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Numerical solution of evolution equations
by the Haar wavelet method
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Abstract

An efficient numerical method for solution of nonlinear evolution equations based on the Haar wavelets approach is
proposed. The method is tested in the case of Burgers and sine-Gordon equations. Numerical results, obtained by com-
puter simulation, are compared with other available solutions. These calculations demonstrate that the accuracy of the
Haar wavelet solutions is quite high even in the case of a small number of grid points.
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1. Introduction

Consider the evolution problem
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where t* 2 [tin, tfin], x* 2 [xin,xfin].
Here F is a nonlinear function, a*, b*, tin, tfin, xin, xfin are given constants. In this paper the following two

cases are discussed in detail:

(i) Burgers equation
a� ¼ 0; b� ¼ 1; F ¼ m�
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�
� u
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(ii) sine-Gordon equation
a� ¼ 1; b� ¼ 0; F ¼ o2u
ox2
�
� sin u: ð3Þ
Numerical solution of these equations has been discussed in many papers. From conventional methods of
solution we would mention here

(i) Fourier spectral method.
(ii) Galerkin and collocation methods.

(iii) Finite element and finite difference methods.

An overview of these (and other) methods can be found e.g. in [1–3].
Although all these methods have been successfully applied for many evolution equations they have also

some shortcomings. In regions where singularities or sharp transitions occur the solutions may be oscillating
(Gibbs phenomenon) and for accurate representation of the results adaptive numerical schemes must be used
what complicates the solution.

Beginning from 1980s wavelets have been used for solution of partial differential equations (PDE). The
good features of this approach are possibility to detect singularities, irregular structure and transient phenom-
ena exhibited by the analyzed equations. Most of the wavelet algorithms can handle easily periodic boundary
conditions.

The wavelet algorithms for solving PDE usually are based on the Galerkin technics [5–7] or on the collo-
cation method [5,8]. As to other approaches then the pseudo-wavelet method was applied in [9], filter-bank
methods in [10]; periodic spline wavelets of even order are used in [11].

In most papers the Daubechies wavelets are used. The main advantage of these wavelets is their regularity
and smoothness. Unfortunately they do not have any explicit expression and therefore analytical differentia-
tion or integration is not possible. This fact in particular complicates the solution of nonlinear PDE, where
integrals of products of wavelets and their derivatives must be computed. This can be done by introducing
the connection coefficients [12,13], but this approach can be realized only for a narrow class of nonlinearities;
besides numerical evaluation of these coefficients is often unstable or inaccurate.

The complexity of the wavelet solutions has induced some pessimistic estimates. So Jameson [14] writes:
‘‘. . . nonlinearities etc., when treated in a wavelet subspace, are often unnecessarily complicated. There
appears to be no compelling reason to work with Galerkin-style coefficients in a wavelet method’’.

Evidently all attempts to simplify the wavelet solutions for PDE are welcome. One possibility for this is to
make use of the Haar wavelet family. Haar wavelets (which are Daubechies wavelets of order 1) consist of
piecewise constant functions (see Section 2) and are therefore the simplest orthonormal wavelets with a com-
pact support. A drawback of the Haar wavelets is their discontinuity. Since the derivatives do not exist in the
breaking points it is not possible to apply the Haar wavelets for solving PDE directly.

There are two possibilities for getting out of this situation. One way is to regularize the Haar wavelets with
interpolating splines (e.g. B-splines or Deslaurier–Dubuc interpolating wavelets). This approach has been
applied by Cattani [15], but the regularization process considerably complicates the solution and the main
advantage of the Haar wavelets – the simplicity gets to some extent lost.

The other way is to make use of the integral method which was proposed by Chen and Hsiao [16] in 1997.
The main idea of this approach is to expand into the Haar series the highest derivative appearing in the dif-
ferential equation. This approximation is integrated for getting the derivatives of lower order and the function
to be calculated. This idea is used in the present paper for solving some evolution equations.

The paper is organized in the following way. For completeness sake the Haar wavelet method is presented
in Section 2. The method of solution the PDE is proposed in Section 3. It is applied for solution of the Burgers
equation (Section 4) and the sine-Gordon equation (Section 5). Some conclusions are drawn in Section 6.

2. Haar wavelets

The Haar wavelet family for x 2 [0, 1] is defined as follows:
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hiðxÞ ¼
1 for x 2 ½n1; n2Þ;
�1 for x 2 ½n2; n3Þ;
0 elsewhere;

8><
>: ð4Þ
where
n1 ¼
k
m
; n2 ¼

k þ 0:5

m
; n3 ¼

k þ 1

m
: ð5Þ
In these formulae integer m = 2j, j = 0,1, . . . ,J indicates the level of the wavelet; k = 0,1, . . . ,m � 1 is the
translation parameter. Maximal level of resolution is J. The index i in Eq. (4) is calculated from the formula
i = m + k + 1; in the case of minimal values m = 1, k = 0 we have i = 2. The maximal value of i is
i = 2M = 2J+1. It is assumed that the value i = 1 corresponds to the scaling function for which
hiðxÞ ¼
1 for x 2 ½�1; 1Þ;
0 elsewhere:

�
ð6Þ
In the following analysis integrals of the wavelets
piðxÞ ¼
Z x

0

hiðxÞdx; qiðxÞ ¼
Z x

0

piðxÞdx ð7Þ
must be calculated. This can be done with the aid of (4):
piðxÞ ¼
x� n1 for x 2 ½n1; n2Þ;
n3 � x for x 2 ½n2; n3Þ;
0 elsewhere;

8><
>: ð8Þ

qiðxÞ ¼

0 for x 2 ½0; n1Þ;
0:5ðx� n1Þ2 for x 2 ½n1; n2Þ;

1
4m2 � 1

2
ðn3 � xÞ2 for x 2 ½n2; n3Þ;

1
4m2 for x 2 ½n3; 1�:

8>>>><
>>>>:

ð9Þ
In the present paper the wavelet-collocation method is applied. The collocation points are defined as
xl ¼ ðl� 0:5Þ=ð2MÞ; l ¼ 1; 2; . . . ; 2M : ð10Þ

It is expedient to introduce the 2M · 2M matrices H, P, Q with the elements H(i, l) = hi(xl), P(i, l) = pi(xl),
Q(i, l) = qi(xl).

3. Method of solution

For solving the PDEs the two-dimensional wavelet transform could be applied, as it was proposed e.g. by
Newland [17], but more convenient seems to be the following algorithm.

Since the Haar wavelets are defined for x 2 [0,1] we must first normalize Eq. (1) in regard to x. Let in the
following dots and primes denote differentiation with respect to t = t* and x, respectively. Eq. (1) can now be
rewritten in the form
a€uþ b _u ¼ f ðt; u; u0; u00Þ; x 2 ½0; 1�; t 2 ½tin; tfin�: ð11Þ

To this equation belong the initial and boundary conditions which will be specified later on.

Next let us divide the interval [tin, tfin] into N equal parts of length Dt = (tfin � tin)/N and denote
ts = (s � 1)Dt, s = 1,2, . . . ,N. For the subinterval t 2 [ts, ts+1] the solution is sought in the form
for
a 6¼ 0 : €uðlÞðx; tÞ
a ¼ 0 : _uðlÞðx; tÞ

( )
¼
X2M

i¼1

asðiÞhiðxÞ: ð12Þ
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Here (l) denotes the order of the highest spacial derivative in Eq. (11); as is a 2M dimensional row vector, it is
regarded for a vector constant in the subinterval t 2 [ts, ts+1].

Eq. (12) is integrated with respect to x in the limits [0,x] and with respect to t in the limits [ts, t]. This process
is repeated until all of the functions, u, _u, €u, u 0, u00, _u0, _u00 are calculated. The boundary conditions are incor-
porated in these expressions as integration constants.

Eq. (11) will be satisfied in the grid points (xl, ts). Let us denote Us(l) = u(xl, ts); similar notations will be
introduced for the derivatives of u. In the following the quantity Us(l) and his derivatives will be treated as
2M-dimensional vectors. If we denote
asð:ÞHð:; lÞ ¼
X2M

i¼1

asðiÞhiðxlÞ; ð13Þ
then (11) can be rewritten in the matrix form
for
a 6¼ 0 : €U ðlÞs ðlÞ
a ¼ 0 : _U ðlÞs ðlÞ

( )
¼ asð:ÞHð:; lÞ: ð14Þ
Further details concerning integration of Eq. (14) and solution of Eq. (11) are explained in Sections 4 and 5.
All computations were carried out by the use of MATLAB programs.
4. Burgers equation

Burgers equation (1) and (2) has proved to be a touchstone for new numerical methods of solution. This is
caused by two reasons. First Burgers equation is the simplest nonlinear PDE incorporating both diffusion and
advection. The second reason is that for a small viscosity m* the solution develops into a saw-tooth wave at the
origin. Performance of a numerical method can be judged from its ability to resolve the large gradient region
that develops in the solution.

There are several papers about numerical solution of the Burgers equation. An overview of conventional
methods is presented in [1]. Different wavelet approaches have been applied in [4,6,7,9,11,19,20]. A compar-
ison of numerical results according to these (and other) papers can be found in [19]. It should be mentioned
that in the case of several solutions localized or spread oscillations appear.

There exists also an analytical solution of the Burgers equation (consult e.g. [1]), but it is quite difficult to
compute.

Now let us put together the Haar wavelet solution. Following [19] the equation:
ou
ot�
þ u

ou
ox�
¼ m�

o2u
ox2
�
; x� 2 ½�1; 1�; t P 0 ð15Þ
with initial and boundary conditions u(x*,0) = �sin(px*), u(±1, t) = 0 is considered.
Carrying out the change of variables x* = 2x � 1, m = m*/4 we get the problem
_uþ 1

2
uu0 ¼ mu00; x 2 ½0; 1�; t > 0;

uðx; 0Þ ¼ sin 2px; uð0; tÞ ¼ uð1; tÞ ¼ 0:
ð16Þ
The Haar wavelet solution is sought in the form
_u00ðx; tÞ ¼
X2M

i¼1

asðiÞhiðxÞ; ð17Þ
where the row vector as is constant in the subinterval t 2 [ts, ts+1].
By integrating Eq. (17) with respect to t in the limits [ts, t] and twice with respect to x in the limits [0,x] we

obtain
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u00ðx; tÞ ¼ ðt � tsÞ
X2M

i¼1

asðiÞhiðxÞ þ u00ðx; tsÞ;

u0ðx; tÞ ¼ ðt � tsÞ
X2M

i¼1

asðiÞpiðxÞ þ u0ðx; tsÞ � u0ð0; tsÞ þ u0ð0; tÞ;

uðx; tÞ ¼ ðt � tsÞ
X2M

i¼1

asðiÞqiðxÞ þ uðx; tsÞ � uð0; tsÞ þ x½u0ð0; tÞ � u0ð0; tsÞ� þ uð0; tÞ;

_uðx; tÞ ¼
X2M

i¼1

asðiÞqiðxÞ þ _uð0; tÞ þ x _u0ð0; tÞ:

ð18Þ
On the grounds of the boundary conditions we have uð0; tÞ ¼ uð0; tsÞ ¼ _uð0; tÞ ¼ 0. The conditions uð1; tÞ ¼
_uð1; tÞ ¼ 0 give
u0ð0; tÞ � u0ð0; tsÞ ¼ �ðt � tsÞ
X2M

i¼1

asðiÞqið1Þ;

_u0ð0; tÞ ¼ �
X2M

i¼1

asðiÞqið1Þ:
ð19Þ
It follows from (9) that
~qðiÞ ¼ qið1Þ ¼
0:5 if i ¼ 1;

1
4m2 if i > 1:

(
ð20Þ
Substituting Eq. (19) into Eq. (18) and discretizising the results by assuming x! xl, t! ts+1 we obtain
U 00sþ1ðlÞ ¼ Dtasð:ÞHð:; lÞ þ U 00s ðlÞ;
U 0sþ1ðlÞ ¼ Dtasð:Þ½P ð:; lÞ � EðlÞ~qð:Þ� þ U 0sðlÞ;
U sþ1ðlÞ ¼ Dtasð:Þ½Qð:; lÞ � xðlÞ~qð:Þ� þ U sðlÞ;
_U sþ1ðlÞ ¼ asð:Þ½Qð:; lÞ � xðlÞ~qð:Þ�:

ð21Þ
In these equations E(l) denotes the 2M-dimensional unit vector.
There are several possibilities for treating the nonlinearity in Eq. (16). In the following the scheme
_U ðlÞsþ1 ¼ �
1

2
U ðlÞs U 0sðlÞ þ mU 00s ðlÞ; ð22Þ
which leads us from the time layer ts to ts+1 is used.
Substituting Eq. (21) into Eq. (22) we obtain
asð:Þ½Qð:; lÞ � ~qð:ÞxðlÞ� ¼ �0:5U sðlÞU 0sðlÞ � mU 00s ðlÞ: ð23Þ

From Eq. (23) the wavelet coefficients as can be successively calculated. This process is started with
U 0ðlÞ ¼ sin½2pxðlÞ�;
U 00ðlÞ ¼ 2p cos½2pxðlÞ�;
U 000ðlÞ ¼ �4p2 sin½2pxðlÞ�:

ð24Þ
In the case of a small viscosity m the solution develops into a saw-tooth wave and at x = 0.5 a shock develops.
For estimating the efficiency of the solution it is expedient to calculate the maximum value of the gradient
jou/oxj at x = 0.5. According to the analytical solution [1,8] for m = (400p)�1 the theoretical maximum is
jou/oxj = 304.0 and takes place at tmax = 0.51.

Computer simulation was carried out for m = (400p)�1. Result for J = 5 (32 collocation points), Dt = 0.001,
t = 0.35 are plotted in Fig. 1a. It follows from this Figure that in spite of the small number of the collocation
points the solution describes quite well the sawtooth effect. With increasing t oscillations near the point x = 0.5
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Fig. 1. Solutions of the Burgers equation for m = (400p)�1, Dt = 0.001: (a) solution for J = 5, t = 0.35; (b) J = 5, t = 0.37 (dashed line
denotes the solution for t = 0); (c) J = 7, t = 0.51; (d) wavelet coefficients for the case c (l is the number of one collocation point).
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appear (Fig. 1b). For getting more exact results the value of J must be increased. Results for J = 7, t = 0.51 are
plotted in Fig. 1c. In this case maxjou/oxj = 400.4. That number is different from the analytical value 304.0,
but this fact seems to be nonessential: if we calculate the angle d = arctan(maxjou/oxj), then our solution gives
d = 89.86�, while in the case of the analytic solution we have d = 89.81�.

Results of numerical solution for the Burgers equation with the aid of other methods can be found in
[1,9,18]. Comparison with these algorithms shows that the Haar wavelet method is competitive and efficient.
The advantages of our method are its simplicity and speed of convergence, which is caused from the sparseness
of the transform matrices H, P, Q. As it follows from Fig. 1d the number of significant wavelet coefficients is
quite small while in the case of other wavelet methods it can be up to 200–400 [9].
5. Sine-Gordon equation

Numerical solution of different modifications of the sine-Gordon Eqs. (1) and (3) was discussed in many
papers, from which we cite here [20–26]. In most papers the conventional methods as difference methods, spec-
tral methods or integration of the Hamiltonian systems were applied. In paper [26] the Gaussian wavelets were
used.
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In this paper the classical form of the sine-Gordon equation
o2u
ox2
�
� o2u

ot2
�
¼ sin u; x� 2 ½xin; xfin�; t� P tin ð25Þ
is considered.
Changing the variables
x ¼ 1

L
ðx� � xinÞ; t ¼ t� � tin; L ¼ xfin � xin
we obtain
1

L2
u00 � €u ¼ sin u; x 2 ½0; 1�; t P 0: ð26Þ
This equation has an analytical solitary wave solution
uðx; tÞ ¼ 4 arctan½expðzÞ�; z ¼ aðx� btÞ: ð27Þ
Eq. (27) is satisfied if
a ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2b2

q : ð28Þ
To Eq. (26) belong the initial and boundary conditions
uð0; tÞ ¼ uðtÞ; u0ð0; tÞ ¼ wðtÞ;
uðx; 0Þ ¼ f ðxÞ; _uðx; 0Þ ¼ gðxÞ;

ð29Þ
where u, w, f, g are prescribed functions.
The Haar wavelet solution for t 2 [ts, ts+1] is sought in the form
€u00ðx; tÞ ¼
X2M

i¼1

asðiÞhiðxÞ: ð30Þ
By integrating Eq. (26) with respect to x and t and putting the results into discrete form we obtain
_U 00sþ1ðlÞ ¼ Dtasð:ÞHð:; lÞ þ _U 00s ðlÞ;

U 00sþ1ðlÞ ¼
1

2
Dt2asð:ÞHð:; lÞ þ Dt _U 00s ðlÞ þ U 00s ðlÞ;

€U sþ1ðlÞ ¼ asð:ÞQð:; lÞ þ xl €u
0ðtsþ1Þ þ €uðtsþ1Þ;

_U sþ1ðlÞ ¼ Dtasð:ÞQð:; lÞ þ _U sðlÞ þ _uðtsþ1Þ � _uðtsÞ þ xl½ _u0ðtsþ1Þ � _u0ðtsÞ�;

U sþ1ðlÞ ¼
1

2
Dt2asð:ÞQð:; lÞ þ Dt _U sðlÞ þ U sðlÞ þ uðtsþ1Þ � uðtsÞ � Dt _uðtsÞ

þ xl½u0ðtsþ1Þ � u0ðtsÞ � Dt _u0ðtsÞ�:

ð31Þ
Discrete version of Eq. (26) gets the form
asð:ÞQð:; lÞ ¼
1

L2
U 00s ðlÞ þ sin UsðlÞ � xl €uðtsþ1Þ � €uðtsþ1Þ: ð32Þ
Eq. (32) is the matrix equation for calculating the wavelet coefficients as.
Now let us specify the initial and boundary conditions. If we want to get the classical solitary wave solution

we must take according to Eq. (27):
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f ðxÞ ¼ uðx; 0Þ ¼ 4 arctan½expðaxÞ�;
gðxÞ ¼ u0ðx; 0Þ ¼ aV ðaxÞ;
uðtÞ ¼ uð0; tÞ ¼ 4 arctan½expð�abtÞ�;
wðtÞ ¼ _uð0; tÞ ¼ �abV ð�abtÞ;

ð33Þ
where V ðzÞ ¼ 4ez

1þe2z.

For solving Eq. (32) we need in addition the functions u00(x,0), _u00ðx; 0Þ€uðtÞ, €u0ðtÞ, u 0(t), _u0ðtÞ, which can be
calculated by differentiating Eq. (33).

Computer simulation was carried out for tin = 10, tfin = 30, L = 20, b = 0.025. The computed results were
compared with the exact solution Eq. (27). The accuracy of our approach was estimated by the error function
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vðtÞ ¼ 1

2M
kuðx; tÞ � uexðx; tÞk ¼

1

2M

X2M

i¼1

½uðxi; tÞ � uexðxi; tÞ�2
( )1

2

: ð34Þ
The calculations showed that the function v(t) increases monotonically; therefore for the error estimate is
taken v(tmax). Some results of computation are presented in the table and in Fig. 2.

It follows from this table that already in the cases J = 4 or J = 5 we get results which visually coincide with
the exact solution. For the time step was taken Dt = 0.005 or Dt = 0.001; further diminution of Dt did not give
any essential effect. It can be seen from Fig. 2c that the distribution of the error v distribution along the x-axis
not uniform (as it was to be awaited the biggest values of v appear in the large gradient regions). According to
Fig. 2d the number of significant wavelet coefficients is again quite small.
J
 M
 Dt
 v(tmax)
4
 16
 0.005
 0.051

4
 16
 0.001
 0.038

5
 32
 0.005
 0.018

5
 32
 0.001
 0.0090

6
 64
 0.005
 0.0096

6
 64
 0.001
 0.0036
6. Conclusions

A new method for solution of the PDE-s is proposed. According to this method the spacial operators are
approximated by the Haar wavelet method and the time derivation operators by the finite difference method
(for sake of simplicity the Euler scheme is used).

The main advantages of this method is its simplicity and small computation costs: it is due to the sparcity of
the transform matrices and to the small number of significant wavelet coefficients.

The method with far less degrees of freedom and with a smaller CPU time provides better solutions than
classical ones. The proposed algorithm resolves well the shock formation and solution in the large gradient
regions. It is also very convenient for solving the boundary value problems, since in the solution the boundary
conditions are taken care of automatically.

By our opinion the method is wholly competitive and efficient in comparison with the classical methods.
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