
Abstract—A gradient learning method to regulate the trajectories 

of some nonlinear chaotic systems is proposed. The method is 

motivated by the gradient descent learning algorithms for neural 

networks. It is based on two systems: dynamic optimization system 

and system for finding sensitivities. Numerical results of several 

examples are presented, which convincingly illustrate the efficiency 

of the method.
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I. INTRODUCTION

HE study of controlling chaos in non-linear deterministic 

systems has been in focus during the last two decades.  

The ability to bring chaotic dynamical systems to regular 

motions is an important subject. The existing chaos control 

algorithms can be classified mainly into two categories: feed-

back methods [1 - 4] and non-feedback methods [5, 6]. In [7, 

8] the authors showed that adding noise to the excitation 

frequency of the Duffing system the initially chaotic motion 

becomes regular.   

 In the present paper we propose a gradient learning 

method for adjusting the system parameters so that the 

trajectory of the system has certain specified properties. In the 

theory of neural networks the gradient descent learning 

requires that the performance of a dynamical system is 

assessable through certain error function which measures the 

discrepancy between the trajectories of the dynamical system 

and the desired behavior [9]. During gradient learning the 

interconnection weights between neurons are iteratively 

adjusted to reduce the error. In the present work we consider 

the system coefficients as adjustable parameters to obtain the 

desired behavior of the dynamical system.     

II. PROBLEM STATEMENT

Consider the dynamical system  
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with the initial condition u(t0) = u0. Here u(t) is a N-

dimensional row vector, which represents the state variables 

of the system, w is a J-dimensional array of adjustable 

parameters, I – the vector of external inputs. The vector u*(t)

is used to represent particular target values for some of the u

values.  

The problem consists of adjusting parameters w so that the 

trajectories (1) have certain specified properties. For this 

purpose the error function  

ft

t
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0
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which measures the discrepancy between the trajectories of 

(1) and the desired behavior, is introduced. Such parameters w

for which E = min are sought. The concrete form of the 

function e is specified later on.  

For calculating the minimum of E main ideas, as gradient 

learning and backpropagation from the theory of artificial 

networks [9], are applied.  

At first, the gradient  
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is computed. 

Here the notation p = u/ w is introduced. So p stands for 

N x J matrix (sensitivities), e/ u is a N-dimensional vector 

and E/ w a J-dimensional vector.  

By differentiating the matrix p we obtain  
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dw

ud
p

dt

dp
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Introducing the matrix L = ( Fi/ uj) the formulae (4) can be 

put into the form  

.
w

F
Lpp  (5) 

There are different possibilities for integrating the matrix 

equation (5) [9]. In this paper the derivative p  is calculated 

from the formula (assuming that t is small enough)  

.)()(
1
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After solving the system (5) the gradient E/ w can be 

calculated from (3). New values for the parameters w are 

found from  
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where  is the learning rate. This procedure is repeated until 

the necessary exactness is reached.

For solving some problems the error function E can be 

taken in the non-integral form  

),,( *uueE f  (8) 

where uf = u(tf) and the vector u* does not depend upon time. 

In this case p = const and 0p . The matrix wup f /

can be evaluated directly from (5) which gives  

,1

w

F
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where L-1 denotes the inverse matrix of L.

According to (3) one can find  
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This approach is much simpler as in the case of integral 

criterion (2), but its disadvantage can be the fact that for the 

minimization of the error function E only the final values of uf

are used. Therefore one can hope that the integral criterion (2) 

which takes into account all values of u(t) for 
fttt ,0

guarantees a better rate of convergence. 

III. LEARNING FIXED POINTS

Let us consider the case of unforced motion I = 0 and 

choose a point u* for the fixed point. It is tried to learn the 

parameters w so that the dynamical system should converge to 

the target value u*.  For the error function E the functions  
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or
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2
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are taken. 

The further course of solution proceeds as indicated in 

Section II. Since at the fixed point  

0),,( *uwuF f  (13) 

it follows from (1) that 0)/(
fttdtdu  and consequently, 

the motion is terminated at the point u*.

IV. LEARNING TO PERIODIC TRAJECTORIES

Let us return to (1). We shall assume now that the external 

input is periodic with a period T*: e.g. I(t0 + iT*) = I(t0) i = 1, 

2, 3, … . The trajectory u(t) itself is generally non-periodic. 

Our aim is to adjust the parameters w so that the trajectory 

would be periodic with the prescribed period T.

For solving this problem let us choose a point u* from the 

trajectory. This trajectory is represented in the phase space. 

For simplicity sake the following diagrams (Fig. 1) are plotted 

in 2-dimensional phase space. For tf the value tf = t0 + T is 

taken. In general we get an open curve (Fig. 1 a), but in the 

case of periodical motion the phase trajectory must be a closed 

curve (Fig. 1 b). If the error criterion (12) is applied then in 

the case of a periodic solution it must be E = 0.

Fig. 1 trajectories in phase space a) non-periodic;

b) periodic

Since

** ),(,),(),(,),( utIwtuFuTtIwTtuF  (14) 

then it follows from (1) that  

,
tTt t

u

t

u
 (15) 

Consequently the motion for t > t0 + T proceeds along the 

same trajectory as for t0 < t < T and we get a closed curve. 

The motion can be also multiple periodic (the case of a 

double-periodic is plotted in Fig. 2). To clear up this case we 

have to investigate the behavior of the error function E during 

one period of motion. If this function has  minima then the 

motion is -periodic.

          
Fig. 2 double-periodic trajectories in phase space

V. RESTRICTIONS ON THE TRAJECTORIES

Here it is demanded that the trajectories found by solution 

of (1) should be closed between two limit curves 

10 ,),()()( ttttututu  (16) 

where the index  denotes numbers of the sequence 1, 2, …, N.

If 10 ,)()( tttfortutu  we get the case where 

the system follows a prescribed trajectory over the time 

interval
10 , ttt ; this case was discussed in [10]. 

The parameter w will be perturbed until inequalities (16) 

are satisfied. For that purpose we introduce the function 
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elsewhere
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and take the error function in the form 
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In (18) the summation is carried out only for the values of ,

which occurred in the inequalities (16). Since  
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e
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the equation (3) obtains the form  
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Differential equation for calculating p remains valid if we 

understand under a *-dimensional vector, p - a * x J - 

dimensional matrix and L = ( F / u ) a * x * - dimensional 

matrix. The subsequent course of solution proceeds as shown 

in Section II.   

VI. APPLICATION OF THE OPTIMAL CONTROL

THEORY

The problems considered in the preceding sections can be 

solved also with the aid of optimal control theory, but 

generally the solutions are more complicated. By this reason 

we confine ourselves to the solution of the following problem.  

Solve the dynamical system 
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with the initial conditions u1(0) = u10, u2(0) = u20. The 

function I = I(t) describes the external force; u1
*, u2

* are the 

prescribed target coordinates. The problem is to find such a 

control I = I(t) which transfers the system to the point (u1
*,

u2
*) with the minimal time T. It is assumed that the motion is 

terminated at T, so that (du1/dt)t = T  = (du2/dt)t = T  = 0.

 This problem is solved by means of the optimal control 

theory. We have to minimize the functional 

2*
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satisfying by it equations (21). This is a Bolza problem [11] 

which can be transferred to a Lagrange problem by taking  

.
0

T

dt
dt

dJ
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Since
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we get the Lagrange problem  

.min))(()(1
0
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T

dtIFuuuuuK  (25) 

Next we introduce the Hamiltonian  
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Here 1(t), 2(t) are the adjoint variables which are computed 

from the equations 
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d

u
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According to the maximum principle of Pontryagin [11] such 

a control I(t) should be taken for which H = max. By physical 

reasons the control (external force) must be bounded: |I(t) 

Imax|. It follows from (26) that there are only two possibilities 

to maximize the Hamiltonian: 
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So we see that the control function I is discontinuous (“bang-

bang” type). In the case of a continuous external force 

solution of the problem (25) does not exist. From here follows 

that e.g., in the case of the Duffing equation

)0(cos3 fwtfcubuuau  (29) 

regardless of the values of the parameters a, b, c, f  there do 

not exist any fixed points to which the trajectories converge. 

VII. COMPUTER SIMULATIONS

Let us consider some examples. For fixed point learning we 

consider the Lorenz system and the Duffing equation.  

1. Lorenz equations 

A Lorenz chaotic system can be presented as 

.

,

),(

bzxyz

xzyrxy

yxx

 (30) 

Here u1 = x, u2 = y, u3 = z are the state variables and dot 

denotes the derivative with respect to time. The parameters ,

r and b are real positive parameters and the system produces 

chaotic behavior when  = 10, r = 28 and b = 8/3. The fixed 

points of the Lorenz system are  

1,)1(,)1( rrbrb  and (0, 0, 0). Analysis of the 

stability of these points and their chaotic characteristics can be 

found in [12]. 

The control objective is to drive the system to the desired 

fixed point F*(x*, y*, z*). The forth-order Runge-Kutta method 

with step 0.02 was used to integrate the systems numerically. 

,1,)1(,)1( rrbrb
1,)1(,)1( rrbrb
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The simulation results for  = 10, r = 28, b = 8/3 and F*(4, 4, 

6) are shown in Fig. 3. The initial condition was taken as (x0,

y0, z0) = (2, 2, 2) and the learning rate as  = 0.2.

Fig. 3 time response of the Lorenz system after gradient descent 

learning (  = 66.38, r = 7, b = 2.6667)

For the error function the formula (12) was taken; the dynamic 

tunneling technique [13, 14] and learning rate adjustment 

were also applied. 

2. Duffing equation

Let us consider the Duffing equation without external 

excitation: 

.

,

3cxbxayy

yx
 (31) 

The system has three fixed points with coordinates (0, 0), 

0,/ cb and 0,/ cb , if b < 0 and one fixed point (0, 

0), if b > 0. The results of computer simulations are presented 

in Fig. 4 where the desired fixed point was taken (2, 0) and the 

corresponding calculated parameter values were a = 3.28, b = 

-1.56, c = 0.39.

Fig. 4 time response of the Duffing system after gradient 

descent learning (a = 3.28, b = -1.56, c = 0.39)

For trajectory restriction let us consider the Duffing 

equation with external excitation I = fcos( t):

).cos(

,

3 tfcxbxayy

yx
 (32) 

The parameter values are taken as follows: a = 0.1, b = 1; c

= 0, f = 15;  = 1. The trajectory of state variable x with and 

initial conditions x(0) = 0, y(0) = 1 is presented in Fig. 5a. The 

gradient learning has been executed with parameters  = 1 and 

x1
+(t) = 50, x1

-(t) = -50. The trajectory after learning is 

presented in Fig. 5b with calculated parameters a = 0.2977, b

= 1.0301; c = 0, f = 15.0036. 

Fig. 5 time response of the Duffing system in the case of 

restrictions to the trajectory: a) before learning b) after 

learning  

VIII. CONCLUSION

The gradient learning method for adjusting system 

parameters so that the system trajectory exhibits some 

prescribed properties, is developed. Simulation results show 

that the proposed method is able to control dynamical 

systems. The system can be learned to drive to the prescribed 

fixed point and restrictions can be posed to the trajectory.  
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