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ABSTRACT

Up to now the Haar wavelets are applied mostly for solving first and second order differen-
tial equations. The aim of the present paper is to demonstrate that this method is valuable
also in the case of higher order equations. Initial and boundary value problems are dis-
cussed (also in the case of nonlinear equations). To show the effeciency of the method
tree problems are solved. Computer simulations show that the necessary exactness of the
results is achieved already for a small number of grid points.
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1 Introduction

The Haar wavelets are made up of pairs of piecewise constant functions and are mathemat-
ically the simpliest orthonormal wavelets with a compact support. Due to the mathematical
simplicity the Haar wavelet method has turned out to be an effective tool for solving many
problems, among these are also differential and integral equations.
In the present paper the Haar wavelet method for solution of ordinary differential equations
(ODE) is discussed. Here we meet with the fact that the Haar wavelets are not continuous and
cannot be differentiated in the points of discontinuity. By this reason it is not possible to apply
the Haar wavelets directly for solving ODE. There are at least two possibilities of ending this
impasse. First, the piecewice constant Haar functions can be regularized with interpolation
splines. This greatly complicates the solution process and the main advantage of the Haar
wavelets – their simplicity – gets lost.
Another possibility was proposed by Chen and Hsiao [1997a,1997b]. They recommended to
expand into the Haar series not the function itself, but its highest derivative appearing in the
differential equation. The other derivatives (and the function) are obtained through integrations.
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All these ingredients are then incorporated into the whole system, discretized by Galerkin or
collocation method. This approach was applied in papers [Hsiao andWang, 1999, 2000, 2001],
[Lepik 2003].
In these papers first or second order ODE-s are discussed, but the benefits of the Haar method
become apparent especially in the case of higher order ODE-s. The aim of the present paper
is to demonstrate how to integrate such equations.
The paper is organized as follows. In Section 2 the Haar wavelet method is reported. The
traditional Haar wavelets are defined for the argument x ∈ [0, 1], but in Section 2 a new variant
of the Haar wavelets, which is applicable for an arbitrary region of the variable x, is presented.
In this Section the integrals of the Haar wavelet are also calculated.
In Section 3 the Haar wavelet solution for linear ODE-s is presented. In Section 4 the treatment
of boundary value problems for linear ODE-s is discussed. Solution of initial and boundary
problems for nonlinear ODE-s is presented in Section 5.

2 Haar wavelets and their integrals

Let us consider the interval x ∈ [A,B], where A and B are given constants. We shall define
the quantityM = 2J , where J is the maximal level of resolution. The interval [A,B] is partiated
into 2M subintervals of equal length; the length of each subinterval is Δx = (B − A)/(2M).
Next two parameters are introduced: the dilatation parameter j = 0, 1, ..., J and the translation
parameter k = 0, 1, ...,m− 1 (here the notation m = 2J is introduced). The wavelet number i is
identified as i = m + k + 1.
The i-th Haar wavelet is defined as

hi(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ [ξ1(i), ξ2(i)] ,

−1 for x ∈ [ξ2(i), ξ3(i)] ,

0 elsewhere ,

(2.1)

where
ξ1(i) = A + 2kμΔx , ξ2(i) = A + (2k + 1)μΔx ,

ξ3(i) = A + 2(k + 1)μΔx , μ = M/m .
(2.2)

The case i = 1 corresponds to the scaling function: h1(x) = 1 for x ∈ [A,B] and h1(x) = 0

elsewhere.
If we want to solve a n-th order ODE we need the integrals

pν,i(x) =

x∫
A

x∫
A

...

x∫
A︸ ︷︷ ︸

ν−times

hi(t)dtν =
1

(ν − 1)!

x∫
A

(x− t)ν−1hi(t)dt

ν = 1, 2, ..., n , i = 1, 2, ..., 2M .

(2.3)

The case ν = 0 corresponds to function hi(t).
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Taking account of (2.1) these integrals can be calculated analytically; by doing it we obtain

pα,i(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

for x < ξ1(i) ,
1
α!

[x− ξ1(i)]α

for x ∈ [ξ1(i), ξ2(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α}

for x ∈ [ξ2(i), ξ3(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α + [x− ξ3(i)]α]}

for x > ξ3(i) .

(2.4)

These formulas hold for i > 1. In the case i = 1 we have ξ1 = A , ξ2 = ξ3 = B and

pα,1(x) =
1
α!

(x−A)α . (2.5)

In the present paper the collocation method for solving the ODEs is applied. The collocation
points are xl = 0.5[x̃l−1 + x̃l], l = 1, 2, ..., 2M : the symbol x̃l denotes the l-th grid point x̃l =

A + lΔx, l = 1, 2, ..., 2M . Next (2.1), (2.4) are discretized by replacing x→ xl.
It is convenient to introduce the Haar matrices H(i, l) = hi(xl), Pν(i, l) = pν,i(xl). In the
following Sections computer simulations are carried out with the aid of the Matlab programs;
for which the matrix representation is effective.

3 Haar wavelet solution for linear ODEs

Consider the n-th order linear differential equation

n∑
ν=0

Aν(x)y(ν)(x) = f(x) , x ∈ [α, β] (3.1)

with the initial conditions

y(ν)(A) = y
(ν)
0 , ν = 0, 1, ..., n− 1 . (3.2)

Here Aν(x), f(x) are prescribed functions, y(ν)
0 given constants.

The Haar wavelet solution is sought in the form

y(n)(x) =
2M∑
i=1

aihi(x) , (3.3)

where ai are the wavelet coefficients.
By integrating (3.3) n− ν times we obtain

y(ν)(x) =
2M∑
i=1

aipn−ν,i(x) + Zν(x) , (3.4)

ISSN 0974-570X (Online), ISSN 0974-5718 (Print), November 2008 86



where

Zν(x) =
n−ν−1∑

σ=0

1
σ!

(x−A)σy
(ν+σ)
0 . (3.5)

We shall satisfy (3.1), (3.3)–(3.5) in the collocation points x(l). If we substitute x → x(l) and
replace (3.3)–(3.5) into equation (3.1) we get a system of linear equations for calculating the
wavelet coefficients ai . After solving this system the wanted function y = y(x) is calculated
from (3.4) by assuming ν = 0.
It is essential to estimate the exactness of the achieved results. For this purpose we introduce
the following to error estimates.
(i) If the exact solution y = yex(x) is known we define the error estimates as

δex = max
l

∣∣∣∣ y(xl)
yex(xl)

− 1
∣∣∣∣ (local estimate)

and
σex =‖ y − yex ‖ /(2M) (global estimate) .

(ii) If the exact solution is unknown we define the error vector

ε(l) =
n∑

ν=0

Aν(xl)y(ν)(xl)− f(xl) . (3.6)

The smaller ‖ ε(l) ‖ /(2M) the more exact is the solution (‖ ε ‖= 0 in the case of the exact
solution).
If ‖ ε(l) ‖ /(2M) is not small enough, we have to go higher level of resolution J and repeat the
calculations.
Example 1: Solve the equation

y(6) + y = sin
3
2
x sin

1
2
x , x ∈ [0, π] (3.7)

for the initial conditions y0 = 1, y′0 = −1, y′′0 = 0.3, y′′′0 = 0, yIV
0 = 0, yV

0 = 1.
According to (3.3)–(3.5) we find

y(6)(xl) =
2M∑
i=1

aihi(xl)

y(xl) =
2M∑
i=1

aip6,i(xl) +
6∑

σ=0

1
σ!

y
(σ)
0 xσ

l .

(3.8)

Replacing these results into (3.7) we get

2M∑
i=1

ai[hi(xl) + p6,i(xl)] + Z(l) = F (l) , (3.9)

where F (l) = sin 3
2xl sin 1

2xl.
The matrix form of (3.9) is

a(H + P6) = F − Z . (3.10)
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For the ”exact solution” the Runge-Kutta solution, realized by the MATLAB program ode45 was
taken. Computer simulation gave the following error estimates

(i) δex = 3.3E − 3 , σex = 4.1E − 4 , for J = 3

(ii) δex = 8.3E − 4 , σex = 5.2E − 5 , for J = 4

(iii) δex = 2.7E − 4 , σex = 6.5E − 6 , for J = 5 .

The wavelet solution y = y(x) is plotted in Fig. 1a; already in the case J = 3 (16 collocation
points) it visually coincides with the Runge-Kutta solution. High accuracy of the wavelet results
for a small number of calculation points is caused from the fact that by increasing the wavelet
number i the coefficients ai rapidly decrease (Fig 1b).

4 Treatment of the boundary value problems

Let us consider once more (3.1). We assume that for μ < m are given the initial conditions
(specified at x = A), but the remaining n− μ conditions are prescribed in some internal points
x1 < B or at the boundary x = B.
Consider one of the boundary conditions y(ν)(x∗) = y

(ν)
∗ , where y

(ν)
∗ is a given number.

It follows from (3.4)–(3.5)
2M∑
i=1

aipn−ν,i(x∗) + Zν(x∗) = y
(ν)
∗

Zν(x∗) =
n−ν−1∑

σ=0

1
σ!

(x∗ −A)σy
(ν+σ)
0 .

(4.1)

The functions pn−ν,i(x∗) are calculated from (2.4) replacing there x → x∗. Such analysis is
carried out for each boundary condition. By doing this we get a system of n−ν linear equations
from which the missing n− ν initial values can be calculated (of course these formulas contain
also the wavelet coefficients ai).
The following course of solution is the same as demonstrated in Section 3. Details are ex-
plained by the help of the following Example.
Example 2: Solve the equation

xyIV + 5y′′′ = 24 , x ∈ [1, 3] (4.2)

for y(1) = 0 , y′′(1) = 200 , y(3) = 0 , y′′′(3) = 0.
Making use of (3.3)–(3.5) we find

yIV (x) =
2M∑
i=1

aihi(x)

y′′′(x) =
2M∑
i=1

aip1,i(x) + y′′′(1)

y(x) =
2M∑
i=1

aip4,i(x) +
1
6
y′′′(1)(x− 1)3 +

1
2
y′′(1)(x− 1)2+

y′(1)(x− 1) + y(1) .

(4.3)
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Taking in view the initial and boundary conditions we find from (4.3):

y(3) =
2M∑
i=1

aip4,i(3) + 2y′(1) + 400 +
4
3
y′′′(1) = 0

y′′′(3) =
2M∑
i=1

aip1,i(3) + y′′′(1) = 0 .

(4.4)

From this system we calculate the values of the missing initial conditions:

y′′′(1) = −
2M∑
i=1

aip1,i(3)

y′(1) =
2M∑
i=1

ai

[
2
3
p1,i(3)− 1

2
p4,i(3)

]
− 200 .

(4.5)

It follows from (3.4) that

y′′′(x) =
2M∑
i=1

aip1,i(x) + y′′′(1) . (4.6)

Substituting all these results into (4.2) and discretizising the result x → xl we get a system of
linear equations for calculating the wavelet coefficients ai:

2M∑
i=1

ai [hi(xl)xl + 5p1,i(xl)− 5p1,i(3)] = 24 , l = 1, 2, ..., 2M . (4.7)

After solving (4.7) we can evaluate the function y = y(x) from (4.3).
Exact solution of (4.2) is

yex(x) =
1
5
(
243/x2 − 1026 + 1020x− 241x2 + 4x3

)
. (4.8)

Computer simulation was carried out for some values of J . The error estimates were

δ4 = 0.088 , σ4 = 2.7E − 3

δ5 = 0.021 , σ5 = 3.3E − 4

δ6 = 0.0054 , σ6 = 4.2E − 5 .

The solution for J = 5 is plotted in Fig. 2a. In the case J = 6 our solution and the exact solution
visually coincide.
The wavelet coefficients for J = 5 are plotted in Fig. 2b. It follows from this Figure that
the values ai are significantly bigger as for Example 1; this is the reason why the rate of
convergence is here somewhat smaller as for Example 1.

5 Nonlinear equations

The n-th order nonlinear ODE has the form

F (x, y, y′, y′′, ..., y(n)) = 0 , x ∈ [A,B] (5.1)

where F is a nonlinear function.
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We shall satisfy (5.1) in the collocation points xl , l = 1, ..., 2M . Next y and its derivatives are
expanded into Haar wavelet series and the results are placed into (5.1). By doing this we get
a system of nonlinear equations

Φl(xl, a1, a2, ..., a2M ) = 0 , l = 1, 2, ..., 2M (5.2)

from which the wavelet coefficients ai must be calculated. Solving (5.2), especially if the num-
ber of equations is great, is as a rule a quite complicated problem.
For solving (5.2) we make use of the Newton’s method. One possible course of solution was
proposed by [Lepik 2006]. According to this technique it is assumed that (5.2) is already solved
at some level of resolution J , the wavelet coefficients at this level we denote as a

(0)
i , i =

1, 2, ..., 2M . Our aim is to put together the solution for the next level J + 1. We shall estimate
the wavelet coefficients at the new level as

ãi =

{
a0

i for i = 1, 2, ..., 2M ,

0 for i = 2M + 1, 2M + 2, ..., 4M .
(5.3)

These estimates are corrected by the Newton’s method, which leads us to the system
4M∑
i=1

S(i, l)Δai = −Φl , (l = 1, 2, ..., 4M) , (5.4)

where
S(i, l) = ∂Φl/∂ai .

The matrix form of (5.4) is
SΔa = −Φ , (5.5)

which has the solution
Δa = −Φ/S . (5.6)

The corrected values of the wavelet coefficients are

a = ã + λΔa . (5.7)

The coefficient λ is selected to guarantee decrease in ‖ Φ ‖ (for an exact solution ‖ Φ ‖= 0).
This Newton step is repeated until the minimal value at this level is reached. After that we can
pass to the next level of resolution.
The assumption (5.3) is motivated by the fact that higher coefficients of the sequence ai are
usually small.
The question how to start this procedure remains. We recommend to begin with a small num-
ber of collocation points (2 or 4 points), for which the solution of (5.2) is more simple.
We have checked this method for solving several examples: in all cases the speed of conver-
gency was quite good. Details are clarified with the aid of the following example.
Example 3: Solve the boundary value problem

2y′y′′′ − 3y′′2 = 0 , x ∈ [0, 2]

y(0) = −1 , y′(0.5) = 4/3 , y(2) = 1 .
(5.8)
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In view of (3.4)–(3.5) we have

y′′′(x) =
2M∑
i=1

aihi(x)

y′′(x) =
2M∑
i=1

aip1,i(x) + y′′(0)

y′(x) =
2M∑
i=1

aip2,i(x) + y′′(0)x + y′(0)

y(x) =
2M∑
i=1

aip3,i(x) +
1
2
y′′(0)x2 + y′(0)x + y(0) .

(5.9)

Satisfying the boundary conditions y′(0.5) = 4/3 , y(2) = 1 we obtain

4
3

=
2M∑
i=1

aip2,i(0.5) +
1
2
y′′(0)x + y′(0)

1 =
2M∑
i=1

aip3,i(2) + 2y′′(0) + 2y′(0)− 1 .

(5.10)

Evaluating from this system y′(0) , y′′(0), we get

y′(0) =
5
3

+
1
2

2M∑
i=1

aiq1,i

y′′(0) = −2
3
−

2M∑
i=1

aiq2,i ,

(5.11)

where
q1,i = p3,i(2)− 4p1,i(0.5)

q2,i = p3,i(2)− 2p2,i(0.5) .
(5.12)

Equation (5.2) obtains the form

Φl = 2y′(xl)y′′(xl)− 3
[
y′′(xl)

]2
, (5.13)

where the quantities y′(xl), y′′(xl), y′′′(xl), must be replaced according to formulas (5.9),
(5.11), (5.12).
The elements of the matrix S are

S(i, l) = 2
[
y′(xl)

∂y′′′(xl)
∂ai

+ y′′′(xl)
∂y′(xl)

∂ai
− 3y′′(xl)

∂y′′(xl)
∂ai

]
. (5.14)

In view of (5.9) we have

∂y′′′(xl)
∂ai

= hi(xl) ,

∂y′′(xl)
∂ai

= p1,i(xl)− q2,i ,

∂y′(xl)
∂ai

= p2,i(xl)− q2,i(xl) +
1
2
q1,i .

(5.15)
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Next some results of the computer simulation are presented. For beginning two collocation
points x1 = 0.5, x2 = 1.5 are taken. Computations showed that ‖ Φ ‖ is minimal for a1 =

0.70, a2 = 0.6.
At the level J = 1 (four collocation points) the estimate (5.3) is ãi = (0.7, 0.6, 0, 0). Correcting it
with the Newton’s method we find that ‖ Φ ‖= min for λ = 0.14 and a = (0.98, 0.83, 0.40, 0.02);
the error estimates were δ1 = 2.61E − 2, σ1 = 6.5E − 3. This process is continued until the
necessary exactness is achieved.
The error estimates for the subsequent levels of resolution were

δ2 = 1.5E − 2 , σ2 = 1.8E − 3

δ3 = 2.1E − 3 , σ3 = 1.3E − 4

δ4 = 1.8E − 3 , σ4 = 5.6E − 5 .

The results of the computations for J = 4 (32 collocation points) are plotted in Fig. 3.

6 Conclusion

It was shown that the Haar wavelet method is effective for solving higher order ODE; already a
small number of grid points guarantees the necessary exactness of the obtained results. The
treatment of boundary value problems is also very simple. By our mind the main benefit of the
proposed method is solving nonlinear boundary value problems (in this case other methods of
solution are considerably more complicated).
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