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Solving integral and differential equations by the aid
of non-uniform Haar wavelets
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Abstract

A modification of the Haar wavelet method, for which the stepsize of the argument is variable, is proposed. To establish
the efficiency of the method three test problems, for which exact solution is known, are considered. Computer simulations
show clear preference of the suggested method compared with the Haar wavelet method of a constant stepsize.
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1. Introduction

The Haar wavelet method has turned out to be an effective tool for solving differential and integral equa-
tions [1–9]. The achieved results are mathematically very simple; the necessary exactness of the results is
obtained already for a small number of grid points (for details consult the state-of-the-art paper [10]). On
the other hand, this approach has also some limitations. The conventional form of the Haar wavelet approach
is applicable for the range of the argument x 2 [0,1]; besides it is assumed that this interval is distributed into
subintervals of equal length. If we want to raise the exactness of the results we must increase the number of the
grid points. In the course of the solution we have to invert some matrices, but by increasing the number of
calculation points these matrices become nearly singular and therefore the inverse matrices cannot be evalu-
ated with necessary accuracy [10]. There are also many problems where the uniform Haar wavelet method is
not suitable (e.g. differential equations under local excitations, boundary layer problems, weakly singular
equations, problems for which the region of the variation of the argument is infinite). In [4] for solving such
problems the method of segmentation was suggested, but in this case the solution becomes more complicated.
One possibility to find a way out of these difficulties is to make use of the non-uniform Haar method for which
the length of the subintervals is unequal. This idea was proposed in [11] and applied for analysing the function
approximation problems. In the present paper a new variant of the non-uniform Haar wavelet method is pre-
sented, which is applicable for an arbitrary region of variation of the argument x 2 [a,b]. For testing the effi-
ciency of the method three problems for which the exact solution is known are discussed.
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2. Non-uniform Haar wavelets

Haar wavelets are characterized by two numbers: the dilatation parameter j ¼ 0; 1; . . . ; J (J is maximal level
of resolution) and the translation parameter k ¼ 0; 1; . . . ;m� 1, where m = 2j. The number of the wavelet is
identified as i = m + k + 1. The maximal value is i = 2M where M = 2J. Consider the interval x 2 [a,b]. We
shall partition this interval into 2M subintervals; the coordinates of the grid points are denoted by
xðlÞ; l ¼ 0; 1; . . . ; 2M . We shall define the ith wavelet as
hiðxÞ ¼
1 for x 2 ½n1ðiÞ; n2ðiÞ�;
�ci for x 2 ½n2ðiÞ; n3ðiÞ�;
0 elsewhere:

8><
>: ð1Þ
Here the following notations are introduced:
n1ðiÞ ¼ xð2klÞ; n2ðiÞ ¼ x½ð2k þ 1Þl�;
n3ðiÞ ¼ x½ð2k þ 1Þl�; l ¼ M=m: ð2Þ
The coefficient is calculated from the requirement
Z b

a
hiðxÞdx ¼ 0; ð3Þ
which gives
ci ¼
n2ðiÞ � n1ðiÞ
n3ðiÞ � n2ðiÞ

: ð4Þ
In the following we need also the integrals of the wavelets (for conciseness sake the wavelet index i is in Eqs.
(4)–(7) omitted)
paðxÞ ¼
Z x

n1

pa�1ðxÞdx; ð5Þ
where p0(x) = h(x). Making use of (1) all these integrals can be analytically evaluated. Doing this we find
p1ðxÞ ¼

0 for x < n1;

x� n1 for x 2 ½n1; n2�;
cðn3 � xÞ for x 2 ½n2; n3�;
0 for x P n3;

8>>>><
>>>>:

ð6Þ

p2ðxÞ ¼

0 for x < n1;

0:5ðx� n1Þ2 for x 2 ½n1; n2�;
K � 0:5ðn3 � xÞ2 for x 2 ½n2; n3�;
K for x P n3;

8>>>><
>>>>:

ð7Þ
where
K ¼ 0:5ðn2 � n1Þðn3 � n1Þ: ð8Þ

This analysis does not involve the case i = 1, which corresponds to the scaling function h1(x) = 1 for x 2 [a,b]
and h1(x) = 0 elsewhere. Here n1(1) = a, n2(1) = n3(1) = b and we find
p1;1ðxÞ ¼ x� a; p2;1ðxÞ ¼ 0:5ðx� aÞ2: ð9Þ
The Haar functions h(x), p1(x), p2(x) for i > 1 are plotted in Fig. 1.
The problems discussed in this paper are solved by the collocation method. The collocation points are
xcðlÞ ¼ 0:5½xðl� 1Þ þ xðlÞ�; l ¼ 1; 2; . . . ; 2M : ð10Þ
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Fig. 1. Haar diagrams.
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We shall apply Eqs. (1), (6) and (7) in the collocation points. It is convenient to introduce the Haar matrices
Hði; lÞ ¼ hi½xcðlÞ�; P 1ði; lÞ ¼ p1;i½xcðlÞ�; P 2ði; lÞ ¼ p2;i½xcðlÞ�: ð11Þ
With the purpose to demonstrate the good features of the presented method three problems are solved. Since
for all these problems the exact solution is known we can calculate the error of the wavelet solutions.

3. Fredholm integral equation

For the first problem we shall take the integral equation
yðxÞ � 4

Z 1

0

e�ðxþtÞyðtÞdt ¼ ðx� 1Þe�x; ð12Þ
which has the exact solution
yexðxÞ ¼ xe�x: ð13Þ

For getting numerical results the interval of integration [0,1] is replaced by [0,L], where L is large enough
constant. The partition of this interval into subintervals is carried out as follows. Let us denote the length
of the lth subinterval by Dxl = xl � xl�1, l = 1,2, . . . , 2M. It is assumed that Dxl+1 = qDxl, where q > 1 is a gi-
ven constant. By summing up all the length of the subintervals we find
Dx1ð1þ qþ q2 þ � � � þ q2M�1Þ ¼ L; ð14Þ

where L = b � a. This formula can be put into the form
Dx1 ¼ L
q� 1

q2M � 1
: ð15Þ
The grid points are
xl ¼ L
ql � 1

q2M � 1
; l ¼ 1; 2; . . . ; 2M : ð16Þ



Table 1
Error estimates for Eq. (12)

J 2M q = 1.0 q = 1.1 q = 1.2

dmax dn dmax dn dmax dn

3 16 6.0E�2 4.4E�3 1.5E�2 1.3E�3 3.0E�3 3.4E�4
4 32 1.7E�2 8.0E�4 6.4E�4 5.1E�5 6.1E�4 7.0E�5
5 64 4.7E�3 1.4E�4 1.7E�4 6.4E�5 7.0E�4 7.3E�5
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The collocation points are calculated according to (10). Wavelet solution of (12) is sought in the form
yðxÞ ¼
X2M

i¼1

aihiðxÞ; ð17Þ
where a = (ai) is a row vector of the wavelet coefficients. Next we shall evaluate the integral
Gi ¼
Z L

0

e�thiðtÞdt: ð18Þ
In view of (1) we find
Gi ¼ e�n1ðiÞ þ ½1þ cðiÞ�e�n2ðiÞ þ cðiÞe�n3ðiÞ: ð19Þ

Making use of (17)–(19) and satisfying (12) in the collocation points xc we obtain the matrix equation
aS ¼ F ; ð20Þ

where
Sði; lÞ ¼ Hði; lÞ � 4Gi e
�xcðlÞ; F ðlÞ ¼ ½xcðlÞ � 1�e�xcðlÞ: ð21Þ
From here the vector a is calculated and the function y(x) is found from (17). For estimating the accuracy of
the obtained results the following error estimates were introduced
dmax ¼ max
l
ðjDljÞ; dn ¼ normðDlÞ; ð22Þ
where
Dl ¼ y½xcðlÞ� � yex½xcðlÞ�: ð23Þ

Computer simulations were carried out for q = 1 (uniform Haar solution) and q = 1.1, q = 1.2. For the
parameter L the value L = 10 was taken. The results are presented in Table 1.

Calculations with L = 20 were also carried out but the results did not essentially differ from the data of
Table 1. It follows from Table 1 that the results with variable stepsize are considerably more accurate as in
the case of a constant stepsize.

4. Locally disturbed vibrations

Consider the differential equation
y00 þ k2y ¼ f ; x 2 ½0; 0:5�; ð24Þ

where
f ¼
d sinðaxÞ for x 2 ½x�; x���;
0 elsewhere:

�
ð25Þ
If x is interpreted as time then (24) presents a locally disturbed sinusoidal motion. Eq. (24) can be integrated
analytically but for conciseness sake we do not show these results here. Subsequent calculations were carried
out for the parameters k = p, d = 400, a = 40p, x* = 0.2, x** = 0.25 and for the initial conditions y(0) = 1,
y 0(0) = 0. Let us divide the interval [0,0.5] into three parts [0, 0.2], [0.2,0.25], [0.25,0.5]; with the length of
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the subintervals Dx1, Dx2, Dx3 which are assumed to be constants. It is reasonable to choose the stepsizes so
that Dx1 � Dx3, Dx1� Dx2. If we take Dx1 = 0.4/M, Dx2 = 0.05/M, Dx3 = 0.5/M then to the interval [0,0.2]
belong M/2 collocation points, to [0.2,0.25] M points and to [0.25, 0.5] also M/2 points. The coordinates of the
grid points are
Table
Error

J

3
4
5
6

xðlÞ ¼ lDx1 for l ¼ 1; . . . ;M=2;

xðlþM=2Þ ¼ x� þ lDx2 for l ¼ 1; . . . ;M ;

xðlþ 3M=2Þ ¼ x�� þ lDx3 for l ¼ 1; . . . ;M=2:

ð26Þ
We shall satisfy (24) in the collocation points xl. If Y is a row vector for which Y(l) = y[xc(l)] then the solution
of (24) can be sought in the matrix form
Y 00 ¼ aH : ð27Þ

By integrating this equation twice we obtain
Y 0 ¼ aP 1 þ y0ð0ÞE; Y ¼ aP 2 þ y0ð0ÞX c þ yð0ÞE: ð28Þ

Here Xc is a row vector with the components xc(l) and E is a 2M-dimensional unit vector. Replacing (27) and
(28) into (24) we get
aðH þ k2P 2Þ ¼ F � k2½y0ð0ÞX l þ yð0ÞE�; ð29Þ

where F(l) = f[xc(l)]. Again the vector a is calculated from (29); the solution of the problem is found according
to (28). Results of the computer simulation are presented in Table 2 and in Fig. 2.

It follows from Table 2 and Fig. 2 that in case of variable stepsize the accuracy of the results is very good –
already in the case of 16 points (i.e. for J = 3) our results visually do not differ from the exact ones. For uni-
form Haar solution the error dmax is quite significant, it practically does not become smaller if we increase the
number of collocation points to 128. As to the estimate dn then it is �1000 times greater as for non-uniform
Haar solution. From here the conclusion, that the uniform Haar method for the solution of this problem is
inappropriate, can be made.
2
estimates for Eq. (24)

2M Uniform Haar Non-uniform Haar

dmax dn dmax dn

16 1.59 2.0E�1 4.5E�3 6.9E�4
32 0.36 3.0E�2 1.1E�3 1.2E�4
64 0.37 2.2E�2 2.8E�4 2.1E�5

128 0.34 1.4E�2 6.9E�5 3.7E�6
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Fig. 2. Solution of Eq. (24) for J = 5, — exact solution, ––– uniform wavelet solution.
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5. Boundary layer problem

Let us solve the differential equation
Fig.

Table
Error

J

� = 0.0

3
4
5

� = 0.0

3
4
5

The as
��y 00 þ y0 ¼ 0; x 2 ½0; 1�; yð0Þ ¼ yð1Þ ¼ 0; ð30Þ

where � > 0 is a small parameter. The exact solution of (30) is
yex ¼ x� ex=� � 1

e1=� � 1
: ð31Þ
If �	 1 a boundary layer develops near the edge x = 1 (Fig. 3). This fact puts an extra requirement to the
computational algorithm and therefore (30) is a good test problem. It was solved by Bertoluzza [12] who made
use of the Deslaurier–Dubuc interpolating wavelets. The Haar wavelet method in connection with the segmen-
tation technique was applied by Lepik [4]. Now let us put together a Haar wavelet solution with the variable
stepsize. We shall assume that the lengths of the subintervals fulfil the condition Dxl = qDxl�1, where q < 1 and
l ¼ 1; . . . ; 2M . In this case formulae (16) and (10) for calculating the grid and collocation points hold. The
solution is sought again in the matrix form (27); also (28) remains valid. In the present case we have a bound-
ary problem y(1) = 0. Satisfying this condition in view of (28) we find y 00 ¼ �aP 2ðx ¼ 1Þ. It follows from (7)
that P2(x = 1) = KT. Substitution this result into (28) gives
Y 0 ¼ aðP 1 � KT 
 EÞ; Y ¼ aðP 2 þ KT 
 X lÞ; ð32Þ

where the symbol 
 denotes the Kronecker tensor product. In view of (27) and (32) Eq. (30) obtains the form
að��H þ P 1 � KT 
 EÞ ¼ E; ð33Þ

from which the wavelet coefficients are calculated. The second equation of (32) gives the solution of the prob-
lem. Calculations are carried out for � = 0.01 and � = 0.001; for the parameter the values q = 1, q = 0.9 and
0 0.2 0.4 0.6 0.8 1
0
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3. Solution of Eq. (30) for � = 0.01; J = 3, — exact solution and wavelet solution for q = 0.8, ––– wavelet solution for q = 1.

3
estimates for Eq. (30)

2M q = 1.0 q = 0.9 q = 0.8

dmax dn dmax dn dmax dn

1

16 * * 0.19 1.2E�2 1.9E�2 1.8E�3
32 0.30 9.2E�3 5.8E�3 3.8E�4 2.1E�3 1.4E�4
64 0.068 1.3E�3 4.7E�4 2.3E�5 1.9E�3 6.3E�5

01

16 * * * * * *
32 * * * * 4.8E�3 2.6E�4
64 * * 1.3E�3 5.8E�5 1.8E�3 6.3E�5

terisk (*) indicates oscillating solutions.
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q = 0.8 were taken. The error estimates are shown in Table 3. In some cases the solution is instable-oscillatory
(Fig. 3).

From the data of Table 3 the preference of the Haar method with variable stepsize becomes again evident.
To demonstrate this more clearly let us consider the solution for the case � = 0.01, J = 3 (Fig. 3). For q = 0.8
the wavelet solution visually coincides with the exact solution, while for q = 1 (uniform Haar method) the
solution is oscillating. If � = 0.001 the solution for q = 1 remains instable in spite of increasing number of col-
location points.

6. Conclusions

Traditional Haar wavelet method is applicable in the region x 2 [0, 1]; it is assumed that all the subintervals
Dx have the same length. In the present paper a modification of the method, which is free from these restric-
tions, is proposed. The Haar method with a variable stepsize is appropriate in the case of problems, where in
the solution abrupt changes take place. The efficiency of the method is demonstrated in Sections 3–5 for solv-
ing three problems. Simplicity of the Haar wavelet method is retained; computing time is practically the same
as for the conventional Haar wavelet method.
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