# Typed Assembly Language

Evari Koppel and Magnus Leppik

#### About presentation

- Why type checking?
- Proof-carrying code
- Typed Assembly Language
- TAL-0
- TAL-1
- Examples

#### What is TAL

- TAL is assembly language that is extended to make use of annotating datatypes for each used value
- Type checker to check how code acts when executed
- Type safety prevent type errors

# Why Typing Checking

- Low-level code and high-level program
- Type checking convenient way to ensure that a program has certain semantic properties
- Major component of the security infrastructure in distributed systems
- Memory safety
- Type safety
- Malicous code

### Proof-carrying code (1)

- The principle of PCC is that the need to trust a piece of code is eliminated by machine-checkable proof that the code has certain properties.
- Using PCC to build trustworthy systems:
  - What properties should we require of the code?
  - How do code producers construct a formal proof that their code has the desired properties?

### Proof-carrying code (2)

- Solution: type-preserving compilation.
- We seek a principled approach to the design of typed intermediate language.

#### TAL-0: Control-Flow-Safety(1)

- Control-Flow safety
- Focus on control-flow safety will let us start with simple abstract machine
- The syntax for control-flow-safety assembly language:

| $r ::=$ registers: $r1   r2   \cdots   rk$ $registers:$ $v ::=$ $operands:$ $n$ $integer literal$ $\ell$ $label or pointer$ $r$ $registers$ | $l ::= r_d := v$ $r_d := r_s + v$ $if r jump v$ $I ::= jump v$ $u; I$ | instructions:<br>instruction sequences: |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|

#### TAL-0: Control-Flow-Safety(2)

- We model evaluation of TAL-0 assembly programs using a rewriting relation between *abstract* machine states.
- We maintain the distinction between labels and arbitrary integers.
- Enforcing the safety property now reduces to ensuring that abstract machine cannot get stuck.

#### TAL-0: Control-Flow-Safety(3)

• Syntax for TAL-0 abstract machines:

#### TAL-0: Control-Flow-Safety(4)

• Rewriting rules for TAL-0:

$$\frac{H(\hat{R}(v)) = I}{(H, R, jump v) \longrightarrow (H, R, I)}$$
(JUMP)  

$$(H, R, r_d := v; I) \longrightarrow (H, R[r_d = \hat{R}(v)], I)$$
(MOV)  

$$\frac{R(r_s) = n_1 \quad \hat{R}(v) = n_2}{(H, R, r_d := r_s + v; I) \longrightarrow (H, R[r_d = n_1 + n_2], I)}$$
(ADD)  

$$\frac{R(r) = 0 \quad H(\hat{R}(v)) = I'}{(H, R, if r jump v; I) \longrightarrow (H, R, I')}$$
(IF-EQ)  

$$\frac{R(r) = n \quad n \neq 0}{(H, R, if r jump v; I) \longrightarrow (H, R, I)}$$
(IF-NEQ)

# TAL-0 Type System (1)

- Goal: ensure that any well-formed abstract machine M cannot get stuck.
- Our type system has to:
  - Distinguish labels from integers
    - Ensures that operands of a control transfer are labels
  - No matter how many steps are taken by M, it never gets into a stuck state (i.e typing preserved)

#### TAL-0 Type System (2)

#### • Type syntax:

| τ | ::= |                        | operand types:              | Г | ::= |                                              | register file types: |
|---|-----|------------------------|-----------------------------|---|-----|----------------------------------------------|----------------------|
|   |     | int                    | word-sized integers         |   |     | $\{r_1: \tau_1, \ldots, r_k: \tau_k\}$       |                      |
|   |     | $code(\Gamma)$         | code labels                 | Ψ | ::= |                                              | heap types:          |
|   |     | α                      | type variables              |   |     | $\{\ell_1: \tau_1, \ldots, \ell_n: \tau_n\}$ |                      |
|   |     | $\forall \alpha. \tau$ | universal polymorphic types |   |     |                                              |                      |

#### TAL-0 Type System (3)

• We now formalize the type system using the inference rules:

| Values                                                                                                       | $\Psi \vdash v : \tau$           | Instruction Sequences                                                                | $\Psi \vdash I : \tau$       |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|------------------------------|
| $\Psi \vdash n: int$                                                                                         | (S-INT)                          | $\Psi; \Gamma \vdash \nu : code(\Gamma)$                                             |                              |
| $\Psi \vdash \ell : \Psi(\ell)$                                                                              | (S-LAB)                          | $\Psi \vdash jump \ \nu : code(\Gamma)$                                              | (S-JUMP)                     |
| Operands                                                                                                     | $\Psi; \Gamma \vdash \nu : \tau$ | $\Psi \vdash \iota : \Gamma \to \Gamma_2 \qquad \Psi \vdash I : code(\Gamma_2)$      | (5-550)                      |
| $\Psi; \Gamma \vdash r : \Gamma(r)$                                                                          | (S-REG)                          | $\Psi \vdash \iota; I: code(\Gamma)$                                                 | (3-3EQ)                      |
| $\frac{\Psi \vdash \nu : \tau}{\Psi; \Gamma \vdash \nu : \tau}$                                              | (S-VAL)                          | $\frac{\Psi \vdash I:\tau}{\Psi \vdash I:\forall \alpha.\tau}$                       | (S-GEN)                      |
| $\Psi; \Gamma \vdash \nu : \forall \alpha. \tau$                                                             | (CINCT)                          | Register Files                                                                       | $\Psi \vdash R : \Gamma$     |
| $f'; \Gamma \vdash \nu : \tau[\tau'/\alpha]$                                                                 | (S-INST)                         | $\frac{\forall r. \Psi \vdash R(r) : \Gamma(r)}{\Psi \vdash R : \Gamma}$             | (S-REGFILE)                  |
| $\frac{\Psi; \Gamma \vdash \nu : \tau}{r_d := \nu : \Gamma \rightarrow \Gamma[r_d : \tau]}$                  | (S-MOV)                          | <i>Heaps</i><br>$\forall \ell \in dom(\Psi). \Psi \vdash H(\ell) : \Psi(\ell)$       | $\vdash H:\Psi$              |
| $r_{s}: \text{int}  \Psi; \Gamma \vdash v: \text{in}$ $r_{s}:=r_{s}+v: \Gamma \to \Gamma[r_{d}: \text{int}]$ | (S-ADD)                          | $\frac{FTV(\Psi(\ell)) = \emptyset}{\vdash H : \Psi}$                                | (S-HEAP)                     |
| int $\Psi; \Gamma \vdash \nu : code$<br>if $r_s$ jump $\nu : \Gamma \to \Gamma$                              | <u>e(Γ)</u> (S-IF)               | <i>Machine States</i><br>$\vdash H: \Psi  \Psi \vdash R: \Gamma  \Psi \vdash I: coc$ | $\vdash M$<br>le( $\Gamma$ ) |
|                                                                                                              |                                  | $\vdash (H, R, I)$                                                                   |                              |
|                                                                                                              |                                  |                                                                                      | (S-MACH)                     |

## Proof of Type Soundness for TAL-0 (1)

- It suffices to show:
  - Well-typed machine state is not immediately stuck (progress)
  - When it steps to a new machine state M', that state is also well-typed (preservation).

#### Proof of Type Soundness for TAL-0 (2)

LEMMA [TYPE SUBSTITUTION]: If:

- 1.  $\Psi; \Gamma \vdash \nu : \tau_1$ , then  $\Psi; \Gamma[\tau/\alpha] \vdash \nu : \tau_1[\tau/\alpha]$ .
- 2.  $\Psi \vdash \iota : \Gamma_1 \to \Gamma_2$  then  $\Psi \vdash \iota : \Gamma_1[\tau/\alpha] \to \Gamma_2[\tau/\alpha]$ .
- 3.  $\Psi \vdash I : \tau_1$ , then  $\Psi \vdash I : \tau_1[\tau/\alpha]$ .
- 4.  $\Psi \vdash R : \Gamma$ , then  $\Psi \vdash R : \Gamma[\tau / \alpha]$ .

#### Proof of Type Soundness for TAL-0 (3)

**LEMMA** [REGISTER SUBSTITUTION]: If  $\vdash H : \Psi, \Psi \vdash R : \Gamma$  and  $\Psi; \Gamma \vdash \nu : \tau$  then  $\Psi; \Gamma \vdash \hat{R}(\nu) : \tau$ 

LEMMA [CANONICAL VALUES]: If  $\vdash H : \Psi$  and  $\Psi \vdash \nu : \tau$  then:

1. If  $\tau = \text{int}$  then v = n for some n.

2. If  $\tau = \operatorname{code}(\Gamma)$  then  $\nu = \ell$  for some  $\ell \in \operatorname{dom}(H)$  and  $\Psi \vdash H(\ell) : \operatorname{code}(\Gamma)$ .  $\Box$ 

#### Proof of Type Soundness for TAL-0 (4)

LEMMA [CANONICAL OPERANDS]: If  $\vdash H : \Psi, \Psi \vdash R : \Gamma$ , and  $\Psi; \Gamma \vdash \nu : \tau$  then:

- 1. If  $\tau = \text{int}$  then  $\hat{R}(v) = n$  for some *n*.
- 2. If  $\tau = \operatorname{code}(\Gamma)$  then  $\hat{R}(v) = \ell$  for some  $\ell \in \operatorname{dom}(H)$  and  $\Psi \vdash H(\ell)$ :  $\operatorname{code}(\Gamma)$ .

THEOREM [SOUNDNESS OF TAL-0]: If  $\vdash M$ , then there exists an M' such that  $M \rightarrow M'$  and  $\vdash M'$ .

### **Proof Representation and Checking**

- For TAL-0 it is sufficient to provide types for the labels;
- Keep the type checker as simple as possible:
  - a) Type reconstruction is entirly syntax directed (for any given term at most one rule should apply)
  - b) Explicit representation of the complete proof of wellformedness
    - We can ship the binary machine code, disassemble it and then compare it against the assembly-level proof (proof-carrying code)

### TAL-1: Simple Memory-Safety (1)

- TAL-0 includes registers and heap-allocated code; no support for allocated *data*.
- TAL-1:
  - adds primitive support for allocated objects that can be shared by reference (i.e pointer)
  - includes a notion of object-level memory safety.
- How to accomodate locations that hold values of different types at different times?

#### TAL-1: Simple Memory-Safety (2)

```
{r1:ptr(code(...))}
```

- 1. r3 := 0;
- 2. Mem[r1] := r3;
- 3. r4 := Mem[r1];
- 4. jump r4
- The code above should be rejected by the type-checker (control-flow safety property)

```
{r1:ptr(code(...)),r2:ptr(code(...))}
1. r3 := 0;
2. Mem[r1] := r3;
3. r4 := Mem[r2];
4. jump r4
```

#### TAL-1: Simple Memory-Safety (3)

- We need some support for
  - Allocating and initializing data structures that are to be shared;
  - Stack-allocating procedure frames.
- Separate locations into two classes:
  - Shared pointers that support arbitrary aliasing;
  - Unique pointers that will support updates that change the type of the contents.

### The TAL-1 Extended Abstract Machine (1)

Syntactic extensions to TAL-0 and rewriting rules:

| γ ::=                              | registers:            |
|------------------------------------|-----------------------|
| r1   r2   · · ·   rk               | gp registers          |
|                                    | stack pointer         |
| <i>í</i> ∷=                        | instructions:         |
|                                    | as in TAL-0           |
| $r := \operatorname{Mem}[r_s + n]$ | load from memory      |
| $\mathcal{M}emp[r_d + n] := r_s$   | store to memory       |
| r := malloc n a                    | llocate n heap words  |
| Commit r <sub>d</sub>              | become shared         |
| salloc n a                         | llocate n stack words |

### The TAL-1 Extended Abstract Machine (2)

|   |     | sfree n                  | free n stack words           |
|---|-----|--------------------------|------------------------------|
| ν | ∷== |                          | operands:                    |
|   |     | r                        | registers                    |
|   |     | п                        | integer literals             |
|   |     | ł                        | code or shared data pointers |
|   |     | uptr(h)                  | unique data pointers         |
| h | ::= |                          | heap values:                 |
|   |     | Ι                        | instruction sequences        |
|   |     | $\langle v_1,\ldots,v_n$ | tuples                       |

### The TAL-1 Extended Abstract Machine (3)

 The rewriting rules for the instructions of TAL-1

(MOV-1)

 $\frac{\hat{R}(v) \neq \mathsf{uptr}(h)}{(H, R, r_d := v; I) \longrightarrow (H, R[r_d = v], I)}$ 

This rule can only fire when the source operand is not a unique pointer. We must now give the rewriting rules for the new instructions:

$$(H, R, r_d := \text{malloc } n; I) \longrightarrow (H, R[r_d = \text{uptr}(m_1, \dots, m_n)], I) \quad (\text{MALLOC})$$

$$r_d \neq \text{sp} \quad \ell \notin dom(H)$$

$$(COMMIT)$$

$$(H, R[r_d = \text{uptr}(h)], \text{commit } r_d; I) \longrightarrow (H[\ell = h], R[r_d = \ell], I)$$

### The TAL-1 Extended Abstract Machine (4)

$$\frac{R(r_s) = \ell \qquad H(\ell) = \langle v_0, \dots, v_n, \dots, v_{n+m} \rangle}{(H, R, r_d := \mathsf{Mem}[r_s + n]; I) \longrightarrow (H, R[r_d = v_n], I)} \qquad \text{(LD-S)}$$

$$\frac{R(r_s) = \mathsf{uptr}\langle v_0, \dots, v_n, \dots, v_{n+m} \rangle}{(H, R, r_d := \mathsf{Mem}[r_s + n]; I) \longrightarrow (H, R[r_d = v_n], I)} \qquad \text{(LD-U)}$$

$$\frac{R(r_d) = \ell \qquad H(\ell) = \langle v_0, \dots, v_n, \dots, v_{n+m} \rangle \qquad R(r_s) = v \qquad v \neq \mathsf{uptr}(h)}{(H, R, \mathsf{Mem}[r_d + n] := r_s; I) \longrightarrow (H[\ell = \langle v_0, \dots, v, \dots, v_{n+m} \rangle], R, I)} \qquad (ST-S)$$

## The TAL-1 Extended Abstract Machine (5)

 $R(r_s) = v$   $v \neq uptr(n)$  $R(r_d) = \mathsf{uptr}(v_0, \dots, v_n, \dots, v_{n+m}),$  $(H, R, \mathsf{Mem}[r_d + n] := r_s; I) \longrightarrow (H, R[r_d = \mathsf{uptr}(v_0, \dots, v, \dots, v_{n+m})], I)$ (ST-U)  $R(sp) = uptr(v_0, ..., v_p)$   $p + n \le MAXSTACK$ (SALLOC)  $(H, R, \text{salloc } n) \rightarrow (H, R[\text{sp} = \text{uptr}(m_1, \dots, m_n, v_0, \dots, v_p)])$  $R(sp) = uptr(m_1, \dots, m_n, v_0, \dots, v_p)$ (SFREE)

 $(H, R, \text{sfree } n) \rightarrow (H, R[\text{sp} = \text{uptr}(v_0, \dots, v_p)])$ 

#### TAL-1 Changes to the Type System (1)

 New set of types for classifying TAL-1 values and new typing rules:

| ar the |                | operand types:                | $\sigma$ $\ddot{a}$ = |                      | allocated types;        |
|--------|----------------|-------------------------------|-----------------------|----------------------|-------------------------|
| 9 D6E  | 23 K           | as in TAL-0                   |                       | ć                    | empty                   |
|        | str(o)         | shared data pointers          |                       | T                    | value type              |
|        | $uptr(\sigma)$ | unique data pointers          |                       | $\sigma_1, \sigma_2$ | adjacent                |
|        | ∀p.r quanti    | fication over allocated types |                       | $\rho_{\rm c}$       | allocated type variable |

### TAL-1 Changes to the Type System (2)

• New typing rules:



#### TAL-1 Changes to the Type System (3)

• New typing rules:

| Instructions |                                                                                                                                                                                                 | $\Psi \vdash \iota: T_{1} \to \tilde{\Gamma}_{2}$ |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|              | $\frac{\Psi; \Gamma \vdash \psi; \tau}{\Psi \vdash r_{d} := \psi : \Gamma \rightarrow \Gamma[r_{d} : \tau]}$                                                                                    | (S-MOV-1)                                         |
|              | $\frac{n \ge 0}{\Psi \vdash r_d := \text{malloc} n : \Gamma \rightarrow \Gamma[r_d : \text{uptr}(\underbrace{\text{int}, \dots, \text{int}})]}$                                                 | (S-MALLOC)                                        |
|              | $\frac{\Psi; \Gamma \vdash r_d : \texttt{uptr}(\sigma) \qquad r_d \neq \texttt{sp}}{\Psi \vdash \texttt{commit} \ r_d : \Gamma \vdash \Gamma[r_d : \texttt{ptr}(\sigma)]}$                      | (S-COMMEE)                                        |
|              | $\Psi_{i}\Gamma \leftarrow r_{i}: ptr(\tau_{i}, \dots, \tau_{n}, \sigma)$<br>$\Psi \leftarrow r_{d}:= Mem[r_{i} + \sigma]: \Gamma \to \Gamma[r_{d}: \tau_{n}]$                                  | (5-1.1)5)                                         |
|              | $\begin{split} \Psi_{i} \Gamma &\leftarrow r_{1} : uptr(\tau_{1}, \ldots, \tau_{n}, \sigma) \\ \Psi &\leftarrow r_{d} := Mem[r_{d} + \sigma] : \Gamma \to \Gamma[r_{d} : \tau_{n}] \end{split}$ | (S-LDU)                                           |

#### TAL-1 Changes to the Type System (4)

• At this point TAL-1 provides enough mechanism for the compiler of a polymorphic, procedural language.

#### Compiling to TAL-1 (1)

• A simple example:

```
int prod (int x, int y){
    int a = 0;
    while (x != 0) {
        a = a + y;
        x = x - 1;
    }
    return a;
}
```

#### Compiling to TAL-1 (2)

```
prod: ∀a,b,c,s.
       code{r1:a,r2:b,r3:c,sp:uptr(int,int,s),
            r4: \forall d, e, f. code{r1:int, r2:d, r3:e, r4:f, sp:uptr(s)}
      r2 := Mem[sp]; // r2:int, r2 := x
      r3 := Mem[sp+1]: // r3:int, r3 := y
      r1 := 0
                      // r1:int, a := 0
      jump loop
loop: ∀s.code{r1,r2,r3:int,sp:uptr(int,int,s),
              r4: \forall d, e, f. code{r1:int, r2:d, r3:e, r4:f, sp:uptr(s)}
      if r2 jump done; // if x \leftrightarrow 0 goto done
      r1 := r1 + r3; // a := a + y
      r2 := r2 + (-1); // x := x - 1
      jump loop
done: ∀s.code{r1,r2,r3:int,sp:uptr(int,int,s),
              r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}
      sfree 2;
                  // sp:uptr(s)
      jump r4
```

# Compiling to TAL-1 (3)

```
prod: ∀a,b,c,s.
    code{r1:a,r2:b,r3:c,sp:uptr(int,int,s),
        r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}
    r2 := Mem[sp]; // r2:int, r2 := x
    r3 := Mem[sp+1]; // r3:int, r3 := y
    r1 := 0 // r1:int, a := 0
    jump loop
```

# Compiling to TAL-1 (4)

# Compiling to TAL-1 (5)

#### Some Real World Issues

- TAL-1 and the extensions described earlier provide mechanisms needed to implement only very simple languages.
- Further extensions to TAL-1:
  - STAL;
  - TALT;
  - TALx86.

#### Conclusion

- The typing annotations are produced and consumed by machines;
- Low-level languages present new challanges to type system designers;
- Ideally, proofs should be carried out in a machinechecked environment.

# Used materials

Benjamin C. Pierce edition

"Advanced Topics in Types and Programming Languages " (MIT Press, 2005)

- Typed Assembly Language, by Greg Morrisett

# Thank you!