
Typed Assembly Language

Evari Koppel and Magnus Leppik

About presentation

• Why type checking?

• Proof-carrying code

• Typed Assembly Language

• TAL-0

• TAL-1

• Examples

What is TAL

• TAL is assembly language that is extended to make use
of annotating datatypes for each used value

• Type checker – to check how code acts when executed

• Type safety – prevent type errors

Why Typing Checking

• Low-level code and high-level program

• Type checking – convenient way to ensure that a

program has certain semantic properties

• Major component of the security infrastructure in

distributed systems

• Memory safety

• Type safety

• Malicous code

Proof-carrying code (1)

• The principle of PCC is that the need to trust a piece of
code is eliminated by machine-checkable proof that the
code has certain properties.

• Using PCC to build trustworthy systems:

– What properties should we require of the code?

– How do code producers construct a formal proof that
their code has the desired properties?

Proof-carrying code (2)

• Solution: type-preserving compilation.

• We seek a principled approach to the design of typed

intermediate language.

TAL-0: Control-Flow-Safety(1)

• Control-Flow safety

• Focus on control-flow safety will let us start with simple

abstract machine

• The syntax for control-flow-safety assembly language:

TAL-0: Control-Flow-Safety(2)

• We model evaluation of TAL-0 assembly programs using
a rewriting relation between abstract machine states.

• We maintain the distinction between labels and arbitrary
integers.

• Enforcing the safety property now reduces to ensuring
that abstract machine cannot get stuck.

TAL-0: Control-Flow-Safety(3)

• Syntax for TAL-0 abstract machines:

TAL-0: Control-Flow-Safety(4)

• Rewriting rules for TAL-0:

TAL-0 Type System (1)

• Goal: ensure that any well-formed abstract machine M

cannot get stuck.

• Our type system has to:

– Distinguish labels from integers

• Ensures that operands of a control transfer are

labels

– No matter how many steps are taken by M, it never

gets into a stuck state (i.e typing preserved)

TAL-0 Type System (2)

• Type syntax:

TAL-0 Type System (3)

• We now formalize the type system using the inference
rules:

Proof of Type Soundness for TAL-0 (1)

• It suffices to show:

– Well-typed machine state is not immediately stuck

(progress)

– When it steps to a new machine state M’, that state is

also well-typed (preservation).

Proof of Type Soundness for TAL-0 (2)

Proof of Type Soundness for TAL-0 (3)

Proof of Type Soundness for TAL-0 (4)

Proof Representation and Checking

• For TAL-0 it is sufficient to provide types for the labels;

• Keep the type checker as simple as possible:

a) Type reconstruction is entirly syntax directed (for
any given term at most one rule should apply)

b) Explicit representation of the complete proof of well-
formedness

• We can ship the binary machine code, disassemble it and
then compare it against the assembly-level proof (proof-
carrying code)

TAL-1: Simple Memory-Safety (1)

• TAL-0 includes registers and heap-allocated code; no
support for allocated data.

• TAL-1:

– adds primitive support for allocated objects that can

be shared by reference (i.e pointer)

– includes a notion of object-level memory safety.

• How to accomodate locations that hold values of

different types at different times?

TAL-1: Simple Memory-Safety (2)

• The code above should be rejected by the type-checker
(control-flow safety property)

TAL-1: Simple Memory-Safety (3)

• We need some support for

– Allocating and initializing data structures that are to
be shared;

– Stack-allocating procedure frames.

• Separate locations into two classes:

– Shared pointers that support arbitrary aliasing;

– Unique pointers that will support updates that change
the type of the contents.

The TAL-1 Extended Abstract

Machine (1)
Syntactic extensions to TAL-0 and rewriting rules:

The TAL-1 Extended Abstract

Machine (2)

The TAL-1 Extended Abstract

Machine (3)

• The rewriting rules for the instructions of
TAL-1

The TAL-1 Extended Abstract

Machine (4)

The TAL-1 Extended Abstract

Machine (5)

TAL-1 Changes to the Type System (1)

• New set of types for classifying TAL-1 values and new
typing rules:

TAL-1 Changes to the Type System (2)

• New typing rules:

TAL-1 Changes to the Type System (3)

• New typing rules:

TAL-1 Changes to the Type System (4)

• At this point TAL-1 provides enough mechanism

for the compiler of a polymorphic, procedural language.

Compiling to TAL-1 (1)

• A simple example:

int prod (int x, int y){

int a = 0;

while (x != 0) {

a = a + y;

x = x – 1;

}

return a;

}

Compiling to TAL-1 (2)

Compiling to TAL-1 (3)

Compiling to TAL-1 (4)

Compiling to TAL-1 (5)

Some Real World Issues

• TAL-1 and the extensions described earlier provide
mechanisms needed to implement only very simple

languages.

• Further extensions to TAL-1:

– STAL;

– TALT;

– TALx86.

Conclusion

• The typing annotations are produced and consumed by

machines;

• Low-level languages present new challanges to type

system designers;

• Ideally, proofs should be carried out in a machine-

checked environment.

Used materials

Benjamin C. Pierce edition

"Advanced Topics in Types and
Programming Languages “ (MIT Press,
2005)

– Typed Assembly Language, by Greg Morrisett

Thank you!

