβ, (H.33)

one ends up with

L1m = −2g2
sδab

{(

(D − 2)L1g + (L1k + L1kk)k
2 − L1m

2
)

gαβ − 2(L1k + L1kk)kαkβ
}

.

(H.34)
A fey new scalar integrals have to be calculated. This is done in Appendix G.3.1. Using

L1k + L1kk = −iΓ(1 + ε)

(4π)2−ε (m2)−ε
(

1

6ε
+

k2

20m2

)

+O

(

k4

m4

)

(H.35)

one has

(D − 2)L1g + (L1k + L1kk)k
2 − L1m

2 =

=
iΓ(1 + ε)

(4π)2−ε (m2)1−ε
{

(1 − ε)

((

1 − k2

6m2

)

1

ε
+ 1

)

− k2

6m2ε
− 1

ε
− k2

6m2
+O

(

k4

m4

)}

=

=
iΓ(1 + ε)

(4π)2−ε (m2)1−ε
{(

1 − k2

6m2

)

1

ε
+

k2

6m2
− k2

6m2ε
− 1

ε
− k2

6m2
+O

(

k4

m4

)}

=

= −iΓ(1 + ε)

(4π)2−ε (m2)1−ε
{

k2

3m2ε
+O

(

k4

m4

)}

. (H.36)

Therefore finally, including a factor of −1 for the closed fermion loop, one obtains

L1m = −ig
2
sΓ(1 + ε)

(4π)2−ε (m2)−εδab

{

2

3ε
k2gαβ −

2

3ε
kαkβ +O

(

k4

m4

)}

. (H.37)

H.2.2 The massless quark loop integral L1l

The same calculation has to be done for the massless quark loop. Here one starts with

L1l =
∫

dDl

(2π)D
Tr

(

(−igsγαTa)
i

/k + /l
(−igsγβTb)

i

/l

)

=

= g2
sTr(TaTb)

∫

dDl

(2π)D
Tr(γα(/k + /l)γβ/l)

l2(k + l)2
=

= −2g2
sδab

{(

(D − 2)L0
1g + (L0

1k + L0
1kk)k

2
)

gαβ − 2(L0
1k + L0

1kk)kαkβ
}

. (H.38)

The integrals are found in Appendix G.3.2, with

L0
1k + L0

1kk = −iΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

6ε
+

5

18

}

. (H.39)

One obtains

(D − 2)L0
1g + (L0

1k + L0
1kk)k

2 =

=
iΓ(1 + ε)

(4π)2−ε (−k2)1−ε
{

(1 − ε)
(

1

6ε
+

4

9

)

+
1

6ε
+

5

18

}

= (H.40)

=
iΓ(1 + ε)

(4π)2−ε (−k2)1−ε
{

1

3ε
+

13

18
− 1

6

}

=
iΓ(1 + ε)

(4π)2−ε (−k2)1−ε
{

1

3ε
+

5

9

}

and therefore

L1l = −ig
2
sΓ(1 + ε)

(4π)2−ε (−k2)−εδab

{(

2

3ε
+

10

9

)

k2gαβ −
(

2

3ε
+

10

9

)

kαkβ

}

. (H.41)
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H.2.3 The gluon loop integral L2

The gluon loop integral contains two three-gluon vertices. Using the three-gluon vertex
coupling structure

gsfa1a2a3 ((k2 − k3)µ1gµ2µ3 + (k3 − k1)µ2gµ3µ1 + (k1 − k2)µ3gµ1µ2) (H.42)

at each of the three-gluon vertices (ki are outgoing moments), one obtains

L2 =
∫

dDl

(2π)D

(−i
l2

)

(

−i
(k + l)2

)

×

× gsfacd ((k + 2l)αgγδ + (−2k − l)γgδα + (k − l)δgαγ) ×
× gsfbcd

(

(−k − 2l)βg
γδ + (2k + l)γgδβ + (−k + l)δgβ

γ
)

=

= g2
sfacdfbcd

∫

dDl

(2π)D
1

l2(k + l)2

[ (

4k2 + l2 + (k + l)2
)

gαβ +

+(D − 6)kαkβ + (2D − 3)(kαlβ + lαkβ) + 2(2D − 3)lαlβ
]

. (H.43)

The colour factor can be calculated to be facdfbcd = CAδab. Two methods for calculation
can be used here and in the next subsection. The first one is again the Passarino-Veltman
method using the ansatz

L2 =: g2
sCAδab

(

L2gk
2gαβ + L2kkkαkβ

)

. (H.44)

The scalar integrals L2g and L2kk are given in Appendix G.3.3. In the second method one
uses symmetric integration to replace

lµlν →
1

D
l2gµν →

m2gµν
D − 2

(H.45)

which is valid according to the introduction of Appendix G. One obtains

L2 = g2
sCAδab

∫ dDl

(2π)D
1

l2(k + l)2

[ (

4k2 + l2 + (k + l)2
)

gαβ +

+(D − 6)kαkβ + (2D − 3)(kαlβ + lαkβ) + 2(2D − 3)lαlβ
]

=

= g2
sCAδab

∫ 1

0
dx
∫ dDl

(2π)D
1

(l2 + 2xkl + xk2)2

[ (

4k2 + l2 + (k + l)2
)

gαβ +

+(D − 6)kαkβ + (2D − 3)(kαlβ + lαkβ) + 2(2D − 3)lαlβ
]

=

= g2
sCAδab

∫ 1

0
dx
∫ dDl

(2π)D
1

((l + xk)2 + x(1 − x)k2)2

[ (

4k2 + l2 + (k + l)2
)

gαβ +

+(D − 6)kαkβ + (2D − 3)(kαlβ + lαkβ) + 2(2D − 3)lαlβ
]

=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
1

(−l2 − x(1 − x)k2)2
×

×
[ (

4k2 + x2k2 + (1 − x)2k2 − 2xkl + 2(1 − x)kl + 2l2
)

gαβ +

+(D − 6)kαkβ + (2D − 3)(kαlβ + lαkβ − 2xkαkβ) +

+2(2D − 3)
(

lαlβ − xlαkβ − xkαlβ + x2kαkβ
) ]

=
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= g2
sCAδab

∫ 1

0
dx
∫ dDl

(2π)D
1

(−l2 − x(1 − x)k2)2
×

×
[ ((

4 + x2 + (1 − x)2
)

k2 + 2l2
)

gαβ +
2

D
(2D − 3)l2gαβ +

+
(

D − 6 − 2x(2D − 3) + 2x2(2D − 3)
)

kαkβ
]

=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
1

(−l2 − x(1 − x)k2)2
×

×
[

(

(

4 + x2 + (1 − x)2
)

k2 +
6

D
(D − 1)l2

)

gαβ +

+
(

D − 6 − 2x(2D − 3) + 2x2(2D − 3)
)

kαkβ

]

=

=
ig2
sCAΓ(ε)

(4π)D/2
(−k2)−εδab

∫ 1

0
x−ε(1 − x)−εdx ×

×
[(

4 + x2 + (1 − x)2 − 6(D − 1)

D − 2
x(1 − x)

)

k2gαβ +

+
(

D − 6 − 2x(2D − 3) + 2x2(2D − 3)
)

kαkβ

]

(H.46)

The two integrals in this expression are given by
∫ 1

0
x−ε(1 − x)−ε

(

4 + x2 + (1 − x)2
)

dx =

= 4
Γ(1 − ε)2

Γ(2 − 2ε)
+ 2

Γ(1 − ε)Γ(3 − ε)

Γ(4 − 2ε)
=

14

3
+

85

5
ε+O(ε2),

−6(D − 1)

D − 2

∫ 2

0
x−ε(1 − x)−εx(1 − x)dx =

= −6(D − 1)

D − 2

Γ(2 − ε)2

Γ(4 − 2ε)
= −3

2
− 3ε+O(ε2). (H.47)

The sum of both is the coefficient of k2gαβ (up to an overall factor) which reads

19

6
+

58

9
ε+O(ε2). (H.48)

This result is agrees with L2g calculated in Appendix G.3.3.

The same agreement holds for the coefficient of kαkβ,
∫ 1

0
x−ε(1 − x)−ε

(

D − 6 − 2x(2D − 3) + 2x2(2D − 3)
)

dx =

= Γ(1 − ε)

(

(D − 6)
Γ(1 − ε)

Γ(2 − 2ε)
− 2(2D − 3)

Γ(2 − ε)

Γ(3 − 2ε)
+ 2(2D − 3)

Γ(3 − ε)

Γ(4 − 2ε)

)

=

= −11

3
− 67

9
ε+O(ε2). (H.49)

The final result, including a factor of 1/2 for the closed gluon line, is therefore given by

L2 =
ig2
sCAΓ(1 + ε)

2(4π)2−ε (−k2)−εδab

{(

19

6ε
+

58

9

)

k2gαβ −
(

11

3ε
+

67

9

)

kαkβ

}

. (H.50)
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H.2.4 The ghost loop integral L3

The ghost loop involves vertex factors

gsfab1b2kµ (H.51)

where the indices a and µ refer to the gluon line, b1, b2 to the ghost lines and k is the
outgoing ghost momentum (supposing that one has selected a loop direction). One starts
with

L3 =
∫

dDl

(2π)D
−g2

s

l2(k + l)2
facdfbdclα(k + l)β = g2

sCAδab

∫

dDl

(2π)D
lα(k + l)β
l2(k + l)2

. (H.52)

The first method is again the Passarino-Veltman method by using the ansatz

L3 =: g2
sCAδab

(

L3gk
2gαβ + L3kkkαkβ

)

. (H.53)

The scalar integrals L3g and L3kk are listed in Appendix G.3.4. With the symmetric
integration method one obtains

L3 = g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
lα(k + l)β

(l2 + 2xkl + xk2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
(l − xk)α(l + (1 − x)k)β

(−l2 − x(1 − x)k2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
−x(1 − x)kαkβ + l2gαβ/D

(−l2 − x(1 − x)k2)2
=

= g2
sCAδab

∫ 1

0
dx
∫

dDl

(2π)D
−x(1 − x)kαkβ − x(1 − x)k2gαβ/(D − 2)

(−l2 − x(1 − x)k2)2
=

= − ig
2
sΓ(ε)

(4π)2−ε (−k
2)−ε

(

2kαkβ +
k2gαβ
1 − ε

)

∫ 1

0
(x(1 − x))1−εdx =

= − ig
2
sΓ(ε)

(4π)2−ε (−k
2)−ε

(

2kαkβ +
k2gαβ
1 − ε

)

Γ(2 − ε)2

Γ(4 − 2ε)
(H.54)

Together with a factor of −1 for a closed ghost loop one obtains

L3 =
ig2
sCAΓ(1 + ε)

2(4π)2−ε (−k2)−εδab

{(

1

6ε
+

4

9

)

k2gαβ +
(

1

3ε
+

5

9

)

kαkβ

}

(H.55)

which agrees again with the previous calculation.

H.2.5 The summation of L2, L3, L1l and L1m

For the sum of the gluon loop and ghost loop term one obtains

L2 + L3 =
ig2
sCAΓ(1 + ε)

2(4π)2−ε (−k2)−εδab

{(

20

6ε
+

62

9

)

k2gαβ −
(

10

3ε
+

62

9

)

kαkβ

}

=

=
ig2
sCAΓ(1 + ε)

(4π)2−ε (−k2)−εδab

{(

5

3ε
+

31

9

)

k2gαβ −
(

5

3ε
+

31

9

)

kαkβ

}

. (H.56)
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This result transverse as it must be. If Nl (number of light quark flavours) times the
result for the massless quarks is added, one obtains the bare gluon self energy correction

L0
αβ =

ig2
sΓ(1 + ε)

(4π)2−ε (−k2)−εδab

{

1

ε

(

5

3
CA − 2

3
Nl

)

+
31

9
CA − 10

9
Nl

}

{

k2gαβ − kαkβ
}

=

= δabL
0
{

k2gαβ − kαkβ
}

where (H.57)

L0 =
ig2
sΓ(1 + ε)

(4π)2−ε (−k2)−ε
{

1

ε

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF

}

=

=
iαs
4π

(

µ2

−k2

)ε {
1

ε

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF

}

. (H.58)

For the bare gluon propagator Gµν one obtains

Gµν =
−igµν
k2

+ −igµλk2L0λρ−igρν
k2

=

=
−igµν
k2

− L0

k4

(

k2gµλg
λρgρν − gµλk

λkρgρν
)

=

=
−igµν
k2

− L0

k4

(

k2gµν − kµkν
)

!
=

−iZ l
3

k2

(

gµν − (1 − Zχχ)
kµkν
k2

)

. (H.59)

The comparison results in

Z l
3 = 1 +

αs
4π
Z l

31 = 1 − iL0 =

= 1 +
αs
4π

{(

1

ε
+ ln

(

µ2

−k2

))

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF

}

(H.60)

and

Z l
3(1 − Zχχ) = −iL0 ⇔ 1 − iL0 − Zχχ = −iL0 ⇒ Zχχ = 1. (H.61)

The transverse contribution vanishes therefore, as is usual for Lorentz gauge.

The massive loop has to be considered separately. The same considerations as the one
just done for the massless loop lead to

Gh
µν =

−iZh
3

k2
gµν , Zh

3 = 1 +
αs
4π
Zh

31 = 1 − αs
4π

(

1

ε
+ ln

(

µ2

m2

))

4

3
NhTF (H.62)

where Nh is the number of heavy quark flavours.

H.3 The quark self energy correction

For the line between the two vertices one has
to calculate the self energy correction for the
quark. The momentum of this line is p + k ac-
cording to previous conventions (see Fig. 8.3).
Nevertheless, one first starts with the momen-
tum p and later on extends this to the actual
situation. The self energy is given by

p+k p+k+l p+k p

kl

Figure 8.3: self energy correction

−iΣ(p/) =
∫ dDl

(2π)D
(−igsγαTa)

i

p/+ /l −m
(−igsγαTa)

−i
l2

=



H.3. THE QUARK SELF ENERGY CORRECTION 467

= −g2
sT

2
a

∫ dDl

(2π)D
γα(p/ + /l +m)γα

((p+ l)2 −m2)l2
= −g2

sCF

∫ dDl

(2π)D
(2 −D)(p/+ /l) +Dm

((p+ l)2 −m2)l2
=

= g2
sCF [(D − 2)γα (pαS(p) + Sα(p)) −DmS(p)] =

= g2
sCF [(D − 2)p/ (S(p) + Sp(p)) −DmS(p)] (H.63)

where

(Ta)
j
i (Ta)

k
j =

1

2

(

δki δ
j
j −

1

NC

δji δ
k
j

)

=
N2
C − 1

2NC

δki = CF δ
k
i (H.64)

as well as Sα(p) = pαSp(p) is used. Replacing p by p+ k, one obtains

Σ(p/ + /k) =
−g2

sCF
(4π)2−εΓ(1 + ε)(p2)−ε ×

×
[

(1 − ε) (2σ(η, ω)− σp(η, ω)) (p/+ /k) − 2(2 − ε)σ(η, ω)m
]

(H.65)

where ω = m2/p2 − 1 parametrizes the deviation of the quark from the mass shell, η is
the same as before (η = −2kp/m2), and the integrals σ(η, ω) are found in Appendix G.4.
By inserting the results one obtains

Σ(p/ + /k) =
−g2

sCF
(4π)2−εΓ(1 + ε)(p2)−ε ×

×
[

(1 − ε)

(

1

ε
+ 2 +

1 + ω

1 − η
− ln(η + ω) +

(1 + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

)

(p/+ /k) +

−2(2 − ε)

(

1

ε
+ 2 − ln(η + ω) +

1 + ω

1 − η
ln
(

η + ω

1 + ω

)

)

m

]

=

= −αsCF
4π

(

p2

µ2

)−ε [(
1

ε
+ 1 +

1 + ω

1 − η
− ln(η + ω) +

(1 + ω)2

(1 − η)2
ln
(

η + ω

1 + ω

)

)

(p/ + /k) +

−
(

4

ε
+ 6 − 4 ln(η + ω) + 4

1 + ω

1 − η
ln
(

η + ω

1 + ω

)

)

m

]

. (H.66)

This expression is exact both in its dependence on η and ω. However, in order to calculate
the renormalization factors for the on-shell scheme, one returns to the special case k = 0
(i.e. η = 0) and calculates the self energy

Σ(p/) = −αsCF
4π

(

µ2

p2

)ε [ (
1

ε
+ 2 + ω + (2 + ω)ω lnω − (1 + ω)2 ln(1 + ω)

)

p/ +

−
(

4

ε
+ 6 + 4ω lnω − 4(1 + ω) ln(1 + ω)

)

m

]

(H.67)

and its derivative at p/ = m (i.e. ω = 0) in order to combine them in

Σ(p/) = Σ(m) + (p/−m)
∂Σ(p/)

∂p/

∣

∣

∣

∣

∣

p/=m

. (H.68)

With
Σ(p/) = p/Σp(p/) +mΣm(p/) (H.69)
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one obtains
∂

∂p/
Σ(p/)

∣

∣

∣

∣

∣

p/=m

= Σp(m) +m
∂

∂p/
(Σp(p/) + Σm(p/))

∣

∣

∣

∣

∣

p/=m

. (H.70)

The application to the overall factor results in

∂

∂p/

(

µ2

p2

)ε

= −2εp/

p2

(

µ2

p2

)ε

. (H.71)

However, up to the overall factor the remaining expression is a function of ω = m2/p2 − 1
rather than of p/. Writing

Σp(p/) = −αsCF
4π

(

µ2

p2

)ε

Σ̃p(ω), Σm(p/) = −αsCF
4π

(

µ2

p2

)ε

Σ̃m(ω), (H.72)

and rewriting the derivative as

∂

∂p/
=
∂p2

∂p/

∂

∂p2
=
∂p/2

∂p/

∂

∂p2
= 2p/

∂

∂p2
= −2p/m2

(p2)2

∂

∂ω
, (H.73)

the whole derivative reads

∂

∂p/
Σ(p/)

∣

∣

∣

∣

∣

p/=m

= −αsCF
4π

(

µ2

m2

)ε

× (H.74)

× lim
ω→0

[

Σ̃p(ω) − 2

{

ε
(

Σ̃p(ω) + Σ̃m(ω)
)

+
∂

∂ω

(

Σ̃p(ω) + Σ̃m(ω)
)

}]

.

Starting with

Σ̃p(ω) =
1

ε
+ 2 + ω + (2 + ω)ω lnω − (1 + ω)2 ln(1 + ω), (H.75)

Σ̃m(ω) = −4

ε
− 6 − 4ω lnω + 4(1 + ω) ln(1 + ω) (H.76)

one obtains

Σ̃p(0) =
1

ε
+ 2, ε

(

Σ̃p(ω) + Σ̃m(ω)
)

= −3 +O(ε) (H.77)

and

∂

∂ω
Σ̃p(ω) = 1 + 2(1 + ω) lnω + (2 + ω) − 2(1 + ω) ln(1 + ω) − (1 + ω) =

→ 2 + 2 lnω − 2ω + 2ω lnω +O(ω2),

∂

∂ω
Σ̃m(ω) = −4 lnω − 4 + 4 ln(1 + ω) + 4 → −4 lnω + 4ω +O(ω2) (H.78)

(the arrows indicate the limit ω → 0), therefore finally

Σ(m) = −αsCF
4π

(

µ2

m2

)ε [

−3

ε
− 4

]

m,

∂

∂p/
Σ(p/)

∣

∣

∣

∣

∣

p/=m

= −αsCF
4π

[

1

ε
+ ln

(

µ2

m2

)

+ 4 + 4 lnω − 4ω − 4ω lnω +O(ω2)

]

. (H.79)
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In order to renormalize in the on-shell scheme one has to compare

∆0 =
i

p/−m0 − Σ0
, ∆ =

i

p/−m− Σ
, ∆0 = Z2∆, m0 = Zmm (H.80)

where the quantities with index “0” are bare quantities while the ones without index are
renormalized quantities. In representing the bare self energy correction as well as the
renormalized one in the same manner as above,

Σ0(p/) = p/Σ0
p(p/) +m0Σ

0
m(p/), Σ(p/) = p/Σp(p/) +mΣm(p/). (H.81)

One can solve for the finite self energy contributions and obtains

Σp(p/) = 1 − Z2

(

1 − Σ0
p(p/)

)

, Σm(p/) = 1 − Z2Zm
(

1 − Σ0
m(p/)

)

. (H.82)

The condition that there should be no finite self energy correction becomes manifest in
the requirement that the zeroth and first order term in the expansion

Σ(p/) = Σ(m) + (p/−m)
∂Σ

∂p/

∣

∣

∣

∣

∣

p/=m

+O
(

(p/−m)2
)

(H.83)

have to vanish. With Eq. (H.83) one has two equations for the renormalization factors
Z2 and Zm which can be solved to give

Zm =
1 − Σ0

p(m)

1 + Σ0
m(m)

, Z−1
2 = 1 − Σ0

p(m) −m
∂

∂p/

(

ZmΣ0
m(p/) + Σ0

p(p/)
)

∣

∣

∣

∣

∣

p/=m

. (H.84)

In the present case one only needs the first order terms,

Zm = 1 +
αs
4π
Zm1 = 1 − Σ01

m (m) − Σ01
p (m), (H.85)

Z2 = 1 +
αs
4π
Z21 = 1 + Σ01

p (m) +m
∂

∂p/

(

Σ01
p (p/) + Σ01

m (p/)
)

∣

∣

∣

∣

∣

p/=m

=

= 1 +
∂

∂p/

(

p/Σ01
p (p/) + Σ01

m (p/)
)

∣

∣

∣

∣

∣

p/=m

= 1 +
∂

∂p/
Σ01(p/)

∣

∣

∣

∣

∣

p/=m

=

= 1 − αsCF
4π

{

1

ε
+ ln

(

µ2

m2

)

+ 4(1 − ω)(1 + lnω) +O(ω2)

}

. (H.86)

Remembering that one actually has to take the quark self energy factor Z21 not at mo-
mentum p but at p+ k which relates ω to η, one replaces

ω =
m2 − p2

p2
→ m2 − (p+ k)2

(p+ k)2
=

m2 − p2 − 2pk − k2

p2 + 2pk + k2
=

=
(ω + η)p2 − k2

(1 − η)p2 + k2
=

ω + η

1 − η

(

1 −
(

1

ω + η
+

1

1 − η

)

k2

p2
+O

(

k4

p4

))

=

=
ω + η

1 − η
− 1 + ω

(1 − η)2

k2

p2
+O

(

k4

p4

)

. (H.87)
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Taking the outer states exactly on-shell (i.e. ω = 0 and k2 = 0), the translation reads

ω → η

1 − η
+O(η2). (H.88)

Inserting this, one obtains

(1 − ω)(1 + lnω) → 1 + ln η − η ln η +O(η2) (H.89)

and therefore

Z21 = −CF
{

1

ε
+ ln

(

µ2

m2

)

+ 4 + 4 ln η − 4η ln η +O(η2)

}

. (H.90)

H.4 The soft part of the quark self energy

The final step in this appendix is to combine all the different results in one integral

−iS =
∫ µf d4k

(2π)4
(−igsΓαa (p, p+ k))Q(p+ k)

(

−igsΓβb (p+ k, p)
)

Dab
αβ(k) (H.91)

(for the notation with µf see Chapter 5.3) where

Γαa (p, p+ k) = −igs (γαTa + Λα
a (p, p+ k)) ,

Q(p) =
iZ2

p/−m
, Z2 = 1 +

αs
4π
Z21,

Dab
αβ(k) =

−i(Z l
3 + Zh

3 )

k2
δabgαβ, Z

(l,h)
3 = 1 +

αs
4π
Z

(l,h)
31 , (H.92)

the arguments of the vertex function are the outgoing momentum (first argument) and
the incoming momentum (second argument). Because the integral S should be calculated
up to second order and the integration over the (soft) momentum k is made explicit, one
needs the integrand only up to first order. Therefore, the integral reads

−iS =
∫ µf d4k

(2π)4
(−igsγαTa)

i

p/ + /k −m
(−igsγβTb)

−i
k2
δabgαβ +

+
∫ µf d4k

(2π)4
(−igsΛα

a (p, p+ k))
i

p/+ /k −m
(−igsγβTb)

−i
k2
δabgαβ +

+
∫ µf d4k

(2π)4
(−igsγαTa)

iZ21

p/+ /k −m
(−igsγβTb)

−i
k2
δabgαβ +

+
∫ µf d4k

(2π)4
(−igsγαTa)

i

p/+ /k −m

(

−igsΛβ
b (p+ k, p)

) −i
k2
δabgαβ +

+
∫ µf d4k

(2π)4
(−igsγαTa)

i

p/+ /k −m
(−igsγβTb)

−i(Z l
31 + Zh

31

k2
δabgαβ =

= −g2
sCF

∫ µf d4k

(2π)4

γα(p/+ /k +m)γα
(p+ k)2 −m2

− g2
s

∫ µf d4k

(2π)4

Λβ
b (p, p+ k)(p/+ /k +m)γβTb

(p+ k)2 −m2
+

−g2
sCFZ21

∫ µf d4k

(2π)4

γα(p/ + /k +m)γα
(p + k)2 −m2

− g2
s

∫ µf d4k

(2π)4

γβTb(p/ + /k +m)Λβ
b (p+ k, p)

(p+ k)2 −m2
+

−g2
sCFZ

l
31

∫ µf d4k

(2π)4

γα(p/+ /k +m)γα
(p+ k)2 −m2

− g2
sCFZ

h
31

∫ µf d4k

(2π)4

γα(p/+ /k +m)γα
(p+ k)2 −m2

=

=: −iS0 − iS1 − iS2 − iS3 − iS4 − iS5. (H.93)
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Here S1 = S3, while S2, S4 and S5 are proportional to S0. If S is assumed to stand between
spinors of momentum p and mass m, one can use the previous results and obtains

−iS = −g2
sCF

∫ µf d4k

(2π)4

2 + (1 − ε)η

(p+ k)2 −m2

(

1 +
αs
4π

(

2Z11 + Z21 + Z l
31 + Zh

31

)

)

(H.94)

where

Z11 = CF

{

1

ε
+ ln

(

µ2

m2

)

+ 4 ln η + η

}

+ CA

{

1

ε
+ ln

(

µ2

m2

)

+ 2 − 2 ln η +
η

4

}

+O(η2),

Z21 = −CF
{

1

ε
+ ln

(

µ2

m2

)

+ 4 + 4 ln η − 4η ln η

}

+O(η2),

Z l
31 =

(

1

ε
+ ln

(

µ2

−k2

))

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF ,

Zh
31 = −

(

1

ε
+ ln

(

µ2

m2

))

4

3
NhTF . (H.95)

Therefore, the sum 2Z11 + Z21 + Z l
31 + Zh

31 gives

2Z11 + Z21 + Z l
31 + Zh

31 = −
(

1

ε
+ ln

(

µ2

m2

))

4

3
NhTF + CF

{

2

ε
+ 2 ln

(

µ2

m2

)

+ 8 ln η

}

+

+CA

{

2

ε
+ 2 ln

(

µ2

m2

)

+ 4 − 4 ln η

}

− CF

{

1

ε
+ ln

(

µ2

m2

)

+ 4 + 4 ln η − 4η ln η

}

+

+

(

1

ε
+ ln

(

µ2

−k2

))

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF +O(η2) =

=
1

ε

(

CF +
11

3
CA − 4

3
(Nh +Nl)TF

)

+ ln

(

µ2

m2

)

4

3
NhTF +

+CF

{

ln

(

µ2

m2

)

− 4 + 4 ln η + 4η ln η

}

+ CA

{

2 ln

(

µ2

m2

)

+ 4 − 4 ln η

}

+

+ ln

(

µ2

−k2

)

(

5

3
CA − 4

3
NlTF

)

+
31

9
CA − 20

9
NlTF +O(η2). (H.96)



Appendix I

The one-loop residue method

As preparation for the two-loop calculations, in this appendix the soft part of the quark
self energy (as used in Section 5.3) is calculated to one-loop order for three different
gauges, namely the Feynman gauge, the Coulomb gauge, and the general covariant gauge
which includes both the Feynman gauge and the Landau gauge.

I.1 One-dimensional integrals and residues

As a preparation for things to come, one-dimensional integrals over the time component
of the inner moment k are calculated. These integrals are of the form

I(r)(n1, n2; κ) =
1

2πi

∫ ∞

−∞

(k0)
rdk0

((p− k)2 −m2)n1(k2)n2
(I.1)

where p = (m; 0, 0, 0) is the outer momentum. The numerator has (multiple) poles in the
complex k0-plane on the real axis which are shifted by using an additional −iǫ for each

of the propagators. In the following the short form κ = |~k | =
√

k2
0 − k2 is used. Using

the ansatz k0 = ka + ikbǫ one can extract the position of the poles,

0 = (p− k)2 −m2 − iǫ = m2 − 2pk + k2 −m2 − iǫ = k2
0 − κ2 − 2k0m− iǫ =

= k2
a + 2ikakbǫ− κ2 − 2mka − 2imkbǫ− iǫ ⇒ (I.2)

k2
a − κ2 − 2mka = 0, 2(ka −m)kb = 1 ⇒ k0 = m±

(√
κ2 +m2 + iǫ

)

,

0 = k2 − iǫ = k2
0 − κ2 − iǫ = k2

a + 2ikakbǫ− κ2 − iǫ ⇒
k2
a = κ2, 2kakb = 1 ⇒ k0 = ±(κ + iǫ). (I.3)

For r < 2(n1 + n2), the integral over the infinite interval can be replaced by an integral
over the contour of a half disk where the integral over the infinite circle vanishes. It is
matter of convenience in which of the complex half planes the interval on the real axis to
this contour is closed. By closing on the upper half plane one obtains

I(r)(n1, n2; κ) = Res

[

(k0)
r

(k2
0 − κ2 − 2k0m)n1(k2

0 − κ2)n2
; k0 = m+

√
κ2 +m2

]

+ (I.4)

+Res

[

(k0)
r

(k2
0 − κ2 − 2k0m)n1(k2

0 − κ2)n2
; k0 = κ

]

− I
(r)
0 (n1, n2; κ)

472
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where the parameter ǫ can be skipped because of the choice of the contour. The term
I

(r)
0 (n1, n2; κ) is the contribution from the circle with infinite radius, in this case in the

upper half plane. It will vanish for r < 2(n1 + n2) − 1 and will give a finite contribution
for r = 2(n1 + n2)− 1. In this case one replaces k0 by Reiφ where φ ∈ [0, π] and therefore
obtains (R → ∞)

I
(2(n1+n2)−1)
0 (n1, n2; κ) =

1

2πi

∫ π

0

(Reiφ)2(n1+n2)−1iReiϕdφ

(R2e2iφ)n1+n2
=

1

2
. (I.5)

I.1.1 Calculation of the residues

With the notation

R
(r)
1 (n1, n2; κ) := Res

[

(k0)
r

(k2
0 − κ2 − 2k0m)n1(k2

0 − κ2)n2
; k0 = m+

√
κ2 +m2

]

(I.6)

one calculates the residues which will be needed in the following. These are

R1(1, 0; κ) = Res

[

1

k2
0 − κ2 − 2k0m

; k0 = m+
√
κ2 +m2

]

=

=
1

k0 −m+
√
κ2 +m2

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=
1

2
√
κ2 +m2

, (I.7)

R′1(1, 0; κ) = Res

[

k0

k2
0 − κ2 − 2k0m

; k0 = m+
√
κ2 +m2

]

=

=
k0

k0 −m+
√
κ2 +m2

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=
m+

√
κ2 +m2

2
√
κ2 +m2

, (I.8)

R1(1, 1; κ) = Res

[

1

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = m+

√
κ2 +m2

]

=

=
1

(k0 −m+
√
κ2 +m2)(k2

0 − κ2)

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=

=
1

(2
√
κ2 +m2)(m2 + 2m

√
κ2 +m2 +m2 + κ2 − κ2)

=

=
1

4m
√
κ2 +m2(m+

√
κ2 +m2)

, (I.9)

R′1(1, 1; κ) = Res

[

k0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = m+

√
κ2 +m2

]

=

=
k0

(k0 −m+
√
κ2 +m2)(k2

0 − κ2)

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=

=
m+

√
κ2 +m2

(2
√
κ2 +m2)(m2 + 2m

√
κ2 +m2 +m2 + κ2 − κ2)

=

=
m+

√
κ2 +m2

4m
√
κ2 +m2(m+

√
κ2 +m2)

=
1

4m
√
κ2 +m2

, (I.10)

R′′1(1, 1; κ) = Res

[

k2
0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = m+

√
κ2 +m2

]

=
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=
k2

0

(k0 −m+
√
κ2 +m2)(k2

0 − κ2)

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=

=
(m+

√
κ2 +m2)2

(2
√
κ2 +m2)(m2 + 2m

√
κ2 +m2 +m2 + κ2 − κ2)

=

=
m+

√
κ2 +m2

4m
√
κ2 +m2

, (I.11)

R′′1(1, 2; κ) = Res

[

k2
0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)2
; k0 = m+

√
κ2 +m2

]

=

=
k2

0

(k0 −m+
√
κ2 +m2)(k2

0 − κ2)2

∣

∣

∣

∣

∣

k0=m+
√
κ2+m2

=

=
(m+

√
κ2 +m2)2

(2
√
κ2 +m2)(2m2 + 2m

√
κ2 +m2)2

=
1

8m2
√
κ2 +m2

. (I.12)

With the definition

R2(n1, n2; r) := Res

[

(k0)
r

(k2
0 − κ2 − 2k0m)n1(k2

0 − κ2)n2
; k0 = κ

]

(I.13)

and using similar techniques, one obtains

R2(1, 0; κ) = 0, (I.14)

R′2(1, 0; κ) = 0, (I.15)

R2(1, 1; κ) = Res

[

1

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = κ

]

=

=
1

(k2
0 − κ2 − 2k0m)(k0 + κ)

∣

∣

∣

∣

∣

k0=κ

=
1

(−2mκ)(2κ)
=

−1

4mκ2
, (I.16)

R′2(1, 1; κ) = Res

[

k0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = κ

]

=

=
k0

(k2
0 − κ2 − 2k0m)(k0 + κ)

∣

∣

∣

∣

∣

k0=κ

=
κ

(−2mκ)(2κ)
=

−1

4mκ
, (I.17)

R′′2(1, 1; κ) = Res

[

k2
0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)
; k0 = κ

]

=

=
k2

0

(k2
0 − κ2 − 2k0m)(k0 + κ)

∣

∣

∣

∣

∣

k0=κ

=
κ2

(−2mκ)(2κ)
=

−1

4m
, (I.18)

R′′2(1, 2; κ) = Res

[

k2
0

(k2
0 − κ2 − 2k0m)(k2

0 − κ2)2
; k0 = κ

]

=

=
d

dk0

(

k2
0

(k2
0 − κ2 − 2k0m)(k0 + κ)2

) ∣

∣

∣

∣

∣

k0=κ

=

=

[

2k0

(k2
0 − κ2 − 2k0m)(k0 + κ)2

− 2k2
0(k0 −m)

(k2
0 − κ2 − 2k0m)2(k0 + κ)2

+

− 2k2
0

(k2
0 − κ2 − 2k0m)(k0 + κ)3

]

k0=κ

=
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=
2κ

(−2mκ)(2κ)2
− 2κ2(κ−m)

(−2mκ)2(2κ)2
− 2κ2

(−2mκ)(2κ)3
=

=
−1

4mκ2
− κ−m

8m2κ2
+

1

8mκ2
= −κ−m

8m2κ2
− 1

8mκ2
=

−1

8m2κ
. (I.19)

These are all the residues that are needed in the following.

I.1.2 Calculation of the one-dimensional integrals

The residues can be combined for the one-dimensional integrals I(r)(n1, n2; κ), according
to

I(r)(n1, n2; κ) = R
(r)
1 (n1, n2; κ) +R

(r)
2 (n1, n2; κ) − I

(r)
0 (n1, n2; κ). (I.20)

One obtains

I(1, 0; κ) =
1

2
√
κ2 +m2

, (I.21)

I ′(1, 0; κ) =
m+

√
κ2 +m2

2
√
κ2 +m2

− 1

2
=

m

2
√
κ2 +m2

, (I.22)

I(1, 1; κ) =
1

4m
√
κ2 +m2(m+

√
κ2 +m2)

− 1

4mκ2
, (I.23)

I ′(1, 1; κ) =
1

4m
√
κ2 +m2

− 1

4mκ
, (I.24)

I ′′(1, 1; κ) =
m+

√
κ2 +m2

4m
√
κ2 +m2

− 1

4m
=

1

4
√
κ2 +m2

, (I.25)

I ′′(1, 2; κ) =
1

8m2
√
κ2 +m2

− 1

8m2κ
. (I.26)

I.2 Two different methods to proceed

The next step towards the calculation of the self energy consists in reducing the four-
dimensional integral to a one-dimensional integral. First, the integral measure can be
rewritten as

∫

d4k

(2π)4
=

∫ ∞

−∞

dk0

2π

∫

d3k

(2π)3
=

1

(2π)3

∫ ∞

−∞

dk0

2π

∫ ∞

0
κ2dκ

∫ π

0
sin θ dθ

∫ 2π

0
dϕ =

→ 1

(2π)2

∫ ∞

−∞

dk0

2π

∫ ∞

0
κ2dκ

∫ π

0
sin θ dθ → 2

(2π)2

∫ ∞

−∞

dk0

2π

∫ ∞

0
κ2dκ (I.27)

where the last two transformations are valid for isotropy with respect to the azimuthal
angle ϕ which is given in all cases considered here and the polar angle θ does not generalize
to the two-loop case. In the one-loop case, however, one can use the last expression as
replacement for the measure. Now one actually does not consider the full range in κ but
only the range from κ = 0 to κ = µ which is the cut. There are two methods to proceed.
The methods are equivalent for the one-loop case while only the last one works for the
higher-loop cases.
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I.2.1 The explicit cut method

The first method consists in writing

I(r)
µ (n1, n2) = −i

∫ µ d4k

(2π)4

(pk)r

((p− k)2 −m2)n1(k2)n2
=

= −i
∫ µ d4k

(2π)4

(k0m)r

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2
(I.28)

where the upper limit µ indicates symbolically the cut (the factorization scale of Sec. 5.3).
The integrand is isotropic, so that one can replace the measure in the sense of Eq. (I.27)
to obtain

I(r)
µ (n1, n2) =

1

2π2

∫ µ

0
κ2dκ

∫ ∞

−∞

dk0

2πi

(k0m)r

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2
=

=
mr

2π2

∫ µ

0
κ2I(r)(n1, n2; κ)dκ. (I.29)

For the integration one uses the substitution

κ = m sinh ζ =
1

2
m(eζ − e−ζ) =

m(t2 − 1)

2t
. (I.30)

The integration limits are transformed to t(κ = 0) = 1 and

t(κ = µ) =
√
a2 + 1 + a =: τ, τ−1 =

√
a2 + 1 − a, a :=

µ

m
. (I.31)

One can then make use of

dκ =
m(t2 + 1)

2t2
dt,

√
κ2 +m2 =

m(t2 + 1)

2t
⇒ dκ√

κ2 +m2
=
dt

t
(I.32)

and

m+
√
κ2 +m2 =

m(t+ 1)2

2t
. (I.33)

Finally one has

τ − 1

τ
= 2a, τ 2 − 1

τ 2
= 4a

√
a2 + 1. (I.34)

Using this, one obtains

Iµ(1, 0) =
1

2π2

∫ µ

0

κ2dκ

2
√
κ2 +m2

=
1

2π2

∫ τ

1

m2(t2 − 1)2dt

8t3
=

=
m2

16π2

∫ τ

1

(

t− 2

t
+

1

t3

)

dt =
m2

16π2

[

1

2
t2 − 2 ln t− 1

2t2

]τ

1
=

=
m2

16π2

(

1

2
τ 2 − 1

2τ 2
− 2 ln τ

)

=
m2

8π2

(

a
√
a2 + 1 − ln

(√
a2 + 1 + a

))

,

(I.35)

I ′µ(1, 0) =
m

2π2

∫ µ

0

κ2dκ

2
√
κ2 +m2

= mIµ(1, 0) =
m3

8π2

(

a
√
a2 + 1 − ln

(√
a2 + 1 + a

))

,

(I.36)
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Iµ(1, 1) =
1

2π2

∫ µ

0

κ2dκ

4m
√
κ2 +m2(m+

√
κ2 +m2)

− 1

2π2

∫ µ

0

κ2dκ

4mκ2
=

=
1

8π2m

∫ τ

1

m2(t2 − 1)22t dt

4t3m(t+ 1)2
− µ

8π2m
=

=
1

16π2

∫ τ

1

(t− 1)2dt

t2
− a

8π2
=

1

16π2

∫ τ

1

(

1 − 2

t
+

1

t2

)

dt− a

8π2
=

=
1

16π2

[

t− 2 ln t− 1

t

]τ

1
− a

8π2
=

1

16π2

(

τ − 1

τ
− 2 ln τ

)

− a

8π2
=

=
1

8π2

(

a− ln
(√

a2 + 1 + a
)

− a
)

=
−1

8π2
ln
(√

a2 + 1 + a
)

, (I.37)

I ′µ(1, 1) =
m

2π2

∫ µ

0

κ2dκ

4m
√
κ2 +m2

− m

2π2

∫ µ

0

κ2dκ

4mκ
=

=
1

2
Iµ(1, 0) − 1

8π2

[

1

2
κ2
]µ

0
=

=
m2

16π2

(

a
√
a2 + 1 − ln

(√
a2 + 1 + a

))

− µ2

16π2
=

=
m2

16π2

(

a
√
a2 + 1 − a2 − ln

(√
a2 + 1 + a

))

, (I.38)

I ′′µ(1, 1) =
m2

2π2

∫ µ

0

κ2dκ

4
√
κ2 +m2

=
m2

2
Iµ(1, 0) =

=
m4

16π2

(

a
√
a2 + 1 − ln

(√
a2 + 1 + a

))

, (I.39)

I ′′µ(1, 2) =
1

4
Iµ(1, 0) − m2

2π2

∫ µ

0

κ2dκ

8m2κ
=

=
m2

32π2

(

a
√
a2 + 1 − ln

(√
a2 + 1 + a

))

− 1

16π2

[

1

2
κ2
]µ

0
=

=
m2

32π2

(

a
√
a2 + 1 − a2 − ln

(√
a2 + 1 + a

))

. (I.40)

I.2.2 The implicit cut method

In the second method one represents the cut by a step function inside the integral, i.e.
one writes

I(r)
µ (n1, n2) = −i

∫

d4k

(2π)4

(pk)rθ(µ2 − κ2)

((p− k)2 −m2)n1(k2)n2
=

= −i
∫

d4k

(2π)4

(k0m)rθ(µ2 − κ2)

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2
. (I.41)

If one now differentiates the integral with respect to µ2, one can use

∫

f(x)δ(x2 − a2)dx =
∫

f(
√
x′)

2
√
x′

δ(x′ − a2)dx′ =
1

2a
f(a) (I.42)

to obtain

d

dµ2
I(r)
µ (n1, n2) = −i

∫ d4k

(2π)4

(k0m)rδ(µ2 − κ2)

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2
=
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=
1

2π2

∫ ∞

−∞

dk0

2πi

∫ ∞

0

(k0m)rδ(µ2 − κ2)κ2dκ

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2
=

=
2µ2

(2π)2

∫ ∞

−∞

dk0

2πi

(2µ)−1(k0m)r

(k2
0 − κ2 − 2k0m− iǫ)n1(k2

0 − κ2 − iǫ)n2

∣

∣

∣

∣

∣

κ=µ

=

=
mrµ

(2π)2
I(r)(n1, n2; κ)

∣

∣

∣

∣

∣

κ=µ

. (I.43)

Note that κ = µ is not yet inserted. This is postponed because one can also rewrite this
equation as a differential equation in terms of κ, “reserving” µ for the later upper limit
of the (postponed) integration. In terms of κ the differential equation thus reads

d

dκ2
Iκ(n1, n2) =

mrκ

(2π)2
I(r)(n1, n2; κ). (I.44)

It is quite obvious that the two methods give the same result. However, as mentioned
before, only the latter method can be used for the multi-loop case.

I.3 The quark self energy up to one-loop order

Arriving at the main topic, namely the determination of the soft part of the quark self
energy, this calculation will be done for the three different gauges mentioned earlier.

I.3.1 The quark self energy in Feynman gauge

To start with, the self energy to one-loop order in Feynman gauge reads

−iΣ(p/) =
∫ µ d4k

(2π)4
(−igsγµTa)

i

p/− /k −m
(−igsγµTa)

−i
k2

=

= −g2
sCF

∫ µ d4k

(2π)4

γµ(p/− /k +m)γµ

((p− k)2 −m2)k2
= −g2

sCF

∫ µ d4k

(2π)4

γµ(mv/ − /k +m)γµ

((mv − k)2 −m2)k2
=

= −g2
sCF

∫ µ d4k

(2π)4

−2mv/ + 2/k + 4m

((mv − k)2 −m2)k2
= −g2

sCF

∫ µ d4k

(2π)4

2m(2 − v/ ) + 2/k

(k2 − 2mkv)k2
=

= −2g2
sCF

{

(2 − v/ )
∫ µ d4k

(2π)4

m

(k2 − 2mkv)k2
+ v/

∫ µ d4k

(2π)4

kv

(k2 − 2mkv)k2

}

(I.45)

so that finally

Σ(p/) = 2g2
sCF

{

(2 − v/ )mIµ(1, 1) + v/ I ′µ(1, 1)
}

=

=
g2
sCF
8π2

m
{

−2(2 − v/ ) ln
(√

a2 + 1 + a
)

+ v/
(

a
√
a2 + 1 − a2 − ln

(√
a2 + 1 + a

))}

=

= −αsCF
2π

m
{

4 ln
(√

a2 + 1 + a
)

+ v/
(

a2 − a
√
a2 + 1 − ln

(√
a2 + 1 + a

))}

. (I.46)

For a≪ 1 one obtains

Σ(p/) = −αsCF
2π

m

{

4a− 2a3

3
− v/

(

2a− a2 +
a3

3

)

+O(a4)

}

= (I.47)

→ −αsCF
2π

m
{

2a + a2 − a3 +O(a4)
}

= −αsCF
π

µ

{

1 +
µ

2m
− µ2

2m2
+O

(

µ3

m3

)}

where the arrow indicates the application of the equation of motion, i.e. v/ → 1.



I.3. THE QUARK SELF ENERGY UP TO ONE-LOOP ORDER 479

I.3.2 The quark self energy in Coulomb gauge

The Feynman rule for the gluon propagator in Coulomb gauge is taken from Ref. [291],

Gab
µν(k) =

−iδab
k2

[

gµν −
(

kµkν − (kv)(kµvν + vµkν)

−~k 2

)]

. (I.48)

Because of

−iΣC(p/) =
∫ µ d4k

(2π)4
(−igsγµTa)

i

p/− /k −m
(−igsγνTa) ×

× −i
k2

(

gµν −
kµkν − (kv)(kµvν + vµkν)

−~k 2

)

=

= −g2
sCF

∫ µ d4k

(2π)4

Γµ(p/− /k +m)γν

((p− k)2 −m2)k2

(

gµν −
kµkν − (kv)(kµvν + vµkν)

−~k 2

)

=

=: −iΣF (p/) − iΣ∆C(p/). (I.49)

one only has to calculate the difference Σ∆C to the contribution in Feynman gauge ΣF

calculated just before. One obtains

Σ∆C(p/) = −ig2
sCF

∫ µ d4k

(2π)4

γµ(p/− /k +m)γν

((p− k)2 −m2)k2~k 2
(kµkν − (kv)(kµvν + vµkν)) = (I.50)

= −ig2
sCF

∫ µ d4k

(2π)4

/k(p/− /k +m)/k − (kv)(/k(p/− /k +m)v/ + v/ (p/− /k +m)/k)

((p− k)2 −m2)k2~k 2
.

Inserting the on-shell momentum p = mv, the numerator of the integrand is given by

/k(mv/ − /k +m)/k − (kv) (/k(mv/ − /k +m)v/ + v/ (mv/ − /k +m)/k) =

= . . . = 2k0k
2v/ −mk2v/ − k2/k − 2mk2

0 +mk2 =

→ 2k0k
2v/ −mk2v/ − k2k0v/ − 2mk2

0 +mk2 = mk2(1 − v/ ) + k0k
2v/ − 2mk2

0 (I.51)

where the arrow indicates that the expansion of the integral into covariants is taken into
account in advance (note that the only outer vector is v). This leads to

Σ∆C(p/) = −ig2
sCF

∫ µ d4k

(2π)4

mk2(1 − v/ ) + k0k
2v/ − 2mk2

0

(k2 − 2mk0)k2~k 2
=

=:
g2
sCF
2π2

∫ µ

0
(m(1 − v/ )I(1, 0; κ) + v/ I ′(1, 0; κ) − 2mI ′′(1, 1; κ))dκ (I.52)

where the ~k 2 in the denominator cancels the κ2 in the integration measure. The integral
parts are not given by the integrals Iµ(n1, n2), instead one obtains

∫ µ

0
I(1, 0; κ)dκ =

∫ µ

0

dκ

2
√
κ2 +m2

=
∫ τ

1

dt

2t
=

=
1

2
ln τ =

1

2
ln
(√

a2 + 1 + a
)

, (I.53)
∫ µ

0
I ′(1, 0; κ)dκ = m

∫ µ

0
I(1, 0; κ)dκ =

m

2
ln
(√

a2 + 1 + a
)

, (I.54)
∫ µ

0
I ′′(1, 1; κ)dκ =

1

2

∫ µ

0
I(1, 0; κ)dκ =

1

4
ln
(√

a2 + 1 + a
)

. (I.55)
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It is easy to see that Σ∆C(p/) vanishes since

Σ∆C(p/) =
g2
sCFm

8π2
((1 − v/ ) + v/ − 1) ln

(√
a2 + 1 + a

)

= 0. (I.56)

It is obvious that the result for the Coulomb gauge is the same as for Feynman gauge.

I.3.3 The quark self energy in general covariant gauge

The Feynman rule for the gluon propagator in the general covariant gauge (a generaliza-
tion of the Landau gauge which is obtained for αg = 0) is given by

Gab
µν(k) =

−iδab
k2

(

gµν − (1 − αg)
kµkν
k2

)

. (I.57)

Therefore, one obtains

−iΣL(p/) =
∫ µ d4k

(2π)4
(−igsγµTa)

i

p/− /k −m
(−igsγνTa)

−i
k2

(

gµν − (1 − αg)
kµkν
k2

)

=

= −g2
sCF

∫ µ d4k

(2π)4

γµ(p/− /k +m)γν

((p− k)2 −m2)k2

(

gµν − (1 − αg)
kµkν
k2

)

=

=: −iΣF (p/) − i(1 − αg)Σ
∆L(p/). (I.58)

The difference term −i(1 − αg)Σ
∆L can be calculated to give

−i(1 − αg)Σ
∆L(p/) = (1 − αg)g

2
sCF

∫ µ d4k

(2π)4

/k(p/− /k +m)/k

((p− k)2 −m2)(k2)2
. (I.59)

On the mass shell the numerator gives

/k(m(1 + v/ ) − /k)/k = mk2 + 2mk0/k −mk2v/ − k2/k =

→ mk2 + 2mk2
0v/ −mk2v/ − k0k

2v/ =

= m(1 − v/ )k2 − k0k
2v/ + 2mk2

0v/ (I.60)

(the arrow indicates again the expansion in invariants) and thus

Σ∆L(p/) =
g2
sCF
2π2

∫ µ

0
(−(1 − v/ )mI(1, 1; κ) + v/ I ′(1, 1; κ) − 2mv/ I ′′(1, 2; κ))κ2dκ =

= g2
sCF

{

−(1 − v/ )mIµ(1, 1) +
1

m
v/ I ′µ(1, 1) − 2

m
v/ I ′′µ(1, 2)

}

=

=
g2
sCF

16π2
m

{

(2(1 − v/ ) ln
(√

a2 + 1 + a
)

+

+v/
(

a
√
a2 + 1 − a2 − ln

(√
a2 + 1 + a

))

+

−v/
(

a
√
a2 + 1 − a2 − ln

(√
a2 + 1 + a

))

}

=

=
αsCF
2π

m(1 − v/ ) ln
(√

a2 + 1 + a
)

. (I.61)

Σ∆L(p/) vanishes because of the equation of motion v/ − 1 = 0.



Appendix J

Non-abelian soft self energy

In this appendix the non-abelian diagrams which contribute to the two-loop correction of
the quark self energy diagram in Section 5.3 are analyzed in Coulomb gauge (Fig. 5.12).

J.1 Contributions of diagrams

Only the pure Dirac structure of the integrand for the diagrams is considered in this
step. The notation (cba) denotes the vertex structure along the direction of the arrow
of the quark line (the entry 0 represents the coupling to a Coulomb gluon, i, j, k the
coupling to a transverse gluon). The expressions are taken between on-shell states which
are represented by the projectors (1 + γ0)/2 on both sides of the structure. The first step
is to simplify the expression. The gluons attached to the quark line are internal gluons.
Therefore, one gluon propagator is contracted. In Coulomb gauge this propagator reads
(cf. Eq. (5.98))

Gab
00(k) =

iδab

~k 2
, Gab

ij (k) =
−iδab

k2~k 2

(

~k 2gij + kikj
)

, i, j = 1, 2, 3. (J.1)

If one adds these propagators in the second step, the γi and γj are modified. If the
index c is a space index, γc is replaced by (~k2

1γ
c + kc1k̂1) where k̂ = γiki = −~γ · ~k and

the denominator is multiplied by −k2
1. If index b is a space index, γb is replaced by

((~k1 − ~k2)
2γb + (k1 − k2)

b(k̂1 − k̂2)) and the denominator is multiplied by −(k1 − k2)
2.

Finally, if a is a space index, γa is replaced by (~k2
2γ

a + ka2 k̂2) and the denominator is
multiplied by −k2

2. In the third step one considers the coupling of these internal gluons
in the three-gluon vertex

gsfabc ((k2 − 2k1)agbc + (k1 + k2)bgca + (k1 − 2k2)cgab) (J.2)

For simplicity the same labels have been used here for the Lorentz and for the colour
indices. The factor except for gsfabc is called the three-gluon factor in the following. For
the simplification of the expression one can use

γiγi = 3, k̂k̂ = −~k 2, γik̂γi = −k̂, k̂ak̂bk̂a = ~k2
ak̂b − 2(~ka~kb)k̂a. (J.3)

Note, finally, that the calculation is done in the quark rest frame. One can therefore use
p/ = mγ0.

481
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J.1.1 The diagrams (i00) und (00i)

For the diagram (i00) (Fig. 5.12(a)) one obtains

1 + γ0

2
γ0(p/+ /k2 +m)γ0(p/ + /k1 +m)γi

1 + γ0

2
=

=
1 + γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γ0
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 − γ0

2
γi =

=

(

2m
1 + γ0

2
+ k20

1 + γ0

2
+ k̂2

1 − γ0

2

)

γ0

(

−k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi =

=

(

(2m+ k20)
1 + γ0

2
+ k̂2

1 − γ0

2

)(

k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi = (J.4)

=

(

(2m+ k20)
1 + γ0

2
k̂1 + k̂2

1 − γ0

2
k10

)

γi =
(

(2m+ k20)k̂1 + k̂2k10

)

γi
1 + γ0

2
.

The attachment of the transverse gluon propagator leads to
{

(2m+ k20)k̂1 + k̂2k10

} (

~k2
1γ

i + ki1k̂1

)

. (J.5)

In addition, one obtains a factor −k2
2 for the denominator (the projector have been omitted

again). The contribution of the three-gluon factor is (k1−2k2)ig00. For the diagram (00i)
(Fig. 5.12(c)) one obtains

1 + γ0

2
γi(p/ + /k2 +m)γ0(p/+ /k1 +m)γ0 1 + γ0

2
=

= γi
1 − γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γ0
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 + γ0

2
=

= γi
(

−k20
1 − γ0

2
+ k̂2

1 + γ0

2

)

γ0

(

2m
1 + γ0

2
+ k10

1 + γ0

2
+

1 − γ0

2
k̂1

)

=

= γi
(

k20
1 − γ0

2
+ k̂2

1 + γ0

2

)(

(2m+ k10)
1 + γ0

2
+

1 − γ0

2
k̂1

)

= (J.6)

= γi
(

k̂2
1 + γ0

2
(2m+ k10) + k20

1 − γ0

2
k̂1

)

= γi
(

k̂2(2m+ k10) + k20k̂1

) 1 + γ0

2
.

The attachment of the transverse gluon leads to
(

~k2
2γ

i + ki2k̂2

) {

k̂2(2m+ k10) + k20k̂1

}

(J.7)

and a factor −k2
1 for the denominator. The three-gluon factor is given by (k2 − 2k1)ig00.

Note that the replacement k1 ↔ k2 transforms the denominator and the three-gluon
factor of diagram (i00) into the denominator and the three-gluon factor of diagram (00i).
If one therefore sums up both contributions in the form of the first one, the Dirac structure
reduces to

(2m+ k20)
(

~k2
1(k̂1γ

i + γik̂1) − 2~k2
1k

i
1

)

+
(

k2
1(k̂2γ

i + γik̂2) + ki1(k̂2k̂1 + k̂1k̂2)
)

k10 =

= (2m+ k20)
(

2~k2
1k

i
1 − 2~k2

1k
i
1

)

+
(

2~k2
1k

i
2 − 2(~k1

~k2)k
i
1

)

k10 = 2
(

~k2
1k

i
2 − (~k1

~k2)k
i
1

)

k10.

(J.8)

The part proportional to m vanishes. Therefore, this contribution is suppressed by one
power of 1/m.
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J.1.2 The diagram (0i0)

For the symmetric diagram (0i0) (Fig. 5.12(b)) one obtains

1 + γ0

2
γ0(p/+ /k2 +m)γi(p/+ /k1 +m)γ01 + γ0

2
=

=
1 + γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γi
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 + γ0

2
=

=

(

2m
1 + γ0

2
+ k20

1 + γ0

2
+ k̂2

1 − γ0

2

)

γi
(

2m
1 + γ0

2
+ k10

1 + γ0

2
+

1 − γ0

2
k̂1

)

=

=

(

(2m+ k20)γ
i1 − γ0

2
+ k̂2γ

i1 + γ0

2

)(

(2m+ k10)
1 + γ0

2
+

1 − γ0

2
k̂1

)

=

= (2m+ k20)γ
i1 − γ0

2
k̂1 + k̂2γ

i1 + γ0

2
(2m+ k10) =

=
(

(2m+ k20)γ
ik̂1 + k̂2γ

i(2m+ k10)
) 1 + γ0

2
. (J.9)

The attachment of the transverse gluon propagator leads to

(2m+ k20)
(

(~k1 − ~k2)
2γi + (k1 − k2)

i(k̂1 − k̂2)
)

k̂1 +

+k̂2

(

(~k1 − ~k2)
2γi + (k1 − k2)

i(k̂1 − k̂2)
)

(2m+ k10) (J.10)

and a factor −(k1 − k2)
2 for the denominator. The three-gluon factor reads (k1 + k2)ig00.

In this case, the remaining factors are symmetric under the exchange k1 ↔ k2. Therefore,
one can symmetrize the Dirac structure and obtains

(2m+ k20)
(

(~k1 − ~k2)
2ki1 − (k1 − k2)

i(~k2
1 − ~k1

~k2)
)

+

+
(

(~k1 − ~k2)
2ki2 − (k1 − k2)

i(~k1
~k2 − ~k2

2)
)

(2m+ k10). (J.11)

The contraction with the three-gluon factor leads to the very simple result

−2(4m+ k10 + k20)
(

~k2
1
~k2

2 − (~k1
~k2)

2
)

. (J.12)

J.1.3 The diagrams (0ji) and (ij0)

For the diagram (0ji) (Fig. 5.12(d)) the Dirac structure is given by

1 + γ0

2
γi(p/+ /k2 +m)γj(p/+ /k1 +m)γ01 + γ0

2
=

= γi
1 − γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γj
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 + γ0

2
=

= γi
(

−k20
1 − γ0

2
+ k̂2

1 + γ0

2

)

γj
(

2m
1 + γ0

2
+ k10

1 + γ0

2
+

1 − γ0

2
k̂1

)

=

= γi
(

−k20γ
j 1 + γ0

2
+ k̂2γ

j 1 − γ0

2

)(

(2m+ k10)
1 + γ0

2
+

1 − γ0

2
k̂1

)

=

= γi
(

−k20γ
j 1 + γ0

2
(2m+ k10) + k̂2γ

j 1 − γ0

2
k̂1

)

=

= γi
(

−k20γ
j(2m+ k10) + k̂2γ

jk̂1

) 1 + γ0

2
. (J.13)
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The attachment of transverse gluons results in

−k20(~k
2
2γ

i + ki2k̂2)
(

(~k1 − ~k2)
2γj + (k1 − k2)

j(k̂1 − k̂2)
)

(2m+ k10) +

+(~k2
2γ

i + ki2k̂2)k̂2

(

(~k1 − ~k2)
2γj + (k1 − k2)

j(k̂1 − k̂2)
)

k̂1 (J.14)

and a factor k2
2(k1−k2)

2 for the denominator. The three-gluon factor reads (k1−2k2)0gij.
Contracting with the three-gluon factor, the expression can be further simplified,

−(k10 − 2k20)k20(~k
2
2γ

i + ki2k̂2)
(

(~k1 − ~k2)
2γi + (k1 − k2)i(k̂1 − k̂2)

)

(2m+ k10) +

+(k10 − 2k20)(~k
2
2γ

i + ki2k̂2)k̂2

(

(~k1 − ~k2)
2γi + (k1 − k2)i(k̂1 − k̂2)

)

k̂1 =

= −(k10 − 2k20)k20

(

~k2
2(
~k1 − ~k2)

2 − (~k1
~k2 − ~k2

2)k̂2(k̂1 − k̂2)
)

(2m+ k10) +

−(k10 − 2k20)
(

~k2
2(
~k1 − ~k2)

2k̂2 + ~k2
2(
~k1
~k2 − ~k2

2)(k̂1 − k̂2)
)

k̂1. (J.15)

For the diagram (ij0) (Fig. 5.12(f)) one obtains

1 + γ0

2
γ0(p/+ /k2 +m)γj(p/ + /k1 +m)γi

1 + γ0

2
=

=
1 + γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γj
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 − γ0

2
γi =

=

(

2m
1 + γ0

2
+ k20

1 + γ0

2
+ k̂2

1 − γ0

2

)

γj
(

−k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi =

=

(

(2m+ k20)
1 + γ0

2
+ k̂2

1 − γ0

2

)(

−k10
1 + γ0

2
γj +

1 − γ0

2
γjk̂1

)

γi =

=

(

−(2m+ k20)
1 + γ0

2
k10γ

j + k̂2
1 − γ0

2
γj k̂1

)

γi =

=
(

−(2m+ k20)k10γ
j + k̂2γ

j k̂1

)

γi
1 + γ0

2
. (J.16)

Attaching the transverse gluons leads to

−(2m+ k20)
(

(~k1 − ~k2)
2γj + (k1 − k2)

j(k̂1 − k̂2)
)

k10(~k
2
1γ

i + ki1k̂1) +

+k̂2

(

(~k1 − ~k2)
2γj + (k1 − k2)

j(k̂1 − k̂2)
)

k̂2(~k
2
1γ

i + ki1k̂1) (J.17)

and a factor k2
1(k1−k2)

2 to the denominator. The contraction with the three-gluon factor
(k2 − 2k1)0gij finally leads to

−(2m+ k20)(k20 − 2k10)
(

(~k1 − ~k2)
2γi + (k1 − k2)i(k̂1 − k̂2)

)

k10(~k
2
1γ

i + ki1k̂1) +

+(k20 − 2k10)k̂2

(

(~k1 − ~k2)
2γi + (k1 − k2)i(k̂1 − k̂2)

)

k̂2(~k
2
1γ

i + ki1k̂1) =

= −(2m+ k20)(k20 − 2k10)
(

~k2
1(
~k1 − ~k2)

2 − (~k2
1 − ~k1

~k2)(k̂1 − k̂2)k̂1

)

k10 +

−(k20 − 2k10)k̂2

(

~k2
1(
~k1 − ~k2)

2k̂1 + ~k2
1(
~k2

1 − ~k1
~k2)(k̂1 − k̂2)

)

. (J.18)

The result of the symmetrization of both results in k1 ↔ k2 (in the first form) reads

−k20(k10 − 2k20)
(

~k2
2(
~k1 − ~k2)

2 + (~k1
~k2 − ~k2

2)
2
)

(2m+ k10) +

+~k2
2

(

(~k1 − ~k2)
2(~k1

~k2) + (~k1
~k2 − ~k2

2)(
~k2

1 − ~k1
~k2)

)

. (J.19)
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J.1.4 The diagram (i0j)

Diagrams with transverse gluons at both ends will have contributions proportional to m.
Even though for this reason these diagrams can be omitted in the calculation to leading
order in m, the results will be shown here as well. The first example is the diagram (i0j)
(Fig. 5.12(e)),

1 + γ0

2
γj(p/+ /k2 +m)γ0(p/ + /k1 +m)γi

1 + γ0

2
=

= γj
1 − γ

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γ0
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 − γ0

2
γi =

= γj
(

−k20
1 − γ0

2
+ k̂2

1 + γ0

2

)

γ0

(

−k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi =

= γj
(

−k20
1 − γ0

2
+ k̂2

1 + γ0

2

)(

k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi =

= γj
(

k̂2
1 + γ0

2
k̂1 − k20

1 − γ0

2
k10

)

γi = γj
(

k̂2k̂1 − k20k10

)

γi
1 + γ0

2
. (J.20)

J.1.5 The diagram (ijk)

The second example is given by the diagram (ijk) (Fig. 5.12(g)),

1 + γ0

2
γk(p/+ /k2 +m)γj(p/+ /k1 +m)γi

1 + γ0

2
=

= γk
1 − γ0

2

(

m(1 + γ0) + k20γ
0 + k̂2

)

γj
(

m(1 + γ0) + k10γ
0 + k̂1

) 1 − γ0

2
γi =

= γk
(

−k20
1 − γ0

2
+ k̂2

1 + γ0

2

)

γj
(

−k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi =

= γk
(

−k20γ
j 1 + γ0

2
+ k̂2γ

j 1 − γ0

2

)(

−k10
1 − γ0

2
+

1 + γ0

2
k̂1

)

γi = (J.21)

= γk
(

−k20γ
j 1 + γ0

2
k̂1 − k̂2γ

j 1 − γ0

2
k10

)

γi = −γk
(

k20γ
j k̂1 + k̂2γ

jk10

)

γi
1 + γ0

2
.

J.2 The main contribution in Coulomb gauge

The diagram (0i0) is the main contribution to the non-abelian two-loop correction. The
colour structure which was omitted up to now is given by TaTbTcfabc = iCFCA/2 with
CF = (N2

c − 1)/2Nc and CA = Nc (Nc is the number of colours). Starting with

−iΣ(b)(p/) =
∫ d4k1

(2π)4

d4k2

(2π)4

i

~k2
1

i

~k2
2

i

(k1 − k2)2

(

δij −
(k1 − k2)i(k1 − k2)j

(~k1 − ~k2)2

)

×

× gsfabc
(

(k2 − 2k1)
0gj0 + (k1 + k2)

jg00 + (k1 − 2k2)
0g0j

)

× (J.22)

× 1 + γ0

2
(−igsγ0Ta)

i

p/+ /k2 −m
(−igsγiTb)

i

p/+ /k1 −m
(−igsγ0Tc)

1 + γ0

2
.
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One finally obtains

Σ(b)(p/) = g4
sCFCA

∫

d4k1

(2π)4

d4k2

(2π)4
× (J.23)

×
(4m+ k10 + k20)

(

~k2
1
~k2

2 − (~k1
~k2)

2
)

~k2
1
~k2

2(~k1 − ~k2)2(k1 − k2)2((p+ k1)2 −m2)((p+ k2)2 −m2)
. (J.24)

J.2.1 The soft part of the self energy correction

In order to extract the soft part one makes the replacements

1

(p+ k1)2 −m2
→ −iπδ((p+ k1)

2 −m2),
1

(p+ k2)2 −m2
→ −iπδ((p + k2)

2 −m2)

(J.25)
and sums up the various contributions. This procedure will be detailed here in the case
where the line with momentum k1 is cut, i.e. for the first replacement. For the time being
the part which is relevant will be considered separately,

I
(b)
soft1 = −iπ

∫ ∞

−∞

dk10

2π

dk20

2π

(4m+ k10 + k20)δ((p+ k1)
2 −m2)

(k1 − k2)2((p+ k2)2 −m2)
. (J.26)

With respect to k10, the Dirac delta function has the two singular points

k10 = −m±
√

m2 + ~k2
1 =: −m± κ′1 =: k1±. (J.27)

With

δ((p+ k1)
2 −m2) =

1

2κ′1
(δ(k10 − k1+) + δ(k10 − k1−)) (J.28)

one obtains

I
(b)
soft1 =

1

8πiκ′1

(

I
(b)
1+ + I

(b)
1−
)

, I
(b)
1± :=

∫ ∞

−∞

(4m+ k1± + k20)dk20

((k1± − k20)2 − (~k1 − ~k2)2)(k2
20 + 2mk20 − ~k2

2)
.

(J.29)

The poles of I
(b)
1+ are given by

k20 = −m± (κ′2 − iǫ), k20 = −m+ κ′1 ± (κ3 − iǫ) (J.30)

and the poles of I
(b)
1− by

k20 = −m± (κ′2 − iǫ), k20 = −m− κ′1 ± (κ3 − iǫ), (J.31)

where the abbreviations

κi := |~ki|, κ′i :=
√

m2 + ~k2
i , κ3 := |~k1 − ~k2| (J.32)

have been used. The contour will now be closed in the lower complex half plane and the
residue theorem will be used. The residues which have to be considered are given by

Res

[

4m+ k1± + k20

((k1± − k20)2 − (~k1 − ~k2)2)(k2
20 + 2mk20 − ~k2

2)
; k20 = −m+ κ′2

]

=
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=
4m−m± κ′1 −m+ κ′2

((−m± κ′1 +m− κ′2)
2 − κ2

3)2κ
′
2

=
2m± κ′1 + κ′2

2κ′2((κ
′
1 ∓ κ′2)

2 − κ2
3)

=

=
2m± κ′1 + κ′2

4κ′2(m
2 + ~k1

~k2 ∓ κ′1κ
′
2)
,

Res

[

4m+ k1± + k20

((k1± − k20)2 − (~k1 − ~k2)2)(k2
20 + 2mk20 − ~k2

2)
; k20 = −m± κ′1 + κ3

]

=

=
4m−m± κ′1 −m± κ′1 + κ3

2κ3

(

m2 ∓ 2mκ′1 + κ′1
2 − 2mκ3 ± 2κ′1κ3 + κ2

3 − 2m2 ± 2mκ′1 + 2mκ3 − ~k2
2

) =

=
2m± 2κ′1 + κ3

4κ3(~k2
1 − ~k1

~k2 ± κ′1κ3)
. (J.33)

One can use

2m+ κ′1 + κ′2

4κ′2(m
2 + ~k1

~k2 − κ′1κ
′
2)

+
2m− κ′1 + κ′2

4κ′2(m
2 + ~k1

~k2 + κ′1κ
′
2)

=

=
2((2m+ κ′2)(m

2 + ~k1
~k2) + κ′1

2κ′2)

4κ′2((m
2 + ~k1

~k2)2 − (m2 + ~k2
1)(m

2 + ~k2
2))

=

=
(2m+ κ′2)(m

2 + ~k1
~k2) + (m2 + ~k2

1)κ
′
2

2κ′2((~k1
~k2)2 − ~k2

1
~k2

2 −m2(~k1 − ~k2)2)
(J.34)

and

2m+ 2κ′1 + κ3

4κ3(~k
2
1 − ~k1

~k2 + κ′1κ3)
+

2m− 2κ′1 + κ3

4κ3(~k
2
1 − ~k1

~k2 − κ′1κ3)
=

=
2((2m+ κ3)(~k

2
1 − ~k1

~k2) − 2κ′1
2κ3)

4κ3((~k2
1 − ~k1

~k2)2 − (m2 + ~k2
1)(~k1 − ~k2)2)

=

=
(2m+ κ3)(~k

2
1 − ~k1

~k2) − 2(m2 + ~k2
1)κ3

2κ3((~k1
~k2)2 − ~k2

1
~k2

2 −m2(~k1 − ~k2)2)
. (J.35)

In combining all the residues one ends up with

I
(b)
soft1 =

−1

8κ′1κ
′
2κ3((~k1

~k2)2 − ~k2
1
~k2

2 −m2(~k1 − ~k2)2)
×

×
[

(2m+ κ′2)(m
2 + ~k1

~k2)κ3 + (m2 + ~k2
1)κ
′
2κ3 +

+(2m+ κ3)(~k
2
1 − ~k1

~k2)κ
′
2 − 2(m2 + ~k2

1)κ
′
2κ3

]

=

=
(2m+ κ′2)(m

2 + ~k1
~k2)κ3 + (2m+ κ3)(~k

2
1 − ~k1

~k2)κ
′
2 − (m2 + ~k2

1)κ
′
2κ3

8κ′1κ
′
2κ3(m2(~k1 − ~k2)2 + ~k2

1
~k2

2 − (~k1
~k2)2)

=

=
2m(m2 + ~k1

~k2)κ3 + 2m(~k2
1 − ~k1

~k2)κ
′
2

8κ′1κ
′
2κ3(m2(~k1 − ~k2)2 + ~k2

1
~k2

2 − (~k1
~k2)2)

=

=
m((m2 + ~k1

~k2)κ3 + (~k2
1 − ~k1

~k2)κ
′
2)

4κ′1κ
′
2κ3(m2(~k1 − ~k2)2 + ~k2

1
~k2

2 − (~k1
~k2)2)

. (J.36)
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J.2.2 The single-soft region

Because of κ1 = |~k1| < µ, for µ≪ m one can use the approximate expression

I
(b)
soft1 →

1

4m(~k1 − ~k2)2
. (J.37)

One obtains

Σ
(b)
soft1 =

g4
sCFCA
4m

∫

d3k1

(2π)3

d3k2

(2π)3

~k2
1
~k2

2 − (~k1
~k2)

2

~k2
1
~k2

2((~k1 − ~k2)2)2
=

=
g4
sCFCA

2(2π)4m

∫ µ

0
κ2

1dκ1

∫ ∞

0
κ2

2dκ2

∫ +1

−1

(κ2
1κ

2
2 − κ2

1κ
2
2t

2)dt

κ2
1κ

2
2(κ

2
1 + κ2

2 − 2κ1κ2t)2
=

=
g4
sCFCA

8(2π)4m

∫ µ

0
dκ1

∫ ∞

0
dκ2

∫ +1

−1

(1 − t2)dt

(t0 − t)2
(J.38)

with t = cos θ(~k1, ~k2) and t0 = (κ2
1 + κ2

2)/2κ1κ2. For the last integral one obtains

∫ +1

−1

(1 − t)2dt

(t0 − t)2
=

∫ t0+1

t0−1

(

1 − (t0 − t′)2
) dt′

t′2
=

∫ t0+1

t0−1

(

−t
2
0 − 1

t′2
+

2t0
t′

− 1

)

dt′ =

= (t20 − 1)
(

1

t0 + 1
− 1

t0 − 1

)

+ 2t0 ln
(

t0 + 1

t0 − 1

)

− (t0 + 1 − t0 + 1) =

= (t20 − 1)
t0 − 1 − t0 − 1

t20 − 1
+ 2t0 ln

(

t0 + 1

t0 − 1

)

− 2 =

= −4 + 2t0 ln
(

t0 + 1

t0 − 1

)

= −4 + 2
κ2

1 + κ2
2

κ1κ2
ln

∣

∣

∣

∣

κ1 + κ2

κ1 − κ2

∣

∣

∣

∣

(J.39)

and therefore
∫ ∞

0

(

−4 + 2
κ2

1 + κ2
2

κ1κ2
ln

∣

∣

∣

∣

κ1 + κ2

κ1 − κ2

∣

∣

∣

∣

)

dκ2 =

=
∫ κ1

0

(

−4 + 2
κ2

1 + κ2
2

κ1κ2
ln
(

κ1 + κ2

κ1 − κ2

)

)

dκ2 +

+
∫ ∞

κ1

(

−4 + 2
κ2

1 + κ2
2

κ1κ2
ln
(

κ1 + κ2

κ2 − κ1

)

)

dκ2 =

= κ1

∫ 1

0

(

−4 + 2
1 + x2

x
ln
(

1 + x

1 − x

)

)

dx +

+κ1

∫ 1

0

(

−4 + 2
1 + x2

x
ln
(

1 + x

1 − x

)

)

dx

x2
=

= κ1

∫ 1

0

(

−4 + 2
1 + x2

x
ln
(

1 + x

1 − x

)

)

1 + x2

x2
dx = π2κ1 (J.40)

where κ2 = κ1x and κ2 = κ1/x are used, resp., for the two parts. Because of the high
degree of divergence for x = 0 one might wonder why this integral exists. But if one
expands the integrand in x near x = 0 one actually obtains a term of order O(x0) which
can be integrated. Therefore, the final result reads

Σ
(b)
soft1 =

(4παs)
2CFCA

8(2π)4m
π2
∫ µ

0
κ1dκ1 =

α2
sCFCA
16m

µ2. (J.41)
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J.3 The non-abelian diagram in Feynman gauge

Because it is not obvious from the previous considerations that only the diagram in
Fig. 5.12(b) contributes, the calculation is done also in Feynman gauge where there is
only one diagram. The contribution is given by

−iΣ(p/) =
∫

d4k1

(2π)4

d4k2

(2π)4

(

−i
k2

1

)(

−i
k2

2

)(

−i
(k1 − k2)2

)

×

× (−igsγαTa)
i

p/+ /k2 −m
(−igsγβTb)

i

p/+ /k1 −m
(−igsγρTc) ×

× gsfabc ((k2 − 2k1)αgβρ + (k1 + k2)βgρα + (k1 − 2k2)ρgαβ) =

= g4
sfabcTaTbTc

∫

d4k1

(2π)4

d4k2

(2π)4

γα(p/+ /k2 +m)γβ(p/+ /k1 +m)γρ

k2
1k

2
2(k1 − k2)2((p+ k1)2 −m2)((p+ k2)2 −m2)

×

× ((k2 − 2k1)αgβρ + (k1 + k2)βgρα + (k1 − 2k2)ρgαβ) =

=
i

2
g4
sCFCA

∫ d4k1

(2π)4

d4k2

(2π)4

1

k2
1k

2
2(k1 − k2)2((p+ k1)2 −m2)((p+ k2)2 −m2)

×

×
[

(/k2 − 2/k1)(p/ + /k2 +m)γα(p/+ /k1 +m)γα +

+γα(p/ + /k2 +m)(/k1 + /k2)(p/+ /k1 +m)γα +

+γα(p/+ /k2 +m)γα(p/+ /k1 +m)(/k1 − 2/k2)
]

. (J.42)

For the evaluation of the Dirac structure sandwiched between the two on-shell spinors with
momentum p and mass m an evaluation package has been used which was of help also for
the calculations in Appendix H. The result (symmetrized with respect to k1 and k2 and
with the effective replacement ki → kip/m = ki0) gives rise to the following numerator N
and denominator D of the integrand,

N = 4
[

2(k1k2)k10 + 2mk2
10 + 2(k1k2)k20 + 2mk2

20 − 2mk10k20 +

−2k2
1k20 − 2k2

2k10 −m(k1k2) +mk2
1 +mk2

2

]

=

= 4
[

2k2
10k20 − 2(~k1

~k2)k10 + 2mk2
10 + 2k10k

2
20 − 2(~k1

~k2)k20 + 2mk2
20 +

−2mk10k20 − 2k2
10k20 + 2~k2

1k20 − 2k10k
2
20 + 2~k2

2k10 +

−mk10k20 +m(~k1
~k2) +mk2

10 −m~k2
1 +mk2

20 −mk2
2

]

= (J.43)

= 4
[

3m(k2
10 − k10k20 + k2

20) + (m− 2k10 − 2k20)~k1
~k2 − (m− 2k20)~k

2
1 − (m− 2k10)~k

2
2

]

,

D = (k2
10 − κ2

1 − iǫ)(k2
20 − κ2

2 − iǫ)((k10 − k20)
2 − κ2

3 − iǫ)(k2
20 + 2mk20 − κ2

2 − iǫ). (J.44)

The poles of the denominator with respect to k20 are found to be

k20 = ±(κ2 + iǫ),

k20 = k10 ± (κ3 + iǫ),

k20 = −m± (κ′2 + iǫ). (J.45)

Now the residue theorem can be used to close the integration over the time component
of k2 in the upper complex half plane. The corresponding denominator factors of the
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residues are called D20, D30 and D′20 for these three zeros, respectively. They read

D20 = (k2
10 − κ2

1)(k20 + κ2)
(

(k10 − k20)
2 − κ2

3

) (

(m+ k20)
2 − κ2

2 −m2
) ∣

∣

∣

k20=κ2

=

= 2κ2(k
2
10 − κ2

1)
(

(k10 − κ2)
2 − κ2

3

) (

(m+ κ2)
2 − κ2

2 −m2
)

= (J.46)

= 2κ2(k
2
10 − κ2

1)
(

(k10 − κ2)
2 − κ2

3

)

2mκ2 = 4mκ2
2(k

2
10 − κ2

1)
(

(k10 − κ2)
2 − κ2

3

)

,

D30 = (k2
10 − κ2

1)(k
2
20 − κ2

2)(k20 − k10 + κ3)
(

(m+ k20)
2 − κ2

2 −m2
) ∣

∣

∣

k20=k10+κ3

=

= 2κ3(k
2
10 − κ2

1)
(

(k10 + κ3)
2 − κ2

2

) (

(m+ k10 + κ3)
2 − κ2

2 −m2
)

, (J.47)

D′20 = (k2
10 − κ2

1)(k
2
20 − κ2

2)
(

(k20 − k10)
2 − κ3

)

(k20 +m+ κ′2)
∣

∣

∣

k20=−m+κ′2
=

= (k2
10 − κ2

1)
(

(−m+ κ′2)
2 − κ2

2

) (

(−m+ κ′2 − k10)
2 − κ2

3

)

2κ′2 =

= 2κ′2(k
2
10 − κ2

1)
(

m2 − 2mκ′2 + κ′2
2 − κ2

2

) (

(−m+ κ′2 − k10)
2 − κ2

3

)

=

= 4mκ′2(k
2
10 − κ2

1)(m− κ′2)
(

(−m+ κ′2 − k10)
2 − κ2

3

)

. (J.48)

If one replaces the propagator factor ((p + k1)
2 − m2)−1 by −iπδ((p + k1)

2 − m2), one
obtains two parts according to the two solutions of the delta function with respect to k10,

k1± = −m±
√

m2 + κ2
1 = −m± κ′1. (J.49)

They were previously called the scattering and the annihilation part. The denominator
factors obtained by using these solutions are called D2±, D3±, and D′2±. They read

D2± = 4mκ2
2

(

(−m± κ′1)
2 − κ2

1

) (

(−m± κ′1 − κ2)
2 − κ2

3

)

=

= 4mκ2
2(m

2 ∓ 2mκ′1 + κ′1
2 − κ2

1)
(

m2 ∓mκ′1 + 2mκ2 + κ′1
2 ∓ 2κ′1κ2 + κ2

2 − κ2
3

)

=

= 8m2κ2
2(m∓ κ′1)

(

m2 + 2mκ2 +m2 + ~k2
1 + ~k2

2 − ~k2
1 + 2~k1

~k2 − ~k2
2 ∓ 2(m+ κ2)κ

′
1

)

=

= 16m2κ2
2(m∓ κ′1)

(

m2 +mκ2 + ~k1
~k2 ∓ (m+ κ2)κ

′
1

)

=

= 16m2κ2
2(m∓ κ′1)

(

~k1
~k2 + (m∓ κ′1)(m+ κ2)

)

=: 16m2κ2
2A2±, (J.50)

D3± = 2κ3

(

(−m± κ′1)
2 − κ2

1

) (

(−m± κ′1 + κ3)
2 − κ2

2

) (

(±κ′1 + κ3)
2 − κ2

2 −m2
)

=

= 4mκ3(m∓ κ′1)
(

m2 ∓ 2mκ′1 − 2mκ3 + κ′1
2 ± 2κ′1κ3 + κ2

3 − κ2
2

)

×

×
(

κ′1
2 ± 2κ′1κ3 + κ2

3 − κ2
2 −m2

)

=

= 4mκ3(m∓ κ′1)
(

m2 ∓ 2mκ′1 − 2mκ3 + ~k2
1 +m2 ± 2κ′1κ3 + ~k2

1 − 2~k1
~k2 + ~k2

2 − ~k2
2

)

×

×
(

~k2
1 +m2 ± 2κ′1κ3 + ~k2

1 − 2~k1
~k2 + ~k2

2 − ~k2
2 −m2

)

=

= 16mκ3(m∓ κ′1)
(

m2 ∓mκ′1 −mκ3 ± κ′1κ3 + ~k2
1 − ~k1

~k2

) (

~k2
1 − ~k1

~k2 ± κ′1κ3

)

=

= 16mκ3(m∓ κ′1)
(

~k1(~k1 − ~k2) + (m∓ κ′1)(m− κ3)
) (

~k1(~k1 − ~k2) ± κ′1κ3

)

=

=: 16mκ3A3±, (J.51)
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D′2± = 4mκ′2
(

(−m± κ′1)
2 − κ2

1

)

(m− κ′2)
(

(−m+ κ′2 +m∓ κ′1)
2 − κ2

3

)

=

= 8m2κ′2(m∓ κ′1)(m− κ′2)
(

κ′2
2 ∓ 2κ′1κ

′
2 + κ′1

2 − κ2
3

)

=

= 8m2κ′2(m∓ κ′1)(m− κ′2)
(

2m2 + 2~k1
~k2 ∓ 2κ′1κ

′
2

)

=

= 16m2κ′2(m∓ κ′1)(m− κ′2)
(

~k1
~k2 +m2 ∓ κ′1κ

′
2

)

=: 16m2κ′2(m− κ′2)A
′
2±. (J.52)

The corresponding numerators are calculated in the same manner. One obtains

N2± = 4
[

3m
(

~k1(~k1 + ~k2) + (2m+ κ2)(m∓ κ′1)
)

+

+2κ2
~k1(~k1 − ~k2) ∓ 2κ′1(

~k1 − ~k2)~k2

]

, (J.53)

N3± = 4
[

3m
(

~k2
1 + (2m− κ3)(m∓ κ′1)

)

−m~k1
~k2 +

+2κ3
~k1(~k1 − ~k2) ± 2κ′1(

~k1 − ~k2)
2
]

, (J.54)

N ′2± = 4
[

3m
(

2(~k1
~k2 +m2) + (m− κ′2)(m∓ κ′1)

)

−m~k1
~k2 +

+2κ′2
~k1(~k1 − ~k2) ∓ 2κ′1(

~k1 − ~k2)~k2

]

. (J.55)

One now combines the scattering and the annihilation part for each of the three contri-
butions according to the rule

Ni+

Di+
+
Ni−
Di−

=
Ni+Ai− +Ni−Ai+

Di
=
Ni

Di
(J.56)

where Di = Di+Ai− = Di−Ai+. The necessary manipulations were done by a MATHE-
MATICA package which was designed to calculate the needed residues (i.e. localizing the
poles in the upper complex half plane and calculating the residues).

J.3.1 The limit µ≪ m

The rather lengthy result of the above calculations cannot be shown here. But it can be
simplified drastically in the special case µ ≪ m. The substitutions which are used are
the same as the ones applied to the Coulomb gauge case, i.e. taking the variable t for
cos θ with t0 = (κ2

1 + κ2
2)/2κ1κ2, using κ2 = κ1x (where x can be replaced by 1/x for a

part of the integration) and finally chosing κ1 = my. The integration measure changes
accordingly to

∫ d3k1

(2π)3

d3k2

(2π)3
=

2

(2π)4

∫ µ

0
κ2

1dκ1

∫ ∞

0
κ2

2dκ2

∫ +1

−1
dt = (J.57)

=
2

(2π)4

∫ µ

0
κ5

1dκ1

∫ ∞

0
x2dx

∫ +1

−1
dt =

2m6

(2π)4

∫ µ/m

0
y5dy

∫ ∞

0
x2dx

∫ +1

−1
dt.

Because the y range extends up to µ/m≪ 1, one can expand in y. The integrand is then
given by

1 + x2 − 2x(t0 − t)

4m5x3y4(t0 − t)
. (J.58)
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Including all overall factors, including the factor −iπ/2π = −i/2 from the soft part and
the factor 2πi/2π = i from the residues, one obtains

Σsoft1 =
m

4(2π)4

∫ µ/m

0
y dy

∫ ∞

0
dx
∫ +1

−1

(

−2 +
1 + x2

x(t0 − t)

)

dt =

=
mg4

sCFCA
4(2π)4

∫ µ/m

0
y dy

∫ ∞

0
dx
∫ t0+1

t0−1

(

−2 +
1 + x2

xt′

)

dt′ =

=
mg4

sCFCA
4(2π)4

∫ µ/m

0
y dy

∫ ∞

0
dx

(

−4 +
1 + x2

x
ln
(

t0 + 1

t0 − 1

)

)

=

=
mg4

sCFCA
4(2π)4

∫ µ/m

0
y dy

∫ ∞

0

(

−4 + 2
1 + x2

x
ln
∣

∣

∣

∣

1 + x

1 − x

∣

∣

∣

∣

)

dx =

=
mg4

sCFCA
4(2π)4

∫ µ/m

0
y dy

[

∫ 1

0

(

−4 + 2
1 + x2

x
ln
(

1 + x

1 − x

)

)

dx +

(x′ = 1/x) +
∫ 1

0

(

−4 + 2
1 + x′2

x′
ln

(

1 + x′

1 − x′

)

dx′

x′2

)]

=

=
mg4

sCFCA
4(2π)4

∫ µ/m

0
y dy

∫ 1

0

(

−4 + 2
1 + x2

x
ln
(

1 + x

1 − x

)

)

1 + x2

x2
dx =

=
mg4

sCFCAπ
2

4(2π)4

∫ µ/m

0
y dy =

mα2
sCFCA
8

µ2

2m2
=

α2
sCFCA
16m

µ2. (J.59)

This result coincides with the one presented in Eq. (J.41).



Appendix K

The trigluon diagram calculations

This appendix contains calculations for the quark loop diagram with one external photon
and three external gluon lines. This diagram is needed in Section 7.5 to find the low-energy
contribution to the spectral density.

K.1 The vector contribution to the effective action

As it is shown in the main text, the contribution to the effective action for four external
bosons is given by Γ4[B] where

i
∂

∂m
Γ4[B] = Tr (S0γ

µBµS0γ
νBνS0γ

ρBρS0γ
σBσS0) (K.1)

with Bµ = eAµ + gsB
a
µta as elements of the algebra of the gauge group SU(Nc) ⊗ U(1).

Using Bµ(x) = xαGαµ/2, the right hand side can be rewritten as

i
∂

∂m
Γ4[B] =

1

16
t(α, µ; β, ν; γ, ρ; δ, σ)Tr (GαµGβνGγρGδσ) . (K.2)

In momentum space (xµ → −i∂/∂pµ), the coefficient t(α, µ; β, ν; γ, ρ; δ, σ) is given by

t(α, µ; β, ν; γ, ρ; δ, σ) = Tr
(

S(p)γµ∂αS(p)γν∂βS(p)γρ∂γS(p)γσ∂δS(p)
)

. (K.3)

The derivative rule

−i∂µS(p) = −i ∂
∂pµ

S(p) = S(p)γµS(p) (K.4)

can be used to calculate the trace as a long chain of elements S(p) and γµ. This trace
can be considered independently from the (colour) trace of the field strength tensors, if
the antisymmetric structure is transferred to it. This can be done by using

Gλ1λ2 = fλ1λ2(α, µ)Gαµ, fλ1λ2(α, µ) =
1

2
(gλ1αgλ2µ − gλ2αgλ1µ) . (K.5)

The trace is calculated and the integral over p is taken according to

∫

d4p

(2π)4

1

(−p2 +m2)a
=

i

(4π)2

Γ(a− 2)

Γ(a)
(m2)2−a =

i

(4π)2

(m2)2−a

(a− 1)(a− 2)
for a > 2.

(K.6)
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Because there is no outer moment, tensor integrals with odd rank vanish. For tensor
integrals with even rank one can use the rules (cf. the beginning of Appendix G, the
dimension D is kept explicit for a moment)

pλ1pλ2 → m2

D
gλ1λ2 , (K.7)

pλ2pλ2pλ3pλ4 → m4

3D(D + 2)

(

gλ1λ2gλ3λ4 + perm.
)

(K.8)

where the permutations are all pairings of an even number of indices. The common
normalization can be calculated by contracting the starting pairing with the permuted
ones in a kind of a “domino game”, each closed circle resulting in a factor D. The results
one obtains (also for the lower order terms) using the package triadi.add are given by

t(α, µ; β, ν) = − 8i

3m(4π)2
Tr(f(α, µ)f(β, ν)), (K.9)

t(α, µ; β, ν; γ, ρ) = − 8i

3m3(4π)2
Tr(f(α, µ)f(β, ν)f(γ, ρ)), (K.10)

t(α, µ; β, ν; γ, ρ; δ, σ) =
4 × 4i

45m5(4π)2

[

− 7Tr(f(α, µ)f(β, ν)f(γ, ρ)f(δ, σ)) +

+36Tr(f(β, ν)f(γ, ρ)f(α, µ)f(δ, σ)) + 27Tr(f(γ, ρ)f(α, µ)f(β, ν)f(δ, σ)) +

−2Tr(f(α, µ)f(β, ν))Tr(f(γ, ρ)f(δ, σ)) − 13Tr(f(α, µ)f(γ, ρ))Tr(f(β, ν)f(δ, σ)) +

−5Tr(f(β, ν)f(γ, ρ))Tr(f(α, µ)f(δ, σ))
]

. (K.11)

where the traces are understood as traces with respect to the Lorentz indices. The addi-
tional factor 4 in the last expression results from the four (cyclic symmetric) possibilities
to obtain the coefficient to eg3

s . A remark on the procedure to obtain this result is of
order here. For the last expression there are two main structures available, denoted by
Tr(f(. . .)f(. . .)f(. . .)f(. . .)) and Tr(f(. . .)f(. . .))Tr(f(. . .)f(. . .)). The decision on which
of these structures corresponds to a specific term in the result can be made by looking at
the path that emerges from concatenating the index pairs (α, µ), (β, ν), (γ, ρ), and (δ, σ)
and the index pairs occurring in the specific term (as arguments of the f(. . .)), again like
a domino game. If this path is a single (cyclic) one, the term belongs to a structure of the
first kind, in the other case (when there are two cyclic paths) it belongs to a structure of
the second kind (however, up to a factor 4). This path can be visualized by writing the
indices α, β, γ, and δ in a column, next to a column built by µ, ν, ρ, and σ. Joining the
index pairs (horizontal lines) as well as the pairs combined by the f(. . .) factors (diagonal
lines; horizontal lines are excluded because of the antisymmetry), one obtains the path(s).
The order within the trace can be found by rearranging the lines to the canonical one
(with a zig-zag line down and a diagonal up again, no matter what direction down one
takes).

One now can collect the relevant contributions. The coefficients multiplying g2
s , g

3
s ,

and eg3
s are found to be

t2 = Tr(TaTb)t
ab
2 , t3 = Tr(TaTbTc)t

abc
3 , t3V = Tr(TaTbTc)t

abc
3V (K.12)
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where

tab2 = − 8i

3m(4π)2
Tr(GaGb), (K.13)

tabc3 = − 8i

3m3(4π)2
Tr(GaGbGc), (K.14)

tabc3V =
16i

45m5(4π)2

[

− 7Tr(FGaGbGc) + 36Tr(FGbGcGa) + 27Tr(FGcGaGb) +

−5Tr(FGa)Tr(GbGc) − 13Tr(FGb)Tr(GcGa) − 2Tr(FGc)Tr(GaGb)
]

(K.15)

(traces again only for the Lorentz indices). For the traces of the Gell–Mann-Matrices one
obtains

2Tr(TaTb) = δab, 4Tr(TaTbTc) = 2Tr(Ta[Tb, Tc]) + 2Tr(Ta{Tb, Tc}) = ifabc + dabc
(K.16)

such that (with fabcTr(FGaGbGc) = 0, fabcTr(FGa)Tr(GbGc) = 0)

t2 = − 4i

3m(4π)2
δabTr(GaGb), (K.17)

t3 = − 2i

3m3(4π)2
(ifabc + dabc)Tr(GaGbGc), (K.18)

t3V =
16i

45m5(4π)2
dabc

[

14Tr(FGaGbGc) − 5Tr(FGa)Tr(GbGc)
]

. (K.19)

Finally, one integrates over m which is trivial. Therefore, the contribution of the one-
photon three-gluon diagram to the effective action is given by

Γ3V =
eg3
sdabc

180m4(4π)2

[

14Tr(FGaGbGc) − 5Tr(FGa)Tr(GbGc)
]

. (K.20)

K.1.1 Calculation of the vector current

For the calculation of the electromagnetic current one uses

eJµ = −δFµ′ν′
δAµ

δΓ[A]

δFµ′ν′
= −(∂µ′δ

µ
ν′ − ∂ν′δ

µ
µ′)
δΓ[A]

δFµ′ν′
= −2∂ν

δΓ[A]

δFνµ
. (K.21)

and obtains
Jµ = ∂νOµν (K.22)

where O is an antisymmetric operator,

Oµν = −2

e

δΓ[A]

δFνµ
=

−g3
sdabc

90m4(4π)2

[

14(GaGbGc)µν − 5(Ga)µνTr(GbGc)
]

(K.23)

which can also be expressed by the operator expressions

Oµν
1 = −dabc(Ga)µνTr(GbGc), Oµν

2 = dabc(G
aGbGc)µν . (K.24)

This structure automatically guarantees current conservation ∂µJ
µ = 0.
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K.1.2 The correlator function

As a first step towards the calculation of the vacuum polarization function one has to
calculate the vacuum expectation value of the time ordered product of two currents at
locations x and x′,

〈TJµ(x)Jµ′(x′)〉 = ∂xν∂
x′

ν′ 〈TOµν(x)Oµ′ν′(x
′)〉 (K.25)

(for simplicity all Lorentz indices will be written as lower indices for the time being) where

〈TOµν(x)Oµ′ν′(x
′)〉 =

g6
s

8100m8(4π)4

[

25〈O1µν(x)O1µ′ν′(x
′)〉 + 70〈O1µν(x)O2µ′ν′(x

′)〉 +

+70〈O2µν(x)O1µ′ν′(x
′)〉 + 196〈O2µν(x)O2µ′ν′(x

′)〉
]

. (K.26)

Each of the operators can then be written as a product of three field strength tensor
components. Taking, for example, the last term, one can use Wick’s theorem and obtains

〈O2µν(x)O2µ′ν′(x
′)〉 =

= dabcda′b′c′〈Ga
µα(x)G

b
αβ(x)G

c
βν(x)G

a′

µ′α′(x′)Gb′

α′β′(x′)Gc′

β′ν′(x
′)〉 =

= dabcda′b′c′
[

〈Ga
µα(x)G

a′

µ′α′(x′)〉〈Gb
αβ(x)G

b′

α′β′(x′)〉〈Gc
βν(x)G

c′

β′ν′(x
′)〉 + 5 perm.

]

(K.27)

where “5 perm.” stands for the 5 permutations which result from the five other pair
groupings of {a, b, c} and {a′, b′, c′}. Each of the factors of this sum can now be divided
up again into four terms,

〈Ga
µν(x)G

a′

µ′ν′(x
′)〉 = 〈(∂xµBa

ν (x) − ∂xνB
a
µ(x))(∂

x′

µ′B
a′

ν′ (x
′) − ∂x

′

ν′B
a′

µ′(x
′))〉 =

= 〈∂xµBa
ν (x)∂

x′

µ′B
a′

ν′ (x
′)〉 − 〈∂xµBa

ν (x)∂
x′

ν′B
a′

µ′(x
′)〉 +

−〈∂xνBa
µ(x)∂

x′

µ′B
a′

ν′ (x
′)〉 + 〈∂xνBa

µ(x)∂
x′

ν′B
a′

µ′(x
′)〉 =

= ∂xµ∂
x′

µ′ 〈Ba
ν (x)B

a′

ν′ (x
′)〉 − ∂xµ∂

x′

ν′ 〈Ba
ν (x)B

a′

µ′(x
′)〉 +

−∂xν ∂x
′

µ′ 〈Ba
µ(x)B

a′

ν′ (x
′)〉 + ∂xν∂

x′

ν′ 〈Ba
µ(x)B

a′

µ′(x
′)〉 (K.28)

K.1.3 Correlator function in terms of the scalar propagator

Next one has

〈Ba
µ(x)B

a′

µ′(x
′)〉 = −iδaa′gµµ′D(x− x′) (K.29)

where D(x− x′) is the propagator of a scalar particle. Therefore, one obtains

〈Ga
µν(x)G

a′

µ′ν′(x
′)〉 = −iδaa′

[

gνν′∂
x
µ∂

x′

µ′D(x− x′) − gνµ′∂
x
µ∂

x′

ν′D(x− x′) +

−gµν′∂xν∂x
′

µ′D(x− x′) + gµµ′∂
x
ν∂

x′

ν′D(x− x′)
]

. (K.30)

One can use ∂x
′

µ′D(x− x′) = −∂xµ′D(x− x′) and can go to the point x′ = 0,

〈Ga
µν(x)G

a′

µ′ν′(0)〉 = iδaa
′
[

gνν′∂
x
µ∂

x
µ′D(x) − gνµ′∂

x
µ∂

x
ν′D(x) +

−gµν′∂xν∂xµ′D(x) + gµµ′∂
x
ν∂

x
ν′D(x)

]

. (K.31)
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Using finally [107, 108, 112]

D(x) =
iΓ(λ)

4πλ+1(−x2)λ
=

−iΓ(1)

4π2x2
=

−i
4π2x2

(K.32)

(note that in contrast to Refs. [107, 108, 112] the Minkowskian metric is used), the inner-
most building block for the vacuum expectation value is given by

〈Ga
µν(x)G

a′

µ′ν′(0)〉 =
δaa

′

4π2

[

gνν′∂µ∂µ′ − gνµ′∂µ∂ν′ − gµν′∂ν∂µ′ + gµµ′∂ν∂ν′
] 1

x2
. (K.33)

All this as well as the two derivatives with respect to the indices ν and ν ′ (also converted
from x′ to x) are implemented in the package wicki.add. The result of this automatic
calculation is given by

〈TJµ(x)Jµ′(0)〉 =
g6
sdabcdabc

8100m8(4π)4
417792

11gµµ′x
2 − 14xµxµ′

(4π2)3x16
. (K.34)

This has to be compared with

(

∂µ∂µ′ − gµµ′∂
2
) 1

x12
=

−12

x16
(11gµν′x

2 − 14xµxµ′), (K.35)

Therefore, one obtains

〈TJµ(x)Jµ′(0)〉 =
−34dabcdabc
2025π4m8

(

αs
π

)3 (

∂µ∂µ′ − gµµ′∂
2
) 1

x12
. (K.36)

K.1.4 The spectral density – conventional approach

There are two ways to obtain the spectral density. The first (conventional) one consists
of first calculating the vacuum polarization function in momentum space, i.e. to calculate
the integral

12π2i
∫

〈TJµ(x)Jν(0)〉eiqxd4x. (K.37)

Here one uses the integration-by-parts technique,
∫

[

(∂µ∂ν − gµν∂
2)

1

x12

]

eiqxd4x =

=
∫

1

x12

[

(∂µ∂ν − gµν∂
2)eiqx

]

d4x = −(qµqν − gµνq
2)
∫

1

x12
eiqxd4x, (K.38)

followed by (cf. Refs. [61, 292], transformed here to Minkowskian space)

∫

e2ikxdDx

(−x2)λ+1−α =
−iπλ+1

(−k2)2α

Γ(α)

Γ(λ+ 1 − α)
, D = 2(λ+ 1), λ = 1 − ε (K.39)

which for λ+ 1 − α = 6 and k = q/2 results in

∫

eiqx

x12
dDx =

−iπλ+1Γ(α)

(−k2)αΓ(λ+ 1 − α)
=

−iπλ+1Γ(λ− 5)

(−k2)λ−5Γ(6)
=

=
−iπ2−εΓ(−4 − ε)

(−k2)−4−εΓ(6)
= −iπ2−ε

(

µ

2

)2ε Γ(1 − ε)

Γ(6)
(−k2)4

(

−4k2

µ2

)ε
Γ(−4 − ε)

Γ(1 − ε)
=

= −iπ2−ε
(

µ

2

)2ε Γ(1 − ε)

Γ(6)

(

q2

4

)4 (−1

24ε
+

25

288
− 1

24
ln

(

−q2

µ2

)

+O(ε)

)

(K.40)
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Near the origin in momentum space, i.e. for small values of q2, only the logarithmic part
is relevant. Then one can set ε = 0. With 24 = Γ(5) one obtains

∫

eiqx

x12
d4x→ −iπ2

Γ(6)Γ(5)

(

q2

4

)4

ln

(

µ2

−q2

)

. (K.41)

Therefore, the vacuum polarization function in momentum space is given by

12π2i
∫

〈TJµ(x)Jν(0)〉eiqxd4x = Cg(qµqν − gµνq
2)

(

q2

4m2

)4

ln

(

µ2

−q2

)

(K.42)

and

Π(−q2) = Cg

(

q2

4m2

)4

ln

(

µ2

−q2

)

, Cg =
17dabcdabc
243000

(

αs
π

)3

. (K.43)

Taking the discontinuity of this expression, divided by 2πi, one obtains

ρ(s) =
1

2πi
(Π(s+ i0) − Π(s− i0)) = Cg

(

s

4m2

)4

. (K.44)

K.1.5 The spectral density – advanced approach

For the propagator with mass m in four-dimensional Minkowskian space,

D(x2, m2) =
im

√
−x2K1(m

√
−x2)

4π2(−x2)
(K.45)

(K1(z) is the McDonald function of order 1), one obtains

∫ ∞

0
D(x2, s)s4ds =

∫ ∞

0

i
√
−sx2K1(

√
−sx2)

4π(−x2)
s4ds = (t =

√
−sx2)

=
∫ ∞

0

itK1(t)

4π2(−x2)

(

−t2
x2

)4 −2t dt

x2
=

=
i

2π2

(

1

x2

)6 ∫ ∞

0
t10K1(t)dt =

28Γ(6)Γ(5)

π2

i

x12
(K.46)

(cf. Ref. [108], Eq. (18)). Using this, one can immediately read off the spectral density.

K.2 Results for the tensor current

In a similar way the tensor current

Jµν = gT ψ̄σ
µνψ, σµν =

i

2
[γµ, γν] (K.47)

can be considered. In contrast to the vector current, in this case there is no problem with
the action of the potential on the vacuum state. Therefore, one has

iΓT [B] = gTTr (σαµFαµS0γ
νBνS0γ

ρBρS0γ
σBσS0) (K.48)
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where one of the field strength tensors is already given explicitly, including the “charge”
gT . Because of the asymmetry of this expression, it is not derived from the effective
action. Using the aforementioned gauge, one now substitutes for the three potentials in
terms of the field strength tensors. This gives rise to a factor 1/8 and one obtains

iΓT [B] =
gT
8
t′(α, µ; β, ν; γ, ρ; δ, σ)Tr(FαµGβνGγρGδσ). (K.49)

where (note that xµ → −i∂µp )

t′(α, µ; β, ν; γ, ρ; δ, σ) = (−i)3Tr
(

S(p)σαµS(p)γν∂βS(p)γρ∂γS(p)γσ∂δS(p)
)

. (K.50)

Following the same steps as before, one obtains

t(α, µ; β, ν; γ, ρ; δ, σ) =
4igT

3m3(4π)2

[

4Tr(f(α, µ)f(β, ν)f(γ, ρ)f(δ, σ)) +

−6Tr(f(α, µ)f(γ, ρ)f(δ, σ)f(β, ν))− 6Tr(f(α, µ)f(δ, σ)f(β, ν)f(γ, ρ)) +

+Tr(f(α, µ)f(β, ν))Tr(f(γ, ρ)f(δ, σ)) + 2Tr(f(α, µ)f(γ, ρ))Tr(f(δ, σ)f(β, ν)) +

+Tr(f(α, µ)f(δ, σ))Tr(f(β, ν)f(γ, ρ))
]

. (K.51)

In this case there is no additional factor because there is only one way to extract a further
factor g3

s . Multiplying this with the trace of the field strength tensors, one obtains

tabc3W =
4igTg

3
s

3m3(4π)2

[

4Tr(FGaGbGc) − 6Tr(FGbGcGa) − 6Tr(FGcGaGb) +

+Tr(FGa)Tr(GbGc) + 2Tr(FGb)Tr(GcGa) + Tr(FGc)Tr(GaGb)
]

. (K.52)

As a next step one obtains

t3W = Tr(TaTbTc)t
abc
3W =

1

4
(ifabc + dabc)t

abc
3W =

=
igTg

3
sdabc

3m3(4π)2

[

4Tr(FGaGbGc) − 6Tr(FGbGcGa) − 6Tr(FGcGaGb) +

+Tr(FGa)Tr(GbGc) + 2Tr(FGb)Tr(GcGa) + Tr(FGc)Tr(GaGb)
]

=

=
−4igTg

3
sdabc

3m3(4π)2

[

2Tr(FGaGbGc) − Tr(FGa)Tr(GbGc)
]

(K.53)

and therefore (the factor 1/8 included)

Γ3W =
−gT g3

sdabc
6m3(4π)2

[

2Tr(FGaGbGc) − Tr(FGa)Tr(GbGc)
]

. (K.54)

The current is obtained by variation with respect to F ,

gTJ
µν = −δΓ3W

δFµν
=

−gT g3
sdabc

6m3(4π)2

[

2(GaGbGc)µν − (Ga)µνTr(GbGc)
]

. (K.55)
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K.2.1 The direct correlator

Calculating the time-ordered product of the two currents in configuration space, one
obtains

〈TJµν(x)Jµ′ν′(0)〉 =
g6
sdabcdabc

36m6(4π)4

1024

(4π2)3x14

[

x2(gµν′gνµ′ − gµµ′gνν′) +

+2(xµxµ′gνν′ − xµxν′gνµ′ − xνxµ′gµν′ + xνxν′gµµ′)
]

=

=
g6
sdabcdabc

9π4(4π2)3m6x14

[

− x2(gµµ′gνν′ − gµν′gνµ′) +

+2(xµxµ′gνν′ − xµxν′gνµ′ − xνxµ′gµν′ + xνxν′gµµ′)
]

. (K.56)

In order to integrate this expression over d4x, one uses the fact that

∫ 1

x12
eiqxdDx = −iπ2−εΓ(−4 − ε)

Γ(6)

(

−q
2

4

)4+ε

. (K.57)

On the other hand, the tensor integral is given by the two-fold application of the q-
differentiation to Eq. (K.57),

∫ 1

x14
eiqxdDx = +iπ2−εΓ(−5 − ε)

Γ(7)

(

−q
2

4

)5+ε

. (K.58)

For this one calculates

∂νq

(

−q
2

4

)5+ε

= (5 + ε)

(

−q
2

4

)4+ε (

−1

2
qν
)

= −1

2
(5 + ε)

(

−q
2

4

)4+ε

qν , (K.59)

∂µq ∂
ν
q

(

−q
2

4

)5+ε

=
1

4
(5 + ε)(4 + ε)

(

−q
2

4

)3+ε

qµqν − 1

2
(5 + ε)

(

−q
2

4

)4+ε

gµν (K.60)

and thus obtains
∫ xµxν

x14
eiqxdDx = −∂µq ∂νq

∫ 1

x14
eiqxdDx =

= −iπ2−ε
(

µ

2

)ε Γ(1 − ε)

Γ(7)

(

−q
2

4

)3 [
1

4
(5 + ε)(4 + ε)

Γ(−5 − ε)

Γ(1 − ε)

(

− q2

µ2

)ε

qµqν +

+
1

8
(5 + ε)

Γ(−5 − ε)

Γ(1 − ε)

(

− q2

µ2

)ε

q2gµν
]

=

= −iπ2−ε
(

µ

2

)ε Γ(1 − ε)

Γ(7)

(

−q
2

4

)3 [(
1

24ε
− 11

144
+

1

24
ln

(

−q2

µ2

))

qµqν +

+
1

8

(

1

24ε
− 25

288
+

1

24
ln

(

−q2

µ2

))

q2gµν +O(ε)

]

. (K.61)

For small values of q2 one can again skip the singular parts, therefore

∫

1

x12
eiqxd4x → −iπ2

Γ(6)Γ(5)

(

q2

4

)4

ln

(

µ2

−q2

)

, (K.62)

∫

xµxν

x14
eiqxd4x → −iπ2

6Γ(6)Γ(5)

(

q2

4

)3 (

qµqν +
1

8
q2gµν

)

ln

(

µ2

−q2

)

. (K.63)
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Therefore, one obtains

∫

1

x14

[

x2 (gµν′gνµ′ − gµµ′gνν′) +

+2 (xµxµ′gνν′ − xµxν′gνµ′ − xνxµ′gµν′ + xνxν′gµµ′)
]

=

=
−iπ2

Γ(6)Γ(5)

(

q2

4

)3

ln

(

µ2

−q2

)[

q2

4
(gµν′gνµ′ − gµµ′gνν′) +

+
1

3
(qµqµ′ +

1

8
q2gµµ′)gνν′ −

1

3
(qµqν′ +

1

8
q2gµν′)gνµ′ +

−1

3
(qνqµ′ +

1

8
q2gνµ′)gµν′ +

1

3
(qνqν′ +

1

8
q2gνν′)gµµ′

]

=

=
−iπ2

Γ(6)Γ(5)

(

q2

4

)3

ln

(

µ2

−q2

)[

q2

24
(6(gµν′gνµ′ − gµµ′gνν′) + 2gµµ′gνν′ − 2gµν′gνµ′) +

+
1

3
(qµqµ′gνν′ − qµqν′gνµ′ − qνqµ′gµν′ + qνqν′gµµ′)

]

=

=
−iπ2

6Γ(6)Γ(5)

(

q2

4

)3

ln

(

µ2

−q2

) [

− q2(gµµ′gνν′ − gµν′gνµ′) +

+2 (qµqµ′gνν′ − qµqν′gνµ′ − qνqµ′gµν′ + qνqν′gµµ′)

]

. (K.64)

The correlator function is given by

12π2i
∫

〈TJµν(x)Jµ′ν′(0)〉eiqxd4x =

= 12π2i
g6
sdabcdabc

9π4(4π2)3m6

−iπ2

6Γ(6)Γ(5)

(

q2

4

)3

ln

(

µ2

−q2

)[

− q2(gµµ′gνν′ − gµν′gνµ′) +

+2 (qµqµ′gνν′ − qµqν′gνµ′ − qνqµ′gµν′ + qνqν′gµµ′)

]

=

=
dabcdabc
3240

(

αs
π

)3
(

q2

4m2

)3

ln

(

µ2

−q2

)[

− q2

4
(gµν′gνµ′ − gµµ′gνν′) +

+
1

2
(qµqµ′gνν′ − qµqν′gνµ′ − qνqµ′gµν′ + qνqν′gµµ′)

]

. (K.65)

K.2.2 The mixed correlator

One can also calculate the mixed correlator of vector and tensor current,

12π2i
∫

〈TJµ(x)Jµ′ν′(0)〉eiqxd4x. (K.66)

Starting with

Oµν =
−g3

s

90m4(4π)2
[5Oµν

1 + 14Oµν
2 ], Õµν =

−g3
s

6m3(4π)2
[Oµν

1 + 2Oµν
2 ] (K.67)
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one obtains

〈TJµ(x)Jµ′ν′(0)〉 = ∂ν〈TOµν(x)Õµ′ν′〉 =

=
g6
s∂

ν

540m7(4π)4

[

5〈TO1µν(x)O1µ′ν′〉 + 10〈TO1µν(x)O2µ′ν′〉 +

+14〈TO2µν(x)O1µ′ν′〉 + 28〈TO2µν(x)O2µ′ν′〉
]

=

=
−g6

sdabcdabc
540m7(4π)4

49152
gµµ′xν′ − gµν′xµ′

(4π2)3x14
=

−16g6
sdabcdabc

45π4(4π2)3m7

gµµ′xν′ − gµν′xµ′

x14
. (K.68)

For the Fourier integral in D dimensions one obtains (using Eq. (K.59))
∫

xµ

x14
eiqxdDx = −i∂µq

∫

1

x14
eiqxdDx =

= iπ2−ε
(

µ

2

)ε Γ(1 − ε)

Γ(7)

(

−q
2

4

)4 [
i

2
(5 + ε)

Γ(−5 − ε)

(1 − ε)

(

−q2

µ2

)ε

qµ
]

=

= −π2−ε
(

µ

2

)ε Γ(1 − ε)

6Γ(6)

(

q2

4

)4 (
1

48ε
− 25

576
+

1

48
ln

(

−q2

µ2

)

+O(ε)

)

(K.69)

and therefore (for |q2| → 0)

∫ xµ

x14
eiqxd4x → π2

12Γ(6)Γ(5)

(

q2

4

)4

ln

(

µ2

−q2

)

qµ. (K.70)

One therefore ends up with

12π2i
∫

〈TJµ(x)Jµ′ν′(0)〉eiqxd4x =

=
−16g6

sdabcdabc12π2im

45π4(4π2)3

π2

12Γ(6)Γ(5)

(

q2

4m2

)4

ln

(

µ2

−q2

)

(gµµ′qν′ − gµν′qµ′) =

=
−idabcdabc

8100

(

αs
π

)3 q2

4m

(

q2

4m2

)3

ln

(

µ2

−q2

)

(gµµ′qν′ − gµν′qµ′). (K.71)

K.3 A short note about the Gordon decomposition

Using σµν = i/2[γµ, γν ] and gµν = 1/2{γµ, γν}, one obtains

ψ̄mγµψ = ψ̄γµ(i/D)ψ = iψ̄γµγνDνψ =

= iψ̄(gµν − iσµν)Dνψ = iψ̄Dµψ + ψ̄σµνDνψ. (K.72)

Using an arrow to indicate the action of the operator Dν , one obtains by complex conju-
gation

mψ̄γµψ = iψ̄
→
Dµψ + ψ̄σµν

→
Dνψ

mψ̄γµψ = −iψ̄
←
Dµψ + ψ̄σµν

←
Dνψ

Because of
∂ν(ψ̄σ

µνψ) = ψ̄σµν
→
Dνψ + ψ̄σµν

←
Dνψ, (K.73)

the sum of both equations leads to

2mψ̄γµψ = ψ̄i
↔
Dµψ + ∂ν(ψ̄σ

µνψ),
↔
Dµ =

→
Dµ −

←
Dµ, Dµ = ∂µ − iBµ. (K.74)
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K.4 The regularized moments

In order to avoid the problems with higher moments at the origin, the regularized moments

Mn(∆) =
1

n!

(

d

dq2

)n

Π(q2)
∣

∣

∣

q2=−∆
=
∫

ρ(s)ds

(s+ ∆)n+1
(K.75)

were proposed in Ref. [274]. Here the leading order contribution starting at s = 4m2 as
well as the newly calculated three-gluon contribution starting at s = 0 are calculated. For
the leading order contribution with

ρ0(s) =

√

1 − 4m2

s

(

1 +
2m2

s

)

=
1

2
v(3 − v2) (K.76)

where

v =

√

1 − 4m2

s
⇒ s =

4m2

1 − v2
, ds =

8m2v dv

(1 − v2)2
(K.77)

one obtains

M0
n(∆) =

∫ ∞

4m2

ρ0(s)ds

(s+ ∆)n+1
=

∫ ∞

4m2

ds

(s+ ∆)n+1

√

1 − 4m2

s

(

1 +
2m2

s

)

=

=
∫ 1

0

8m2v

(1 − v2)2

(

4m2

1 − v2
+ ∆

)−n−1
v

2
(3 + v2)dv =

=
1

(4m2)n

∫ 1

0

v2(3 − v2)

(1 − v2)2

(

1

1 − v2
+

∆

4m2

)−n−1

dv =

= 4m2
∫ 1

0

v2(3 − v2)(1 − v2)n−1

(4m2 + ∆(1 − v2))n+1
dv =

(

t = v2, v =
√
t, dv =

1

2
√
t
dt
)

= 2m2
∫ 1

0

√
t(3 − t)(1 − t)n−1

(4m2 + ∆(1 − t))n+1
dt =

(

z =
∆

4m2 + ∆

)

=
2m2

(∆ + 4m2)n+1

[

3
∫ 1

0
t1/2(1 − t)n−1(1 − zt)−n−1dt +

−
∫ 1

0
t3/2(1 − t)n−1(1 − zt)−n−1dt

]

=

=
2m2

(∆ + 4m2)n+1

[

3Γ(3/2)Γ(n)

Γ(n+ 3/2)
2F1(3/2, n+ 1;n+ 3/2; z) +

−Γ(5/2)Γ(n)

Γ(n + 5/2)
2F1(5/2, n+ 1;n+ 5/2; z)

]

=

=
4m2

(4m2 + ∆)n+1

Γ(5/2)Γ(n)

2Γ(n+ 5/2)
×

×
[

3(n+ 3/2)

3/2
2F1(3/2, n+ 1;n+ 3/2; z) − 2F1(5/2, n+ 1;n+ 5/2; z)

]

=

=
4m2

(4m2 + ∆)n+1

Γ(5/2)Γ(n)

2Γ(n+ 5/2)

[

(2n+ 3) 2F1

(

3/2, n+ 1;n+ 3/2;
∆

4m2 + ∆

)

+

−2F1

(

5/2, n+ 1;n+ 5/2;
∆

4m2 + ∆

)

]

. (K.78)
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∆ = 1GeV2 ∆ = 2GeV2

M(a)
n /M(c)

n M(b)
n /M(c)

n M(a)
n /M(c)

n M(b)
n /M(c)

n

n = 5 0.000 0.854 0.000 0.841
n = 6 0.002 1.151 0.001 1.133
n = 7 0.085 1.507 0.011 1.481
n = 8 4.173 1.932 0.280 1.897
n = 9 239.3 2.439 8.089 2.392

Table K.1: The ratios of the moments from different squared energy regions for the bottom
quark (mb = 4.8GeV) with E = 1GeV and two different values for ∆.

For ∆ → 0 the expression in square brackets reduces to 2(n+ 1), so that

M0
n(∆ = 0) =

(n+ 1)

(4m2)n
Γ(5/2)Γ(n)

Γ(n + 5/2)
. (K.79)

For the new part

ρg(s) = Cg

(

s

4m2

)4

, Cg =
17dabcdabc
243000

(

αs
π

)3

(K.80)

one obtains

Mg
n(∆) =

1

n!

(

d

dq2

)n

Πg(q
2)
∣

∣

∣

q2=−∆
=

∫ ∞

0

ρg(s)ds

(s+ ∆)n+1
=

= Cg

∫ ∞

0

ds

(s+ ∆)n+1

(

s

4m2

)4

= (s = ∆x)

=
Cg
∆n

(

∆

4m2

)4 ∫ ∞

0

x4dx

(1 + x)n+1
= (x′ = 1 + x)

=
Cg
∆n

(

∆

4m2

)4 ∫ ∞

1

(x′ − 1)4dx′

(x′)n+1
=

(

x′′ =
1

x′
, dx′ = − 1

x′′2
dx′′

)

=
Cg
∆n

(

∆

4m2

)4 ∫ 1

0

(1/x′′ − 1)4dx′′

x′′2(1/x′′)n+1
=

=
Cg
∆n

(

∆

4m2

)4 ∫ 1

0
(x′′)n−5(1 − x′′)4dx′′ =

Cg
∆n

(

∆

4m2

)4 Γ(n− 4)Γ(5)

Γ(n+ 1)
. (K.81)

For a numerical comparison of the contribution below threshold with the “regular” con-
tribution one compares the moments

M(a)
n =

∫ 4m2

0

ρg(s)ds

(s+ ∆)n+1
, M(b)

n =
∫ (2m+E)2

4m2

ρ0(s)ds

(s+ ∆)n+1
, M(c)

n =
∫ ∞

(2m+E)2

ρ0(s)ds

(s+ ∆)n+1

(K.82)
where the range between s = 4m2 and s = (2m+E)2 is the resonance region. As typical
values one takes E = 1GeV, ∆ = 1GeV2 or ∆ = 2GeV2 and for the quark masses
mc = 1.3GeV and mb = 4.8GeV. In Table K.1 the ratios M(a)

n /M(c)
n and M(b)

n /M(c)
n

for different values of n for the bottom quark are shown. For the charm quark one can
neglect the contributions of the region below threshold for the moments (n < 7).
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physik, Schladming, Austria, 2–9 March 1996. In “Schladming 1996, Perturbative
and nonperturbative aspects of quantum field theory”, p. 1

[196] C.J. Morningstar and J. Shigemitsu, Phys. Rev. D57 (1998) 6741;
C.J. Morningstar and J. Shigemitsu, Phys. Rev. D59 (1999) 094504

[197] C. Morningstar and M. Peardon, Phys. Rev. D60 (1999) 034509

[198] T. Manke et al., Phys. Rev. Lett 82 (1999) 4396

[199] I. Drummond et al., hep-lat/9912041

[200] T. Manke et al. [CP-PACS Collaboration], Nucl. Phys. Proc. Suppl. 86 (2000) 397

[201] B.P.G. Mertens, A.S. Kornfeld and A.X. El-Khadra, Phys. Rev. D58 (1998) 034505

[202] S. Aoki, K. Nagai, Y. Taniguchi and A. Ukawa, Phys. Rev. D58 (1998) 074505

[203] C.J. Morningstar, Phys. Rev. D48 (1993) 2265

[204] G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48 (1993) 2250;
G.P. Lepage, “Lattice QCD for Small Computers” in “The Building Blocks of Cre-
ation”, edited by S. Raby and T. Walker (World Scientific Press, Singapore, 1994)



514 BIBLIOGRAPHY

[205] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 572

[206] M. Alford, T. Klassen and G.P. Lepage, Phys. Rev. D58 (1998) 034503

[207] P. Weisz, Nucl. Phys. B212 (1983) 1; P. Weisz and R. Wohlert, Nucl. Phys. B236
(1984) 397; erratum ibid. B247 (1984) 544

[208] Y. Iwasaki, Report No. UTHEP-118 (Dec. 1983), unpublished

[209] S. Groote and J. Shigemitsu, Phys. Rev. D62 (2000) 014508

[210] G.P. Lepage, Phys. Rev. D59 (1999) 074502

[211] G.P. Lepage, J. Comp. Phys. 27 (1978) 192

[212] Y. Kuramashi, Phys. Rev. D58 (1998) 034507

[213] P. Bouchard, C. Lin and O. Pene, Nucl. Phys. Proc. Suppl. B53 (1997) 861

[214] A. Borrelli and C. Pittori, Nucl. Phys. B385 (1992) 502

[215] J.F. Lagae and D.K. Sinclair,
Phys. Rev. D59 (1999) 014511; Nucl. Phys. Proc. Suppl. 63 (1998) 892

[216] S. Naik, Nucl. Phys. B316 (1989) 238

[217] Y.B. Luo, Phys. Rev. D57 (1998) 265

[218] S.D. Drell and A.C. Hearn, Phys. Rev. Lett. 16 (1966) 908

[219] S.B. Gerasimov, Yad. Fiz. 2 (1966) 598 [Sov. J. Nucl. Phys. 2 (1966) 430]

[220] J.D. Bjørken, Phys. Rev. 179 (1969) 1547; see also
M. Bander and J.D. Bjørken, Phys. Rev. 174 (1968) 1704

[221] M. Gell-Mann and M. Levy, Nuovo Cim. 16 (1960) 705

[222] S. Groote, J.G. Körner, K. Schilcher and N.F. Nasrallah,
Phys. Lett. B440 (1998) 375

[223] S. Groote, J.G. Körner, J. Maul and K. Schilcher, “QCD umproved determination
of the hadronic contribution to the anomalous magnetic moment of the muon”, in
preparation; see also: J. Maul, “QCD-Bestimmung des hadronischen Beitrags zum
(g − 2)-Faktor des Myons”, Diploma thesis, Mainz, 2000

[224] S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585

[225] N.F. Nasrallah, Phys. Lett. B393 (1997) 419

[226] J.G. Körner, A.A. Pivovarov and K. Schilcher, Eur. Phys. J. C9 (1999) 551

[227] M. Davier and A. Höcker, Phys. Lett. B435 (1998) 427

[228] K.G. Chetyrkin, D. Pirjol and K. Schilcher, Phys. Lett. B404 (1997) 337



BIBLIOGRAPHY 515

[229] J.Z. Bai et al. [BES Collaboration],
Phys. Rev. Lett. 84 (2000) 594; Phys. Rev. Lett. 88 (2002) 101802

[230] R. Barate et al. (ALEPH Collaboration), Z. Phys. C76 (1997) 15

[231] W.J. Marciano und A. Sirlin, Phys. Rev. Lett. 56 (1986) 22

[232] P. Weber, “Review of τ lifetime measurements,”
talk given at the Conference TAU96, Colorado, 1996

[233] S.G. Gorishny, A.L. Kataev and S.A. Larin, Phys. Lett. B259 (1991) 144;
L.R. Surguladze and M.A. Samuel,
Phys. Rev. Lett. 66 (1991) 560; 66 (1991) 2416 (E);
K.G. Chetyrkin, Phys. Lett. B391 (1997) 402

[234] S.G. Gorishny, A.L. Kataev and S.A. Larin, Nuovo Cimento 92 A (1986) 119

[235] K.G. Chetyrkin, R. Harlander, J.H. Kühn and M. Steinhauser,
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