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1. Introduction

Although the conception of the fractional derivatives was introduced already in the middle of the 19th century by Rie-
mann and Liouville, the first work, devoted exclusively to the subject of fractional calculus, is the book by Oldham and Spa-
nier [1] published in 1974. After that the number of publications about the fractional calculus has rapidly increased. The
reason for this is that some physical processes as anomalous diffusion, complex viscoelasticity, behaviour of mechatronic
and biological systems, rheology etc. cannot be described adequately by the classical models.

At the present time we possess several excellent monographs about fractional calculus for example the book [2] by Kilbas
et al., to which is also included a rather large and up-to-date Bibliography (928 items). Because of the enormous number of
the papers about this topic we shall cite here only some papers which are more close to subject of this paper.

In a number of papers fractional differential equations are discussed; mostly these equations are transformed to fractional
Volterra integral equations. For solution different techniques, as Fourier and Laplace transforms, power spectral density,
Adomian decomposition method, path integration etc., are applied.

One-dimensional fractional harmonic oscillator is analysed in [3–6]. In [3,4] the solution is obtained in terms of Mittag–
Leffler functions using Laplace transforms; several cases of the forcing function equation are considered. In [5] the fractional
equation of motion is solved by the path integral method. In [6] the case, where the fractional derivatives only slightly differ
from the ordinary derivatives, is analysed. Fractional Hamilton’s equations are discussed in [7]. In [8] multiorder fractional
differential equations are solved by using the Adomian decomposition. In several papers fractional chaotic systems are dis-
cussed. In [8] a three-dimensional fractional chaotic oscillator model is proposed. Chaotic dynamics of the fractionally
damped Duffing equation is investigated in [9]. Two chaotic models for third-order chaotic nonlinear systems are analysed
in [10].

It is somewhat surprising that among different solution techniques the wavelet method has not attained much attention.
We found only one paper [11] in which the wavelet method is applied for solving fractional differential equations; for this
purpose the Daubechies wavelet functions are used.

Among the different wavelet families mathematically most simple are the Haar wavelets. Due to the simplicity the Haar
wavelets are very effective for solving differential and integral equations (see e.g. [12–15]). Therefore the idea, to apply Haar
wavelet technique also for solving problems of fractional calculus, arises. This is the main aim of the present paper.

The paper is organized as follows. Sections 2 and 3 are preparative: in Section 2, basic equations of the fractional calculus
are briefly reviewed, in Section 3, the Haar wavelet method is described. In Section 4, two error estimates for the results,
. All rights reserved.
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obtained by the Haar wavelet method, are introduced. In Section 5, the wavelet solution for fractional Volterra integral equa-
tions is presented. The one-dimensional fractional harmonic vibrations are discussed in Section 6. The solution for the frac-
tional Fredholm integral equation is presented in Section 7.
2. About the fractional calculus

Let us briefly consider some basic formulae about the fractional calculus.
The Riemann–Liouville fractional integrals of order a are defined by
IaAþf
� �

ðxÞ ¼ 1
CðaÞ

Z x

A
f ðtÞðx� tÞa�1 dt ðx > A; ½a� > 0Þ ð1Þ
and
IaB�f
� �

ðxÞ ¼ 1
CðaÞ

Z B

x
f ðtÞðt � xÞa�1 dt ðx < B; ½a� > 0Þ: ð2Þ
Here CðaÞ is the gamma function and ½a� the integer part of a. The integrals (1) and (2) are called left-sided and right-sided
fractional integrals.

As to the fractional derivatives, then in this paper we shall use the Caputo derivatives defined as
DauðxÞ ¼ 1
Cðn� aÞ

Z x

A
uðnÞðtÞðx� tÞn�1�a dt; ð3Þ
where uðnÞðxÞ ¼ dnu=dxn and n ¼ ½a� þ 1.
If aþ 1 ¼ n 2 N then DnuðxÞ coincides with the ordinary derivative uðnÞðxÞ.
3. Haar wavelets

Usually the Haar wavelets are defined for the interval x 2 ½0;1�. In this paper the more general case x 2 ½A;B�, is considered.
Let us define the quantity M ¼ 2J , where J is the maximal level of resolution. We shall divide the interval ½A;B� into 2M sub-
intervals of equal length; each subinterval has the length Dx ¼ ðB� AÞ=ð2MÞ. Next two parameters are introduced: the dila-
tation parameter j for which j ¼ 0;1; . . . ; J and the translation parameter k ¼ 0;1; . . . ;m� 1 (here the notation m ¼ 2j is
introduced). The wavelet number i is identified as i ¼ mþ kþ 1.

The ith Haar wavelet is defined as
hiðxÞ ¼
1 for x 2 ½n1ðiÞ; n2ðiÞ�;
�1 for x 2 ½n2ðiÞ; n3ðiÞ�;
0 elsewhere;

8><
>: ð4Þ
where
n1ðiÞ ¼ Aþ 2klDx; n2ðiÞ ¼ Aþ ð2kþ 1ÞlDx;

n3ðiÞ ¼ Aþ 2ðkþ 1ÞlDx; l ¼ M=m:
ð5Þ
The case i ¼ 1 corresponds to the scaling function, here h1ðxÞ ¼ 1 for x 2 ½A;B� and h1ðxÞ ¼ 0 elsewhere.
The expansion of a given function uðxÞ into the Haar wavelet series is
uðxÞ ¼
X2M

i¼1

aihiðxÞ; x 2 ½A;B�; ð6Þ
where ai are the wavelet coefficients.
There are different possibilities for calculating ai. In this paper we apply the collocation method; the collocation points are

identified as
xl ¼ Aþ ðl� 0:5ÞDx; l ¼ 1;2; . . . ;2M: ð7Þ
The discrete version of (6) is
uðxlÞ ¼
X2M

i¼1

aihiðxlÞ: ð8Þ
It is convenient to put this result into the matrix form

u ¼ aH; ð9Þ
where u and a are 2M-dimensional row vectors and Hði; lÞ ¼ hiðxlÞ is the element of a 2M � 2M matrix.
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In Section 5, the integrals
piðxÞ ¼
Z x

A
hiðxÞdx;

qiðxÞ ¼
Z x

A

Z x

A
hiðxÞdxdx ¼

Z x

A
ðx� yÞhiðyÞdy

ð10Þ
are needed. In view of (4) they can be analytically evaluated. Doing this we find
piðxÞ ¼

0 for x < n1ðiÞ;
x� n1ðiÞ for x 2 ½n1ðiÞ; n2ðiÞ�;
n3ðiÞ � x for x 2 ½n2ðiÞ; n3ðiÞ�;
0 for x P n3ðiÞ;

8>>><
>>>:

ð11Þ

qiðxÞ ¼

0 for x < n1ðiÞ;
0:5½x� n1ðiÞ�2 for x 2 ½n1ðiÞ; n2ðiÞ�;
D� 0:5½n3ðiÞ � x�2 for x 2 ½n2ðiÞ; n3ðiÞ�;
D for x P n3ðiÞ;

8>>>><
>>>>:

ð12Þ
where D ¼ ½n2ðiÞ � n1ðiÞ�2 ¼ ðlDxÞ2.
It is also appropriate here to introduce the integral matrices Pði; lÞ ¼ piðxlÞ, Qði; lÞ ¼ qiðxlÞ.
Now let us consider how to solve a fractional differential or integral equation by the Haar wavelet method. Since the Haar

wavelets are not continuous and non-differentiable in the points of discontinuity we shall develop into the wavelet series not
the function u ¼ uðxÞ sought for, but according to [16] its highest derivative in the equation uðmÞ ¼ uðmÞðxÞ. The derivatives of
lower order and the function u ¼ uðxÞ itself are calculated by integration. By replacing all these results into the equation to be
solved we obtain a system of equations for calculating the wavelet coefficients ai; i ¼ 1;2; . . . ;2M. Details of this approach
are cleared up in Sections 5–7.
4. Error estimates

It is essential to estimate the exactness of the obtained solutions, for this purpose in the following two error estimates are
defined. Here we have to distinguish the two following situations.

(i) If the exact solution of the problem u ¼ uexðxÞ is known we shall calculate the differences DexðlÞ ¼ uðxlÞ
�uexðxlÞ; l ¼ 1;2; . . . ;2M and define the error estimates as dex ¼maxljDexðlÞj (local estimate) or rex ¼ ku� uexk=2M
(global estimate).

(ii) Mostly the exact solution is unknown. For this case the following procedure is recommended. First we solve our equa-
tion for some level of resolution J, the result is denoted by uJðxÞ; then we repeat these calculations for J þ 1 getting in
this way the function uJþ1ðxÞ. Next we define the differences
DJðxlÞ ¼ uJðxlÞ � uJþ1ðxlÞ; ð13Þ
where xl, l ¼ 1;2; . . . ;2M are the collocation points at the level J. The error estimates we shall define as
dJ ¼max
l
jDJðxlÞj; rJ ¼ kDJðxlÞk=ð2MÞ: ð14Þ
By increasing the parameter J the error estimates usually decrease. But computer simulation has shown that there exist
also problems where the error estimates decrease up to some level J ¼ ~J and after that begin to increase. This is caused from
the following fact. For calculating the wavelet coefficients ai we must invert some matrix, which is put together from the
Haar matrices. In some cases by increasing the level J this matrix may turn out to be nearly singular and it is not possible
to calculate the coefficients ai with the necessary exactness (see Example 2 in Section 6). If the exactness obtained at the
level ~J is insufficient we must find more exact results by some other method (e.g. in [13] for this purpose the segmentation
method was proposed).
5. Fractional Volterra integral equation

The fractional Volterra integral equation has the form [2]
uðxÞ � 1
CðaÞ

Z x

0
Kðx; tÞðx� tÞa�1uðtÞdt ¼ f ðxÞ; 0 6 x 6 1: ð15Þ
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The kernel Kðx; tÞ and the right-side function f ðxÞ are given, a > 0 is a real number. The value a ¼ 1 corresponds to the or-
dinary (nonfractional) Volterra equation.

According to the Haar wavelet method, the solution of (15) is sought in the form (8). Replacing (8) into (15) and satisfying
this equation in the collocation points we obtain
X2M

i¼1

ai½hiðxlÞ � giðxlÞ� ¼ f ðxlÞ; l ¼ 1;2; . . . ;2M: ð16Þ
Here the symbol giðxlÞ denotes the function
giðxlÞ ¼
1

CðaÞ

Z xl

0
Kðxl; tÞa�1ðxl � tÞhiðtÞdt: ð17Þ
The matrix form of (16) is
aðH � GÞ ¼ F; ð18Þ
where Gði; lÞ ¼ giðxlÞ, FðlÞ ¼ f ðxlÞ.
The solution of (18) is
a ¼ F=ðH � GÞ: ð19Þ
The function uðxÞ can be calculated from (8).
The solution presented here is very simple. The most labour-consuming operation is the evaluation of the matrix G. In

view of (4) the Eq. (17) can be rewritten in the following form (for conciseness sake the argument i at n1; n2; n3 is omitted):
ðiÞ Gði; lÞ ¼ 0 for xl < n1;

ðiiÞ Gði; lÞ ¼ 1
CðaÞ

Z xl

n1

Kðxl; tÞðxl � tÞa�1 dt for xl 2 ½n1; n2�;

ðiiiÞ Gði; lÞ ¼ 1
CðaÞ

Z n2

n1

Kðxl; tÞðxl � tÞa�1 dt � 1
CðaÞ

Z x

n2

Kðxl; tÞðxl � tÞa�1 dt for xl 2 ½n2; n3�;

ðivÞ Gði; lÞ ¼ 1
CðaÞ

Z n2

n1

Kðxl; tÞðxl � tÞa�1 dt � 1
CðaÞ

Z n3

n2

Kðxl; tÞðxl � tÞa�1 dt for xl P n3:

ð20Þ
The integrals in (20) can be evaluated by some numerical techniques; but for some simpler forms of Kðxl; tÞ analytical inte-
gration is possible.

Example 1. Consider the case Kðx; tÞ ¼ expðx� tÞ. Let us introduce the function
uðxl; c1; c2Þ ¼
Z c2

c1

ðxl � tÞa�1e�t dt: ð21Þ
Now (20) can be put into the form
ðiÞ Gði; lÞ ¼ 0 for xl < n1;

ðiiÞ Gði; lÞ ¼ 1
CðaÞ expðxlÞuðxl; n1; xlÞ for xl 2 ½n1; n2�;

ðiiiÞ Gði; lÞ ¼ 1
CðaÞ expðxlÞ½uðxl; n1; n2Þ �uðxl; n2; xlÞ� for xl 2 ½n2; n3�;

ðivÞ Gði; lÞ ¼ 1
CðaÞ expðxlÞ½uðxl; n1; n2Þ �uðxl; n2; n3Þ� for xl > n3:

ð22Þ
These integrals were evaluated with the aid of the Matlab program quad.
Let us at first consider the nonfractional case a ¼ 1; here (15) has the exact solution uex ¼ expð2xÞ. Computer simulation

for J ¼ 5 (64 collocation points) gave the error estimates dex ¼ 8:9E� 4, rex ¼ 5:0E� 5; for J ¼ 6 (128 collocation points) we
found dex ¼ 2:3E� 4, rex ¼ 9:0E� 6.

Calculations, which were carried out for some values of a, are plotted in Fig. 1. Error estimates were computed for a ¼ 0:5;
these results are presented in Table 1.
6. Fractional harmonic vibrations

Consider the equation
DauðxÞ þ kDbuðxÞ þ muðxÞ ¼ f ðxÞ; x 2 ½0;B�; ð23Þ
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Fig. 1. Solution of the Volterra integral equation (15) for Kðx; tÞ ¼ expðx� tÞ.

Table 1
Error estimates for the Eq. (15); a ¼ 0:5.

J 2M dex rex

3 16 0.332 4.5E�2
4 32 0.186 1.7E�2
5 64 0.010 6.3E�3
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where 1 < a < 2; 0 < b < 1; k; m are prescribed constants, f ðxÞ is the forcing term. To (23) belong initial conditions
uð0Þ ¼ u0; u0ð0Þ ¼ v0. If a ¼ 2 and b ¼ 1 we get the usual differential equation of the harmonic oscillator.

The symbols Da; Db denote left-sided Caputo derivatives, which are defined by (3). Since in the present case
na ¼ ½a� þ 1 ¼ 2; nb ¼ ½b� þ 1 ¼ 1 the equation (23) gets the form
1
Cð2� aÞ

Z x

0
ðx� tÞ1�au00ðtÞdt þ k

Cð1� bÞ

Z x

0
ðx� tÞ�bu0ðtÞdt þ muðxÞ ¼ f ðxÞ: ð24Þ
This is a Volterra integral equation. Let us solve it by the Haar wavelet method.
u00ðxÞ ¼
X2M

i¼1

aihiðxÞ;

u0ðxÞ ¼
X2M

i¼1

aipiðxÞ þ u0ð0Þ;

uðxÞ ¼
X2M

i¼1

aiqiðxÞ þ u0ð0Þxþ uð0Þ;

ð25Þ
where the functions hi; pi; qi are calculated from (4), (11), (12). Replacing (25) into (24) and satisfying this equation in the
collocation points xl, we find
X2M

i¼1

aiGði; lÞ ¼ f ðxlÞ � mðv0xl þ u0Þ �
k

Cð2� bÞv0x1�b
l ; ð26Þ
where
Gði; lÞ ¼ 1
Cð2� aÞ

Z xl

0
ðxl � tÞ1�ahiðtÞdt þ k

Cð1� bÞ

Z xl

0
ðxl � tÞ�bpiðtÞdt þ mqiðxlÞ: ð27Þ
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The integrals in (27) can be evaluated with the aid of (4),(11), (12). By doing this, we get the following formulae:
Gði; lÞ ¼ 0 for xl < n1;

Gði; lÞ ¼ 1
Cð3� aÞ ðxl � n1Þ2�a þ kNðbÞðxl � n1Þ2�b þ 0:5mðxl � n1Þ2 for xl 2 ½n1; n2�;

Gði; lÞ ¼ 1
Cð3� aÞ ðxl � n1Þ2�a � 2ðxl � n2Þ2�a

h i
� kNðbÞ ðxl � n1Þ2�b � 2ðxl � n2Þ2�b

h i
þ 0:5m½D� ðn3 � xlÞ2� for xl 2 ½n2; n3�;

Gði; lÞ ¼ 1
Cð3� aÞ ðxl � n1Þ2�a þ ðxl � n3Þ2�a � 2ðxl � n2Þ2�a

h i

þ k NðbÞðxl � n1Þ2�b � 1
Cð2� bÞ ðxl � n1Þðxl � n2Þ1�b

�

� 1
Cð2� bÞ ðn3 � xlÞ ðxl � n3Þ1�b � ðxl � n2Þ1�b

h i

þ 1
ð2� bÞCð1� bÞ 2ðxl � n2Þ2�bðxl � n3Þ2�b

h i�
þ 0:5mD for xl > n3;

ð28Þ
where
D ¼ ðlDxÞ2; NðbÞ ¼ 1
Cð2� bÞ �

1
ð2� bÞCð1� bÞ : ð29Þ
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Fig. 2. Solution of (23) for different values of a and b.



474 Ü. Lepik / Applied Mathematics and Computation 214 (2009) 468–478
In the following course of solution we shall again make use of the matrix representation. Now (26) obtains the form

aG ¼ F þU; ð30Þ
where FðlÞ ¼ f ðlÞ; UðlÞ ¼ �mðv0xl þ u0Þ � kv0
Cð1�bÞ x

1�b
l . The solution of (30) is
a ¼ ðF þUÞ=G: ð31Þ
The function u to be sought is calculated from
u ¼ aQ þ v0X þ u0E; ð32Þ
where X ¼ fxðlÞg and E is a 2M row vector of ones.

Example 2. Let us take for the force function f ðxÞ ¼ r sin xt and assign to parameters the values
k ¼ 0:05; m ¼ 0:15; r ¼ 1; x ¼ 2; B ¼ 30; u0 ¼ 1; v0 ¼ 0.

In order to estimate the exactness of the presented solution at first again the case a ¼ 2; b ¼ 1 is considered. The exact
solution of (23) is
uexðxÞ ¼ L expð�0:5kxÞ sinðx1xþ eÞ þ Rðsin xxþ dÞ; ð33Þ
where
x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 0:25k2

p
; tan d ¼ � kx

m�x2 ;

R ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x2 þ ðm�x2Þ2

q :
ð34Þ
The coefficients L; e are calculated from the boundary conditions u0 ¼ 1; v0 ¼ 0.
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The wavelet solution was computed for J ¼ 6. The error estimates gave dex ¼ 0:005; rex ¼ 2:4E� 4; consequently the
value J ¼ 6 guarantees the necessary accuracy of the results. The function uexðxÞ is plotted in Fig. 2a. Computer simulations
were carried out for different values of a and b. The results are presented in Figs. 2–4.

Error estimates dJ; rJ were calculated for the case a ¼ 1:6; b ¼ 0:6. It followed from the computations that
d4 ¼ 0:789; r4 ¼ 0:068; d5 ¼ 0:075; r5 ¼ 0:005. At subsequent increase of the resolution level J these estimates became
worse. The reason for this lies in solving (30). If we calculate the determinant jGj, then we obtain jGj ¼ 1:91Eþ 7 for J ¼ 4,
jGj ¼ 3:26Eþ 6 for J ¼ 5, jGj ¼ 3:6E� 3 for J ¼ 6, jGj ¼ 1:59E� 36 for J ¼ 7. Consequently, we have here the unfavourable
case, where the matrix jGj turns out to be nearly singular (this case was discussed in Section 4).

Eq. (23) was treated in several papers from which we cite here [1,3,4,9,17]. In [3,4] the case 1 < a 6 2; k ¼ 0 (our
symbols) was analysed, in [3] it is assumed that f � 0; in [4] different cases of the forcing function f ðxÞ were discussed. The
solution was obtained in terms of Mittag–Leffler functions using Laplace transforms. In [9] Eq. (23) was solved by the Fourier
transform for a ¼ 2; 0 < b < 2; b–1; the external force is impulsive. The almost free damping oscillator for which
a ¼ 2þ e; b ¼ 1þ 0:5e; f ¼ 0; jej � 1 was discussed in [1]; particular solutions of (23) were sought in the form u ¼ expðkxÞ.
7. Fractional Fredholm integral equation

The usual Fredholm integral equation has the form
uðxÞ �
Z B

A
Kðx; tÞuðtÞdt ¼ f ðxÞ; x 2 ½A;B�: ð35Þ
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If we want to get its fractional analogue we must take into account the fact that in the case of non-integer a the expression
ðx� tÞa has sense only for x P t. Therefore it seems reasonable to define the fractional Fredholm integral equation in the
form
uðxÞ � 1
CðaÞ

Z x

A
ðx� tÞa�1Kðx; tÞuðtÞdt þ

Z B

x
ðt � xÞa�1Kðx; tÞuðtÞdt

� �
¼ f ðxÞ: ð36Þ
In (36) stand the left-sided and right-sided Riemann–Liouville integrals, respectively. As in Section 4, the solution of (36) is
sought in the form (9). Let us replace x! xl and introduce the matrix
Gði; lÞ ¼ 1
CðaÞ

Z xl

A
ðxl � tÞa�1Kðxl; tÞhiðtÞdt þ

Z B

xl

ðt � xlÞa�1Kðxl; tÞhiðtÞdt

" #
: ð37Þ
On the grounds of (4) this integral can be evaluated either analytically or numerically.
Now (36) can be put into the form
aðH � GÞ ¼ F; ð38Þ
where Hði; lÞ ¼ hiðxlÞ; FðlÞ ¼ f ðxlÞ. The solution of (37) is a ¼ F=ðH � GÞ.

Example 3. Consider the equation
uðxÞ � 1
CðaÞ

Z x

0
ð2� x� tÞðx� tÞa�1uðtÞdt þ

Z 3

x
ð2� x� tÞðt � xÞa�1uðtÞdt

� �
¼ x2 þ 15=4: ð39Þ
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Fig. 5. Solution of the Fredholm equation (39) for different values of a.



Table 2
Error estimates for the Eq. (39); a ¼ 1:5.

J 2M dex rex

3 16 0.386 4.3E�2
4 32 0.200 1.5E�2
5 64 0.100 5.4E�3
6 128 0.050 1.9E�3
7 256 0.026 6.8E�4
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Now the kernel is Kð2� x� tÞ and evaluating the integrals in (35) we find
ðiÞ Gði; lÞ ¼ 2ð1� xlÞ
Cðaþ 1Þ 2ðn2 � xlÞa � ðn1 � xlÞa � ðn3 � xlÞa

	 

þ a

Cðaþ 2Þ �2ðn2 � xlÞaþ1 þ ðn1 � xlÞaþ1 þ ðn3 � xlÞaþ1
h i

for xl < n1;

ðiiÞ Gði; lÞ ¼ 2ð1� xlÞ
Cðaþ 1Þ ðxl � n1Þa þ 2ðn2 � xlÞa � ðn3 � xlÞa

	 

þ a

Cðaþ 2Þ ðxl � n1Þaþ1 � 2ðn2 � xlÞaþ1 þ ðn3 � xlÞaþ1
h i

for xl 2 ½n1; n2�;

ðiiiÞ Gði; lÞ ¼ 2ð1� xlÞ
Cðaþ 1Þ ðxl � n1Þa � 2ðxl � n2Þa � ðn3 � xlÞa

	 

þ a

Cðaþ 2Þ ðxl � n1Þaþ1 � 2ðxl � n2Þaþ1 þ ðn3 � xlÞaþ1
h i

for xl 2 ½n2; n3�;

ðivÞ Gði; lÞ ¼ 2ð1� xlÞ
Cðaþ 1Þ ðxl � n1Þa � 2ðxl � n2Þa þ ðxl � n3Þa

	 

þ a

Cðaþ 2Þ ðxl � n1Þaþ1 � 2ðxl � n2Þaþ1 þ ðxl � n3Þaþ1
h i

for xl P n3:

ð40Þ
Let us begin from the case a ¼ 1, which corresponds to the nonfractional equation. This equation has the exact solution
uexðxÞ ¼ x2 � 3; x 2 ½0;3�: ð41Þ
The computer simulation for a ¼ 1 gave the following error estimates
ðiÞ dex ¼ 7:7E� 3; rex ¼ 1:8E� 4 for J ¼ 5;
ðiiÞ dex ¼ 6:8E� 4; rex ¼ 3:2E� 5 for J ¼ 6:
The results of the computations for a ¼ 0:5; a ¼ 0:9; a ¼ 1:0; a ¼ 1:1; a ¼ 1:5 are plotted in Fig. 5.

Error analysis was carried out for a ¼ 1:5, the results are given in Table 2.
Calculations show that for this case the determinant jH � Gj essentially differs from zero (e.g. jH � Gj ¼ �9:7Eþ 18 for

J ¼ 4 and jH � Gj ¼ �5:6Eþ 153, consequently, no problems for solving (38)) occur.

8. Conclusion

In the present paper three nonfractional equations are solved by the Haar wavelet method, these problems must be con-
sidered as examples for the recommended method of solution, since this approach can be easily carried over to solving some
other problems, as e.g.

(i) first kind linear integral equations [12]:
(ii) integro–differential equations [12,14];

(iii) weakly singular integral equations [12].

In the present paper only linear equations are considered, but the method is applicable also for nonlinear systems; in this
case the wavelet coefficients must be calculated by some numerical technique (e.g. Newton method, predictor–corrector
methods) [14,18].

The main advantages of the presented method are its simplicity and small computation costs: it is due to the sparcity of
the transform matrices and to the small number of significant wavelet coefficients. In our opinion the method is wholly com-
petitive in comparison with the classical methods.
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