
Identification of mass location on vibrating beams using Haar wavelets 

and neural networks 
 

Helle Hein and Ljubov Feklistova* 

Faculty of Mathematics and Computer Science 
University of Tartu, Tartu, Estonia  

e−mail: helle.hein@ ut.ee 
 

Summary In this paper two procedures are suggested for estimating location and/or magnitude of the 
concentrated mass attached to the isotropic vibrating beam. Artificial neural networks are applied to 
establish the mapping relationship between structural feature vector and status of the concentrated mass 
(location and magnitude). Seven different training methods are applied and compared.  

Introduction 

Several techniques for estimating the elastic parameters of beams, plates and shells have been 
proposed by a number of authors [1-3].  These methods include wave propagation measurements, 
eigenfrequency-based methods, genetic algorithms, etc. In recent years, the artificial neural 
networks have become a powerful tool in the fields of forecast because of the special abilities to 
make mappings and simulations of complicate systems and functions. Artificial neural networks 
have been applied for solving the inverse prediction problems with non-linearity. The supervised 
multi-layer feed-forward neural network is one of the most popular architecture used today [4]. It 
is a universal approximator and is taken as the benchmark for comparing the performance of other 
neural network architectures. The structural parameter estimation based on neural networks 
includes the following steps: selection of network parameters, determination of network structure, 
collection and normalisation of learning samples, initialisation of network weight values, to 
perform the training in order to obtain the convenient accuracy.  
In the present work, the dynamic response of vibrating beams with an attached mass is studied. 
Karlik and Ozkaya [5] applied neural networks to predict five natural frequencies of a beam if the 
mass ratios and locations were known. The basic idea in the vibration-based estimation is that 
these parameters depend on the physical properties of the systems structure. Changes in the mass 
ratio and location can result in detectable alterations in the natural frequencies, displacements or 
mode shapes. The key problem is how to extract useful features from the vibration signals for 
identification. However, successful network learning and its ability to generalise characteristic 
features of the system from input-output pairs requires large training sets.  
The aim of the present research is to elaborate two methods which are capable of calculating: (i) 
the mass ratio if position of the applied mass is known, (ii) the position of the attached mass if 
mass ratio is known, (iii) the ratio and position of the attached mass. 
In the case of the first method the input vector of network consists of five natural frequencies of 
the system. The network is trained with different training algorithms. A comparison of the 
algorithms is done in order to find the most accurate method for solving the stated problem.  
The second method uses a combined approach: the structural feature vector is calculated with the 
aid of Haar wavelets. Wavelet transform has been used in many fields including vibration-based 
damage detection of beams and plates [2, 6-8]. The wavelet packets and neural network 
identification were suggested by Hein [9] to inversely determine the elastic foundation parameters 
of delaminated vibrating beams. In most cases the continuous wavelet transform has been used. 
Non-sufficient attention has been paid to the discontinuous Haar functions, which are 



mathematically the simplest wavelets. Nevertheless it has been demonstrated that the Haar 
wavelets can be successfully applied for solving differential and integral equations [10, 11].     
In the present study the integrated method of Haar wavelets and neural networks is suggested. The 
main ideas of Chen-Hsiao method [10] are applied, according to which the derivatives of the 
functions were approximated for solving differential equations. This approach has been developed 
further by Lepik [11]. 

Dynamic response of vibrating beams carrying the concentrated mass 

In this section, an analytical solution to the free vibration of a beam with a concentrated mass 
located at x=a is formulated. The geometry of the beam is shown in Fig. 1.  

                                              

Fig. 1: The beam-mass system. 

The differential equation associated with the present eigenvalue problem is [12]:   
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In (1) ρ denotes the beam’s density, A is the cross-sectional area, E is Young’s modulus and I is 
the moment of inertia.  
The general solutions of the ordinary differential equation (1) can be presented as 
 





∈+++=

∈+++=

],0[),cosh()sinh()cos()sin()(

],0[),cosh()sinh()cos()sin()(

22827262522

11413121111

bxkxCkxCkxCkxCxV

axkxCkxCkxCkxCxV
 (2)

where V1 and V2 are the left and right transverse displacements with respect to the concentrated 
mass M, and Ci (i = 1, …, 8) are the constants to be determined from boundary and continuity 
conditions. In the present work the following boundary conditions are considered: (i) V = V’ = 0 
(clamped end); (ii) V’’ = V’’’ = 0 (free end); (iii) V’ = V’’’ = 0 (guided end). Here primes denote 
differentiation with respect to the spatial variable x. The compatibility conditions at the location of 
concentrated mass, which apply to all cases [13, 14], are given as follows: 
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where α is the mass ratio defined by M/(ρAl).  



Identification using artificial neural networks  

For identification problem the feed-forward back propagation network is used. The neural network 
contains only one hidden layer whose neurons are assigned the log-sigmoid transfer function. The 
network is trained by seven different training algorithms in order to find out the most efficient one.   
In order to compare the performances of the network, trained by different methods, several criteria 
are used. These are the number of epochs, the mean squared error (MSE), training time, the mean 
absolute error (MAE = (1/N)Σ|nt – nc|), the variance account for (VAF = 1 – var(nt – nc)/var(nt)) and 
the coefficient of multiple determination (R2 = 1 – Σ( nt – nc)

2/ Σ( nt – nm)
2). Here nt is the target 

output value, nc is the computed value, nm is the mean of the target values nt , N is the number of 
patterns in the test set; var denotes the variance.  

Performance assessment of the neural network models trained by natural frequencies 

The accuracy of seven methods to predict the attached mass location on a beam with clamped ends 
is shown in Table 1. The most reliable forecasts have been made by the network which was trained 
by the Levenberg-Marquardt method. The network made 99.98 percent reliable predictions within 
3.7 seconds. The least accurate methods were the steepest gradient methods. Among the conjugate 
gradient methods the most efficient was the Polak-Ribiére, whose variance account for was almost 
the same as the Levenberg-Marquardt’s.  
 
Table 1. Prediction of mass location  on the beam with clamped ends; α = 10. 

 Sequential 
mode 

Batch mode Resilient 
method 

Polak-
Ribiére 

Fletcher-
Powell 

Powell-
Beale 

Levenberg
Marquardt 

No of epochs NA 1800 127 133 628 172 7 
MSE NA 0.0086 0.9903 0.9.954 0.9.991 0.0003 2.2e-5 
Training time 1.0150 16.469 2.3590 2.7810 8.9070 3.3900 3.7030 
MAE 0.0268 0.0102 0.0013 0.0012 0.0013 0.0018 0.0008 
VAF 0.4425 0.9636 0.9991 0.9997 0.9991 0.9990 0.9999 
R2 0.2244 0.9559 0.9991 0.9994 0.9989 0.9987 0.9998 

Performance assessment of the neural network models trained by Haar coefficients 

First, the response of the vibrating beam was calculated numerically. Various possible 
combinations of beam parameters were considered. Second, the vibration responses (mode shapes) 
of the beam with and without concentrated mass were expanded into Haar series [10, 11]. A 
comparison of energy of vibration responses between beams with and without mass in some 
frequency bands will exhibit some remarkable difference. The input vectors for artificial neural 
networks were calculated with the aid of energy values of sub-signals. The data training sets for 
artificial neural networks were formed from the input vectors and of corresponding mass locations 
and ratios.  
 
Table 2. Predictions of the attached body location on a beam; α = 20. 

 
Sequential 
mode 

Batch mode 
Resilient 
method 

Polak-
Ribiére 

Fletcher-
Powell 

Powell-
Beale 

Levenberg-
Marquardt 

No of epochs NA 1800 36 102 87 64 2 
MSE NA 0.0044 9.03e-5 9.97e-5 9.92e-5 9.74e-5 1.95e-6 
Training time 0.7810 20.688 1.3440 1.8440 2.4380 1.6720 0.8910 
MAE 0.1074 0.0115 0.0017 0.0008 0.0010 0.0005 0.0002 
VAF 1.1348 0.9666 0.9995 0.9998 0.9998 1.0000 1.0000 
R2 0.8308 0.9976 0.9999 1.0000 1.0000 1.0000 1.0000 

The results of the predictions made by the networks, trained by seven different methods, are 
presented in Table 2. During the learning nine-element patters were used. As a result, the 



Levenberg-Marquardt and the steepest gradient methods showed the best results. Finally, the tests 
showed that the training time and number of epochs in second approach were smaller than in the 
case of previous method.   

Concluding remarks 

In this work two methods to inversely estimate the attached mass ratio and location on the 
vibrating beams were proposed. Numerical simulations showed that the integrated approach with 
Haar wavelets saved the computation time and showed the better accuracy.  
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