

MVC

Nikita Salnikov-Tarnovski
Webmedia AS

05.04.2010

The problem

<%
String error = request.getParameter("error");
if(error != null) {

%>
<%= error %>
<%

}}
else {

java.util.Date now = new java.util.Date();
%>
<%= now %>
<%

}
%>

Model 1

That was called “Model 1” long ago

No one can really develop it: no programmer, no
designer

Tool support was also wantingTool support was also wanting

Who will save us?

Model 2 or MVC

The Model 2 was invented

We call it MVC now

M – is for the ModelM – is for the Model
V – is for the View
C – is for the Controller

Model

Data or what we want to show to our user

May be just plain Java classes

May be more sophisticated specialized data May be more sophisticated specialized data
structures such as XML

Should be totally independent from the source of
that data.

View

User interface or how we want to show our data
to user

Renders the collected data and is totally oblivion
to who gave it to himto who gave it to him

May be a html page, or jsp page, or pdf file, or
an image etc

Controller

Some code that decides which data to show and
which view to use

Servlet or some java class that servlet delegates
its work toits work to

The only entry point to the business logic

Why bother?

Why the complexity?

Clear separation of concerns

Can be developed independently and by Can be developed independently and by
different people

Can be replaced independently.

So MVC is a way to do things, it describes how we
should design our web application

In a nutshell you write servlets, that based on the user
input collect some data and to choose how to present
that data to the userthat data to the user

But that is too low-level

We are smart, aren’t we? Let us use some framework!

Web framework

Most MVC web frameworks provide at least the following

A way to map request to java classes processing it
A way to select view component for displaying data to
the user
Reusable components for implementing common logic Reusable components for implementing common logic
(sorting a list, submitting a form, validating user input
etc)
Reusable view components for displaying common UI
elements (e.g. custom jsp tags)

Spring MVC

Part of the Spring framework
http://www.springsource.org/

Open-source project, very good documentation
http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/mvc.htmlframework-reference/html/mvc.html

Request based web framework

We will talk about Spring 3.0

Spring has a very interesting architecture

Its aim is to give possibility to develop your application
with low-coupled high-cohesion components

Your code must not depend on the environmentYour code must not depend on the environment

Reuse and testability are in great honor

MVC in Spring

Model
You use plain Java classes, either standard or your domain
specific

View
A number of view technologies are supported out-of-the-box and A number of view technologies are supported out-of-the-box and
you can plug-in your own

Controller
You use plain Java classes as your controller, without
dependencies on Servlet API

Request lifecycle

DispatcherServlet

The entry point to your Spring application

The standard JEE Servlet

Must be defined in web.xml

Configures Spring WebApplicationContext

And routes incoming requests to your application’s
controllers

Components

Controllers
Form the C part of the MVC.

Handler mappings
Handle the execution of a list of pre-processors and post-
processors and controllers that will be executed if they match
certain criteria (for example, a matching URL specified with the
controller).controller).

View resolvers
Resolves view names to views.

Locale resolver
A locale resolver is a component capable of resolving the locale
a client is using, in order to be able to offer internationalized
views

Components

Theme resolver
A theme resolver is capable of resolving themes your web
application can use, for example, to offer personalized layouts

Multipart file resolver
Contains functionality to process file uploads from HTML forms.

Handler exception resolversHandler exception resolvers
Contains functionality to map exceptions to views or implement
other more complex exception handling code.

So you write your Java classes, implementing some of
the components above

Annotate them with a bunch of Spring annotations

Let the DispatcherServlet know of themLet the DispatcherServlet know of them

And you are ready to serve your clients!

Your first controller

@Controller

public class HelloWorldController {

@RequestMapping("/helloWorld")

public ModelAndView helloWorld() {

ModelAndView mav = new ModelAndView(); ModelAndView mav = new ModelAndView();

mav.setViewName("helloWorld");

mav.addObject("message", "Hello World!");

return mav;

}

}

So you annotate your controller classes with @Controller
annotation

No superclass must be extended

Using @RequestMapping annotation you say to Using @RequestMapping annotation you say to
SpringMVC requests to which URL this class or method
should service

And you do not think at all about servlets, HttpRequests,
HttpSessions etc

Examples

@Controller

@RequestMapping("/appointments")

public class AppointmentsController {

@RequestMapping(method = RequestMethod.GET)

public Map<String, Appointment> get() { public Map<String, Appointment> get() {

return appointmentBook.getAppointmentsForToday(); }

@RequestMapping(value="/new", method = RequestMethod.GET)

public AppointmentForm getNewForm() { return new AppointmentForm(); }

Examples

@RequestMapping(method = RequestMethod.POST)

public String add(@Valid AppointmentForm appointment, BindingResult result) {

if (result.hasErrors()) {

return "appointments/new";

}

appointmentBook.addAppointment(appointment); appointmentBook.addAppointment(appointment);

return "redirect:/appointments“

}

URI templates

@RequestMapping(

value="/owners/{ownerId}", method=RequestMethod.GET)

public String findOwner(@PathVariable String ownerId, Model model) {

Owner owner = ownerService.findOwner(ownerId);

model.addAttribute("owner", owner); model.addAttribute("owner", owner);

return "displayOwner";

}

http://www.example.com/owners/1234

More examples

You can “nest” URI templates
/owners/42/pets/21

You can specify that method serves the request only if
some request header is given

@RequestMapping(

value = "/pets", value = "/pets",

method = RequestMethod.POST,

headers="content-type=text/*")

• You can map request parameters to arguments
public String setupForm(@RequestParam("petId") int petId,

ModelMap model) {

See also

For the extensive list of supported methods’ arguments
and return types see Spring MVC documentation

http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/mvc.html#mvc-ann-
requestmapping-argumentsrequestmapping-arguments

Interceptors

You can provide pre- or post-processors for the requests
and response

To implement security, caching, locale switching, client To implement security, caching, locale switching, client
routing etc

View resolving

Your controllers return a logical view name

And doesn’t concerns themselves what does it really
mean

You use view resolvers to find out what to display to the You use view resolvers to find out what to display to the
client

It may be jsp file, redirect to another url, Excel file or
whatever

Spring has a number of built-it view resolvers

Each with its own configuration of how to map logical
names to real jsp files e.g.

You can chain them, so the first one able to serve the You can chain them, so the first one able to serve the
requested view will do it

Example

<bean id="viewResolver"

class="org.springframework.web.servlet.view.UrlBasedViewResolver">

<property name="viewClass“

value="org.springframework.web.servlet.view.JstlView"/>

<property name="prefix" value="/WEB-INF/jsp/"/> <property name="prefix" value="/WEB-INF/jsp/"/>

<property name="suffix" value=".jsp"/>

</bean>

Views

Spring provides integration with different view
technologies

JSP, Tiles, Velocity, FreeMaker, XSLT, Document views such as
PDF and Excel, JasperReports, Feeds, XML Marshalling, JSON

For more information RTFMFor more information RTFM
http://static.springsource.org/spring/docs/3.0.x/spring-

framework-reference/html/view.html

Spring MVC and JSP

Spring provides custom tag library for JSPs

It serves mostly 2 purposes:

Displaying html elements using model data provided by the
controllercontroller
Displaying validation errors for those html elements

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<form:form commandName="user">

<table>

<tr>

<td>First Name:</td>

<td><form:input path="firstName" /></td>

</tr> </tr>

<tr>

<td> <input type="submit" value="Save Changes" /> </td>

</tr>

</table>

</form:form>

Validation errors

<td>First Name:</td>

<td><form:input path="firstName" /></td>

<%-- Show errors for firstName field --%>

<td><form:errors path="firstName" /></td> <td><form:errors path="firstName" /></td>

Binding and Validation

So we have seen a lot of magic

You can map requests to methods with arbitrary
signatures

You can use very different, almost arbitrary, types for You can use very different, almost arbitrary, types for
those methods’ parameters

But wait, HTTP parameters and headers are all strings!

Conversions

Spring uses a couple of mechanisms to convert between
different types

E.g. from HTTP’s Strings to other types, including your
domain ones

And vice versa of course, to display your model data on
HTML page

PropertyEditors

Part of JavaBeans specification

PropertyEditors for standard java.lang. types are
provided by Java itself

You write your own PropertyEditor for your specific classYou write your own PropertyEditor for your specific class

They convert between given type and String and vice
versa.

Conversion SPI

Spring has its own more generic mechanism for
converting between 2 arbitrary types

And some helper classes to simplify your work of writing
them for you own domain

More information
http://static.springsource.org/spring/docs/3.0.x/spring-

framework-reference/html/validation.html

Validation

But what if input data is incorrect and you cannot convert
it into you destination type?

You use validation capabilities of Spring

Validation errors can be displayed to the user

In in18ned way

Validation example

public class PersonValidator implements Validator {

/** * This Validator validates just Person instances */

public boolean supports(Class clazz) {

return Person.class.equals(clazz);

}

public void validate(Object obj, Errors e) { public void validate(Object obj, Errors e) {

ValidationUtils.rejectIfEmpty(e, "name", "name.empty");

Person p = (Person) obj;

if (p.getAge() < 0) { e.rejectValue("age", "negativevalue"); }

} }

JSR-303

There is a standard specification for Java object’s
constraints definition and validation

public class PersonForm {

@NotNull@NotNull

@Size(max=64)

private String name;

@Min(0)

private int age;

}

Spring MVC and validations

You can tell Spring MVC to validate inputs

@RequestMapping("/foo", method=RequestMethod.POST)

public void processFoo(@Valid Foo foo, BindingResult result) { /* ... */ }

You must register all your custom validators and
converters, of course

Thank You. Questions?

