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ABSTRACT

Solving an n-th order differential equation by the Haar wavelet method usually the highest
derivative y(n) is expanded into the series of Haar functions. It is shown in the present
paper that if we develop into Haar series the derivative y(n+1) then the results for the same
number of grid points are considerably more exact. The same approach is applicable also
for integro-differential equations. Four numerical examples are presented.
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1 Introduction

Among all the wavelet families mathematically the simpliest are the Haar wavelets – they are
made up of pairs of piecewise constant functions. Due to simplicity the Haar wavelet method
has been an effective tool for solving several problems of differential and integral calculus. For
the sake of conciseness these papers are not considered here; the necessary information can
be found from other papers (e.g. (Chen and Hsiao, 1997), (Lepik 2003), (Lepik 2006), (Lepik
2007), (Lepik 2008b)).
The Haar wavelets have also an essential shortcoming – they are not continuous and therefore
cannot be differentiated in the points of discontinuity. This difficulty was overridden by Chen
and Hsiao (1997), who recommended to expand into the Haar series not the function itself, but
its highest derivative appearing in the equation. The other derivatives (and the function itself)
are obtained though integrations. As much as we know this approach was up to now applied
only for solving first and second order ordinary differential equations. Solution of higher order
differential equations was discussed by Lepik (2008).
Let us consider an n-th order differential or integro-differential equation

F (x, y, y′, ..., y(n)) = 0 , x ∈ [A,B] . (1.1)
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According to Chen and Hsiao we shall develop into Haar series the derivative y(n):

y(n)(x) =
2M∑
i=1

aihi(x) . (1.2)

Here hi(x) are the Haar wavelet functions; ai the wavelet coefficients which must be calculated
in the course of the solution.
For (1.2) the derivative y(n) is a piecewise constant function. From here the idea to develop
into the Haar series the function arises:

y(n+μ)(x) =
2M∑
i=1

aihi(x) , μ = 1, 2, ... . (1.3)

Now the derivative y(n) is continuous and it can be expected that in the case of (1.3) the
exactness of the solution is higher as for (1.2). The aim of the paper is to test this assumption.
This property is illustrated and tested in Sections (3)–(5) with exact solution known four different
examples. Local and global error estimates are calculated. Computer simulations were carried
out with the aid of the MATLAB programs.
In this paper linear differential or integro-differential equations are dealt with, but the recom-
mended method remains applicable also for nonlinear problems (consult (Lepik 2006), (Lepik
2008a).

2 Haar wavelet method

Consider the interval x ∈ [A,B], where A and B are given constants. This interval is partiated
into 2M subintervals of equal length, where M = 2J (J is the maximal level of resolution).
The length of each subinterval is Δx = (B − A)/(2M). Next two parameters are introduced:
the dilatation parameter j = 0, 1, ..., J and the translation parameter k = 0, 1, ...,m − 1, where
m = 2j . The wavelet number i is identified as i = m + k + 1.
The i-th Haar wavelet is defined as

hi(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ [ξ1(i), ξ2(i)] ,

−1 for x ∈ [ξ2(i), ξ3(i)] ,

0 elsewhere ,

(2.1)

where
ξ1(i) = A + 2kμΔx , ξ2(i) = A + (2k + 1)μΔx ,

ξ3(i) = A + 2(k + 1)μΔx , μ = M/m .
(2.2)

The case i = 1 corresponds to the scaling function, where h1(x) = 1 for x ∈ [A,B].
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By integrating (2.1) α-times we obtain (Lepik 2008a).

pα,i(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

for x < ξ1(i) ,
1
α!

[x− ξ1(i)]α

for x ∈ [ξ1(i), ξ2(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α}

for x ∈ [ξ2(i), ξ3(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α + [x− ξ3(i)]α]}

for x > ξ3(i) .

(2.3)

These formulas hold for i > 1. If i = 1 we have ξ1 = A , ξ2 = ξ3 = B and

pα,1(x) =
1
α!

(x−A)α . (2.4)

In the present paper the solutions are based on the collocation method. The grid points are

x̃l = A + lΔx, l = 0, 1, 2, ..., 2M ;

the collocation points
xl = 0.5(x̃l−1 + x̃l), l = 1, 2, ..., 2M .

3 Initial value problem for n-th order ODE

Consider the equation
n∑

ν=0

Aν(x)y(ν)(x) = f(x) , x ∈ [A,B] (3.1)

with the initial conditions

y(ν)(A) = y
(ν)
0 , ν = 0, 1, ..., n− 1 . (3.2)

Let us seek the Haar wavelet solution in the form (1.3). Here Aν(x), f(x) are prescribed
functions, y

(ν)
0 given constants. By integrating this equation ν times we find keeping in view

(2.3)–(2.4), that

y(n+μ−ν)(x) =
2M∑
i=1

aipν,i(x) + Zν(x) , (3.3)

where

Zν(x) =
ν−1∑
σ=0

1
σ!

y
(n+μ+σ−ν)
0 (x−A)σ , ν = 1, 2, ..., n + μ . (3.4)

If ν = n + μ we get the function y(x) sought for.
As to the parameter μ we consider here only the values μ = 0 and μ = 1. The case μ = 0 cor-
responds to the conventional solution (1.2). As to the values μ = 2, 3, ... then the calculations
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showed that they have generally only a small effect for improving the solution and therefore the
cases μ > 1 are not considered in the following analysis.
If μ = 1 we need a complementary initial condition for y(n)(A); it can be calculated from the
equation (3.1).
Next (3.3)–(3.4) are discretized by replacing x → xl. Substituting these results into (3.1) we
get a system of linear equations for the wavelet coefficients ai.
Example 1: Solve

y(6) + y = sin
3
2
x sin

x

2
, x ∈ [0, π] (3.5)

for the initial conditions y0 = 1, y′0 = −1, y′′0 = 0.3, y′′′0 = 0, yIV
0 = 1, yV

0 = 1.
In the case μ = 0 this equation was solved by (Lepik 2008a),. Now let us consider the case
μ = 1. Calculating from (3.5) the complementary initial condition y(6)(0) we find y(6)(0) = −1.
Now we shall take

y(7)(x) =
2M∑
i=1

aihi(x) .

By integrating it 7 times and replacing the results into (3.5) we obtain

2M∑
i=1

ai[p1,i(xl) + p7,i(xl)] = 1 + Z(l) + F (l) , (3.6)

where

Z(l) =
6∑

σ=0

1
σ!

y
(σ)
0 xσ

l ,

F (l) = sin
3
2
xl sin

xl

2
.

From (3.6) the wavelet coefficients are calculated. The function to be sought is

y(xl) =
2M∑
i=1

aip7,i(xl) + Z(l) . (3.7)

The error estimates are defined as in (Lepik 2008a):

δ = max
l

∣∣∣∣ y(xl)
yex(xl)

− 1
∣∣∣∣ local estimate ,

σ = ‖ y − yex ‖ /(2M) global estimate .

(3.8)

Computer simulation gave the following results.
It follows from this Table that the errors estimates for μ = 1 are about 10 times lesser as for
μ = 0.

4 Boundary value problems

Consider again (3.1). Now we assume that only n1 < n initial conditions are prescribed at
x = A; the remaining n − n1 conditions are specified in some internal points x < B or at the
boundary x = B. Values of the missing initial conditions can be calculated from (10)–(11). The
subsequent course of solution proceeds as indicated in Section 3.
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Example 2: Solve
x2y′′′ + 6xy′′ + 6y′ = 6 , x ∈ [2, 4] (4.1)

for y(2) = y(4) = 0 , y′(3) = 0.
First consider the conventional case μ = 0, where the solution is sought in the form (1.2). By
integrating this equation we find

y′(x) =
2M∑
i=1

aip2,i(x) + (x− 2)y′′0 + y′0

y(x) =
2M∑
i=1

aip3,i(x) +
1
2
(x− 2)2y′′0 + (x− 2)y′0 + y0 .

(4.2)

Satisfying the boundary conditions y(4) = y′(3) = 0 we get the system

0 =
2M∑
i=1

aiP2(i, 3) + y′′0 + y′0

0 =
2M∑
i=1

aiP3(i, 4) + 2y′′0 + 2y′0 .

(4.3)

Here the notation
Pα(i, x∗) = pα,i(x = x∗) (4.4)

was introduced.
From the system (4.3) we should evaluate the missing initial values y′0, y′′0 , but in the present
case it is not possible. From here the conclusion, that for μ = 0 the Haar wavelet method is
unable to solve the set up boundary value problem, can be made.
Let us pass to the case μ = 1. Now we assume

yIV =
2M∑
i=1

aihi(x) . (4.5)

Making use of (3.3)–(3.4) we find

y(4−ν)(x) =
2M∑
i=1

aipν,i(x) +
ν−1∑
σ=0

1
σ!

y
(4+σ−ν)
0 (x− 2)σ , ν = 1, 2, 3, 4 . (4.6)

Instead of (4.3) we get now the system

0 =
2M∑
i=1

aiP3(i, 3) +
1
2
y′′′0 + y′′0 + y′0

0 =
2M∑
i=1

aiP4(i, 4) +
4
3
y′′′0 + 2y′′0 + 2y′0 .

(4.7)

Satisfying (4.1) at the boundary x = 2 we obtain

4y′′′0 + 12y′′0 + 6y′0 = 6 . (4.8)
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From (22)–(23) the missing initial values are calculated; by doing this we find

y′0 =
2M∑
i=1

ai [P4(i, 4)− 4P3(i, 3)]− 2

y′′0 =
1
2

2M∑
i=1

aiP4(i, 4) + 2

y′′′0 = −3
2M∑
i=1

ai [P4(i, 4)− 2P3(i, 3)] .

(4.9)

Next the results (4.6), (4.9) are substituted into (4.1). Satisfying this equation in the collocation
points xl we get for ai the system

2M∑
i=1

aiS(i, l) = −12(xl − 2) , (l = 1, 2, ..., 2M) , (4.10)

where
S(i, l) = p1,i(l)x2

l + 6p2,i(l)xl + 6p3,i(l)+

+12(5x2
l − 12xl + 4)P3(i, 3)− 6(5x2

l − 13xl + 6)P4(i, 4) .
(4.11)

The wanted function y(x) is calculated from (4.6) by taking ν = 4.
This boundary value problem has an exact solution

yex = x− 15
2

+
17
x
− 12

x2
. (4.12)

The error estimates (3.8) are presented in Table 2.
It follows from this Table that the exactness of the obtained solutions is rather good: already
in the case of 2M = 8 calculation points the curves of the exact and wavelet solutions visually
coincide.

5 Fredholm integro-differential equation

Consider the Fredholm integro-differential equation of the second kind

Cy′(x) + Dy(x) =
B∫
A

K(t, x) [y(t) + Ey′(t)] dt + f(x) ,

x, t ∈ [A,B] , y(A) = y0 ,

(5.1)

where C,D,E, A,B, y0 are given constants and K, f are given functions.
The wavelet solution of this equation is sought in the form

yμ+1x =
2M∑
i=1

aihi(x) . (5.2)
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Integrating (5.2) we obtain

y(μ)(x) =
2M∑
i=1

aip(1, i)(x) + y
(μ)
0

y(μ−1)(x) =
2M∑
i=1

aip(2, i)(x) + y
(μ)
0 (x−A) + y

(μ−1)
0 .

(5.3)

The initial value y′0 is calculated from (5.1) by assuming x = A.
The results (5.2)–(5.3) are replaced into (5.1), which will be satisfied in the collocation points
xl. In this way we again get a system of linear equations for calculating the wavelet coefficients
ai. The most labour-consuming operation here to calculate the integrals

B∫
A

K(t, xl)pα,i(t)dt . (5.4)

Details of the solution will be cleared up with the aid of the subsequent Examples.
Example 3: Solve

y′(x) + y(x) =

1∫
0

(x + t)y(t)dt + f(x) , y(0) = 1 , (5.5)

where
f(x) = x4 + 4x3 − 6

5
x +

1
3

.

The solution starts with calculating ξ1(i), ξ2(i), ξ3(i) from (2.2). Let us denote Δξ(i) = ξ2(i) −
ξ1(i). Next making use of (2.3)–(2.4) the following integrals are evaluated (for conciseness
sake the index i at ξ1, ξ2, ξ3, Δξ is omitted):

Qμ+1(i) =

1∫
0

pμ+1,i(t)dt =

=
1

(μ + 2)!
[
(1− ξ1)μ+2 − 2(1− ξ2)μ+2 + (1− ξ3)μ+2

]

Rμ+1(i) =

1∫
0

tpμ+1,i(t)dt =

=
1

(μ + 1)!(μ + 3)
[
(1− ξ1)μ+3 − 2(1− ξ2)μ+3 + (1− ξ3)μ+3

]
+

+
1

(μ + 2)!
[
ξ1(1− ξ1)μ+2 − 2ξ2(1− ξ2)μ+2 + ξ3(1− ξ3)μ+2

]
.

(5.6)

At first consider the case μ = 1. According to (5.3) we have

y′(xl) =
2M∑
i=1

aip1,i(xl) + y′(0)

y(xl) =
2M∑
i=1

aip2,i(xl) + y′0xl + 1

(5.7)
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1∫
0

y(t)dt =
2M∑
i=1

aiQ2(i) +
1
2
y′0 + 1

1∫
0

ty(t)dt =
2M∑
i=1

aiR2(i) +
1
3
y′0 +

1
2

.

(5.8)

The initial condition is calculated from (5.5) assuming x = 0; doing this we find

y′0 =
3
2

[
2M∑
i=1

aiR2(i) + f(0)− 0.5

]
. (5.9)

Replacing (5.7)–(5.9) into (5.5) we get the system

2M∑
i=1

ai

[
p2,i(xl) + p1,i(xl)− xlQ2(i) +

3
4
xlR2(i)

]
=

=
11
8

xl + f(xl)−
(

3
4
xl + 1

)
f(0) , (l = 1, 2, ..., 2M) .

(5.10)

Similar calculations were carried out also for μ = 0; instead of (5.10) we get now the system

2M∑
i=1

ai [p1,i(xl) + hi(xl)− xlQ1(i)−R1(i)] = xl − 0.5 + f(x) . (5.11)

The function y(x) is evaluated from

y(x) =
2M∑
i=1

aip2,i(x) + y0 + xy′0 , for μ = 1

y(x) =
2M∑
i=1

aip1,i(x) + y0 , for μ = 0 .

(5.12)

The exact solution of the problem is

y(x) = x4 + 1 . (5.13)

Error estimates for μ = 0 and μ = 1 are presented in Table 3.
Again we can state that the results for μ = 1 are considerably more exact as for μ = 0 (e.g. for
64 calculation points the error estimates decrease more than 60 times).
Example 4:
Consider once more (5.5), but the external force f(x) is now taken in the form

f(x) = x2 +
2
3
x +

1
4

. (5.14)

Making again use of (5.9)–(5.12) we find that for μ = 0 the error estimates are δ = 6.5E−3, σ =

1.2E − 3 for 2M = 32 and δ = 6.5E − 3, σ = 8.2E − 4 for 2M = 64.
Carrying out the calculations for μ = 1 we find that a1 = 2, ai = 0 for i > 1 and at each level
of resolution J the wavelet solution is exact in the collocation points. This circumstance is not
unexpected since due to (5.9), (5.12) we have y′0 = 0, y(x) = x2 + 1, which coincides with the
exact solution of the problem (5.5), (5.14).
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6 Conclusion

A new approach for solving differential and integral equations by the aid of Haar wavelet method
is proposed. It is demonstrated that it allows to obtain considerably more exact results as the
convenient method.
A benefit of the proposed method is its universality: it can be applied to for solving a wide
class of differential and integral equations. By it is expedient to put together subprograms for
calculating the functions pα,i(x); these subprograms can be used for solving different problems
without changes.

Table 1: Error estimates for the problem (3.5).

δ σ

2M μ = 0 μ = 1 μ = 0 μ = 1

8 3.3E-3 2.5E-4 4.1E-4 3.2E-5
16 8.3E-4 6.4E-5 5.2E-5 4.0E-6
32 2.7E-4 1.6E-5 6.5E-6 5.1E-7

Table 2: Error estimates for the problem (4.1).

2M δ σ

8 1.3E-3 4.7E-5
16 1.7E-4 4.2E-6
32 7.8E-5 1.2E-6
64 2.2E-5 2.3E-7

Table 3: Error estimates for the problem (5.5).

δ σ

2M μ = 0 μ = 1 μ = 0 μ = 1

16 4.3E-3 7.7E-4 1.4E-3 2.7E-4
32 3.5E-3 1.9E-4 8.03E-4 4.7E-5
64 3.3E-3 4.9E-5 5.3E-4 8.3E-6
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