// webmedia

INSPIRING PERFORMANCE]

.

webmedia

INSPIRING PERFORMANCE

%

MVC

Nikita Salnikov-TarnovskKi
Webmedia AS
05.04.2010

The problem

<%
String error = request.getParameter("error");
if(error = null) {
%>
<%-= error %>
<%
}
else {
java.util.Date now = new java.util.Date();
%>
<%= now %>
<%
}

%>

INSPIRING PERFORMANCE

// webmedia

Model 1

@ That was called “Model 1" long ago

@ No one can really develop it: no programmer, no
designer

@ Tool support was also wanting

@ Who will save us?

// webmedia

IIIIIIIII PERFORMAMNCE

Model 2 or MVVC

@ The Model 2 was invented

@ We call it MVC now

@ M —iIs for the Model
@V — s for the View
@ C — Is for the Controller

// webmedia

IIIIIIIII PERFORMAMNCE

Model

@ Data or what we want to show to our user
@ May be just plain Java classes

@ May be more sophisticated specialized data
structures such as XML

@ Should be totally independent from the source of
that data.

// webmedia

IIIIIIIII PERFORMAMNCE

View

@ User Interface or how we want to show our data
to user

@ Renders the collected data and is totally oblivion
to who gave it to him

@ May be a html page, or jsp page, or pdf file, or

an image etc

// webmedia

IIIIIIIII PERFORMAMNCE

Controller

@ Some code that decides which data to show and
which view to use

@ Servlet or some java class that servlet delegates
Its work to

@ The only entry point to the business logic

// webmedia

IIIIIIIII PERFORMAMNCE

Why bother?

@ Why the complexity?

@ Clear separation of concerns

@ Can be developed independently and by
different people

@ Can be replaced independently.

IIIIIIIIIIIIIIIIIII

So MVC is a way to do things, it describes how we
should design our web application

In a nutshell you write servlets, that based on the user
Input collect some data and to choose how to present
that data to the user

But that Is too low-level

We are smart, aren’'t we? Let us use some framework!

// webmedia

IIIIIIIII PERFORMAMNCE

Web framework

Most MVC web frameworks provide at least the following

@ A way to map request to java classes processing it

@ A way to select view component for displaying data to
the user

@ Reusable components for implementing common logic
(sorting a list, submitting a form, validating user input
etc)

@ Reusable view components for displaying common Ul
elements (e.g. custom |sp tags)

// webmedia

NNNNNNNNN PERFORMAMNCE

Spring MVC

@ Part of the Spring framework
Q@ http://www.springsource.org/

@ Open-source project, very good documentation

Q@ http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/mvc.html

@ Request based web framework

@ We will talk about Spring 3.0

// webmedia

IIIIIIIII PERFORMAMNCE

@ Spring has a very interesting architecture

@ Its aim is to give possibility to develop your application
with low-coupled high-cohesion components

@ Your code must not depend on the environment

@ Reuse and testability are in great honor

// webmedia

IIIIIIIII PERFORMAMNCE

MVC In Spring

@ Model

2 You use plain Java classes, either standard or your domain
specific

@ View

< A number of view technologies are supported out-of-the-box and
you can plug-in your own

@ Controller

¢ You use plain Java classes as your controller, without
dependencies on Servlet API

INSPIRING PERFORMANCE

// webmedia

Request lifecycle

Delegate Handle
Incoming request request

request

mode

Return . - Delegate Create
response rendering model
e of response
Return = B
control Render

response

Servlet engine
(e.g. Tomcat)

INSPIRING PERFORMANCE

// webmedia

DispatcherServlet

@ The entry point to your Spring application
@ The standard JEE Servlet

@ Must be defined in web.xml

@ Configures Spring WebApplicationContext

@ And routes incoming reqguests to your application’s
controllers

// webmedia

IIIIIIIII PERFORMAMNCE

Components

@ Controllers
2+ Form the C part of the MVC.

@ Handler mappings

» Handle the execution of a list of pre-processors and post-
processors and controllers that will be executed if they match
certain criteria (for example, a matching URL specified with the
controller).

@ View resolvers
» Resolves view names to views.

@ Locale resolver

» A locale resolver is a component capable of resolving the locale
a client is using, in order to be able to offer internationalized
Views

// webmedia

INSPIRING PERFORMANCE

Components

@ Theme resolver

+ A theme resolver is capable of resolving themes your web
application can use, for example, to offer personalized layouts

@ Multipart file resolver
+ Contains functionality to process file uploads from HTML forms.

@ Handler exception resolvers

+ Contains functionality to map exceptions to views or implement
other more complex exception handling code.

INSPIRING PERFORMANCE

// webmedia

@ So you write your Java classes, implementing some of
the components above

@ Annotate them with a bunch of Spring annotations
@ Let the DispatcherServlet know of them

@ And you are ready to serve your clients!

// webmedia

IIIIIIIII PERFORMAMNCE

Your first controller

@Controller
public class HelloWorldController {
@RequestMapping("/helloWorld")

public ModelAndView helloWorld() {

ModelAndView mav = new ModelAndView();

mav.setViewName("helloWorld");
mav.addObject("message”, "Hello World!");

return mav;

%

webmedia

INSPIRING PERFORMANCE

So you annotate your controller classes with @Controller
annotation

No superclass must be extended

Using @RequestMapping annotation you say to
SpringMVC requests to which URL this class or method
should service

And you do not think at all about servlets, HttpRequests,
HttpSessions etc

// webmedia

IIIIIIIII PERFORMAMNCE

Examples

@Controller
@RequestMapping("/appointments")

public class AppointmentsController {

@RequestMapping(method = RequestMethod.GET)
public Map<String, Appointment> get() {

return appointmentBook.getAppointmentsForToday(); }

@RequestMapping(value="/new", method = RequestMethod.GET)

public AppointmentForm getNewForm() { return new AppointmentForm(); }

// webmedia

INSPIRING PERFORMANCE

Examples

@RequestMapping(method = RequestMethod.POST)
public String add(@Valid AppointmentForm appointment, BindingResult result) {
if (result.nasErrors()) {
return "appointments/new";
}
appointmentBook.addAppointment(appointment);

return "redirect:/appointments”

// webmedia

INSPIRING PERFORMANCE

URI templates

@RequestMapping(
value="/owners/{ownerld}", method=RequestMethod.GET)

public String findOwner(@PathVariable String ownerld, Model model) {
Owner owner = ownerService.findOwner(ownerld);
model.addAttribute("owner", owner);

return "displayOwner";

http://www.example.com/owners/1234

// webmedia

INSPIRING PERFORMANCE

More examples

@ You can “nest” URI templates
+ [owners/42/pets/21

@ You can specify that method serves the request only if
some request header is given

2 @RequestMapping(
value = "/pets",

method = RequestMethod.POST,

headers="content-type=text/*")

e YOU can map request parameters to arguments
public String setupForm(@RequestParam("petld") int petld,

ModelMap model) {

// webmedia

IIIIIIIII PERFORMAMNCE

See also

@ For the extensive list of supported methods’ arguments
and return types see Spring MVC documentation

Q@ http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/mvc.html#mvc-ann-
requestmapping-arguments

// webmedia

IIIIIIIII PERFORMAMNCE

Interceptors

@ You can provide pre- or post-processors for the requests
and response

@ To implement security, caching, locale switching, client
routing etc

// webmedia

IIIIIIIII PERFORMAMNCE

View resolving

@ Your controllers return a logical view name

@ And doesn’t concerns themselves what does it really
mean

@ You use view resolvers to find out what to display to the
client

@ It may be jsp file, redirect to another url, Excel file or
whatever

// webmedia

IIIIIIIII PERFORMAMNCE

@ Spring has a number of built-it view resolvers

@ Each with its own configuration of how to map logical
names to real jsp files e.qg.

@ You can chain them, so the first one able to serve the
requested view will do it

// webmedia

IIIIIIIII PERFORMAMNCE

Example

<pean id="viewResolver"

class="org.springframework.web.servlet.view.UrIBasedViewResolver'>

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

// webmedia

INSPIRING PERFORMANCE

Views

@ Spring provides integration with different view
technologies

+ JSP, Tiles, Velocity, FreeMaker, XSLT, Document views such as
PDF and Excel, JasperReports, Feeds, XML Marshalling, JSON

@ For more information RTFM

http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/view.html

// webmedia

IIIIIIIII PERFORMAMNCE

Spring MVC and JSP

@ Spring provides custom tag library for JSPs

@ It serves mostly 2 purposes:

< Displaying html elements using model data provided by the
controller

< Displaying validation errors for those html elements

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

INSPIRING PERFORMANCE

// webmedia

<form:form commandName="user">

<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName" /></td>
</tr>
<tr>
<td> <input type="submit" value="Save Changes" /> </td>
</tr>
</table>

</form:form>

// webmedia

INSPIRING PERFORMANCE

Validation errors

<td>First Name:</td>
<td><form:input path="firstName" /></td>
<%-- Show errors for firstName field --%>

<td><form:errors path="firstName" /></td>

// webmedia

IIIIIIIII PERFORMAMNCE

Binding and Validation

@ So we have seen a lot of magic

@ You can map requests to methods with arbitrary
signatures

@ You can use very different, almost arbitrary, types for
those methods’ parameters

@ But wait, HTTP parameters and headers are all strings!

// webmedia

IIIIIIIII PERFORMAMNCE

conversions

@ Spring uses a couple of mechanisms to convert between
different types

@ E.g.from HTTP’s Strings to other types, including your
domain ones

@ And vice versa of course, to display your model data on
HTML page

// webmedia

IIIIIIIII PERFORMAMNCE

PropertyEditors

@ Part of JavaBeans specification

@ PropertyEditors for standard java.lang. types are
provided by Java itself

@ You write your own PropertyEditor for your specific class

@ They convert between given type and String and vice
versa.

// webmedia

IIIIIIIII PERFORMAMNCE

Conversion SPI

@ Spring has its own more generic mechanism for
converting between 2 arbitrary types

@ And some helper classes to simplify your work of writing
them for you own domain

@ More information

http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/validation.html

// webmedia

IIIIIIIII PERFORMAMNCE

Validation

@ But what if input data is incorrect and you cannot convert
It Into you destination type?

@ You use validation capabillities of Spring
@ Validation errors can be displayed to the user

@ Inin18ned way

// webmedia

IIIIIIIII PERFORMAMNCE

Validation example

public class PersonValidator implements Validator {
/** * This Validator validates just Person instances */
public boolean supports(Class clazz) {

return Person.class.equals(clazz);

}
public void validate(Object obj, Errors e) {

ValidationUtils.rejectlfEmpty(e, "name”, "name.empty");
Person p = (Person) obj;

if (p.getAge() < 0) { e.rejectValue("age", "negativevalue"); }
b}

// webmedia

INSPIRING PERFORMANCE

JSR-303

@ There is a standard specification for Java object’s
constraints definition and validation

public class PersonForm {
@NotNull
@Size(max=64)
private String name;
@Min(0)

private int age;

// webmedia

IIIIIIIII PERFORMAMNCE

Spring MVC and validations

@ You can tell Spring MVC to validate inputs

@RequestMapping("/foo", method=RequestMethod.POST)

public void processFoo(@Valid Foo foo, BindingResult result) { /* ... ¥/}

You must register all your custom validators and
converters, of course

INSPIRING PERFORMANCE

// webmedia

WORK HARD. PLAY HARD.

Thank You. Questions? /g webmedia

IIIIIIIIIIIIIIIIIIII

