Coverage Report - com.sun.javafx.runtime.util.FXFormatter
 
Classes in this File Line Coverage Branch Coverage Complexity
FXFormatter
51%
71/140
50%
28/56
0
FXFormatter$BigDecimalLayoutForm
0%
0/1
N/A
0
FXFormatter$Conversion
0%
0/17
0%
0/38
0
FXFormatter$DateTime
62%
5/8
11%
8/71
0
FXFormatter$FixedString
75%
3/4
N/A
0
FXFormatter$Flags
51%
26/51
11%
6/54
0
FXFormatter$FormatSpecifier
22%
198/902
13%
105/793
0
FXFormatter$FormatSpecifier$BigDecimalLayout
0%
0/71
0%
0/32
0
FXFormatter$FormatString
N/A
N/A
0
 
 1  
 /*
 2  
  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
 3  
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 4  
  *
 5  
  * This code is free software; you can redistribute it and/or modify it
 6  
  * under the terms of the GNU General Public License version 2 only, as
 7  
  * published by the Free Software Foundation.  Sun designates this
 8  
  * particular file as subject to the "Classpath" exception as provided
 9  
  * by Sun in the LICENSE file that accompanied this code.
 10  
  *
 11  
  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  
  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  
  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  
  * version 2 for more details (a copy is included in the LICENSE file that
 15  
  * accompanied this code).
 16  
  *
 17  
  * You should have received a copy of the GNU General Public License version
 18  
  * 2 along with this work; if not, write to the Free Software Foundation,
 19  
  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  
  *
 21  
  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 22  
  * CA 95054 USA or visit www.sun.com if you need additional information or
 23  
  * have any questions.
 24  
  */
 25  
 
 26  
 package com.sun.javafx.runtime.util;
 27  
 
 28  
 import java.io.BufferedWriter;
 29  
 import java.io.Closeable;
 30  
 import java.io.IOException;
 31  
 import java.io.File;
 32  
 import java.io.FileOutputStream;
 33  
 import java.io.FileNotFoundException;
 34  
 import java.io.Flushable;
 35  
 import java.io.OutputStream;
 36  
 import java.io.OutputStreamWriter;
 37  
 import java.io.PrintStream;
 38  
 import java.io.UnsupportedEncodingException;
 39  
 import java.math.BigDecimal;
 40  
 import java.math.BigInteger;
 41  
 import java.math.MathContext;
 42  
 import java.text.DateFormat;
 43  
 import java.text.DateFormatSymbols;
 44  
 import java.text.DecimalFormat;
 45  
 import java.text.DecimalFormatSymbols;
 46  
 import java.text.NumberFormat;
 47  
 import java.text.SimpleDateFormat;
 48  
 import java.util.ArrayList;
 49  
 import java.util.Calendar;
 50  
 import java.util.Date;
 51  
 import java.util.DuplicateFormatFlagsException;
 52  
 import java.util.FormatFlagsConversionMismatchException;
 53  
 import java.util.Formattable;
 54  
 import java.util.Formatter;
 55  
 import java.util.FormatterClosedException;
 56  
 import java.util.GregorianCalendar;
 57  
 import java.util.HashMap;
 58  
 import java.util.IllegalFormatCodePointException;
 59  
 import java.util.IllegalFormatConversionException;
 60  
 import java.util.IllegalFormatFlagsException;
 61  
 import java.util.IllegalFormatPrecisionException;
 62  
 import java.util.IllegalFormatWidthException;
 63  
 import java.util.Locale;
 64  
 import java.util.Map;
 65  
 import java.util.MissingFormatArgumentException;
 66  
 import java.util.MissingFormatWidthException;
 67  
 import java.util.TimeZone;
 68  
 import java.util.UnknownFormatConversionException;
 69  
 import java.util.UnknownFormatFlagsException;
 70  
 import java.util.regex.Matcher;
 71  
 import java.util.regex.Pattern;
 72  
 
 73  
 import sun.misc.FpUtils;
 74  
 import sun.misc.DoubleConsts;
 75  
 import sun.misc.FormattedFloatingDecimal;
 76  
 
 77  
 /**
 78  
  * An interpreter for printf-style format strings.  This class provides support
 79  
  * for layout justification and alignment, common formats for numeric, string,
 80  
  * and date/time data, and locale-specific output.  Common Java types such as
 81  
  * <tt>byte</tt>, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
 82  
  * are supported.  Limited formatting customization for arbitrary user types is
 83  
  * provided through the {@link Formattable} interface.
 84  
  *
 85  
  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
 86  
  * safety is optional and is the responsibility of users of methods in this
 87  
  * class.
 88  
  *
 89  
  * <p> Formatted printing for the Java language is heavily inspired by C's
 90  
  * <tt>printf</tt>.  Although the format strings are similar to C, some
 91  
  * customizations have been made to accommodate the Java language and exploit
 92  
  * some of its features.  Also, Java formatting is more strict than C's; for
 93  
  * example, if a conversion is incompatible with a flag, an exception will be
 94  
  * thrown.  In C inapplicable flags are silently ignored.  The format strings
 95  
  * are thus intended to be recognizable to C programmers but not necessarily
 96  
  * completely compatible with those in C.
 97  
  *
 98  
  * <p> Examples of expected usage:
 99  
  *
 100  
  * <blockquote><pre>
 101  
  *   StringBuilder sb = new StringBuilder();
 102  
  *   // Send all output to the Appendable object sb
 103  
  *   FXFormatter formatter = new FXFormatter(sb, Locale.US);
 104  
  *
 105  
  *   // Explicit argument indices may be used to re-order output.
 106  
  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
 107  
  *   // -&gt; " d  c  b  a"
 108  
  *
 109  
  *   // Optional locale as the first argument can be used to get
 110  
  *   // locale-specific formatting of numbers.  The precision and width can be
 111  
  *   // given to round and align the value.
 112  
  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 113  
  *   // -&gt; "e =    +2,7183"
 114  
  *
 115  
  *   // The '(' numeric flag may be used to format negative numbers with
 116  
  *   // parentheses rather than a minus sign.  Group separators are
 117  
  *   // automatically inserted.
 118  
  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 119  
  *                    balanceDelta);
 120  
  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 121  
  * </pre></blockquote>
 122  
  *
 123  
  * <p> Convenience methods for common formatting requests exist as illustrated
 124  
  * by the following invocations:
 125  
  *
 126  
  * <blockquote><pre>
 127  
  *   // Writes a formatted string to System.out.
 128  
  *   System.out.format("Local time: %tT", Calendar.getInstance());
 129  
  *   // -&gt; "Local time: 13:34:18"
 130  
  *
 131  
  *   // Writes formatted output to System.err.
 132  
  *   System.err.printf("Unable to open file '%1$s': %2$s",
 133  
  *                     fileName, exception.getMessage());
 134  
  *   // -&gt; "Unable to open file 'food': No such file or directory"
 135  
  * </pre></blockquote>
 136  
  *
 137  
  * <p> Like C's <tt>sprintf(3)</tt>, Strings may be formatted using the static
 138  
  * method {@link String#format(String,Object...) String.format}:
 139  
  *
 140  
  * <blockquote><pre>
 141  
  *   // Format a string containing a date.
 142  
  *   import java.util.Calendar;
 143  
  *   import java.util.GregorianCalendar;
 144  
  *   import static java.util.Calendar.*;
 145  
  *
 146  
  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 147  
  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 148  
  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 149  
  * </pre></blockquote>
 150  
  *
 151  
  * <h3><a name="org">Organization</a></h3>
 152  
  *
 153  
  * <p> This specification is divided into two sections.  The first section, <a
 154  
  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 155  
  * section is intended for users who want to get started quickly and are
 156  
  * familiar with formatted printing in other programming languages.  The second
 157  
  * section, <a href="#detail">Details</a>, covers the specific implementation
 158  
  * details.  It is intended for users who want more precise specification of
 159  
  * formatting behavior.
 160  
  *
 161  
  * <h3><a name="summary">Summary</a></h3>
 162  
  *
 163  
  * <p> This section is intended to provide a brief overview of formatting
 164  
  * concepts.  For precise behavioral details, refer to the <a
 165  
  * href="#detail">Details</a> section.
 166  
  *
 167  
  * <h4><a name="syntax">Format String Syntax</a></h4>
 168  
  *
 169  
  * <p> Every method which produces formatted output requires a <i>format
 170  
  * string</i> and an <i>argument list</i>.  The format string is a {@link
 171  
  * String} which may contain fixed text and one or more embedded <i>format
 172  
  * specifiers</i>.  Consider the following example:
 173  
  *
 174  
  * <blockquote><pre>
 175  
  *   Calendar c = ...;
 176  
  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 177  
  * </pre></blockquote>
 178  
  *
 179  
  * This format string is the first argument to the <tt>format</tt> method.  It
 180  
  * contains three format specifiers "<tt>%1$tm</tt>", "<tt>%1$te</tt>", and
 181  
  * "<tt>%1$tY</tt>" which indicate how the arguments should be processed and
 182  
  * where they should be inserted in the text.  The remaining portions of the
 183  
  * format string are fixed text including <tt>"Dukes Birthday: "</tt> and any
 184  
  * other spaces or punctuation.
 185  
  *
 186  
  * The argument list consists of all arguments passed to the method after the
 187  
  * format string.  In the above example, the argument list is of size one and
 188  
  * consists of the {@link java.util.Calendar Calendar} object <tt>c</tt>.
 189  
  *
 190  
  * <ul>
 191  
  *
 192  
  * <li> The format specifiers for general, character, and numeric types have
 193  
  * the following syntax:
 194  
  *
 195  
  * <blockquote><pre>
 196  
  *   %[argument_index$][flags][width][.precision]conversion
 197  
  * </pre></blockquote>
 198  
  *
 199  
  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 200  
  * position of the argument in the argument list.  The first argument is
 201  
  * referenced by "<tt>1$</tt>", the second by "<tt>2$</tt>", etc.
 202  
  *
 203  
  * <p> The optional <i>flags</i> is a set of characters that modify the output
 204  
  * format.  The set of valid flags depends on the conversion.
 205  
  *
 206  
  * <p> The optional <i>width</i> is a non-negative decimal integer indicating
 207  
  * the minimum number of characters to be written to the output.
 208  
  *
 209  
  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 210  
  * used to restrict the number of characters.  The specific behavior depends on
 211  
  * the conversion.
 212  
  *
 213  
  * <p> The required <i>conversion</i> is a character indicating how the
 214  
  * argument should be formatted.  The set of valid conversions for a given
 215  
  * argument depends on the argument's data type.
 216  
  *
 217  
  * <li> The format specifiers for types which are used to represents dates and
 218  
  * times have the following syntax:
 219  
  *
 220  
  * <blockquote><pre>
 221  
  *   %[argument_index$][flags][width]conversion
 222  
  * </pre></blockquote>
 223  
  *
 224  
  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 225  
  * defined as above.
 226  
  *
 227  
  * <p> The required <i>conversion</i> is a two character sequence.  The first
 228  
  * character is <tt>'t'</tt> or <tt>'T'</tt>.  The second character indicates
 229  
  * the format to be used.  These characters are similar to but not completely
 230  
  * identical to those defined by GNU <tt>date</tt> and POSIX
 231  
  * <tt>strftime(3c)</tt>.
 232  
  *
 233  
  * <li> The format specifiers which do not correspond to arguments have the
 234  
  * following syntax:
 235  
  *
 236  
  * <blockquote><pre>
 237  
  *   %[flags][width]conversion
 238  
  * </pre></blockquote>
 239  
  *
 240  
  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 241  
  *
 242  
  * <p> The required <i>conversion</i> is a character indicating content to be
 243  
  * inserted in the output.
 244  
  *
 245  
  * </ul>
 246  
  *
 247  
  * <h4> Conversions </h4>
 248  
  *
 249  
  * <p> Conversions are divided into the following categories:
 250  
  *
 251  
  * <ol>
 252  
  *
 253  
  * <li> <b>General</b> - may be applied to any argument
 254  
  * type
 255  
  *
 256  
  * <li> <b>Character</b> - may be applied to basic types which represent
 257  
  * Unicode characters: <tt>char</tt>, {@link Character}, <tt>byte</tt>, {@link
 258  
  * Byte}, <tt>short</tt>, and {@link Short}. This conversion may also be
 259  
  * applied to the types <tt>int</tt> and {@link Integer} when {@link
 260  
  * Character#isValidCodePoint} returns <tt>true</tt>
 261  
  *
 262  
  * <li> <b>Numeric</b>
 263  
  *
 264  
  * <ol>
 265  
  *
 266  
  * <li> <b>Integral</b> - may be applied to Java integral types: <tt>byte</tt>,
 267  
  * {@link Byte}, <tt>short</tt>, {@link Short}, <tt>int</tt> and {@link
 268  
  * Integer}, <tt>long</tt>, {@link Long}, and {@link java.math.BigInteger
 269  
  * BigInteger}
 270  
  *
 271  
  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 272  
  * <tt>float</tt>, {@link Float}, <tt>double</tt>, {@link Double}, and {@link
 273  
  * java.math.BigDecimal BigDecimal}
 274  
  *
 275  
  * </ol>
 276  
  *
 277  
  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 278  
  * encoding a date or time: <tt>long</tt>, {@link Long}, {@link Calendar}, and
 279  
  * {@link Date}.
 280  
  *
 281  
  * <li> <b>Percent</b> - produces a literal <tt>'%'</tt>
 282  
  * (<tt>'&#92;u0025'</tt>)
 283  
  *
 284  
  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 285  
  *
 286  
  * </ol>
 287  
  *
 288  
  * <p> The following table summarizes the supported conversions.  Conversions
 289  
  * denoted by an upper-case character (i.e. <tt>'B'</tt>, <tt>'H'</tt>,
 290  
  * <tt>'S'</tt>, <tt>'C'</tt>, <tt>'X'</tt>, <tt>'E'</tt>, <tt>'G'</tt>,
 291  
  * <tt>'A'</tt>, and <tt>'T'</tt>) are the same as those for the corresponding
 292  
  * lower-case conversion characters except that the result is converted to
 293  
  * upper case according to the rules of the prevailing {@link java.util.Locale
 294  
  * Locale}.  The result is equivalent to the following invocation of {@link
 295  
  * String#toUpperCase()}
 296  
  *
 297  
  * <pre>
 298  
  *    out.toUpperCase() </pre>
 299  
  *
 300  
  * <table cellpadding=5 summary="genConv">
 301  
  *
 302  
  * <tr><th valign="bottom"> Conversion
 303  
  *     <th valign="bottom"> Argument Category
 304  
  *     <th valign="bottom"> Description
 305  
  *
 306  
  * <tr><td valign="top"> <tt>'b'</tt>, <tt>'B'</tt>
 307  
  *     <td valign="top"> general
 308  
  *     <td> If the argument <i>arg</i> is <tt>null</tt>, then the result is
 309  
  *     "<tt>false</tt>".  If <i>arg</i> is a <tt>boolean</tt> or {@link
 310  
  *     Boolean}, then the result is the string returned by {@link
 311  
  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 312  
  *     "true".
 313  
  *
 314  
  * <tr><td valign="top"> <tt>'h'</tt>, <tt>'H'</tt>
 315  
  *     <td valign="top"> general
 316  
  *     <td> If the argument <i>arg</i> is <tt>null</tt>, then the result is
 317  
  *     "<tt>null</tt>".  Otherwise, the result is obtained by invoking
 318  
  *     <tt>Integer.toHexString(arg.hashCode())</tt>.
 319  
  *
 320  
  * <tr><td valign="top"> <tt>'s'</tt>, <tt>'S'</tt>
 321  
  *     <td valign="top"> general
 322  
  *     <td> If the argument <i>arg</i> is <tt>null</tt>, then the result is
 323  
  *     "<tt>null</tt>".  If <i>arg</i> implements {@link Formattable}, then
 324  
  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 325  
  *     result is obtained by invoking <tt>arg.toString()</tt>.
 326  
  *
 327  
  * <tr><td valign="top"><tt>'c'</tt>, <tt>'C'</tt>
 328  
  *     <td valign="top"> character
 329  
  *     <td> The result is a Unicode character
 330  
  *
 331  
  * <tr><td valign="top"><tt>'d'</tt>
 332  
  *     <td valign="top"> integral
 333  
  *     <td> The result is formatted as a decimal integer
 334  
  *
 335  
  * <tr><td valign="top"><tt>'o'</tt>
 336  
  *     <td valign="top"> integral
 337  
  *     <td> The result is formatted as an octal integer
 338  
  *
 339  
  * <tr><td valign="top"><tt>'x'</tt>, <tt>'X'</tt>
 340  
  *     <td valign="top"> integral
 341  
  *     <td> The result is formatted as a hexadecimal integer
 342  
  *
 343  
  * <tr><td valign="top"><tt>'e'</tt>, <tt>'E'</tt>
 344  
  *     <td valign="top"> floating point
 345  
  *     <td> The result is formatted as a decimal number in computerized
 346  
  *     scientific notation
 347  
  *
 348  
  * <tr><td valign="top"><tt>'f'</tt>
 349  
  *     <td valign="top"> floating point
 350  
  *     <td> The result is formatted as a decimal number
 351  
  *
 352  
  * <tr><td valign="top"><tt>'g'</tt>, <tt>'G'</tt>
 353  
  *     <td valign="top"> floating point
 354  
  *     <td> The result is formatted using computerized scientific notation or
 355  
  *     decimal format, depending on the precision and the value after rounding.
 356  
  *
 357  
  * <tr><td valign="top"><tt>'a'</tt>, <tt>'A'</tt>
 358  
  *     <td valign="top"> floating point
 359  
  *     <td> The result is formatted as a hexadecimal floating-point number with
 360  
  *     a significand and an exponent
 361  
  *
 362  
  * <tr><td valign="top"><tt>'t'</tt>, <tt>'T'</tt>
 363  
  *     <td valign="top"> date/time
 364  
  *     <td> Prefix for date and time conversion characters.  See <a
 365  
  *     href="#dt">Date/Time Conversions</a>.
 366  
  *
 367  
  * <tr><td valign="top"><tt>'%'</tt>
 368  
  *     <td valign="top"> percent
 369  
  *     <td> The result is a literal <tt>'%'</tt> (<tt>'&#92;u0025'</tt>)
 370  
  *
 371  
  * <tr><td valign="top"><tt>'n'</tt>
 372  
  *     <td valign="top"> line separator
 373  
  *     <td> The result is the platform-specific line separator
 374  
  *
 375  
  * </table>
 376  
  *
 377  
  * <p> Any characters not explicitly defined as conversions are illegal and are
 378  
  * reserved for future extensions.
 379  
  *
 380  
  * <h4><a name="dt">Date/Time Conversions</a></h4>
 381  
  *
 382  
  * <p> The following date and time conversion suffix characters are defined for
 383  
  * the <tt>'t'</tt> and <tt>'T'</tt> conversions.  The types are similar to but
 384  
  * not completely identical to those defined by GNU <tt>date</tt> and POSIX
 385  
  * <tt>strftime(3c)</tt>.  Additional conversion types are provided to access
 386  
  * Java-specific functionality (e.g. <tt>'L'</tt> for milliseconds within the
 387  
  * second).
 388  
  *
 389  
  * <p> The following conversion characters are used for formatting times:
 390  
  *
 391  
  * <table cellpadding=5 summary="time">
 392  
  *
 393  
  * <tr><td valign="top"> <tt>'H'</tt>
 394  
  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 395  
  *     a leading zero as necessary i.e. <tt>00 - 23</tt>.
 396  
  *
 397  
  * <tr><td valign="top"><tt>'I'</tt>
 398  
  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 399  
  *     zero as necessary, i.e.  <tt>01 - 12</tt>.
 400  
  *
 401  
  * <tr><td valign="top"><tt>'k'</tt>
 402  
  *     <td> Hour of the day for the 24-hour clock, i.e. <tt>0 - 23</tt>.
 403  
  *
 404  
  * <tr><td valign="top"><tt>'l'</tt>
 405  
  *     <td> Hour for the 12-hour clock, i.e. <tt>1 - 12</tt>.
 406  
  *
 407  
  * <tr><td valign="top"><tt>'M'</tt>
 408  
  *     <td> Minute within the hour formatted as two digits with a leading zero
 409  
  *     as necessary, i.e.  <tt>00 - 59</tt>.
 410  
  *
 411  
  * <tr><td valign="top"><tt>'S'</tt>
 412  
  *     <td> Seconds within the minute, formatted as two digits with a leading
 413  
  *     zero as necessary, i.e. <tt>00 - 60</tt> ("<tt>60</tt>" is a special
 414  
  *     value required to support leap seconds).
 415  
  *
 416  
  * <tr><td valign="top"><tt>'L'</tt>
 417  
  *     <td> Millisecond within the second formatted as three digits with
 418  
  *     leading zeros as necessary, i.e. <tt>000 - 999</tt>.
 419  
  *
 420  
  * <tr><td valign="top"><tt>'N'</tt>
 421  
  *     <td> Nanosecond within the second, formatted as nine digits with leading
 422  
  *     zeros as necessary, i.e. <tt>000000000 - 999999999</tt>.
 423  
  *
 424  
  * <tr><td valign="top"><tt>'p'</tt>
 425  
  *     <td> Locale-specific {@linkplain
 426  
  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 427  
  *     in lower case, e.g."<tt>am</tt>" or "<tt>pm</tt>". Use of the conversion
 428  
  *     prefix <tt>'T'</tt> forces this output to upper case.
 429  
  *
 430  
  * <tr><td valign="top"><tt>'z'</tt>
 431  
  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 432  
  *     style numeric time zone offset from GMT, e.g. <tt>-0800</tt>.  This
 433  
  *     value will be adjusted as necessary for Daylight Saving Time.  For
 434  
  *     <tt>long</tt>, {@link Long}, and {@link Date} the time zone used is
 435  
  *     the {@plainlink TimeZone#getDefault() default time zone} for this
 436  
  *     instance of the Java virtual machine.
 437  
  *
 438  
  * <tr><td valign="top"><tt>'Z'</tt>
 439  
  *     <td> A string representing the abbreviation for the time zone.  This
 440  
  *     value will be adjusted as necessary for Daylight Saving Time.  For
 441  
  *     <tt>long</tt>, {@link Long}, and {@link Date} the  time zone used is
 442  
  *     the {@plainlink TimeZone#getDefault() default time zone} for this
 443  
  *     instance of the Java virtual machine.  The FXFormatter's locale will
 444  
  *     supersede the locale of the argument (if any).
 445  
  *
 446  
  * <tr><td valign="top"><tt>'s'</tt>
 447  
  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 448  
  *     <tt>00:00:00</tt> UTC, i.e. <tt>Long.MIN_VALUE/1000</tt> to
 449  
  *     <tt>Long.MAX_VALUE/1000</tt>.
 450  
  *
 451  
  * <tr><td valign="top"><tt>'Q'</tt>
 452  
  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 453  
  *     1970 <tt>00:00:00</tt> UTC, i.e. <tt>Long.MIN_VALUE</tt> to
 454  
  *     <tt>Long.MAX_VALUE</tt>.
 455  
  *
 456  
  * <tr><td valign="top"><tt>'X'</tt></td>
 457  
  *     <td> Locale's appropriate time representation. If the given argument is
 458  
  *     a non-{@link GregorianCalendar} {@link Calendar} instance, the locale's
 459  
  *     appropriate time format for the <tt>Calendar</tt> is used.</td>
 460  
  *     </tr>
 461  
  *
 462  
  * </table>
 463  
  *
 464  
  * <p> The following conversion characters are used for formatting dates:
 465  
  *
 466  
  * <table cellpadding=5 summary="date">
 467  
  *
 468  
  * <tr><td valign="top"><tt>'B'</tt>
 469  
  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 470  
  *     full month name}, e.g. <tt>"January"</tt>, <tt>"February"</tt>.
 471  
  *
 472  
  * <tr><td valign="top"><tt>'b'</tt>
 473  
  *     <td> Locale-specific {@linkplain
 474  
  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 475  
  *     e.g. <tt>"Jan"</tt>, <tt>"Feb"</tt>.
 476  
  *
 477  
  * <tr><td valign="top"><tt>'h'</tt>
 478  
  *     <td> Same as <tt>'b'</tt>.
 479  
  *
 480  
  * <tr><td valign="top"><tt>'A'</tt>
 481  
  *     <td> Locale-specific full name of the {@linkplain
 482  
  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 483  
  *     e.g. <tt>"Sunday"</tt>, <tt>"Monday"</tt>
 484  
  *
 485  
  * <tr><td valign="top"><tt>'a'</tt>
 486  
  *     <td> Locale-specific short name of the {@linkplain
 487  
  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 488  
  *     e.g. <tt>"Sun"</tt>, <tt>"Mon"</tt>
 489  
  *
 490  
  * <tr><td valign="top"><tt>'C'</tt>
 491  
  *     <td> Four-digit year divided by <tt>100</tt>, formatted as two digits
 492  
  *     with leading zero as necessary, i.e. <tt>00 - 99</tt>
 493  
  *
 494  
  * <tr><td valign="top"><tt>'Y'</tt>
 495  
  *     <td> Year, formatted as at least four digits with leading zeros as
 496  
  *     necessary, e.g. <tt>0092</tt> equals <tt>92</tt> CE for the Gregorian
 497  
  *     calendar.
 498  
  *
 499  
  * <tr><td valign="top"><tt>'y'</tt>
 500  
  *     <td> Last two digits of the year, formatted with leading zeros as
 501  
  *     necessary, i.e. <tt>00 - 99</tt>.
 502  
  *
 503  
  * <tr><td valign="top"><tt>'G'</tt>
 504  
  *     <td> Week-based year, formatted as at least four digits with leading
 505  
  *     zeros as necessary. See below for the week-based year numbering.</td>
 506  
  *     </tr>
 507  
  *
 508  
  * <tr><td valign="top"><tt>'g'</tt>
 509  
  *     <td> Last two digits of the Week-based year, formatted with leading
 510  
  *     zeros as necessary. See below for the week-based year numbering.</td>
 511  
  *     </tr>
 512  
  *
 513  
  * <tr><td valign="top"><tt>'j'</tt>
 514  
  *     <td> Day of year, formatted as three digits with leading zeros as
 515  
  *     necessary, e.g. <tt>001 - 366</tt> for the Gregorian calendar.
 516  
  *
 517  
  * <tr><td valign="top"><tt>'m'</tt>
 518  
  *     <td> Month, formatted as two digits with leading zeros as necessary,
 519  
  *     i.e. <tt>01 - 13</tt>.
 520  
  *
 521  
  * <tr><td valign="top"><tt>'d'</tt>
 522  
  *     <td> Day of month, formatted as two digits with leading zeros as
 523  
  *     necessary, i.e. <tt>01 - 31</tt>
 524  
  *
 525  
  * <tr><td valign="top"><tt>'e'</tt>
 526  
  *     <td> Day of month, formatted as two digits, i.e. <tt>1 - 31</tt>.
 527  
  *
 528  
  * <tr><td valign="top"><tt>'u'</tt>
 529  
  *     <td> Day of week, formatted as a digit, i.e. <tt>1 - 7</tt>, with 1
 530  
  *     representing Monday.</td>
 531  
  *     </tr>
 532  
  *
 533  
  * <tr><td valign="top"><tt>'U'</tt>
 534  
  *     <td> Week number of year, Sunday as the first day of the
 535  
  *     week, formatted with leading zeros as necessary, i.e. <tt>00 -
 536  
  *     53</tt>. The first Sunday of January is the first day of week
 537  
  *     1. Any preceding days in January are considered week 0.</td>
 538  
  *     </tr>
 539  
  *
 540  
  * <tr><td valign="top"><tt>'V'</tt>
 541  
  *     <td> The ISO 8601 week number of the year, Monday as the first day of the week,
 542  
  *     formatted with leading zeros as necessary, i.e. <tt>01 - 53</tt>.
 543  
  *     </tr>
 544  
  *
 545  
  * <tr><td valign="top"><tt>'w'</tt>
 546  
  *     <td> Day of week, formatted as a digit, i.e., <tt>0 - 6</tt>, with 0
 547  
  *     representing Sunday.</td>
 548  
  *     </tr>
 549  
  *
 550  
  * <tr><td valign="top"><tt>'W'</tt>
 551  
  *     <td> Week number of year, formatted with leading zeros as necessary,
 552  
  *     i.e., <tt>00 - 52</tt>. The first Monday of January is the first day of
 553  
  *     week 1. Any preceding days in January are considered week 0.</td>
 554  
  *     </tr>
 555  
  *
 556  
  * <tr><td valign="top"><tt>'x'</tt>
 557  
  *     <td> Locale's appropriate date representation. If the given argument is
 558  
  *     a non-{@link GregorianCalendar} {@link Calendar} instance, the locale's
 559  
  *     appropriate date format for the <tt>Calendar</tt> is used.</td>
 560  
  *     </tr>
 561  
  *
 562  
  * </table>
 563  
  *
 564  
  * <p>Week-based year numbering: the first week of a year is determined as
 565  
  * follows.</p>
 566  
  * <ul>
 567  
  * <li>{@linkplain Calendar#MONDAY Monday} as {@linkplain
 568  
  * Calendar#getFirstDayOfWeek() the first day of the week}</li>
 569  
  * <li>If the week containing January 1 has {@linkplain
 570  
  * Calendar#getMinimalDaysInFirstWeek} four or more days, then it's the first
 571  
  * week. Otherwise, the next week is the first week.</li>
 572  
  * </ul>
 573  
  *
 574  
  * <p> The following conversion characters are used for formatting common
 575  
  * date/time compositions.
 576  
  *
 577  
  * <table cellpadding=5 summary="composites">
 578  
  *
 579  
  * <tr><td valign="top"><tt>'R'</tt>
 580  
  *     <td> Time formatted for the 24-hour clock as <tt>"%tH:%tM"</tt>
 581  
  *
 582  
  * <tr><td valign="top"><tt>'T'</tt>
 583  
  *     <td> Time formatted for the 24-hour clock as <tt>"%tH:%tM:%tS"</tt>.
 584  
  *
 585  
  * <tr><td valign="top"><tt>'r'</tt>
 586  
  *     <td> Time formatted for the 12-hour clock as <tt>"%tI:%tM:%tS %Tp"</tt>.
 587  
  *     The location of the morning or afternoon marker (<tt>'%Tp'</tt>) may be
 588  
  *     locale-dependent.
 589  
  *
 590  
  * <tr><td valign="top"><tt>'D'</tt>
 591  
  *     <td> Date formatted as <tt>"%tm/%td/%ty"</tt>.
 592  
  *
 593  
  * <tr><td valign="top"><tt>'F'</tt>
 594  
  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 595  
  *     complete date formatted as <tt>"%tY-%tm-%td"</tt>.
 596  
  *
 597  
  * <tr><td valign="top"><tt>'c'</tt>
 598  
  *     <td> Date and time formatted as <tt>"%ta %tb %td %tT %tZ %tY"</tt>,
 599  
  *     e.g. <tt>"Sun Jul 20 16:17:00 EDT 1969"</tt>.
 600  
  *
 601  
  * </table>
 602  
  *
 603  
  * <p> Modifier character 'E' modifies conversion specifiers to use alternative
 604  
  * format or specification as follows:</p>
 605  
  *
 606  
  * <table cellpadding=5 summary="composites">
 607  
  *
 608  
  * <tr><td valign="top"><tt>'Ec'</tt>
 609  
  *     <td> Date and time formatted in the locale's alternative appropriate
 610  
  *     format. The locale's appropriate alternative calendar, if applicable, is
 611  
  *     used to perform the conversion from <tt>long</tt>, {@link Long}, {@link
 612  
  *     Date}, and {@link GregorianCalendar} to the date and time in the
 613  
  *     alternative calendar.</td>
 614  
  *     </tr>
 615  
  *
 616  
  * <tr><td valign="top"><tt>'EC'</tt>
 617  
  *     <td> The name of the base year in the locale's alternative calendar. If
 618  
  *     the date is given in <tt>long</tt>, {@link Long}, {@link Date}, or
 619  
  *     {@link GregorianCalendar}, the date is converted to the locale's
 620  
  *     alternate calendar date. For example, if the given date is 2008-02-25 in
 621  
  *     ja_JP locale, the date is converted to Heisei 20.02.25 in the Japanese
 622  
  *     imperial calendar and the era name is used.</td>
 623  
  *
 624  
  * <tr><td valign="top"><tt>'Ex'</tt>
 625  
  *     <td> Date formatted in the locale's alternative calendar. If the date is
 626  
  *     given in <tt>long</tt>, {@link Long}, {@link Date}, or {@link
 627  
  *     GregorianCalendar}, the date is converted to the locale's alternate
 628  
  *     calendar date. For example, the alternative calendar date for Gregorian
 629  
  *     date 2008-02-25 in ja_JP locale is Heisei 20.02.25 (Japanese
 630  
  *     imperial).</td>
 631  
  *     </tr>
 632  
  *
 633  
  * <tr><td valign="top"><tt>'EX'</tt>
 634  
  *     <td> Time formatted in the locale's alternative calendar. If the date is
 635  
  *     given in <tt>long</tt>, {@link Long}, {@link Date}, or {@link
 636  
  *     GregorianCalendar}, the date is converted to the locale's alternate
 637  
  *     calendar date.</td>
 638  
  *     </tr>
 639  
  *
 640  
  * <tr><td valign="top"><tt>'Ey'</tt>
 641  
  *     <td> The year offset from <tt>%tEC</tt> in the locale's alternative
 642  
  *     calendar. If the date is given in <tt>long</tt>, {@link Long}, {@link
 643  
  *     Date}, or {@link GregorianCalendar}, the date is converted to the
 644  
  *     locale's alternate calendar date. For example, the year offset for
 645  
  *     Gregorian date 2008-02-25 in ja_JP locale is 20 in the Japanese imperial
 646  
  *     calendar.</td>
 647  
  *     </tr>
 648  
  *
 649  
  * </table>
 650  
  *
 651  
  * <p> Any characters not explicitly defined as date/time conversion suffixes
 652  
  * are illegal and are reserved for future extensions.
 653  
  *
 654  
  * <h4> Flags </h4>
 655  
  *
 656  
  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 657  
  * flag is supported for the indicated argument types.
 658  
  *
 659  
  * <table cellpadding=5 summary="genConv">
 660  
  *
 661  
  * <tr><th valign="bottom"> Flag <th valign="bottom"> General
 662  
  *     <th valign="bottom"> Character <th valign="bottom"> Integral
 663  
  *     <th valign="bottom"> Floating Point
 664  
  *     <th valign="bottom"> Date/Time
 665  
  *     <th valign="bottom"> Description
 666  
  *
 667  
  * <tr><td> '-' <td align="center" valign="top"> y
 668  
  *     <td align="center" valign="top"> y
 669  
  *     <td align="center" valign="top"> y
 670  
  *     <td align="center" valign="top"> y
 671  
  *     <td align="center" valign="top"> y
 672  
  *     <td> The result will be left-justified.
 673  
  *
 674  
  * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
 675  
  *     <td align="center" valign="top"> -
 676  
  *     <td align="center" valign="top"> y<sup>3</sup>
 677  
  *     <td align="center" valign="top"> y
 678  
  *     <td align="center" valign="top"> -
 679  
  *     <td> The result should use a conversion-dependent alternate form
 680  
  *
 681  
  * <tr><td> '+' <td align="center" valign="top"> -
 682  
  *     <td align="center" valign="top"> -
 683  
  *     <td align="center" valign="top"> y<sup>4</sup>
 684  
  *     <td align="center" valign="top"> y
 685  
  *     <td align="center" valign="top"> -
 686  
  *     <td> The result will always include a sign
 687  
  *
 688  
  * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
 689  
  *     <td align="center" valign="top"> -
 690  
  *     <td align="center" valign="top"> y<sup>4</sup>
 691  
  *     <td align="center" valign="top"> y
 692  
  *     <td align="center" valign="top"> -
 693  
  *     <td> The result will include a leading space for positive values
 694  
  *
 695  
  * <tr><td> '0' <td align="center" valign="top"> -
 696  
  *     <td align="center" valign="top"> -
 697  
  *     <td align="center" valign="top"> y
 698  
  *     <td align="center" valign="top"> y
 699  
  *     <td align="center" valign="top"> -
 700  
  *     <td> The result will be zero-padded
 701  
  *
 702  
  * <tr><td> ',' <td align="center" valign="top"> -
 703  
  *     <td align="center" valign="top"> -
 704  
  *     <td align="center" valign="top"> y<sup>2</sup>
 705  
  *     <td align="center" valign="top"> y<sup>5</sup>
 706  
  *     <td align="center" valign="top"> -
 707  
  *     <td> The result will include locale-specific {@linkplain
 708  
  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 709  
  *
 710  
  * <tr><td> '(' <td align="center" valign="top"> -
 711  
  *     <td align="center" valign="top"> -
 712  
  *     <td align="center" valign="top"> y<sup>4</sup>
 713  
  *     <td align="center" valign="top"> y<sup>5</sup>
 714  
  *     <td align="center"> -
 715  
  *     <td> The result will enclose negative numbers in parentheses
 716  
  *
 717  
  * </table>
 718  
  *
 719  
  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 720  
  *
 721  
  * <p> <sup>2</sup> For <tt>'d'</tt> conversion only.
 722  
  *
 723  
  * <p> <sup>3</sup> For <tt>'o'</tt>, <tt>'x'</tt>, and <tt>'X'</tt>
 724  
  * conversions only.
 725  
  *
 726  
  * <p> <sup>4</sup> For <tt>'d'</tt>, <tt>'o'</tt>, <tt>'x'</tt>, and
 727  
  * <tt>'X'</tt> conversions applied to {@link java.math.BigInteger BigInteger}
 728  
  * or <tt>'d'</tt> applied to <tt>byte</tt>, {@link Byte}, <tt>short</tt>, {@link
 729  
  * Short}, <tt>int</tt> and {@link Integer}, <tt>long</tt>, and {@link Long}.
 730  
  *
 731  
  * <p> <sup>5</sup> For <tt>'e'</tt>, <tt>'E'</tt>, <tt>'f'</tt>,
 732  
  * <tt>'g'</tt>, and <tt>'G'</tt> conversions only.
 733  
  *
 734  
  * <p> Any characters not explicitly defined as flags are illegal and are
 735  
  * reserved for future extensions.
 736  
  *
 737  
  * <h4> Width </h4>
 738  
  *
 739  
  * <p> The width is the minimum number of characters to be written to the
 740  
  * output.  For the line separator conversion, width is not applicable; if it
 741  
  * is provided, an exception will be thrown.
 742  
  *
 743  
  * <h4> Precision </h4>
 744  
  *
 745  
  * <p> For general argument types, the precision is the maximum number of
 746  
  * characters to be written to the output.
 747  
  *
 748  
  * <p> For the floating-point conversions <tt>'e'</tt>, <tt>'E'</tt>, and
 749  
  * <tt>'f'</tt> the precision is the number of digits after the decimal
 750  
  * separator.  If the conversion is <tt>'g'</tt> or <tt>'G'</tt>, then the
 751  
  * precision is the total number of digits in the resulting magnitude after
 752  
  * rounding.  If the conversion is <tt>'a'</tt> or <tt>'A'</tt>, then the
 753  
  * precision must not be specified.
 754  
  *
 755  
  * <p> For character, integral, and date/time argument types and the percent
 756  
  * and line separator conversions, the precision is not applicable; if a
 757  
  * precision is provided, an exception will be thrown.
 758  
  *
 759  
  * <h4> Argument Index </h4>
 760  
  *
 761  
  * <p> The argument index is a decimal integer indicating the position of the
 762  
  * argument in the argument list.  The first argument is referenced by
 763  
  * "<tt>1$</tt>", the second by "<tt>2$</tt>", etc.
 764  
  *
 765  
  * <p> Another way to reference arguments by position is to use the
 766  
  * <tt>'&lt;'</tt> (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
 767  
  * the previous format specifier to be re-used.  For example, the following two
 768  
  * statements would produce identical strings:
 769  
  *
 770  
  * <blockquote><pre>
 771  
  *   Calendar c = ...;
 772  
  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 773  
  *
 774  
  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 775  
  * </pre></blockquote>
 776  
  *
 777  
  * <hr>
 778  
  * <h3><a name="detail">Details</a></h3>
 779  
  *
 780  
  * <p> This section is intended to provide behavioral details for formatting,
 781  
  * including conditions and exceptions, supported data types, localization, and
 782  
  * interactions between flags, conversions, and data types.  For an overview of
 783  
  * formatting concepts, refer to the <a href="#summary">Summary</a>
 784  
  *
 785  
  * <p> Any characters not explicitly defined as conversions, date/time
 786  
  * conversion suffixes, or flags are illegal and are reserved for
 787  
  * future extensions.  Use of such a character in a format string will
 788  
  * cause an {@link UnknownFormatConversionException} or {@link
 789  
  * UnknownFormatFlagsException} to be thrown.
 790  
  *
 791  
  * <p> If the format specifier contains a width or precision with an invalid
 792  
  * value or which is otherwise unsupported, then a {@link
 793  
  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 794  
  * respectively will be thrown.
 795  
  *
 796  
  * <p> If a format specifier contains a conversion character that is not
 797  
  * applicable to the corresponding argument, then an {@link
 798  
  * IllegalFormatConversionException} will be thrown.
 799  
  *
 800  
  * <p> All specified exceptions may be thrown by any of the <tt>format</tt>
 801  
  * methods of <tt>FXFormatter</tt> as well as by any <tt>format</tt> convenience
 802  
  * methods such as {@link String#format(String,Object...) String.format} and
 803  
  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 804  
  *
 805  
  * <p> Conversions denoted by an upper-case character (i.e. <tt>'B'</tt>,
 806  
  * <tt>'H'</tt>, <tt>'S'</tt>, <tt>'C'</tt>, <tt>'X'</tt>, <tt>'E'</tt>,
 807  
  * <tt>'G'</tt>, <tt>'A'</tt>, and <tt>'T'</tt>) are the same as those for the
 808  
  * corresponding lower-case conversion characters except that the result is
 809  
  * converted to upper case according to the rules of the prevailing {@link
 810  
  * java.util.Locale Locale}.  The result is equivalent to the following
 811  
  * invocation of {@link String#toUpperCase()}
 812  
  *
 813  
  * <pre>
 814  
  *    out.toUpperCase() </pre>
 815  
  *
 816  
  * <h4><a name="dgen">General</a></h4>
 817  
  *
 818  
  * <p> The following general conversions may be applied to any argument type:
 819  
  *
 820  
  * <table cellpadding=5 summary="dgConv">
 821  
  *
 822  
  * <tr><td valign="top"> <tt>'b'</tt>
 823  
  *     <td valign="top"> <tt>'&#92;u0062'</tt>
 824  
  *     <td> Produces either "<tt>true</tt>" or "<tt>false</tt>" as returned by
 825  
  *     {@link Boolean#toString(boolean)}.
 826  
  *
 827  
  *     <p> If the argument is <tt>null</tt>, then the result is
 828  
  *     "<tt>false</tt>".  If the argument is a <tt>boolean</tt> or {@link
 829  
  *     Boolean}, then the result is the string returned by {@link
 830  
  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 831  
  *     "<tt>true</tt>".
 832  
  *
 833  
  *     <p> If the <tt>'#'</tt> flag is given, then a {@link
 834  
  *     FormatFlagsConversionMismatchException} will be thrown.
 835  
  *
 836  
  * <tr><td valign="top"> <tt>'B'</tt>
 837  
  *     <td valign="top"> <tt>'&#92;u0042'</tt>
 838  
  *     <td> The upper-case variant of <tt>'b'</tt>.
 839  
  *
 840  
  * <tr><td valign="top"> <tt>'h'</tt>
 841  
  *     <td valign="top"> <tt>'&#92;u0068'</tt>
 842  
  *     <td> Produces a string representing the hash code value of the object.
 843  
  *
 844  
  *     <p> If the argument, <i>arg</i> is <tt>null</tt>, then the
 845  
  *     result is "<tt>null</tt>".  Otherwise, the result is obtained
 846  
  *     by invoking <tt>Integer.toHexString(arg.hashCode())</tt>.
 847  
  *
 848  
  *     <p> If the <tt>'#'</tt> flag is given, then a {@link
 849  
  *     FormatFlagsConversionMismatchException} will be thrown.
 850  
  *
 851  
  * <tr><td valign="top"> <tt>'H'</tt>
 852  
  *     <td valign="top"> <tt>'&#92;u0048'</tt>
 853  
  *     <td> The upper-case variant of <tt>'h'</tt>.
 854  
  *
 855  
  * <tr><td valign="top"> <tt>'s'</tt>
 856  
  *     <td valign="top"> <tt>'&#92;u0073'</tt>
 857  
  *     <td> Produces a string.
 858  
  *
 859  
  *     <p> If the argument is <tt>null</tt>, then the result is
 860  
  *     "<tt>null</tt>".  If the argument implements {@link Formattable}, then
 861  
  *     its {@link Formattable#formatTo formatTo} method is invoked.
 862  
  *     Otherwise, the result is obtained by invoking the argument's
 863  
  *     <tt>toString()</tt> method.
 864  
  *
 865  
  *     <p> If the <tt>'#'</tt> flag is given and the argument is not a {@link
 866  
  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 867  
  *     will be thrown.
 868  
  *
 869  
  * <tr><td valign="top"> <tt>'S'</tt>
 870  
  *     <td valign="top"> <tt>'&#92;u0053'</tt>
 871  
  *     <td> The upper-case variant of <tt>'s'</tt>.
 872  
  *
 873  
  * </table>
 874  
  *
 875  
  * <p> The following <a name="dFlags">flags</a> apply to general conversions:
 876  
  *
 877  
  * <table cellpadding=5 summary="dFlags">
 878  
  *
 879  
  * <tr><td valign="top"> <tt>'-'</tt>
 880  
  *     <td valign="top"> <tt>'&#92;u002d'</tt>
 881  
  *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
 882  
  *     added at the end of the converted value as required to fill the minimum
 883  
  *     width of the field.  If the width is not provided, then a {@link
 884  
  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 885  
  *     then the output will be right-justified.
 886  
  *
 887  
  * <tr><td valign="top"> <tt>'#'</tt>
 888  
  *     <td valign="top"> <tt>'&#92;u0023'</tt>
 889  
  *     <td> Requires the output use an alternate form.  The definition of the
 890  
  *     form is specified by the conversion.
 891  
  *
 892  
  * </table>
 893  
  *
 894  
  * <p> The <a name="genWidth">width</a> is the minimum number of characters to
 895  
  * be written to the
 896  
  * output.  If the length of the converted value is less than the width then
 897  
  * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>&#92;u0020'</tt>)
 898  
  * until the total number of characters equals the width.  The padding is on
 899  
  * the left by default.  If the <tt>'-'</tt> flag is given, then the padding
 900  
  * will be on the right.  If the width is not specified then there is no
 901  
  * minimum.
 902  
  *
 903  
  * <p> The precision is the maximum number of characters to be written to the
 904  
  * output.  The precision is applied before the width, thus the output will be
 905  
  * truncated to <tt>precision</tt> characters even if the width is greater than
 906  
  * the precision.  If the precision is not specified then there is no explicit
 907  
  * limit on the number of characters.
 908  
  *
 909  
  * <h4><a name="dchar">Character</a></h4>
 910  
  *
 911  
  * This conversion may be applied to <tt>char</tt> and {@link Character}.  It
 912  
  * may also be applied to the types <tt>byte</tt>, {@link Byte},
 913  
  * <tt>short</tt>, and {@link Short}, <tt>int</tt> and {@link Integer} when
 914  
  * {@link Character#isValidCodePoint} returns <tt>true</tt>.  If it returns
 915  
  * <tt>false</tt> then an {@link IllegalFormatCodePointException} will be
 916  
  * thrown.
 917  
  *
 918  
  * <table cellpadding=5 summary="charConv">
 919  
  *
 920  
  * <tr><td valign="top"> <tt>'c'</tt>
 921  
  *     <td valign="top"> <tt>'&#92;u0063'</tt>
 922  
  *     <td> Formats the argument as a Unicode character as described in <a
 923  
  *     href="../lang/Character.html#unicode">Unicode Character
 924  
  *     Representation</a>.  This may be more than one 16-bit <tt>char</tt> in
 925  
  *     the case where the argument represents a supplementary character.
 926  
  *
 927  
  *     <p> If the <tt>'#'</tt> flag is given, then a {@link
 928  
  *     FormatFlagsConversionMismatchException} will be thrown.
 929  
  *
 930  
  * <tr><td valign="top"> <tt>'C'</tt>
 931  
  *     <td valign="top"> <tt>'&#92;u0043'</tt>
 932  
  *     <td> The upper-case variant of <tt>'c'</tt>.
 933  
  *
 934  
  * </table>
 935  
  *
 936  
  * <p> The <tt>'-'</tt> flag defined for <a href="#dFlags">General
 937  
  * conversions</a> applies.  If the <tt>'#'</tt> flag is given, then a {@link
 938  
  * FormatFlagsConversionMismatchException} will be thrown.
 939  
  *
 940  
  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 941  
  *
 942  
  * <p> The precision is not applicable.  If the precision is specified then an
 943  
  * {@link IllegalFormatPrecisionException} will be thrown.
 944  
  *
 945  
  * <h4><a name="dnum">Numeric</a></h4>
 946  
  *
 947  
  * <p> Numeric conversions are divided into the following categories:
 948  
  *
 949  
  * <ol>
 950  
  *
 951  
  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 952  
  *
 953  
  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 954  
  *
 955  
  * <li> <a href="#dndec"><b>Float and Double</b></a>
 956  
  *
 957  
  * <li> <a href="#dndec"><b>BigDecimal</b></a>
 958  
  *
 959  
  * </ol>
 960  
  *
 961  
  * <p> Numeric types will be formatted according to the following algorithm:
 962  
  *
 963  
  * <p><b><a name="l10n algorithm"> Number Localization Algorithm</a></b>
 964  
  *
 965  
  * <p> After digits are obtained for the integer part, fractional part, and
 966  
  * exponent (as appropriate for the data type), the following transformation
 967  
  * is applied:
 968  
  *
 969  
  * <ol>
 970  
  *
 971  
  * <li> Each digit character <i>d</i> in the string is replaced by a
 972  
  * locale-specific digit computed relative to the current locale's
 973  
  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 974  
  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> <tt>'0'</tt>
 975  
  * <i>&nbsp;+&nbsp;z</i>.
 976  
  *
 977  
  * <li> If a decimal separator is present, a locale-specific {@linkplain
 978  
  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 979  
  * substituted.
 980  
  *
 981  
  * <li> If the <tt>','</tt> (<tt>'&#92;u002c'</tt>)
 982  
  * <a name="l10n group">flag</a> is given, then the locale-specific {@linkplain
 983  
  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 984  
  * inserted by scanning the integer part of the string from least significant
 985  
  * to most significant digits and inserting a separator at intervals defined by
 986  
  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 987  
  * size}.
 988  
  *
 989  
  * <li> If the <tt>'0'</tt> flag is given, then the locale-specific {@linkplain
 990  
  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 991  
  * after the sign character, if any, and before the first non-zero digit, until
 992  
  * the length of the string is equal to the requested field width.
 993  
  *
 994  
  * <li> If the value is negative and the <tt>'('</tt> flag is given, then a
 995  
  * <tt>'('</tt> (<tt>'&#92;u0028'</tt>) is prepended and a <tt>')'</tt>
 996  
  * (<tt>'&#92;u0029'</tt>) is appended.
 997  
  *
 998  
  * <li> If the value is negative (or floating-point negative zero) and
 999  
  * <tt>'('</tt> flag is not given, then a <tt>'-'</tt> (<tt>'&#92;u002d'</tt>)
 1000  
  * is prepended.
 1001  
  *
 1002  
  * <li> If the <tt>'+'</tt> flag is given and the value is positive or zero (or
 1003  
  * floating-point positive zero), then a <tt>'+'</tt> (<tt>'&#92;u002b'</tt>)
 1004  
  * will be prepended.
 1005  
  *
 1006  
  * </ol>
 1007  
  *
 1008  
  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 1009  
  * "Infinity" respectively, will be output.  If the value is negative infinity,
 1010  
  * then the output will be "(Infinity)" if the <tt>'('</tt> flag is given
 1011  
  * otherwise the output will be "-Infinity".  These values are not localized.
 1012  
  *
 1013  
  * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
 1014  
  *
 1015  
  * <p> The following conversions may be applied to <tt>byte</tt>, {@link Byte},
 1016  
  * <tt>short</tt>, {@link Short}, <tt>int</tt> and {@link Integer},
 1017  
  * <tt>long</tt>, and {@link Long}.
 1018  
  *
 1019  
  * <table cellpadding=5 summary="IntConv">
 1020  
  *
 1021  
  * <tr><td valign="top"> <tt>'d'</tt>
 1022  
  *     <td valign="top"> <tt>'&#92;u0054'</tt>
 1023  
  *     <td> Formats the argument as a decimal integer. The <a
 1024  
  *     href="#l10n algorithm">localization algorithm</a> is applied.
 1025  
  *
 1026  
  *     <p> If the <tt>'0'</tt> flag is given and the value is negative, then
 1027  
  *     the zero padding will occur after the sign.
 1028  
  *
 1029  
  *     <p> If the <tt>'#'</tt> flag is given then a {@link
 1030  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1031  
  *
 1032  
  * <tr><td valign="top"> <tt>'o'</tt>
 1033  
  *     <td valign="top"> <tt>'&#92;u006f'</tt>
 1034  
  *     <td> Formats the argument as an integer in base eight.  No localization
 1035  
  *     is applied.
 1036  
  *
 1037  
  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 1038  
  *     generated by adding 2<sup>n</sup> to the value where <tt>n</tt> is the
 1039  
  *     number of bits in the type as returned by the static <tt>SIZE</tt> field
 1040  
  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 1041  
  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 1042  
  *     classes as appropriate.
 1043  
  *
 1044  
  *     <p> If the <tt>'#'</tt> flag is given then the output will always begin
 1045  
  *     with the radix indicator <tt>'0'</tt>.
 1046  
  *
 1047  
  *     <p> If the <tt>'0'</tt> flag is given then the output will be padded
 1048  
  *     with leading zeros to the field width following any indication of sign.
 1049  
  *
 1050  
  *     <p> If <tt>'('</tt>, <tt>'+'</tt>, '&nbsp&nbsp;', or <tt>','</tt> flags
 1051  
  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 1052  
  *     thrown.
 1053  
  *
 1054  
  * <tr><td valign="top"> <tt>'x'</tt>
 1055  
  *     <td valign="top"> <tt>'&#92;u0078'</tt>
 1056  
  *     <td> Formats the argument as an integer in base sixteen. No
 1057  
  *     localization is applied.
 1058  
  *
 1059  
  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 1060  
  *     generated by adding 2<sup>n</sup> to the value where <tt>n</tt> is the
 1061  
  *     number of bits in the type as returned by the static <tt>SIZE</tt> field
 1062  
  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 1063  
  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 1064  
  *     classes as appropriate.
 1065  
  *
 1066  
  *     <p> If the <tt>'#'</tt> flag is given then the output will always begin
 1067  
  *     with the radix indicator <tt>"0x"</tt>.
 1068  
  *
 1069  
  *     <p> If the <tt>'0'</tt> flag is given then the output will be padded to
 1070  
  *     the field width with leading zeros after the radix indicator or sign (if
 1071  
  *     present).
 1072  
  *
 1073  
  *     <p> If <tt>'('</tt>, <tt>'&nbsp;&nbsp;'</tt>, <tt>'+'</tt>, or
 1074  
  *     <tt>','</tt> flags are given then a {@link
 1075  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1076  
  *
 1077  
  * <tr><td valign="top"> <tt>'X'</tt>
 1078  
  *     <td valign="top"> <tt>'&#92;u0058'</tt>
 1079  
  *     <td> The upper-case variant of <tt>'x'</tt>.  The entire string
 1080  
  *     representing the number will be converted to {@linkplain
 1081  
  *     String#toUpperCase upper case} including the <tt>'x'</tt> (if any) and
 1082  
  *     all hexadecimal digits <tt>'a'</tt> - <tt>'f'</tt>
 1083  
  *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
 1084  
  *
 1085  
  * </table>
 1086  
  *
 1087  
  * <p> If the conversion is <tt>'o'</tt>, <tt>'x'</tt>, or <tt>'X'</tt> and
 1088  
  * both the <tt>'#'</tt> and the <tt>'0'</tt> flags are given, then result will
 1089  
  * contain the radix indicator (<tt>'0'</tt> for octal and <tt>"0x"</tt> or
 1090  
  * <tt>"0X"</tt> for hexadecimal), some number of zeros (based on the width),
 1091  
  * and the value.
 1092  
  *
 1093  
  * <p> If the <tt>'-'</tt> flag is not given, then the space padding will occur
 1094  
  * before the sign.
 1095  
  *
 1096  
  * <p> The following <a name="intFlags">flags</a> apply to numeric integral
 1097  
  * conversions:
 1098  
  *
 1099  
  * <table cellpadding=5 summary="intFlags">
 1100  
  *
 1101  
  * <tr><td valign="top"> <tt>'+'</tt>
 1102  
  *     <td valign="top"> <tt>'&#92;u002b'</tt>
 1103  
  *     <td> Requires the output to include a positive sign for all positive
 1104  
  *     numbers.  If this flag is not given then only negative values will
 1105  
  *     include a sign.
 1106  
  *
 1107  
  *     <p> If both the <tt>'+'</tt> and <tt>'&nbsp;&nbsp;'</tt> flags are given
 1108  
  *     then an {@link IllegalFormatFlagsException} will be thrown.
 1109  
  *
 1110  
  * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
 1111  
  *     <td valign="top"> <tt>'&#92;u0020'</tt>
 1112  
  *     <td> Requires the output to include a single extra space
 1113  
  *     (<tt>'&#92;u0020'</tt>) for non-negative values.
 1114  
  *
 1115  
  *     <p> If both the <tt>'+'</tt> and <tt>'&nbsp;&nbsp;'</tt> flags are given
 1116  
  *     then an {@link IllegalFormatFlagsException} will be thrown.
 1117  
  *
 1118  
  * <tr><td valign="top"> <tt>'0'</tt>
 1119  
  *     <td valign="top"> <tt>'&#92;u0030'</tt>
 1120  
  *     <td> Requires the output to be padded with leading {@linkplain
 1121  
  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
 1122  
  *     width following any sign or radix indicator except when converting NaN
 1123  
  *     or infinity.  If the width is not provided, then a {@link
 1124  
  *     MissingFormatWidthException} will be thrown.
 1125  
  *
 1126  
  *     <p> If both the <tt>'-'</tt> and <tt>'0'</tt> flags are given then an
 1127  
  *     {@link IllegalFormatFlagsException} will be thrown.
 1128  
  *
 1129  
  * <tr><td valign="top"> <tt>','</tt>
 1130  
  *     <td valign="top"> <tt>'&#92;u002c'</tt>
 1131  
  *     <td> Requires the output to include the locale-specific {@linkplain
 1132  
  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
 1133  
  *     described in the <a href="#l10n group">"group" section</a> of the
 1134  
  *     localization algorithm.
 1135  
  *
 1136  
  * <tr><td valign="top"> <tt>'('</tt>
 1137  
  *     <td valign="top"> <tt>'&#92;u0028'</tt>
 1138  
  *     <td> Requires the output to prepend a <tt>'('</tt>
 1139  
  *     (<tt>'&#92;u0028'</tt>) and append a <tt>')'</tt>
 1140  
  *     (<tt>'&#92;u0029'</tt>) to negative values.
 1141  
  *
 1142  
  * </table>
 1143  
  *
 1144  
  * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
 1145  
  * as follows:
 1146  
  *
 1147  
  * <ul>
 1148  
  *
 1149  
  * <li> The output is right-justified within the <tt>width</tt>
 1150  
  *
 1151  
  * <li> Negative numbers begin with a <tt>'-'</tt> (<tt>'&#92;u002d'</tt>)
 1152  
  *
 1153  
  * <li> Positive numbers and zero do not include a sign or extra leading
 1154  
  * space
 1155  
  *
 1156  
  * <li> No grouping separators are included
 1157  
  *
 1158  
  * </ul>
 1159  
  *
 1160  
  * <p> The <a name="intWidth">width</a> is the minimum number of characters to
 1161  
  * be written to the output.  This includes any signs, digits, grouping
 1162  
  * separators, radix indicator, and parentheses.  If the length of the
 1163  
  * converted value is less than the width then the output will be padded by
 1164  
  * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
 1165  
  * width.  The padding is on the left by default.  If <tt>'-'</tt> flag is
 1166  
  * given then the padding will be on the right.  If width is not specified then
 1167  
  * there is no minimum.
 1168  
  *
 1169  
  * <p> The precision is not applicable.  If precision is specified then an
 1170  
  * {@link IllegalFormatPrecisionException} will be thrown.
 1171  
  *
 1172  
  * <p><a name="dnbint"><b> BigInteger </b></a>
 1173  
  *
 1174  
  * <p> The following conversions may be applied to {@link
 1175  
  * java.math.BigInteger}.
 1176  
  *
 1177  
  * <table cellpadding=5 summary="BIntConv">
 1178  
  *
 1179  
  * <tr><td valign="top"> <tt>'d'</tt>
 1180  
  *     <td valign="top"> <tt>'&#92;u0054'</tt>
 1181  
  *     <td> Requires the output to be formatted as a decimal integer. The <a
 1182  
  *     href="#l10n algorithm">localization algorithm</a> is applied.
 1183  
  *
 1184  
  *     <p> If the <tt>'#'</tt> flag is given {@link
 1185  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1186  
  *
 1187  
  * <tr><td valign="top"> <tt>'o'</tt>
 1188  
  *     <td valign="top"> <tt>'&#92;u006f'</tt>
 1189  
  *     <td> Requires the output to be formatted as an integer in base eight.
 1190  
  *     No localization is applied.
 1191  
  *
 1192  
  *     <p> If <i>x</i> is negative then the result will be a signed value
 1193  
  *     beginning with <tt>'-'</tt> (<tt>'&#92;u002d'</tt>).  Signed output is
 1194  
  *     allowed for this type because unlike the primitive types it is not
 1195  
  *     possible to create an unsigned equivalent without assuming an explicit
 1196  
  *     data-type size.
 1197  
  *
 1198  
  *     <p> If <i>x</i> is positive or zero and the <tt>'+'</tt> flag is given
 1199  
  *     then the result will begin with <tt>'+'</tt> (<tt>'&#92;u002b'</tt>).
 1200  
  *
 1201  
  *     <p> If the <tt>'#'</tt> flag is given then the output will always begin
 1202  
  *     with <tt>'0'</tt> prefix.
 1203  
  *
 1204  
  *     <p> If the <tt>'0'</tt> flag is given then the output will be padded
 1205  
  *     with leading zeros to the field width following any indication of sign.
 1206  
  *
 1207  
  *     <p> If the <tt>','</tt> flag is given then a {@link
 1208  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1209  
  *
 1210  
  * <tr><td valign="top"> <tt>'x'</tt>
 1211  
  *     <td valign="top"> <tt>'&#92;u0078'</tt>
 1212  
  *     <td> Requires the output to be formatted as an integer in base
 1213  
  *     sixteen.  No localization is applied.
 1214  
  *
 1215  
  *     <p> If <i>x</i> is negative then the result will be a signed value
 1216  
  *     beginning with <tt>'-'</tt> (<tt>'&#92;u002d'</tt>).  Signed output is
 1217  
  *     allowed for this type because unlike the primitive types it is not
 1218  
  *     possible to create an unsigned equivalent without assuming an explicit
 1219  
  *     data-type size.
 1220  
  *
 1221  
  *     <p> If <i>x</i> is positive or zero and the <tt>'+'</tt> flag is given
 1222  
  *     then the result will begin with <tt>'+'</tt> (<tt>'&#92;u002b'</tt>).
 1223  
  *
 1224  
  *     <p> If the <tt>'#'</tt> flag is given then the output will always begin
 1225  
  *     with the radix indicator <tt>"0x"</tt>.
 1226  
  *
 1227  
  *     <p> If the <tt>'0'</tt> flag is given then the output will be padded to
 1228  
  *     the field width with leading zeros after the radix indicator or sign (if
 1229  
  *     present).
 1230  
  *
 1231  
  *     <p> If the <tt>','</tt> flag is given then a {@link
 1232  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1233  
  *
 1234  
  * <tr><td valign="top"> <tt>'X'</tt>
 1235  
  *     <td valign="top"> <tt>'&#92;u0058'</tt>
 1236  
  *     <td> The upper-case variant of <tt>'x'</tt>.  The entire string
 1237  
  *     representing the number will be converted to {@linkplain
 1238  
  *     String#toUpperCase upper case} including the <tt>'x'</tt> (if any) and
 1239  
  *     all hexadecimal digits <tt>'a'</tt> - <tt>'f'</tt>
 1240  
  *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
 1241  
  *
 1242  
  * </table>
 1243  
  *
 1244  
  * <p> If the conversion is <tt>'o'</tt>, <tt>'x'</tt>, or <tt>'X'</tt> and
 1245  
  * both the <tt>'#'</tt> and the <tt>'0'</tt> flags are given, then result will
 1246  
  * contain the base indicator (<tt>'0'</tt> for octal and <tt>"0x"</tt> or
 1247  
  * <tt>"0X"</tt> for hexadecimal), some number of zeros (based on the width),
 1248  
  * and the value.
 1249  
  *
 1250  
  * <p> If the <tt>'0'</tt> flag is given and the value is negative, then the
 1251  
  * zero padding will occur after the sign.
 1252  
  *
 1253  
  * <p> If the <tt>'-'</tt> flag is not given, then the space padding will occur
 1254  
  * before the sign.
 1255  
  *
 1256  
  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
 1257  
  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
 1258  
  * given is the same as for Byte, Short, Integer, and Long.
 1259  
  *
 1260  
  * <p> The specification of <a href="#intWidth">width</a> is the same as
 1261  
  * defined for Byte, Short, Integer, and Long.
 1262  
  *
 1263  
  * <p> The precision is not applicable.  If precision is specified then an
 1264  
  * {@link IllegalFormatPrecisionException} will be thrown.
 1265  
  *
 1266  
  * <p><a name="dndec"><b> Float and Double</b></a>
 1267  
  *
 1268  
  * <p> The following conversions may be applied to <tt>float</tt>, {@link
 1269  
  * Float}, <tt>double</tt> and {@link Double}.
 1270  
  *
 1271  
  * <table cellpadding=5 summary="floatConv">
 1272  
  *
 1273  
  * <tr><td valign="top"> <tt>'e'</tt>
 1274  
  *     <td valign="top"> <tt>'&#92;u0065'</tt>
 1275  
  *     <td> Requires the output to be formatted using <a
 1276  
  *     name="scientific">computerized scientific notation</a>.  The <a
 1277  
  *     href="#l10n algorithm">localization algorithm</a> is applied.
 1278  
  *
 1279  
  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
 1280  
  *
 1281  
  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
 1282  
  *     "Infinity", respectively, will be output.  These values are not
 1283  
  *     localized.
 1284  
  *
 1285  
  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
 1286  
  *     will be <tt>"+00"</tt>.
 1287  
  *
 1288  
  *     <p> Otherwise, the result is a string that represents the sign and
 1289  
  *     magnitude (absolute value) of the argument.  The formatting of the sign
 1290  
  *     is described in the <a href="#l10n algorithm">localization
 1291  
  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
 1292  
  *     value.
 1293  
  *
 1294  
  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
 1295  
  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
 1296  
  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
 1297  
  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
 1298  
  *     integer part of <i>a</i>, as a single decimal digit, followed by the
 1299  
  *     decimal separator followed by decimal digits representing the fractional
 1300  
  *     part of <i>a</i>, followed by the exponent symbol <tt>'e'</tt>
 1301  
  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
 1302  
  *     by a representation of <i>n</i> as a decimal integer, as produced by the
 1303  
  *     method {@link Long#toString(long, int)}, and zero-padded to include at
 1304  
  *     least two digits.
 1305  
  *
 1306  
  *     <p> The number of digits in the result for the fractional part of
 1307  
  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
 1308  
  *     specified then the default value is <tt>6</tt>. If the precision is less
 1309  
  *     than the number of digits which would appear after the decimal point in
 1310  
  *     the string returned by {@link Float#toString(float)} or {@link
 1311  
  *     Double#toString(double)} respectively, then the value will be rounded
 1312  
  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
 1313  
  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
 1314  
  *     For a canonical representation of the value, use {@link
 1315  
  *     Float#toString(float)} or {@link Double#toString(double)} as
 1316  
  *     appropriate.
 1317  
  *
 1318  
  *     <p>If the <tt>','</tt> flag is given, then an {@link
 1319  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1320  
  *
 1321  
  * <tr><td valign="top"> <tt>'E'</tt>
 1322  
  *     <td valign="top"> <tt>'&#92;u0045'</tt>
 1323  
  *     <td> The upper-case variant of <tt>'e'</tt>.  The exponent symbol
 1324  
  *     will be <tt>'E'</tt> (<tt>'&#92;u0045'</tt>).
 1325  
  *
 1326  
  * <tr><td valign="top"> <tt>'g'</tt>
 1327  
  *     <td valign="top"> <tt>'&#92;u0067'</tt>
 1328  
  *     <td> Requires the output to be formatted in general scientific notation
 1329  
  *     as described below. The <a href="#l10n algorithm">localization
 1330  
  *     algorithm</a> is applied.
 1331  
  *
 1332  
  *     <p> After rounding for the precision, the formatting of the resulting
 1333  
  *     magnitude <i>m</i> depends on its value.
 1334  
  *
 1335  
  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
 1336  
  *     than 10<sup>precision</sup> then it is represented in <i><a
 1337  
  *     href="#decimal">decimal format</a></i>.
 1338  
  *
 1339  
  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
 1340  
  *     10<sup>precision</sup>, then it is represented in <i><a
 1341  
  *     href="#scientific">computerized scientific notation</a></i>.
 1342  
  *
 1343  
  *     <p> The total number of significant digits in <i>m</i> is equal to the
 1344  
  *     precision.  If the precision is not specified, then the default value is
 1345  
  *     <tt>6</tt>.  If the precision is <tt>0</tt>, then it is taken to be
 1346  
  *     <tt>1</tt>.
 1347  
  *
 1348  
  *     <p> If the <tt>'#'</tt> flag is given then an {@link
 1349  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1350  
  *
 1351  
  * <tr><td valign="top"> <tt>'G'</tt>
 1352  
  *     <td valign="top"> <tt>'&#92;u0047'</tt>
 1353  
  *     <td> The upper-case variant of <tt>'g'</tt>.
 1354  
  *
 1355  
  * <tr><td valign="top"> <tt>'f'</tt>
 1356  
  *     <td valign="top"> <tt>'&#92;u0066'</tt>
 1357  
  *     <td> Requires the output to be formatted using <a name="decimal">decimal
 1358  
  *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
 1359  
  *     applied.
 1360  
  *
 1361  
  *     <p> The result is a string that represents the sign and magnitude
 1362  
  *     (absolute value) of the argument.  The formatting of the sign is
 1363  
  *     described in the <a href="#l10n algorithm">localization
 1364  
  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
 1365  
  *     value.
 1366  
  *
 1367  
  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
 1368  
  *     "Infinity", respectively, will be output.  These values are not
 1369  
  *     localized.
 1370  
  *
 1371  
  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
 1372  
  *     leading zeroes, followed by the decimal separator followed by one or
 1373  
  *     more decimal digits representing the fractional part of <i>m</i>.
 1374  
  *
 1375  
  *     <p> The number of digits in the result for the fractional part of
 1376  
  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
 1377  
  *     specified then the default value is <tt>6</tt>. If the precision is less
 1378  
  *     than the number of digits which would appear after the decimal point in
 1379  
  *     the string returned by {@link Float#toString(float)} or {@link
 1380  
  *     Double#toString(double)} respectively, then the value will be rounded
 1381  
  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
 1382  
  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
 1383  
  *     For a canonical representation of the value,use {@link
 1384  
  *     Float#toString(float)} or {@link Double#toString(double)} as
 1385  
  *     appropriate.
 1386  
  *
 1387  
  * <tr><td valign="top"> <tt>'a'</tt>
 1388  
  *     <td valign="top"> <tt>'&#92;u0061'</tt>
 1389  
  *     <td> Requires the output to be formatted in hexadecimal exponential
 1390  
  *     form.  No localization is applied.
 1391  
  *
 1392  
  *     <p> The result is a string that represents the sign and magnitude
 1393  
  *     (absolute value) of the argument <i>x</i>.
 1394  
  *
 1395  
  *     <p> If <i>x</i> is negative or a negative-zero value then the result
 1396  
  *     will begin with <tt>'-'</tt> (<tt>'&#92;u002d'</tt>).
 1397  
  *
 1398  
  *     <p> If <i>x</i> is positive or a positive-zero value and the
 1399  
  *     <tt>'+'</tt> flag is given then the result will begin with <tt>'+'</tt>
 1400  
  *     (<tt>'&#92;u002b'</tt>).
 1401  
  *
 1402  
  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
 1403  
  *
 1404  
  *     <ul>
 1405  
  *
 1406  
  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
 1407  
  *     "Infinity", respectively, will be output.
 1408  
  *
 1409  
  *     <li> If <i>m</i> is zero then it is represented by the string
 1410  
  *     <tt>"0x0.0p0"</tt>.
 1411  
  *
 1412  
  *     <li> If <i>m</i> is a <tt>double</tt> value with a normalized
 1413  
  *     representation then substrings are used to represent the significand and
 1414  
  *     exponent fields.  The significand is represented by the characters
 1415  
  *     <tt>"0x1."</tt> followed by the hexadecimal representation of the rest
 1416  
  *     of the significand as a fraction.  The exponent is represented by
 1417  
  *     <tt>'p'</tt> (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
 1418  
  *     unbiased exponent as if produced by invoking {@link
 1419  
  *     Integer#toString(int) Integer.toString} on the exponent value.
 1420  
  *
 1421  
  *     <li> If <i>m</i> is a <tt>double</tt> value with a subnormal
 1422  
  *     representation then the significand is represented by the characters
 1423  
  *     <tt>'0x0.'</tt> followed by the hexadecimal representation of the rest
 1424  
  *     of the significand as a fraction.  The exponent is represented by
 1425  
  *     <tt>'p-1022'</tt>.  Note that there must be at least one nonzero digit
 1426  
  *     in a subnormal significand.
 1427  
  *
 1428  
  *     </ul>
 1429  
  *
 1430  
  *     <p> If the <tt>'('</tt> or <tt>','</tt> flags are given, then a {@link
 1431  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1432  
  *
 1433  
  * <tr><td valign="top"> <tt>'A'</tt>
 1434  
  *     <td valign="top"> <tt>'&#92;u0041'</tt>
 1435  
  *     <td> The upper-case variant of <tt>'a'</tt>.  The entire string
 1436  
  *     representing the number will be converted to upper case including the
 1437  
  *     <tt>'x'</tt> (<tt>'&#92;u0078'</tt>) and <tt>'p'</tt>
 1438  
  *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits <tt>'a'</tt> -
 1439  
  *     <tt>'f'</tt> (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
 1440  
  *
 1441  
  * </table>
 1442  
  *
 1443  
  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
 1444  
  * Long apply.
 1445  
  *
 1446  
  * <p> If the <tt>'#'</tt> flag is given, then the decimal separator will
 1447  
  * always be present.
 1448  
  *
 1449  
  * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
 1450  
  * is as follows:
 1451  
  *
 1452  
  * <ul>
 1453  
  *
 1454  
  * <li> The output is right-justified within the <tt>width</tt>
 1455  
  *
 1456  
  * <li> Negative numbers begin with a <tt>'-'</tt>
 1457  
  *
 1458  
  * <li> Positive numbers and positive zero do not include a sign or extra
 1459  
  * leading space
 1460  
  *
 1461  
  * <li> No grouping separators are included
 1462  
  *
 1463  
  * <li> The decimal separator will only appear if a digit follows it
 1464  
  *
 1465  
  * </ul>
 1466  
  *
 1467  
  * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
 1468  
  * to be written to the output.  This includes any signs, digits, grouping
 1469  
  * separators, decimal separators, exponential symbol, radix indicator,
 1470  
  * parentheses, and strings representing infinity and NaN as applicable.  If
 1471  
  * the length of the converted value is less than the width then the output
 1472  
  * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
 1473  
  * characters equals width.  The padding is on the left by default.  If the
 1474  
  * <tt>'-'</tt> flag is given then the padding will be on the right.  If width
 1475  
  * is not specified then there is no minimum.
 1476  
  *
 1477  
  * <p> If the <a name="floatDPrec">conversion</a> is <tt>'e'</tt>,
 1478  
  * <tt>'E'</tt> or <tt>'f'</tt>, then the precision is the number of digits
 1479  
  * after the decimal separator.  If the precision is not specified, then it is
 1480  
  * assumed to be <tt>6</tt>.
 1481  
  *
 1482  
  * <p> If the conversion is <tt>'g'</tt> or <tt>'G'</tt>, then the precision is
 1483  
  * the total number of significant digits in the resulting magnitude after
 1484  
  * rounding.  If the precision is not specified, then the default value is
 1485  
  * <tt>6</tt>.  If the precision is <tt>0</tt>, then it is taken to be
 1486  
  * <tt>1</tt>.
 1487  
  *
 1488  
  * <p> If the conversion is <tt>'a'</tt> or <tt>'A'</tt>, then the precision
 1489  
  * is the number of hexadecimal digits after the decimal separator.  If the
 1490  
  * precision is not provided, then all of the digits as returned by {@link
 1491  
  * Double#toHexString(double)} will be output.
 1492  
  *
 1493  
  * <p><a name="dndec"><b> BigDecimal </b></a>
 1494  
  *
 1495  
  * <p> The following conversions may be applied {@link java.math.BigDecimal
 1496  
  * BigDecimal}.
 1497  
  *
 1498  
  * <table cellpadding=5 summary="floatConv">
 1499  
  *
 1500  
  * <tr><td valign="top"> <tt>'e'</tt>
 1501  
  *     <td valign="top"> <tt>'&#92;u0065'</tt>
 1502  
  *     <td> Requires the output to be formatted using <a
 1503  
  *     name="scientific">computerized scientific notation</a>.  The <a
 1504  
  *     href="#l10n algorithm">localization algorithm</a> is applied.
 1505  
  *
 1506  
  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
 1507  
  *
 1508  
  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
 1509  
  *     will be <tt>"+00"</tt>.
 1510  
  *
 1511  
  *     <p> Otherwise, the result is a string that represents the sign and
 1512  
  *     magnitude (absolute value) of the argument.  The formatting of the sign
 1513  
  *     is described in the <a href="#l10n algorithm">localization
 1514  
  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
 1515  
  *     value.
 1516  
  *
 1517  
  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
 1518  
  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
 1519  
  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
 1520  
  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
 1521  
  *     integer part of <i>a</i>, as a single decimal digit, followed by the
 1522  
  *     decimal separator followed by decimal digits representing the fractional
 1523  
  *     part of <i>a</i>, followed by the exponent symbol <tt>'e'</tt>
 1524  
  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
 1525  
  *     by a representation of <i>n</i> as a decimal integer, as produced by the
 1526  
  *     method {@link Long#toString(long, int)}, and zero-padded to include at
 1527  
  *     least two digits.
 1528  
  *
 1529  
  *     <p> The number of digits in the result for the fractional part of
 1530  
  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
 1531  
  *     specified then the default value is <tt>6</tt>.  If the precision is
 1532  
  *     less than the number of digits which would appear after the decimal
 1533  
  *     point in the string returned by {@link Float#toString(float)} or {@link
 1534  
  *     Double#toString(double)} respectively, then the value will be rounded
 1535  
  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
 1536  
  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
 1537  
  *     For a canonical representation of the value, use {@link
 1538  
  *     BigDecimal#toString()}.
 1539  
  *
 1540  
  *     <p> If the <tt>','</tt> flag is given, then an {@link
 1541  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1542  
  *
 1543  
  * <tr><td valign="top"> <tt>'E'</tt>
 1544  
  *     <td valign="top"> <tt>'&#92;u0045'</tt>
 1545  
  *     <td> The upper-case variant of <tt>'e'</tt>.  The exponent symbol
 1546  
  *     will be <tt>'E'</tt> (<tt>'&#92;u0045'</tt>).
 1547  
  *
 1548  
  * <tr><td valign="top"> <tt>'g'</tt>
 1549  
  *     <td valign="top"> <tt>'&#92;u0067'</tt>
 1550  
  *     <td> Requires the output to be formatted in general scientific notation
 1551  
  *     as described below. The <a href="#l10n algorithm">localization
 1552  
  *     algorithm</a> is applied.
 1553  
  *
 1554  
  *     <p> After rounding for the precision, the formatting of the resulting
 1555  
  *     magnitude <i>m</i> depends on its value.
 1556  
  *
 1557  
  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
 1558  
  *     than 10<sup>precision</sup> then it is represented in <i><a
 1559  
  *     href="#decimal">decimal format</a></i>.
 1560  
  *
 1561  
  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
 1562  
  *     10<sup>precision</sup>, then it is represented in <i><a
 1563  
  *     href="#scientific">computerized scientific notation</a></i>.
 1564  
  *
 1565  
  *     <p> The total number of significant digits in <i>m</i> is equal to the
 1566  
  *     precision.  If the precision is not specified, then the default value is
 1567  
  *     <tt>6</tt>.  If the precision is <tt>0</tt>, then it is taken to be
 1568  
  *     <tt>1</tt>.
 1569  
  *
 1570  
  *     <p> If the <tt>'#'</tt> flag is given then an {@link
 1571  
  *     FormatFlagsConversionMismatchException} will be thrown.
 1572  
  *
 1573  
  * <tr><td valign="top"> <tt>'G'</tt>
 1574  
  *     <td valign="top"> <tt>'&#92;u0047'</tt>
 1575  
  *     <td> The upper-case variant of <tt>'g'</tt>.
 1576  
  *
 1577  
  * <tr><td valign="top"> <tt>'f'</tt>
 1578  
  *     <td valign="top"> <tt>'&#92;u0066'</tt>
 1579  
  *     <td> Requires the output to be formatted using <a name="decimal">decimal
 1580  
  *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
 1581  
  *     applied.
 1582  
  *
 1583  
  *     <p> The result is a string that represents the sign and magnitude
 1584  
  *     (absolute value) of the argument.  The formatting of the sign is
 1585  
  *     described in the <a href="#l10n algorithm">localization
 1586  
  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
 1587  
  *     value.
 1588  
  *
 1589  
  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
 1590  
  *     leading zeroes, followed by the decimal separator followed by one or
 1591  
  *     more decimal digits representing the fractional part of <i>m</i>.
 1592  
  *
 1593  
  *     <p> The number of digits in the result for the fractional part of
 1594  
  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
 1595  
  *     specified then the default value is <tt>6</tt>.  If the precision is
 1596  
  *     less than the number of digits which would appear after the decimal
 1597  
  *     point in the string returned by {@link Float#toString(float)} or {@link
 1598  
  *     Double#toString(double)} respectively, then the value will be rounded
 1599  
  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
 1600  
  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
 1601  
  *     For a canonical representation of the value, use {@link
 1602  
  *     BigDecimal#toString()}.
 1603  
  *
 1604  
  * </table>
 1605  
  *
 1606  
  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
 1607  
  * Long apply.
 1608  
  *
 1609  
  * <p> If the <tt>'#'</tt> flag is given, then the decimal separator will
 1610  
  * always be present.
 1611  
  *
 1612  
  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
 1613  
  * given is the same as for Float and Double.
 1614  
  *
 1615  
  * <p> The specification of <a href="#floatDWidth">width</a> and <a
 1616  
  * href="#floatDPrec">precision</a> is the same as defined for Float and
 1617  
  * Double.
 1618  
  *
 1619  
  * <h4><a name="ddt">Date/Time</a></h4>
 1620  
  *
 1621  
  * <p> This conversion may be applied to <tt>long</tt>, {@link Long}, {@link
 1622  
  * Calendar}, and {@link Date}.
 1623  
  *
 1624  
  * <table cellpadding=5 summary="DTConv">
 1625  
  *
 1626  
  * <tr><td valign="top"> <tt>'t'</tt>
 1627  
  *     <td valign="top"> <tt>'&#92;u0074'</tt>
 1628  
  *     <td> Prefix for date and time conversion characters.
 1629  
  * <tr><td valign="top"> <tt>'T'</tt>
 1630  
  *     <td valign="top"> <tt>'&#92;u0054'</tt>
 1631  
  *     <td> The upper-case variant of <tt>'t'</tt>.
 1632  
  *
 1633  
  * </table>
 1634  
  *
 1635  
  * <p> The following date and time conversion character suffixes are defined
 1636  
  * for the <tt>'t'</tt> and <tt>'T'</tt> conversions.  The types are similar to
 1637  
  * but not completely identical to those defined by GNU <tt>date</tt> and
 1638  
  * POSIX <tt>strftime(3c)</tt>.  Additional conversion types are provided to
 1639  
  * access Java-specific functionality (e.g. <tt>'L'</tt> for milliseconds
 1640  
  * within the second).
 1641  
  *
 1642  
  * <p> The following conversion characters are used for formatting times:
 1643  
  *
 1644  
  * <table cellpadding=5 summary="time">
 1645  
  *
 1646  
  * <tr><td valign="top"> <tt>'H'</tt>
 1647  
  *     <td valign="top"> <tt>'&#92;u0048'</tt>
 1648  
  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 1649  
  *     a leading zero as necessary i.e. <tt>00 - 23</tt>. <tt>00</tt>
 1650  
  *     corresponds to midnight.
 1651  
  *
 1652  
  * <tr><td valign="top"><tt>'I'</tt>
 1653  
  *     <td valign="top"> <tt>'&#92;u0049'</tt>
 1654  
  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 1655  
  *     zero as necessary, i.e.  <tt>01 - 12</tt>.  <tt>01</tt> corresponds to
 1656  
  *     one o'clock (either morning or afternoon).
 1657  
  *
 1658  
  * <tr><td valign="top"><tt>'k'</tt>
 1659  
  *     <td valign="top"> <tt>'&#92;u006b'</tt>
 1660  
  *     <td> Hour of the day for the 24-hour clock, i.e. <tt>0 - 23</tt>.
 1661  
  *     <tt>0</tt> corresponds to midnight.
 1662  
  *
 1663  
  * <tr><td valign="top"><tt>'l'</tt>
 1664  
  *     <td valign="top"> <tt>'&#92;u006c'</tt>
 1665  
  *     <td> Hour for the 12-hour clock, i.e. <tt>1 - 12</tt>.  <tt>1</tt>
 1666  
  *     corresponds to one o'clock (either morning or afternoon).
 1667  
  *
 1668  
  * <tr><td valign="top"><tt>'M'</tt>
 1669  
  *     <td valign="top"> <tt>'&#92;u004d'</tt>
 1670  
  *     <td> Minute within the hour formatted as two digits with a leading zero
 1671  
  *     as necessary, i.e.  <tt>00 - 59</tt>.
 1672  
  *
 1673  
  * <tr><td valign="top"><tt>'S'</tt>
 1674  
  *     <td valign="top"> <tt>'&#92;u0053'</tt>
 1675  
  *     <td> Seconds within the minute, formatted as two digits with a leading
 1676  
  *     zero as necessary, i.e. <tt>00 - 60</tt> ("<tt>60</tt>" is a special
 1677  
  *     value required to support leap seconds).
 1678  
  *
 1679  
  * <tr><td valign="top"><tt>'L'</tt>
 1680  
  *     <td valign="top"> <tt>'&#92;u004c'</tt>
 1681  
  *     <td> Millisecond within the second formatted as three digits with
 1682  
  *     leading zeros as necessary, i.e. <tt>000 - 999</tt>.
 1683  
  *
 1684  
  * <tr><td valign="top"><tt>'N'</tt>
 1685  
  *     <td valign="top"> <tt>'&#92;u004e'</tt>
 1686  
  *     <td> Nanosecond within the second, formatted as nine digits with leading
 1687  
  *     zeros as necessary, i.e. <tt>000000000 - 999999999</tt>.  The precision
 1688  
  *     of this value is limited by the resolution of the underlying operating
 1689  
  *     system or hardware.
 1690  
  *
 1691  
  * <tr><td valign="top"><tt>'p'</tt>
 1692  
  *     <td valign="top"> <tt>'&#92;u0070'</tt>
 1693  
  *     <td> Locale-specific {@linkplain
 1694  
  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 1695  
  *     in lower case, e.g."<tt>am</tt>" or "<tt>pm</tt>".  Use of the
 1696  
  *     conversion prefix <tt>'T'</tt> forces this output to upper case.  (Note
 1697  
  *     that <tt>'p'</tt> produces lower-case output.  This is different from
 1698  
  *     GNU <tt>date</tt> and POSIX <tt>strftime(3c)</tt> which produce
 1699  
  *     upper-case output.)
 1700  
  *
 1701  
  * <tr><td valign="top"><tt>'z'</tt>
 1702  
  *     <td valign="top"> <tt>'&#92;u007a'</tt>
 1703  
  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 1704  
  *     style numeric time zone offset from GMT, e.g. <tt>-0800</tt>.  This
 1705  
  *     value will be adjusted as necessary for Daylight Saving Time.  For
 1706  
  *     <tt>long</tt>, {@link Long}, and {@link Date} the time zone used is
 1707  
  *     the {@plainlink TimeZone#getDefault() default time zone} for this
 1708  
  *     instance of the Java virtual machine.
 1709  
  *
 1710  
  * <tr><td valign="top"><tt>'Z'</tt>
 1711  
  *     <td> A string representing the abbreviation for the time zone.  This
 1712  
  *     value will be adjusted as necessary for Daylight Saving Time.  For
 1713  
  *     <tt>long</tt>, {@link Long}, and {@link Date} the time zone used is
 1714  
  *     the {@plainlink TimeZone#getDefault() default time zone} for this
 1715  
  *     instance of the Java virtual machine.  The FXFormatter's locale will
 1716  
  *     supersede the locale of the argument (if any).
 1717  
  *
 1718  
  * <tr><td valign="top"><tt>'s'</tt>
 1719  
  *     <td valign="top"> <tt>'&#92;u0073'</tt>
 1720  
  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 1721  
  *     <tt>00:00:00</tt> UTC, i.e. <tt>Long.MIN_VALUE/1000</tt> to
 1722  
  *     <tt>Long.MAX_VALUE/1000</tt>.
 1723  
  *
 1724  
  * <tr><td valign="top"><tt>'Q'</tt>
 1725  
  *     <td valign="top"> <tt>'&#92;u004f'</tt>
 1726  
  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 1727  
  *     1970 <tt>00:00:00</tt> UTC, i.e. <tt>Long.MIN_VALUE</tt> to
 1728  
  *     <tt>Long.MAX_VALUE</tt>. The precision of this value is limited by
 1729  
  *     the resolution of the underlying operating system or hardware.
 1730  
  *
 1731  
  * </table>
 1732  
  *
 1733  
  * <p> The following conversion characters are used for formatting dates:
 1734  
  *
 1735  
  * <table cellpadding=5 summary="date">
 1736  
  *
 1737  
  * <tr><td valign="top"><tt>'B'</tt>
 1738  
  *     <td valign="top"> <tt>'&#92;u0042'</tt>
 1739  
  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 1740  
  *     full month name}, e.g. <tt>"January"</tt>, <tt>"February"</tt>.
 1741  
  *
 1742  
  * <tr><td valign="top"><tt>'b'</tt>
 1743  
  *     <td valign="top"> <tt>'&#92;u0062'</tt>
 1744  
  *     <td> Locale-specific {@linkplain
 1745  
  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 1746  
  *     e.g. <tt>"Jan"</tt>, <tt>"Feb"</tt>.
 1747  
  *
 1748  
  * <tr><td valign="top"><tt>'h'</tt>
 1749  
  *     <td valign="top"> <tt>'&#92;u0068'</tt>
 1750  
  *     <td> Same as <tt>'b'</tt>.
 1751  
  *
 1752  
  * <tr><td valign="top"><tt>'A'</tt>
 1753  
  *     <td valign="top"> <tt>'&#92;u0041'</tt>
 1754  
  *     <td> Locale-specific full name of the {@linkplain
 1755  
  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 1756  
  *     e.g. <tt>"Sunday"</tt>, <tt>"Monday"</tt>
 1757  
  *
 1758  
  * <tr><td valign="top"><tt>'a'</tt>
 1759  
  *     <td valign="top"> <tt>'&#92;u0061'</tt>
 1760  
  *     <td> Locale-specific short name of the {@linkplain
 1761  
  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 1762  
  *     e.g. <tt>"Sun"</tt>, <tt>"Mon"</tt>
 1763  
  *
 1764  
  * <tr><td valign="top"><tt>'C'</tt>
 1765  
  *     <td valign="top"> <tt>'&#92;u0043'</tt>
 1766  
  *     <td> Four-digit year divided by <tt>100</tt>, formatted as two digits
 1767  
  *     with leading zero as necessary, i.e. <tt>00 - 99</tt>
 1768  
  *
 1769  
  * <tr><td valign="top"><tt>'Y'</tt>
 1770  
  *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
 1771  
  *     four digits with leading zeros as necessary, e.g. <tt>0092</tt> equals
 1772  
  *     <tt>92</tt> CE for the Gregorian calendar.
 1773  
  *
 1774  
  * <tr><td valign="top"><tt>'y'</tt>
 1775  
  *     <td valign="top"> <tt>'&#92;u0079'</tt>
 1776  
  *     <td> Last two digits of the year, formatted with leading zeros as
 1777  
  *     necessary, i.e. <tt>00 - 99</tt>.
 1778  
  *
 1779  
  * <tr><td valign="top"><tt>'j'</tt>
 1780  
  *     <td valign="top"> <tt>'&#92;u006a'</tt>
 1781  
  *     <td> Day of year, formatted as three digits with leading zeros as
 1782  
  *     necessary, e.g. <tt>001 - 366</tt> for the Gregorian calendar.
 1783  
  *     <tt>001</tt> corresponds to the first day of the year.
 1784  
  *
 1785  
  * <tr><td valign="top"><tt>'m'</tt>
 1786  
  *     <td valign="top"> <tt>'&#92;u006d'</tt>
 1787  
  *     <td> Month, formatted as two digits with leading zeros as necessary,
 1788  
  *     i.e. <tt>01 - 13</tt>, where "<tt>01</tt>" is the first month of the
 1789  
  *     year and ("<tt>13</tt>" is a special value required to support lunar
 1790  
  *     calendars).
 1791  
  *
 1792  
  * <tr><td valign="top"><tt>'d'</tt>
 1793  
  *     <td valign="top"> <tt>'&#92;u0064'</tt>
 1794  
  *     <td> Day of month, formatted as two digits with leading zeros as
 1795  
  *     necessary, i.e. <tt>01 - 31</tt>, where "<tt>01</tt>" is the first day
 1796  
  *     of the month.
 1797  
  *
 1798  
  * <tr><td valign="top"><tt>'e'</tt>
 1799  
  *     <td valign="top"> <tt>'&#92;u0065'</tt>
 1800  
  *     <td> Day of month, formatted as two digits, i.e. <tt>1 - 31</tt> where
 1801  
  *     "<tt>1</tt>" is the first day of the month.
 1802  
  *
 1803  
  * </table>
 1804  
  *
 1805  
  * <p> The following conversion characters are used for formatting common
 1806  
  * date/time compositions.
 1807  
  *
 1808  
  * <table cellpadding=5 summary="composites">
 1809  
  *
 1810  
  * <tr><td valign="top"><tt>'R'</tt>
 1811  
  *     <td valign="top"> <tt>'&#92;u0052'</tt>
 1812  
  *     <td> Time formatted for the 24-hour clock as <tt>"%tH:%tM"</tt>
 1813  
  *
 1814  
  * <tr><td valign="top"><tt>'T'</tt>
 1815  
  *     <td valign="top"> <tt>'&#92;u0054'</tt>
 1816  
  *     <td> Time formatted for the 24-hour clock as <tt>"%tH:%tM:%tS"</tt>.
 1817  
  *
 1818  
  * <tr><td valign="top"><tt>'r'</tt>
 1819  
  *     <td valign="top"> <tt>'&#92;u0072'</tt>
 1820  
  *     <td> Time formatted for the 12-hour clock as <tt>"%tI:%tM:%tS
 1821  
  *     %Tp"</tt>.  The location of the morning or afternoon marker
 1822  
  *     (<tt>'%Tp'</tt>) may be locale-dependent.
 1823  
  *
 1824  
  * <tr><td valign="top"><tt>'D'</tt>
 1825  
  *     <td valign="top"> <tt>'&#92;u0044'</tt>
 1826  
  *     <td> Date formatted as <tt>"%tm/%td/%ty"</tt>.
 1827  
  *
 1828  
  * <tr><td valign="top"><tt>'F'</tt>
 1829  
  *     <td valign="top"> <tt>'&#92;u0046'</tt>
 1830  
  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 1831  
  *     complete date formatted as <tt>"%tY-%tm-%td"</tt>.
 1832  
  *
 1833  
  * <tr><td valign="top"><tt>'c'</tt>
 1834  
  *     <td valign="top"> <tt>'&#92;u0063'</tt>
 1835  
  *     <td> Date and time formatted as <tt>"%ta %tb %td %tT %tZ %tY"</tt>,
 1836  
  *     e.g. <tt>"Sun Jul 20 16:17:00 EDT 1969"</tt>.
 1837  
  *
 1838  
  * </table>
 1839  
  *
 1840  
  * <p> The <tt>'-'</tt> flag defined for <a href="#dFlags">General
 1841  
  * conversions</a> applies.  If the <tt>'#'</tt> flag is given, then a {@link
 1842  
  * FormatFlagsConversionMismatchException} will be thrown.
 1843  
  *
 1844  
  * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
 1845  
  * be written to the output.  If the length of the converted value is less than
 1846  
  * the <tt>width</tt> then the output will be padded by spaces
 1847  
  * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
 1848  
  * The padding is on the left by default.  If the <tt>'-'</tt> flag is given
 1849  
  * then the padding will be on the right.  If width is not specified then there
 1850  
  * is no minimum.
 1851  
  *
 1852  
  * <p> The precision is not applicable.  If the precision is specified then an
 1853  
  * {@link IllegalFormatPrecisionException} will be thrown.
 1854  
  *
 1855  
  * <h4><a name="dper">Percent</a></h4>
 1856  
  *
 1857  
  * <p> The conversion does not correspond to any argument.
 1858  
  *
 1859  
  * <table cellpadding=5 summary="DTConv">
 1860  
  *
 1861  
  * <tr><td valign="top"><tt>'%'</tt>
 1862  
  *     <td> The result is a literal <tt>'%'</tt> (<tt>'&#92;u0025'</tt>)
 1863  
  *
 1864  
  * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
 1865  
  * be written to the output including the <tt>'%'</tt>.  If the length of the
 1866  
  * converted value is less than the <tt>width</tt> then the output will be
 1867  
  * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
 1868  
  * characters equals width.  The padding is on the left.  If width is not
 1869  
  * specified then just the <tt>'%'</tt> is output.
 1870  
  *
 1871  
  * <p> The <tt>'-'</tt> flag defined for <a href="#dFlags">General
 1872  
  * conversions</a> applies.  If any other flags are provided, then a
 1873  
  * {@link FormatFlagsConversionMismatchException} will be thrown.
 1874  
  *
 1875  
  * <p> The precision is not applicable.  If the precision is specified an
 1876  
  * {@link IllegalFormatPrecisionException} will be thrown.
 1877  
  *
 1878  
  * </table>
 1879  
  *
 1880  
  * <h4><a name="dls">Line Separator</a></h4>
 1881  
  *
 1882  
  * <p> The conversion does not correspond to any argument.
 1883  
  *
 1884  
  * <table cellpadding=5 summary="DTConv">
 1885  
  *
 1886  
  * <tr><td valign="top"><tt>'n'</tt>
 1887  
  *     <td> the platform-specific line separator as returned by {@link
 1888  
  *     System#getProperty System.getProperty("line.separator")}.
 1889  
  *
 1890  
  * </table>
 1891  
  *
 1892  
  * <p> Flags, width, and precision are not applicable.  If any are provided an
 1893  
  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
 1894  
  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
 1895  
  *
 1896  
  * <h4><a name="dpos">Argument Index</a></h4>
 1897  
  *
 1898  
  * <p> Format specifiers can reference arguments in three ways:
 1899  
  *
 1900  
  * <ul>
 1901  
  *
 1902  
  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
 1903  
  * argument index.  The argument index is a decimal integer indicating the
 1904  
  * position of the argument in the argument list.  The first argument is
 1905  
  * referenced by "<tt>1$</tt>", the second by "<tt>2$</tt>", etc.  An argument
 1906  
  * may be referenced more than once.
 1907  
  *
 1908  
  * <p> For example:
 1909  
  *
 1910  
  * <blockquote><pre>
 1911  
  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
 1912  
  *                    "a", "b", "c", "d")
 1913  
  *   // -&gt; "d c b a d c b a"
 1914  
  * </pre></blockquote>
 1915  
  *
 1916  
  * <li> <i>Relative indexing</i> is used when the format specifier contains a
 1917  
  * <tt>'&lt;'</tt> (<tt>'&#92;u003c'</tt>) flag which causes the argument for
 1918  
  * the previous format specifier to be re-used.  If there is no previous
 1919  
  * argument, then a {@link MissingFormatArgumentException} is thrown.
 1920  
  *
 1921  
  * <blockquote><pre>
 1922  
  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
 1923  
  *    // -&gt; "a b b b"
 1924  
  *    // "c" and "d" are ignored because they are not referenced
 1925  
  * </pre></blockquote>
 1926  
  *
 1927  
  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
 1928  
  * neither an argument index nor a <tt>'&lt;'</tt> flag.  Each format specifier
 1929  
  * which uses ordinary indexing is assigned a sequential implicit index into
 1930  
  * argument list which is independent of the indices used by explicit or
 1931  
  * relative indexing.
 1932  
  *
 1933  
  * <blockquote><pre>
 1934  
  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
 1935  
  *   // -&gt; "a b c d"
 1936  
  * </pre></blockquote>
 1937  
  *
 1938  
  * </ul>
 1939  
  *
 1940  
  * <p> It is possible to have a format string which uses all forms of indexing,
 1941  
  * for example:
 1942  
  *
 1943  
  * <blockquote><pre>
 1944  
  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
 1945  
  *   // -&gt; "b a a b"
 1946  
  *   // "c" and "d" are ignored because they are not referenced
 1947  
  * </pre></blockquote>
 1948  
  *
 1949  
  * <p> The maximum number of arguments is limited by the maximum dimension of a
 1950  
  * Java array as defined by the <a
 1951  
  * href="http://java.sun.com/docs/books/vmspec/">Java Virtual Machine
 1952  
  * Specification</a>.  If the argument index is does not correspond to an
 1953  
  * available argument, then a {@link MissingFormatArgumentException} is thrown.
 1954  
  *
 1955  
  * <p> If there are more arguments than format specifiers, the extra arguments
 1956  
  * are ignored.
 1957  
  *
 1958  
  * <p> Unless otherwise specified, passing a <tt>null</tt> argument to any
 1959  
  * method or constructor in this class will cause a {@link
 1960  
  * NullPointerException} to be thrown.
 1961  
  *
 1962  
  * @author  Iris Clark
 1963  
  */
 1964  57
 public final class FXFormatter implements Closeable, Flushable {
 1965  
     private Appendable a;
 1966  
     private Locale l;
 1967  
 
 1968  
     private IOException lastException;
 1969  
 
 1970  11
     private char zero = '0';
 1971  
     private static double scaleUp;
 1972  
 
 1973  
     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
 1974  
     // + 3 (max # exp digits) + 4 (error) = 30
 1975  
     private static final int MAX_FD_CHARS = 30;
 1976  
 
 1977  
     // Initialize internal data.
 1978  
     private void init(Appendable a, Locale l) {
 1979  11
         this.a = a;
 1980  11
         this.l = l;
 1981  11
         setZero();
 1982  11
     }
 1983  
 
 1984  
     /**
 1985  
      * Constructs a new formatter.
 1986  
      *
 1987  
      * <p> The destination of the formatted output is a {@link StringBuilder}
 1988  
      * which may be retrieved by invoking {@link #out out()} and whose
 1989  
      * current content may be converted into a string by invoking {@link
 1990  
      * #toString toString()}.  The locale used is the {@linkplain
 1991  
      * Locale#getDefault() default locale} for this instance of the Java
 1992  
      * virtual machine.
 1993  
      */
 1994  11
     public FXFormatter() {
 1995  11
         init(new StringBuilder(), Locale.getDefault());
 1996  11
     }
 1997  
 
 1998  
     /**
 1999  
      * Constructs a new formatter with the specified destination.
 2000  
      *
 2001  
      * <p> The locale used is the {@linkplain Locale#getDefault() default
 2002  
      * locale} for this instance of the Java virtual machine.
 2003  
      *
 2004  
      * @param  a
 2005  
      *         Destination for the formatted output.  If <tt>a</tt> is
 2006  
      *         <tt>null</tt> then a {@link StringBuilder} will be created.
 2007  
      */
 2008  0
     public FXFormatter(Appendable a) {
 2009  0
         if (a == null)
 2010  0
             a = new StringBuilder();
 2011  0
         init(a, Locale.getDefault());
 2012  0
     }
 2013  
 
 2014  
     /**
 2015  
      * Constructs a new formatter with the specified locale.
 2016  
      *
 2017  
      * <p> The destination of the formatted output is a {@link StringBuilder}
 2018  
      * which may be retrieved by invoking {@link #out out()} and whose current
 2019  
      * content may be converted into a string by invoking {@link #toString
 2020  
      * toString()}.
 2021  
      *
 2022  
      * @param  l
 2023  
      *         The {@linkplain java.util.Locale locale} to apply during
 2024  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2025  
      *         is applied.
 2026  
      */
 2027  0
     public FXFormatter(Locale l) {
 2028  0
         init(new StringBuilder(), l);
 2029  0
     }
 2030  
 
 2031  
     /**
 2032  
      * Constructs a new formatter with the specified destination and locale.
 2033  
      *
 2034  
      * @param  a
 2035  
      *         Destination for the formatted output.  If <tt>a</tt> is
 2036  
      *         <tt>null</tt> then a {@link StringBuilder} will be created.
 2037  
      *
 2038  
      * @param  l
 2039  
      *         The {@linkplain java.util.Locale locale} to apply during
 2040  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2041  
      *         is applied.
 2042  
      */
 2043  0
     public FXFormatter(Appendable a, Locale l) {
 2044  0
         if (a == null)
 2045  0
             a = new StringBuilder();
 2046  0
         init(a, l);
 2047  0
     }
 2048  
 
 2049  
     /**
 2050  
      * Constructs a new formatter with the specified file name.
 2051  
      *
 2052  
      * <p> The charset used is the {@linkplain
 2053  
      * java.nio.charset.Charset#defaultCharset() default charset} for this
 2054  
      * instance of the Java virtual machine.
 2055  
      *
 2056  
      * <p> The locale used is the {@linkplain Locale#getDefault() default
 2057  
      * locale} for this instance of the Java virtual machine.
 2058  
      *
 2059  
      * @param  fileName
 2060  
      *         The name of the file to use as the destination of this
 2061  
      *         formatter.  If the file exists then it will be truncated to
 2062  
      *         zero size; otherwise, a new file will be created.  The output
 2063  
      *         will be written to the file and is buffered.
 2064  
      *
 2065  
      * @throws  SecurityException
 2066  
      *          If a security manager is present and {@link
 2067  
      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
 2068  
      *          access to the file
 2069  
      *
 2070  
      * @throws  FileNotFoundException
 2071  
      *          If the given file name does not denote an existing, writable
 2072  
      *          regular file and a new regular file of that name cannot be
 2073  
      *          created, or if some other error occurs while opening or
 2074  
      *          creating the file
 2075  
      */
 2076  0
     public FXFormatter(String fileName) throws FileNotFoundException {
 2077  0
         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))),
 2078  
              Locale.getDefault());
 2079  0
     }
 2080  
 
 2081  
     /**
 2082  
      * Constructs a new formatter with the specified file name and charset.
 2083  
      *
 2084  
      * <p> The locale used is the {@linkplain Locale#getDefault default
 2085  
      * locale} for this instance of the Java virtual machine.
 2086  
      *
 2087  
      * @param  fileName
 2088  
      *         The name of the file to use as the destination of this
 2089  
      *         formatter.  If the file exists then it will be truncated to
 2090  
      *         zero size; otherwise, a new file will be created.  The output
 2091  
      *         will be written to the file and is buffered.
 2092  
      *
 2093  
      * @param  csn
 2094  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2095  
      *         charset}
 2096  
      *
 2097  
      * @throws  FileNotFoundException
 2098  
      *          If the given file name does not denote an existing, writable
 2099  
      *          regular file and a new regular file of that name cannot be
 2100  
      *          created, or if some other error occurs while opening or
 2101  
      *          creating the file
 2102  
      *
 2103  
      * @throws  SecurityException
 2104  
      *          If a security manager is present and {@link
 2105  
      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
 2106  
      *          access to the file
 2107  
      *
 2108  
      * @throws  UnsupportedEncodingException
 2109  
      *          If the named charset is not supported
 2110  
      */
 2111  
     public FXFormatter(String fileName, String csn)
 2112  
         throws FileNotFoundException, UnsupportedEncodingException
 2113  
     {
 2114  0
         this(fileName, csn, Locale.getDefault());
 2115  0
     }
 2116  
 
 2117  
     /**
 2118  
      * Constructs a new formatter with the specified file name, charset, and
 2119  
      * locale.
 2120  
      *
 2121  
      * @param  fileName
 2122  
      *         The name of the file to use as the destination of this
 2123  
      *         formatter.  If the file exists then it will be truncated to
 2124  
      *         zero size; otherwise, a new file will be created.  The output
 2125  
      *         will be written to the file and is buffered.
 2126  
      *
 2127  
      * @param  csn
 2128  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2129  
      *         charset}
 2130  
      *
 2131  
      * @param  l
 2132  
      *         The {@linkplain java.util.Locale locale} to apply during
 2133  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2134  
      *         is applied.
 2135  
      *
 2136  
      * @throws  FileNotFoundException
 2137  
      *          If the given file name does not denote an existing, writable
 2138  
      *          regular file and a new regular file of that name cannot be
 2139  
      *          created, or if some other error occurs while opening or
 2140  
      *          creating the file
 2141  
      *
 2142  
      * @throws  SecurityException
 2143  
      *          If a security manager is present and {@link
 2144  
      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
 2145  
      *          access to the file
 2146  
      *
 2147  
      * @throws  UnsupportedEncodingException
 2148  
      *          If the named charset is not supported
 2149  
      */
 2150  
     public FXFormatter(String fileName, String csn, Locale l)
 2151  
         throws FileNotFoundException, UnsupportedEncodingException
 2152  0
     {
 2153  0
         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName), csn)),
 2154  
              l);
 2155  0
     }
 2156  
 
 2157  
     /**
 2158  
      * Constructs a new formatter with the specified file.
 2159  
      *
 2160  
      * <p> The charset used is the {@linkplain
 2161  
      * java.nio.charset.Charset#defaultCharset() default charset} for this
 2162  
      * instance of the Java virtual machine.
 2163  
      *
 2164  
      * <p> The locale used is the {@linkplain Locale#getDefault() default
 2165  
      * locale} for this instance of the Java virtual machine.
 2166  
      *
 2167  
      * @param  file
 2168  
      *         The file to use as the destination of this formatter.  If the
 2169  
      *         file exists then it will be truncated to zero size; otherwise,
 2170  
      *         a new file will be created.  The output will be written to the
 2171  
      *         file and is buffered.
 2172  
      *
 2173  
      * @throws  SecurityException
 2174  
      *          If a security manager is present and {@link
 2175  
      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
 2176  
      *          write access to the file
 2177  
      *
 2178  
      * @throws  FileNotFoundException
 2179  
      *          If the given file object does not denote an existing, writable
 2180  
      *          regular file and a new regular file of that name cannot be
 2181  
      *          created, or if some other error occurs while opening or
 2182  
      *          creating the file
 2183  
      */
 2184  0
     public FXFormatter(File file) throws FileNotFoundException {
 2185  0
         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))),
 2186  
              Locale.getDefault());
 2187  0
     }
 2188  
 
 2189  
     /**
 2190  
      * Constructs a new formatter with the specified file and charset.
 2191  
      *
 2192  
      * <p> The locale used is the {@linkplain Locale#getDefault default
 2193  
      * locale} for this instance of the Java virtual machine.
 2194  
      *
 2195  
      * @param  file
 2196  
      *         The file to use as the destination of this formatter.  If the
 2197  
      *         file exists then it will be truncated to zero size; otherwise,
 2198  
      *         a new file will be created.  The output will be written to the
 2199  
      *         file and is buffered.
 2200  
      *
 2201  
      * @param  csn
 2202  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2203  
      *         charset}
 2204  
      *
 2205  
      * @throws  FileNotFoundException
 2206  
      *          If the given file object does not denote an existing, writable
 2207  
      *          regular file and a new regular file of that name cannot be
 2208  
      *          created, or if some other error occurs while opening or
 2209  
      *          creating the file
 2210  
      *
 2211  
      * @throws  SecurityException
 2212  
      *          If a security manager is present and {@link
 2213  
      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
 2214  
      *          write access to the file
 2215  
      *
 2216  
      * @throws  UnsupportedEncodingException
 2217  
      *          If the named charset is not supported
 2218  
      */
 2219  
     public FXFormatter(File file, String csn)
 2220  
         throws FileNotFoundException, UnsupportedEncodingException
 2221  
     {
 2222  0
         this(file, csn, Locale.getDefault());
 2223  0
     }
 2224  
 
 2225  
     /**
 2226  
      * Constructs a new formatter with the specified file, charset, and
 2227  
      * locale.
 2228  
      *
 2229  
      * @param  file
 2230  
      *         The file to use as the destination of this formatter.  If the
 2231  
      *         file exists then it will be truncated to zero size; otherwise,
 2232  
      *         a new file will be created.  The output will be written to the
 2233  
      *         file and is buffered.
 2234  
      *
 2235  
      * @param  csn
 2236  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2237  
      *         charset}
 2238  
      *
 2239  
      * @param  l
 2240  
      *         The {@linkplain java.util.Locale locale} to apply during
 2241  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2242  
      *         is applied.
 2243  
      *
 2244  
      * @throws  FileNotFoundException
 2245  
      *          If the given file object does not denote an existing, writable
 2246  
      *          regular file and a new regular file of that name cannot be
 2247  
      *          created, or if some other error occurs while opening or
 2248  
      *          creating the file
 2249  
      *
 2250  
      * @throws  SecurityException
 2251  
      *          If a security manager is present and {@link
 2252  
      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
 2253  
      *          write access to the file
 2254  
      *
 2255  
      * @throws  UnsupportedEncodingException
 2256  
      *          If the named charset is not supported
 2257  
      */
 2258  
     public FXFormatter(File file, String csn, Locale l)
 2259  
         throws FileNotFoundException, UnsupportedEncodingException
 2260  0
     {
 2261  0
         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), csn)),
 2262  
              l);
 2263  0
     }
 2264  
 
 2265  
     /**
 2266  
      * Constructs a new formatter with the specified print stream.
 2267  
      *
 2268  
      * <p> The locale used is the {@linkplain Locale#getDefault() default
 2269  
      * locale} for this instance of the Java virtual machine.
 2270  
      *
 2271  
      * <p> Characters are written to the given {@link java.io.PrintStream
 2272  
      * PrintStream} object and are therefore encoded using that object's
 2273  
      * charset.
 2274  
      *
 2275  
      * @param  ps
 2276  
      *         The stream to use as the destination of this formatter.
 2277  
      */
 2278  0
     public FXFormatter(PrintStream ps) {
 2279  0
         if (ps == null)
 2280  0
             throw new NullPointerException();
 2281  0
         init((Appendable)ps, Locale.getDefault());
 2282  0
     }
 2283  
 
 2284  
     /**
 2285  
      * Constructs a new formatter with the specified output stream.
 2286  
      *
 2287  
      * <p> The charset used is the {@linkplain
 2288  
      * java.nio.charset.Charset#defaultCharset() default charset} for this
 2289  
      * instance of the Java virtual machine.
 2290  
      *
 2291  
      * <p> The locale used is the {@linkplain Locale#getDefault() default
 2292  
      * locale} for this instance of the Java virtual machine.
 2293  
      *
 2294  
      * @param  os
 2295  
      *         The output stream to use as the destination of this formatter.
 2296  
      *         The output will be buffered.
 2297  
      */
 2298  0
     public FXFormatter(OutputStream os) {
 2299  0
         init(new BufferedWriter(new OutputStreamWriter(os)),
 2300  
              Locale.getDefault());
 2301  0
     }
 2302  
 
 2303  
     /**
 2304  
      * Constructs a new formatter with the specified output stream and
 2305  
      * charset.
 2306  
      *
 2307  
      * <p> The locale used is the {@linkplain Locale#getDefault default
 2308  
      * locale} for this instance of the Java virtual machine.
 2309  
      *
 2310  
      * @param  os
 2311  
      *         The output stream to use as the destination of this formatter.
 2312  
      *         The output will be buffered.
 2313  
      *
 2314  
      * @param  csn
 2315  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2316  
      *         charset}
 2317  
      *
 2318  
      * @throws  UnsupportedEncodingException
 2319  
      *          If the named charset is not supported
 2320  
      */
 2321  
     public FXFormatter(OutputStream os, String csn)
 2322  
         throws UnsupportedEncodingException
 2323  
     {
 2324  0
         this(os, csn, Locale.getDefault());
 2325  0
     }
 2326  
 
 2327  
     /**
 2328  
      * Constructs a new formatter with the specified output stream, charset,
 2329  
      * and locale.
 2330  
      *
 2331  
      * @param  os
 2332  
      *         The output stream to use as the destination of this formatter.
 2333  
      *         The output will be buffered.
 2334  
      *
 2335  
      * @param  csn
 2336  
      *         The name of a supported {@linkplain java.nio.charset.Charset
 2337  
      *         charset}
 2338  
      *
 2339  
      * @param  l
 2340  
      *         The {@linkplain java.util.Locale locale} to apply during
 2341  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2342  
      *         is applied.
 2343  
      *
 2344  
      * @throws  UnsupportedEncodingException
 2345  
      *          If the named charset is not supported
 2346  
      */
 2347  
     public FXFormatter(OutputStream os, String csn, Locale l)
 2348  
         throws UnsupportedEncodingException
 2349  0
     {
 2350  0
         init(new BufferedWriter(new OutputStreamWriter(os, csn)), l);
 2351  0
     }
 2352  
 
 2353  
     private void setZero() {
 2354  11
         if ((l != null) && !l.equals(Locale.US)) {
 2355  11
             DecimalFormatSymbols dfs = new DecimalFormatSymbols(l);
 2356  11
             zero = dfs.getZeroDigit();
 2357  
         }
 2358  11
     }
 2359  
 
 2360  
     /**
 2361  
      * Returns the locale set by the construction of this formatter.
 2362  
      *
 2363  
      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
 2364  
      * for this object which has a locale argument does not change this value.
 2365  
      *
 2366  
      * @return  <tt>null</tt> if no localization is applied, otherwise a
 2367  
      *          locale
 2368  
      *
 2369  
      * @throws  FormatterClosedException
 2370  
      *          If this formatter has been closed by invoking its {@link
 2371  
      *          #close()} method
 2372  
      */
 2373  
     public Locale locale() {
 2374  16
         ensureOpen();
 2375  16
         return l;
 2376  
     }
 2377  
 
 2378  
     /**
 2379  
      * Returns the destination for the output.
 2380  
      *
 2381  
      * @return  The destination for the output
 2382  
      *
 2383  
      * @throws  FormatterClosedException
 2384  
      *          If this formatter has been closed by invoking its {@link
 2385  
      *          #close()} method
 2386  
      */
 2387  
     public Appendable out() {
 2388  0
         ensureOpen();
 2389  0
         return a;
 2390  
     }
 2391  
 
 2392  
     /**
 2393  
      * Returns the result of invoking <tt>toString()</tt> on the destination
 2394  
      * for the output.  For example, the following code formats text into a
 2395  
      * {@link StringBuilder} then retrieves the resultant string:
 2396  
      *
 2397  
      * <blockquote><pre>
 2398  
      *   FXFormatter f = new FXFormatter();
 2399  
      *   f.format("Last reboot at %tc", lastRebootDate);
 2400  
      *   String s = f.toString();
 2401  
      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
 2402  
      * </pre></blockquote>
 2403  
      *
 2404  
      * <p> An invocation of this method behaves in exactly the same way as the
 2405  
      * invocation
 2406  
      *
 2407  
      * <pre>
 2408  
      *     out().toString() </pre>
 2409  
      *
 2410  
      * <p> Depending on the specification of <tt>toString</tt> for the {@link
 2411  
      * Appendable}, the returned string may or may not contain the characters
 2412  
      * written to the destination.  For instance, buffers typically return
 2413  
      * their contents in <tt>toString()</tt>, but streams cannot since the
 2414  
      * data is discarded.
 2415  
      *
 2416  
      * @return  The result of invoking <tt>toString()</tt> on the destination
 2417  
      *          for the output
 2418  
      *
 2419  
      * @throws  FormatterClosedException
 2420  
      *          If this formatter has been closed by invoking its {@link
 2421  
      *          #close()} method
 2422  
      */
 2423  
     public String toString() {
 2424  11
         ensureOpen();
 2425  11
         return a.toString();
 2426  
     }
 2427  
 
 2428  
     /**
 2429  
      * Flushes this formatter.  If the destination implements the {@link
 2430  
      * java.io.Flushable} interface, its <tt>flush</tt> method will be invoked.
 2431  
      *
 2432  
      * <p> Flushing a formatter writes any buffered output in the destination
 2433  
      * to the underlying stream.
 2434  
      *
 2435  
      * @throws  FormatterClosedException
 2436  
      *          If this formatter has been closed by invoking its {@link
 2437  
      *          #close()} method
 2438  
      */
 2439  
     public void flush() {
 2440  0
         ensureOpen();
 2441  0
         if (a instanceof Flushable) {
 2442  
             try {
 2443  0
                 ((Flushable)a).flush();
 2444  0
             } catch (IOException ioe) {
 2445  0
                 lastException = ioe;
 2446  0
             }
 2447  
         }
 2448  0
     }
 2449  
 
 2450  
     /**
 2451  
      * Closes this formatter.  If the destination implements the {@link
 2452  
      * java.io.Closeable} interface, its <tt>close</tt> method will be invoked.
 2453  
      *
 2454  
      * <p> Closing a formatter allows it to release resources it may be holding
 2455  
      * (such as open files).  If the formatter is already closed, then invoking
 2456  
      * this method has no effect.
 2457  
      *
 2458  
      * <p> Attempting to invoke any methods except {@link #ioException()} in
 2459  
      * this formatter after it has been closed will result in a {@link
 2460  
      * FormatterClosedException}.
 2461  
      */
 2462  
     public void close() {
 2463  0
         if (a == null)
 2464  0
             return;
 2465  
         try {
 2466  0
             if (a instanceof Closeable)
 2467  0
                 ((Closeable)a).close();
 2468  0
         } catch (IOException ioe) {
 2469  0
             lastException = ioe;
 2470  
         } finally {
 2471  0
             a = null;
 2472  0
         }
 2473  0
     }
 2474  
 
 2475  
     private void ensureOpen() {
 2476  38
         if (a == null)
 2477  0
             throw new FormatterClosedException();
 2478  38
     }
 2479  
 
 2480  
     /**
 2481  
      * Returns the <tt>IOException</tt> last thrown by this formatter's {@link
 2482  
      * Appendable}.
 2483  
      *
 2484  
      * <p> If the destination's <tt>append()</tt> method never throws
 2485  
      * <tt>IOException</tt>, then this method will always return <tt>null</tt>.
 2486  
      *
 2487  
      * @return  The last exception thrown by the Appendable or <tt>null</tt> if
 2488  
      *          no such exception exists.
 2489  
      */
 2490  
     public IOException ioException() {
 2491  0
         return lastException;
 2492  
     }
 2493  
 
 2494  
     /**
 2495  
      * Writes a formatted string to this object's destination using the
 2496  
      * specified format string and arguments.  The locale used is the one
 2497  
      * defined during the construction of this formatter.
 2498  
      *
 2499  
      * @param  format
 2500  
      *         A format string as described in <a href="#syntax">Format string
 2501  
      *         syntax</a>.
 2502  
      *
 2503  
      * @param  args
 2504  
      *         Arguments referenced by the format specifiers in the format
 2505  
      *         string.  If there are more arguments than format specifiers, the
 2506  
      *         extra arguments are ignored.  The maximum number of arguments is
 2507  
      *         limited by the maximum dimension of a Java array as defined by
 2508  
      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
 2509  
      *         Virtual Machine Specification</a>.
 2510  
      *
 2511  
      * @throws  IllegalFormatException
 2512  
      *          If a format string contains an illegal syntax, a format
 2513  
      *          specifier that is incompatible with the given arguments,
 2514  
      *          insufficient arguments given the format string, or other
 2515  
      *          illegal conditions.  For specification of all possible
 2516  
      *          formatting errors, see the <a href="#detail">Details</a>
 2517  
      *          section of the formatter class specification.
 2518  
      *
 2519  
      * @throws  FormatterClosedException
 2520  
      *          If this formatter has been closed by invoking its {@link
 2521  
      *          #close()} method
 2522  
      *
 2523  
      * @return  This formatter
 2524  
      */
 2525  
     public FXFormatter format(String format, Object ... args) {
 2526  8
         return format(l, format, args);
 2527  
     }
 2528  
 
 2529  
     public static final String sprintf(String format, Object... args) {
 2530  8
         return new FXFormatter().format(format, args).toString();
 2531  
     }
 2532  
 
 2533  
     public static final String sprintf(Locale l, String format, Object... args) {
 2534  3
         return new FXFormatter().format(l, format, args).toString();
 2535  
     }
 2536  
 
 2537  
     /**
 2538  
      * Writes a formatted string to this object's destination using the
 2539  
      * specified locale, format string, and arguments.
 2540  
      *
 2541  
      * @param  l
 2542  
      *         The {@linkplain java.util.Locale locale} to apply during
 2543  
      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
 2544  
      *         is applied.  This does not change this object's locale that was
 2545  
      *         set during construction.
 2546  
      *
 2547  
      * @param  format
 2548  
      *         A format string as described in <a href="#syntax">Format string
 2549  
      *         syntax</a>
 2550  
      *
 2551  
      * @param  args
 2552  
      *         Arguments referenced by the format specifiers in the format
 2553  
      *         string.  If there are more arguments than format specifiers, the
 2554  
      *         extra arguments are ignored.  The maximum number of arguments is
 2555  
      *         limited by the maximum dimension of a Java array as defined by
 2556  
      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
 2557  
      *         Virtual Machine Specification</a>
 2558  
      *
 2559  
      * @throws  IllegalFormatException
 2560  
      *          If a format string contains an illegal syntax, a format
 2561  
      *          specifier that is incompatible with the given arguments,
 2562  
      *          insufficient arguments given the format string, or other
 2563  
      *          illegal conditions.  For specification of all possible
 2564  
      *          formatting errors, see the <a href="#detail">Details</a>
 2565  
      *          section of the formatter class specification.
 2566  
      *
 2567  
      * @throws  FormatterClosedException
 2568  
      *          If this formatter has been closed by invoking its {@link
 2569  
      *          #close()} method
 2570  
      *
 2571  
      * @return  This formatter
 2572  
      */
 2573  
     public FXFormatter format(Locale l, String format, Object ... args) {
 2574  11
         ensureOpen();
 2575  
 
 2576  
         // index of last argument referenced
 2577  11
         int last = -1;
 2578  
         // last ordinary index
 2579  11
         int lasto = -1;
 2580  
 
 2581  11
         FormatString[] fsa = parse(format);
 2582  44
         for (int i = 0; i < fsa.length; i++) {
 2583  33
             FormatString fs = fsa[i];
 2584  33
             int index = fs.index();
 2585  
             try {
 2586  33
                 switch (index) {
 2587  
                 case -2:  // fixed string, "%n", or "%%"
 2588  14
                     fs.print(null, l);
 2589  14
                     break;
 2590  
                 case -1:  // relative index
 2591  6
                     if (last < 0 || (args != null && last > args.length - 1))
 2592  0
                         throw new MissingFormatArgumentException(fs.toString());
 2593  6
                     fs.print((args == null ? null : args[last]), l);
 2594  6
                     break;
 2595  
                 case 0:  // ordinary index
 2596  10
                     lasto++;
 2597  10
                     last = lasto;
 2598  10
                     if (args != null && lasto > args.length - 1)
 2599  0
                         throw new MissingFormatArgumentException(fs.toString());
 2600  10
                     fs.print((args == null ? null : args[lasto]), l);
 2601  10
                     break;
 2602  
                 default:  // explicit index
 2603  3
                     last = index - 1;
 2604  3
                     if (args != null && last > args.length - 1)
 2605  0
                         throw new MissingFormatArgumentException(fs.toString());
 2606  3
                     fs.print((args == null ? null : args[last]), l);
 2607  
                     break;
 2608  
                 }
 2609  0
             } catch (IOException x) {
 2610  0
                 lastException = x;
 2611  33
             }
 2612  
         }
 2613  11
         return this;
 2614  
     }
 2615  
 
 2616  
     // %[argument_index$][flags][width][.precision](conversion|t-conversion)
 2617  
     // RE group:
 2618  
     //   1: argument index
 2619  
     //   2: flag
 2620  
     //   3: width
 2621  
     //   4: precision
 2622  
     //   5: entire conversion
 2623  
     //   6: [tT] date-time specifier
 2624  
     //   7: date-time conversion
 2625  
     private static final String formatSpecifier
 2626  
         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([a-su-zA-SU-Z%]|([tT])([a-zA-DF-Z]|E[cCxXy]))";
 2627  
 
 2628  2
     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
 2629  
 
 2630  
     // Look for format specifiers in the format string.
 2631  
     private FormatString[] parse(String s) {
 2632  11
         ArrayList al = new ArrayList();
 2633  11
         Matcher m = fsPattern.matcher(s);
 2634  11
         int i = 0;
 2635  30
         while (i < s.length()) {
 2636  22
             if (m.find(i)) {
 2637  
                 // Anything between the start of the string and the beginning
 2638  
                 // of the format specifier is either fixed text or contains
 2639  
                 // an invalid format string.
 2640  19
                 if (m.start() != i) {
 2641  
                     // Make sure we didn't miss any invalid format specifiers
 2642  11
                     checkText(s.substring(i, m.start()));
 2643  
                     // Assume previous characters were fixed text
 2644  11
                     al.add(new FixedString(s.substring(i, m.start())));
 2645  
                 }
 2646  
 
 2647  
                 // Expect 7 groups in regular expression
 2648  19
                 String[] sa = new String[7];
 2649  152
                 for (int j = 0; j < m.groupCount(); j++)
 2650  
                     {
 2651  133
                     sa[j] = m.group(j + 1);
 2652  
 //                  System.out.print(sa[j] + " ");
 2653  
                     }
 2654  
 //              System.out.println();
 2655  19
                 al.add(new FormatSpecifier(this, sa));
 2656  19
                 i = m.end();
 2657  19
             } else {
 2658  
                 // No more valid format specifiers.  Check for possible invalid
 2659  
                 // format specifiers.
 2660  3
                 checkText(s.substring(i));
 2661  
                 // The rest of the string is fixed text
 2662  3
                 al.add(new FixedString(s.substring(i)));
 2663  3
                 break;
 2664  
             }
 2665  
         }
 2666  
 //      FormatString[] fs = new FormatString[al.size()];
 2667  
 //      for (int j = 0; j < al.size(); j++)
 2668  
 //          System.out.println(((FormatString) al.get(j)).toString());
 2669  11
         return (FormatString[]) al.toArray(new FormatString[0]);
 2670  
     }
 2671  
 
 2672  
     private void checkText(String s) {
 2673  
         int idx;
 2674  
         // If there are any '%' in the given string, we got a bad format
 2675  
         // specifier.
 2676  14
         if ((idx = s.indexOf('%')) != -1) {
 2677  0
             char c = (idx > s.length() - 2 ? '%' : s.charAt(idx + 1));
 2678  0
             throw new UnknownFormatConversionException(String.valueOf(c));
 2679  
         }
 2680  14
     }
 2681  
 
 2682  
     private interface FormatString {
 2683  
         int index();
 2684  
         void print(Object arg, Locale l) throws IOException;
 2685  
         String toString();
 2686  
     }
 2687  
 
 2688  
     private class FixedString implements FormatString {
 2689  
         private String s;
 2690  14
         FixedString(String s) { this.s = s; }
 2691  14
         public int index() { return -2; }
 2692  
         public void print(Object arg, Locale l)
 2693  14
             throws IOException { a.append(s); }
 2694  0
         public String toString() { return s; }
 2695  
     }
 2696  
 
 2697  0
     public enum BigDecimalLayoutForm { SCIENTIFIC, DECIMAL_FLOAT };
 2698  
 
 2699  
 
 2700  2
     private static final Map<String, Integer> styleMap = new HashMap<String, Integer>();
 2701  
     static {
 2702  2
         styleMap.put("ja", DateFormat.FULL);
 2703  2
         styleMap.put("zh", DateFormat.FULL);
 2704  2
         styleMap.put("ko", DateFormat.FULL);
 2705  2
     }
 2706  
 
 2707  2
     private class FormatSpecifier implements FormatString {
 2708  19
         private int index = -1;
 2709  19
         private Flags f = Flags.NONE;
 2710  
         private int width;
 2711  
         private int precision;
 2712  19
         private boolean dt = false;
 2713  
         private char c, c2;
 2714  
 
 2715  
         private FXFormatter formatter;
 2716  
 
 2717  
         // cache the line separator
 2718  
         private String ls;
 2719  
 
 2720  
         private int index(String s) {
 2721  19
             if (s != null) {
 2722  
                 try {
 2723  3
                     index = Integer.parseInt(s.substring(0, s.length() - 1));
 2724  0
                 } catch (NumberFormatException x) {
 2725  0
                     assert(false);
 2726  3
                 }
 2727  
             } else {
 2728  16
                 index = 0;
 2729  
             }
 2730  19
             return index;
 2731  
         }
 2732  
 
 2733  
         public int index() {
 2734  19
             return index;
 2735  
         }
 2736  
 
 2737  
         private Flags flags(String s) {
 2738  19
             f = Flags.parse(s);
 2739  19
             if (f.contains(Flags.PREVIOUS))
 2740  6
                 index = -1;
 2741  19
             return f;
 2742  
         }
 2743  
 
 2744  
         Flags flags() {
 2745  0
             return f;
 2746  
         }
 2747  
 
 2748  
         private int width(String s) {
 2749  19
             width = -1;
 2750  19
             if (s != null) {
 2751  
                 try {
 2752  0
                     width  = Integer.parseInt(s);
 2753  0
                     if (width < 0)
 2754  0
                         throw new IllegalFormatWidthException(width);
 2755  0
                 } catch (NumberFormatException x) {
 2756  0
                     assert(false);
 2757  0
                 }
 2758  
             }
 2759  19
             return width;
 2760  
         }
 2761  
 
 2762  
         int width() {
 2763  0
             return width;
 2764  
         }
 2765  
 
 2766  
         private int precision(String s) {
 2767  19
             precision = -1;
 2768  19
             if (s != null) {
 2769  
                 try {
 2770  
                     // remove the '.'
 2771  0
                     precision = Integer.parseInt(s.substring(1));
 2772  0
                     if (precision < 0)
 2773  0
                         throw new IllegalFormatPrecisionException(precision);
 2774  0
                 } catch (NumberFormatException x) {
 2775  0
                     assert(false);
 2776  0
                 }
 2777  
             }
 2778  19
             return precision;
 2779  
         }
 2780  
 
 2781  
         int precision() {
 2782  0
             return precision;
 2783  
         }
 2784  
 
 2785  
         private char conversion(String s) {
 2786  19
             c = s.charAt(0);
 2787  19
             if (!dt) {
 2788  0
                 if (!Conversion.isValid(c))
 2789  0
                     throw new UnknownFormatConversionException(String.valueOf(c));
 2790  0
                 if (Character.isUpperCase(c))
 2791  0
                     f.add(Flags.UPPERCASE);
 2792  0
                 c = Character.toLowerCase(c);
 2793  0
                 if (Conversion.isText(c))
 2794  0
                     index = -2;
 2795  
             }
 2796  19
             if (s.length() == 2) {
 2797  4
                 c2 = s.charAt(1);
 2798  
             }
 2799  19
             return c;
 2800  
         }
 2801  
 
 2802  
         private char conversion() {
 2803  0
             return c;
 2804  
         }
 2805  
 
 2806  
         private char conversion2() {
 2807  0
             return c2;
 2808  
         }
 2809  
 
 2810  19
         FormatSpecifier(FXFormatter formatter, String[] sa) {
 2811  19
             this.formatter = formatter;
 2812  19
             int idx = 0;
 2813  
 
 2814  19
             index(sa[idx++]);
 2815  19
             flags(sa[idx++]);
 2816  19
             width(sa[idx++]);
 2817  19
             precision(sa[idx++]);
 2818  
 
 2819  19
             if (sa[5] != null) {
 2820  19
                 dt = true;
 2821  19
                 if (sa[5].equals("T"))
 2822  0
                     f.add(Flags.UPPERCASE);
 2823  19
                 conversion(sa[6]);
 2824  
             } else {
 2825  0
                 conversion(sa[idx]);
 2826  
             }
 2827  
 
 2828  19
             if (dt)
 2829  19
                 checkDateTime();
 2830  0
             else if (Conversion.isGeneral(c))
 2831  0
                 checkGeneral();
 2832  0
             else if (Conversion.isCharacter(c))
 2833  0
                 checkCharacter();
 2834  0
             else if (Conversion.isInteger(c))
 2835  0
                 checkInteger();
 2836  0
             else if (Conversion.isFloat(c))
 2837  0
                 checkFloat();
 2838  0
             else if (Conversion.isText(c))
 2839  0
                 checkText();
 2840  
             else
 2841  0
                 throw new UnknownFormatConversionException(String.valueOf(c));
 2842  19
         }
 2843  
 
 2844  
         public void print(Object arg, Locale l) throws IOException {
 2845  19
             if (dt) {
 2846  19
                 printDateTime(arg, l);
 2847  19
                 return;
 2848  
             }
 2849  0
             switch(c) {
 2850  
             case Conversion.DECIMAL_INTEGER:
 2851  
             case Conversion.OCTAL_INTEGER:
 2852  
             case Conversion.HEXADECIMAL_INTEGER:
 2853  0
                 printInteger(arg, l);
 2854  0
                 break;
 2855  
             case Conversion.SCIENTIFIC:
 2856  
             case Conversion.GENERAL:
 2857  
             case Conversion.DECIMAL_FLOAT:
 2858  
             case Conversion.HEXADECIMAL_FLOAT:
 2859  0
                 printFloat(arg, l);
 2860  0
                 break;
 2861  
             case Conversion.CHARACTER:
 2862  
             case Conversion.CHARACTER_UPPER:
 2863  0
                 printCharacter(arg);
 2864  0
                 break;
 2865  
             case Conversion.BOOLEAN:
 2866  0
                 printBoolean(arg);
 2867  0
                 break;
 2868  
             case Conversion.STRING:
 2869  0
                 printString(arg, l);
 2870  0
                 break;
 2871  
             case Conversion.HASHCODE:
 2872  0
                 printHashCode(arg);
 2873  0
                 break;
 2874  
             case Conversion.LINE_SEPARATOR:
 2875  0
                 if (ls == null)
 2876  0
                     ls = System.getProperty("line.separator");
 2877  0
                 a.append(ls);
 2878  0
                 break;
 2879  
             case Conversion.PERCENT_SIGN:
 2880  0
                 a.append('%');
 2881  0
                 break;
 2882  
             default:
 2883  0
                 assert false;
 2884  
             }
 2885  0
         }
 2886  
 
 2887  
         private void printInteger(Object arg, Locale l) throws IOException {
 2888  0
             if (arg == null)
 2889  0
                 print("null");
 2890  0
             else if (arg instanceof Byte)
 2891  0
                 print(((Byte)arg).byteValue(), l);
 2892  0
             else if (arg instanceof Short)
 2893  0
                 print(((Short)arg).shortValue(), l);
 2894  0
             else if (arg instanceof Integer)
 2895  0
                 print(((Integer)arg).intValue(), l);
 2896  0
             else if (arg instanceof Long)
 2897  0
                 print(((Long)arg).longValue(), l);
 2898  0
             else if (arg instanceof BigInteger)
 2899  0
                 print(((BigInteger)arg), l);
 2900  
             else
 2901  0
                 failConversion(c, arg);
 2902  0
         }
 2903  
 
 2904  
         private void printFloat(Object arg, Locale l) throws IOException {
 2905  0
             if (arg == null)
 2906  0
                 print("null");
 2907  0
             else if (arg instanceof Float)
 2908  0
                 print(((Float)arg).floatValue(), l);
 2909  0
             else if (arg instanceof Double)
 2910  0
                 print(((Double)arg).doubleValue(), l);
 2911  0
             else if (arg instanceof BigDecimal)
 2912  0
                 print(((BigDecimal)arg), l);
 2913  
             else
 2914  0
                 failConversion(c, arg);
 2915  0
         }
 2916  
 
 2917  
         private void printDateTime(Object arg, Locale l) throws IOException {
 2918  19
             if (arg == null) {
 2919  0
                 print("null");
 2920  0
                 return;
 2921  
             }
 2922  
 
 2923  19
             if (DateTime.isLocalFormat(c)) {
 2924  5
                 printLocalDateTime(arg, l);
 2925  5
                 return;
 2926  
             }
 2927  
 
 2928  14
             Calendar cal = null;
 2929  
 
 2930  
             // Instead of Calendar.setLenient(true), perhaps we should
 2931  
             // wrap the IllegalArgumentException that might be thrown?
 2932  14
             if (arg instanceof Long) {
 2933  
                 // Note that the following method uses an instance of the
 2934  
                 // default time zone (TimeZone.getDefaultRef().
 2935  2
                 cal = Calendar.getInstance(l == null ? Locale.US : l);
 2936  2
                 cal.setTimeInMillis((Long)arg);
 2937  12
             } else if (arg instanceof Date) {
 2938  
                 // Note that the following method uses an instance of the
 2939  
                 // default time zone (TimeZone.getDefaultRef().
 2940  2
                 cal = Calendar.getInstance(l == null ? Locale.US : l);
 2941  2
                 cal.setTime((Date)arg);
 2942  10
             } else if (arg instanceof Calendar) {
 2943  10
                 cal = (Calendar) ((Calendar)arg).clone();
 2944  10
                 cal.setLenient(true);
 2945  
             } else {
 2946  0
                 failConversion(c, arg);
 2947  
             }
 2948  
             // Use the provided locale so that invocations of
 2949  
             // localizedMagnitude() use optimizations for null.
 2950  14
             print(cal, c, l);
 2951  14
         }
 2952  
 
 2953  
         private void printLocalDateTime(Object arg, Locale l) throws IOException {
 2954  5
             boolean useLocalCalendar = (c == DateTime.MODIFIER_E);
 2955  
 
 2956  5
             int style = DateFormat.MEDIUM;
 2957  5
             String lang = l.getLanguage();
 2958  5
             if (styleMap.containsKey(lang)) {
 2959  3
                 style = styleMap.get(lang);
 2960  
             }
 2961  5
             Calendar cal = null;
 2962  5
             Locale loc = l;
 2963  5
             if (useLocalCalendar) {
 2964  4
                 String country = loc.getCountry();
 2965  4
                 if (country == "JP") {
 2966  
                     // for creating a Japanese imperial calendar in the
 2967  
                     // DateFormat factory
 2968  2
                     loc = new Locale("ja", "JP", "JP");
 2969  2
                 } else if (country == "TH" && loc.getLanguage() != "th") {
 2970  
                     // Create a Thai Buddhist calendar in case the country
 2971  
                     // is Thailand
 2972  1
                     cal = Calendar.getInstance(new Locale("th", country));
 2973  
                 }
 2974  
             }
 2975  5
             if (useLocalCalendar &&
 2976  
                 arg.getClass().getName().equals("java.util.GregorianCalendar")) {
 2977  3
                 GregorianCalendar gcal = (GregorianCalendar) arg;
 2978  3
                 if (cal == null) {
 2979  2
                     cal = Calendar.getInstance(gcal.getTimeZone(), loc);
 2980  
                 } else {
 2981  1
                     cal.setTimeZone(gcal.getTimeZone());
 2982  
                 }
 2983  3
                 arg = gcal.getTime();
 2984  3
             } else {
 2985  2
                 if (arg instanceof Calendar) {
 2986  1
                     cal = (Calendar) arg;
 2987  1
                     arg = cal.getTime();
 2988  
                 }
 2989  
             }
 2990  
 
 2991  5
             DateFormat df = null;
 2992  5
             switch (c) {
 2993  
             case DateTime.LOCALE_DATE:
 2994  1
                 df = DateFormat.getDateInstance(style, loc);
 2995  1
                 break;
 2996  
             case DateTime.LOCALE_TIME:
 2997  0
                 df = DateFormat.getTimeInstance(style, loc);
 2998  0
                 break;
 2999  
             case DateTime.MODIFIER_E:
 3000  4
                 switch (c2) {
 3001  
                 case DateTime.DATE_TIME:   // Ec: locale's alternative date and time format
 3002  2
                     df = DateFormat.getDateTimeInstance(style, style, loc);
 3003  2
                     break;
 3004  
                 case DateTime.CENTURY:     // EC: locale's base year (era) name
 3005  0
                     df = new SimpleDateFormat("GGGG", loc);
 3006  0
                     break;
 3007  
                 case DateTime.LOCALE_DATE: // Ex: locale's alternative date
 3008  2
                     df = DateFormat.getDateInstance(style, loc);
 3009  2
                     break;
 3010  
                 case DateTime.LOCALE_TIME: // EX: locale's alternative time
 3011  0
                     df = DateFormat.getTimeInstance(style, loc);
 3012  0
                     break;
 3013  
                 case DateTime.YEAR_2:      // Ey: locale's alternative offset from %tEC (year only)
 3014  0
                     df = new SimpleDateFormat("y", loc);
 3015  0
                     break;
 3016  
                 default:
 3017  0
                     failConversion(c2, arg);
 3018  
                 }
 3019  0
                 break;
 3020  
             default:
 3021  0
                 failConversion(c, arg);
 3022  
             }
 3023  5
             if (cal != null) {
 3024  4
                 df.setCalendar(cal);
 3025  
             }
 3026  5
             if (arg instanceof Long) {
 3027  0
                 arg = new Date((Long)arg);
 3028  
             }
 3029  5
             if (!(arg instanceof Date)) {
 3030  0
                 failConversion(c, arg);
 3031  
             }
 3032  
 
 3033  5
             print(df.format((Date) arg));
 3034  5
         }
 3035  
 
 3036  
         private void printCharacter(Object arg) throws IOException {
 3037  0
             if (arg == null) {
 3038  0
                 print("null");
 3039  0
                 return;
 3040  
             }
 3041  0
             String s = null;
 3042  0
             if (arg instanceof Character) {
 3043  0
                 s = ((Character)arg).toString();
 3044  0
             } else if (arg instanceof Byte) {
 3045  0
                 byte i = ((Byte)arg).byteValue();
 3046  0
                 if (Character.isValidCodePoint(i))
 3047  0
                     s = new String(Character.toChars(i));
 3048  
                 else
 3049  0
                     throw new IllegalFormatCodePointException(i);
 3050  0
             } else if (arg instanceof Short) {
 3051  0
                 short i = ((Short)arg).shortValue();
 3052  0
                 if (Character.isValidCodePoint(i))
 3053  0
                     s = new String(Character.toChars(i));
 3054  
                 else
 3055  0
                     throw new IllegalFormatCodePointException(i);
 3056  0
             } else if (arg instanceof Integer) {
 3057  0
                 int i = ((Integer)arg).intValue();
 3058  0
                 if (Character.isValidCodePoint(i))
 3059  0
                     s = new String(Character.toChars(i));
 3060  
                 else
 3061  0
                     throw new IllegalFormatCodePointException(i);
 3062  0
             } else {
 3063  0
                 failConversion(c, arg);
 3064  
             }
 3065  0
             print(s);
 3066  0
         }
 3067  
 
 3068  
         private void printString(Object arg, Locale l) throws IOException {
 3069  0
             if (arg == null) {
 3070  0
                 print("null");
 3071  0
             } else if (arg instanceof Formattable) {
 3072  0
                 Formatter fmt = new Formatter(formatter.out(), l);
 3073  
                 /*
 3074  
                 if (formatter.locale() != l)
 3075  
                     fmt = new FXFormatter(formatter.out(), l);
 3076  
                 */
 3077  0
                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
 3078  0
             } else {
 3079  0
                 print(arg.toString());
 3080  
             }
 3081  0
         }
 3082  
 
 3083  
         private void printBoolean(Object arg) throws IOException {
 3084  
             String s;
 3085  0
             if (arg != null)
 3086  0
                 s = ((arg instanceof Boolean)
 3087  
                      ? ((Boolean)arg).toString()
 3088  
                      : Boolean.toString(true));
 3089  
             else
 3090  0
                 s = Boolean.toString(false);
 3091  0
             print(s);
 3092  0
         }
 3093  
 
 3094  
         private void printHashCode(Object arg) throws IOException {
 3095  0
             String s = (arg == null
 3096  
                         ? "null"
 3097  
                         : Integer.toHexString(arg.hashCode()));
 3098  0
             print(s);
 3099  0
         }
 3100  
 
 3101  
         private void print(String s) throws IOException {
 3102  5
             if (precision != -1 && precision < s.length())
 3103  0
                 s = s.substring(0, precision);
 3104  5
             if (f.contains(Flags.UPPERCASE))
 3105  0
                 s = s.toUpperCase();
 3106  5
             a.append(justify(s));
 3107  5
         }
 3108  
 
 3109  
         private String justify(String s) {
 3110  19
             if (width == -1)
 3111  19
                 return s;
 3112  0
             StringBuilder sb = new StringBuilder();
 3113  0
             boolean pad = f.contains(Flags.LEFT_JUSTIFY);
 3114  0
             int sp = width - s.length();
 3115  0
             if (!pad)
 3116  0
                 for (int i = 0; i < sp; i++) sb.append(' ');
 3117  0
             sb.append(s);
 3118  0
             if (pad)
 3119  0
                 for (int i = 0; i < sp; i++) sb.append(' ');
 3120  0
             return sb.toString();
 3121  
         }
 3122  
 
 3123  
         public String toString() {
 3124  0
             StringBuilder sb = new StringBuilder('%');
 3125  
             // Flags.UPPERCASE is set internally for legal conversions.
 3126  0
             Flags dupf = f.dup().remove(Flags.UPPERCASE);
 3127  0
             sb.append(dupf.toString());
 3128  0
             if (index > 0)
 3129  0
                 sb.append(index).append('$');
 3130  0
             if (width != -1)
 3131  0
                 sb.append(width);
 3132  0
             if (precision != -1)
 3133  0
                 sb.append('.').append(precision);
 3134  0
             if (dt)
 3135  0
                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
 3136  0
             sb.append(f.contains(Flags.UPPERCASE)
 3137  
                       ? Character.toUpperCase(c) : c);
 3138  0
             return sb.toString();
 3139  
         }
 3140  
 
 3141  
         private void checkGeneral() {
 3142  0
             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
 3143  
                 && f.contains(Flags.ALTERNATE))
 3144  0
                 failMismatch(Flags.ALTERNATE, c);
 3145  
             // '-' requires a width
 3146  0
             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
 3147  0
                 throw new MissingFormatWidthException(toString());
 3148  0
             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
 3149  
                           Flags.GROUP, Flags.PARENTHESES);
 3150  0
         }
 3151  
 
 3152  
         private void checkDateTime() {
 3153  19
             if (precision != -1)
 3154  0
                 throw new IllegalFormatPrecisionException(precision);
 3155  19
             if (!DateTime.isValid(c, c2))
 3156  0
                 throw new UnknownFormatConversionException("t" + c);
 3157  19
             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
 3158  
                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
 3159  
             // '-' requires a width
 3160  19
             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
 3161  0
                 throw new MissingFormatWidthException(toString());
 3162  19
         }
 3163  
 
 3164  
         private void checkCharacter() {
 3165  0
             if (precision != -1)
 3166  0
                 throw new IllegalFormatPrecisionException(precision);
 3167  0
             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
 3168  
                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
 3169  
             // '-' requires a width
 3170  0
             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
 3171  0
                 throw new MissingFormatWidthException(toString());
 3172  0
         }
 3173  
 
 3174  
         private void checkInteger() {
 3175  0
             checkNumeric();
 3176  0
             if (precision != -1)
 3177  0
                 throw new IllegalFormatPrecisionException(precision);
 3178  
 
 3179  0
             if (c == Conversion.DECIMAL_INTEGER)
 3180  0
                 checkBadFlags(Flags.ALTERNATE);
 3181  0
             else if (c == Conversion.OCTAL_INTEGER)
 3182  0
                 checkBadFlags(Flags.GROUP);
 3183  
             else
 3184  0
                 checkBadFlags(Flags.GROUP);
 3185  0
         }
 3186  
 
 3187  
         private void checkBadFlags(Flags ... badFlags) {
 3188  133
             for (int i = 0; i < badFlags.length; i++)
 3189  114
                 if (f.contains(badFlags[i]))
 3190  0
                     failMismatch(badFlags[i], c);
 3191  19
         }
 3192  
 
 3193  
         private void checkFloat() {
 3194  0
             checkNumeric();
 3195  0
             if (c == Conversion.DECIMAL_FLOAT) {
 3196  0
             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
 3197  0
                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
 3198  0
             } else if (c == Conversion.SCIENTIFIC) {
 3199  0
                 checkBadFlags(Flags.GROUP);
 3200  0
             } else if (c == Conversion.GENERAL) {
 3201  0
                 checkBadFlags(Flags.ALTERNATE);
 3202  
             }
 3203  0
         }
 3204  
 
 3205  
         private void checkNumeric() {
 3206  0
             if (width != -1 && width < 0)
 3207  0
                 throw new IllegalFormatWidthException(width);
 3208  
 
 3209  0
             if (precision != -1 && precision < 0)
 3210  0
                 throw new IllegalFormatPrecisionException(precision);
 3211  
 
 3212  
             // '-' and '0' require a width
 3213  0
             if (width == -1
 3214  
                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
 3215  0
                 throw new MissingFormatWidthException(toString());
 3216  
 
 3217  
             // bad combination
 3218  0
             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
 3219  
                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
 3220  0
                 throw new IllegalFormatFlagsException(f.toString());
 3221  0
         }
 3222  
 
 3223  
         private void checkText() {
 3224  0
             if (precision != -1)
 3225  0
                 throw new IllegalFormatPrecisionException(precision);
 3226  0
             switch (c) {
 3227  
             case Conversion.PERCENT_SIGN:
 3228  0
                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
 3229  
                     && f.valueOf() != Flags.NONE.valueOf())
 3230  0
                     throw new IllegalFormatFlagsException(f.toString());
 3231  
                 // '-' requires a width
 3232  0
                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
 3233  0
                     throw new MissingFormatWidthException(toString());
 3234  
                 break;
 3235  
             case Conversion.LINE_SEPARATOR:
 3236  0
                 if (width != -1)
 3237  0
                     throw new IllegalFormatWidthException(width);
 3238  0
                 if (f.valueOf() != Flags.NONE.valueOf())
 3239  0
                     throw new IllegalFormatFlagsException(f.toString());
 3240  
                 break;
 3241  
             default:
 3242  0
                 assert false;
 3243  
             }
 3244  0
         }
 3245  
 
 3246  
         private void print(byte value, Locale l) throws IOException {
 3247  0
             long v = value;
 3248  0
             if (value < 0
 3249  
                 && (c == Conversion.OCTAL_INTEGER
 3250  
                     || c == Conversion.HEXADECIMAL_INTEGER)) {
 3251  0
                 v += (1L << 8);
 3252  0
                 assert v >= 0 : v;
 3253  
             }
 3254  0
             print(v, l);
 3255  0
         }
 3256  
 
 3257  
         private void print(short value, Locale l) throws IOException {
 3258  0
             long v = value;
 3259  0
             if (value < 0
 3260  
                 && (c == Conversion.OCTAL_INTEGER
 3261  
                     || c == Conversion.HEXADECIMAL_INTEGER)) {
 3262  0
                 v += (1L << 16);
 3263  0
                 assert v >= 0 : v;
 3264  
             }
 3265  0
             print(v, l);
 3266  0
         }
 3267  
 
 3268  
         private void print(int value, Locale l) throws IOException {
 3269  0
             long v = value;
 3270  0
             if (value < 0
 3271  
                 && (c == Conversion.OCTAL_INTEGER
 3272  
                     || c == Conversion.HEXADECIMAL_INTEGER)) {
 3273  0
                 v += (1L << 32);
 3274  0
                 assert v >= 0 : v;
 3275  
             }
 3276  0
             print(v, l);
 3277  0
         }
 3278  
 
 3279  
         private void print(long value, Locale l) throws IOException {
 3280  
 
 3281  0
             StringBuilder sb = new StringBuilder();
 3282  
 
 3283  0
             if (c == Conversion.DECIMAL_INTEGER) {
 3284  0
                 boolean neg = value < 0;
 3285  
                 char[] va;
 3286  0
                 if (value < 0)
 3287  0
                     va = Long.toString(value, 10).substring(1).toCharArray();
 3288  
                 else
 3289  0
                     va = Long.toString(value, 10).toCharArray();
 3290  
 
 3291  
                 // leading sign indicator
 3292  0
                 leadingSign(sb, neg);
 3293  
 
 3294  
                 // the value
 3295  0
                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
 3296  
 
 3297  
                 // trailing sign indicator
 3298  0
                 trailingSign(sb, neg);
 3299  0
             } else if (c == Conversion.OCTAL_INTEGER) {
 3300  0
                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
 3301  
                               Flags.PLUS);
 3302  0
                 String s = Long.toOctalString(value);
 3303  0
                 int len = (f.contains(Flags.ALTERNATE)
 3304  
                            ? s.length() + 1
 3305  
                            : s.length());
 3306  
 
 3307  
                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
 3308  0
                 if (f.contains(Flags.ALTERNATE))
 3309  0
                     sb.append('0');
 3310  0
                 if (f.contains(Flags.ZERO_PAD))
 3311  0
                     for (int i = 0; i < width - len; i++) sb.append('0');
 3312  0
                 sb.append(s);
 3313  0
             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
 3314  0
                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
 3315  
                               Flags.PLUS);
 3316  0
                 String s = Long.toHexString(value);
 3317  0
                 int len = (f.contains(Flags.ALTERNATE)
 3318  
                            ? s.length() + 2
 3319  
                            : s.length());
 3320  
 
 3321  
                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
 3322  0
                 if (f.contains(Flags.ALTERNATE))
 3323  0
                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
 3324  0
                 if (f.contains(Flags.ZERO_PAD))
 3325  0
                     for (int i = 0; i < width - len; i++) sb.append('0');
 3326  0
                 if (f.contains(Flags.UPPERCASE))
 3327  0
                     s = s.toUpperCase();
 3328  0
                 sb.append(s);
 3329  
             }
 3330  
 
 3331  
             // justify based on width
 3332  0
             a.append(justify(sb.toString()));
 3333  0
         }
 3334  
 
 3335  
         // neg := val < 0
 3336  
         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
 3337  0
             if (!neg) {
 3338  0
                 if (f.contains(Flags.PLUS)) {
 3339  0
                     sb.append('+');
 3340  0
                 } else if (f.contains(Flags.LEADING_SPACE)) {
 3341  0
                     sb.append(' ');
 3342  
                 }
 3343  
             } else {
 3344  0
                 if (f.contains(Flags.PARENTHESES))
 3345  0
                     sb.append('(');
 3346  
                 else
 3347  0
                     sb.append('-');
 3348  
             }
 3349  0
             return sb;
 3350  
         }
 3351  
 
 3352  
         // neg := val < 0
 3353  
         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
 3354  0
             if (neg && f.contains(Flags.PARENTHESES))
 3355  0
                 sb.append(')');
 3356  0
             return sb;
 3357  
         }
 3358  
 
 3359  
         private void print(BigInteger value, Locale l) throws IOException {
 3360  0
             StringBuilder sb = new StringBuilder();
 3361  0
             boolean neg = value.signum() == -1;
 3362  0
             BigInteger v = value.abs();
 3363  
 
 3364  
             // leading sign indicator
 3365  0
             leadingSign(sb, neg);
 3366  
 
 3367  
             // the value
 3368  0
             if (c == Conversion.DECIMAL_INTEGER) {
 3369  0
                 char[] va = v.toString().toCharArray();
 3370  0
                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
 3371  0
             } else if (c == Conversion.OCTAL_INTEGER) {
 3372  0
                 String s = v.toString(8);
 3373  
 
 3374  0
                 int len = s.length() + sb.length();
 3375  0
                 if (neg && f.contains(Flags.PARENTHESES))
 3376  0
                     len++;
 3377  
 
 3378  
                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
 3379  0
                 if (f.contains(Flags.ALTERNATE)) {
 3380  0
                     len++;
 3381  0
                     sb.append('0');
 3382  
                 }
 3383  0
                 if (f.contains(Flags.ZERO_PAD)) {
 3384  0
                     for (int i = 0; i < width - len; i++)
 3385  0
                         sb.append('0');
 3386  
                 }
 3387  0
                 sb.append(s);
 3388  0
             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
 3389  0
                 String s = v.toString(16);
 3390  
 
 3391  0
                 int len = s.length() + sb.length();
 3392  0
                 if (neg && f.contains(Flags.PARENTHESES))
 3393  0
                     len++;
 3394  
 
 3395  
                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
 3396  0
                 if (f.contains(Flags.ALTERNATE)) {
 3397  0
                     len += 2;
 3398  0
                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
 3399  
                 }
 3400  0
                 if (f.contains(Flags.ZERO_PAD))
 3401  0
                     for (int i = 0; i < width - len; i++)
 3402  0
                         sb.append('0');
 3403  0
                 if (f.contains(Flags.UPPERCASE))
 3404  0
                     s = s.toUpperCase();
 3405  0
                 sb.append(s);
 3406  
             }
 3407  
 
 3408  
             // trailing sign indicator
 3409  0
             trailingSign(sb, (value.signum() == -1));
 3410  
 
 3411  
             // justify based on width
 3412  0
             a.append(justify(sb.toString()));
 3413  0
         }
 3414  
 
 3415  
         private void print(float value, Locale l) throws IOException {
 3416  0
             print((double) value, l);
 3417  0
         }
 3418  
 
 3419  
         private void print(double value, Locale l) throws IOException {
 3420  0
             StringBuilder sb = new StringBuilder();
 3421  0
             boolean neg = Double.compare(value, 0.0) == -1;
 3422  
 
 3423  0
             if (!Double.isNaN(value)) {
 3424  0
                 double v = Math.abs(value);
 3425  
 
 3426  
                 // leading sign indicator
 3427  0
                 leadingSign(sb, neg);
 3428  
 
 3429  
                 // the value
 3430  0
                 if (!Double.isInfinite(v))
 3431  0
                     print(sb, v, l, f, c, precision, neg);
 3432  
                 else
 3433  0
                     sb.append(f.contains(Flags.UPPERCASE)
 3434  
                               ? "INFINITY" : "Infinity");
 3435  
 
 3436  
                 // trailing sign indicator
 3437  0
                 trailingSign(sb, neg);
 3438  0
             } else {
 3439  0
                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
 3440  
             }
 3441  
 
 3442  
             // justify based on width
 3443  0
             a.append(justify(sb.toString()));
 3444  0
         }
 3445  
 
 3446  
         // !Double.isInfinite(value) && !Double.isNaN(value)
 3447  
         private void print(StringBuilder sb, double value, Locale l,
 3448  
                            Flags f, char c, int precision, boolean neg)
 3449  
             throws IOException
 3450  
         {
 3451  0
             if (c == Conversion.SCIENTIFIC) {
 3452  
                 // Create a new FormattedFloatingDecimal with the desired
 3453  
                 // precision.
 3454  0
                 int prec = (precision == -1 ? 6 : precision);
 3455  
 
 3456  0
                 FormattedFloatingDecimal fd
 3457  
                     = new FormattedFloatingDecimal(value, prec,
 3458  
                         FormattedFloatingDecimal.Form.SCIENTIFIC);
 3459  
 
 3460  0
                 char[] v = new char[MAX_FD_CHARS];
 3461  0
                 int len = fd.getChars(v);
 3462  
 
 3463  0
                 char[] mant = addZeros(mantissa(v, len), prec);
 3464  
 
 3465  
                 // If the precision is zero and the '#' flag is set, add the
 3466  
                 // requested decimal point.
 3467  0
                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
 3468  0
                     mant = addDot(mant);
 3469  
 
 3470  0
                 char[] exp = (value == 0.0)
 3471  
                     ? new char[] {'+','0','0'} : exponent(v, len);
 3472  
 
 3473  0
                 int newW = width;
 3474  0
                 if (width != -1)
 3475  0
                     newW = adjustWidth(width - exp.length - 1, f, neg);
 3476  0
                 localizedMagnitude(sb, mant, f, newW, l);
 3477  
 
 3478  0
                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
 3479  
 
 3480  0
                 Flags flags = f.dup().remove(Flags.GROUP);
 3481  0
                 char sign = exp[0];
 3482  0
                 assert(sign == '+' || sign == '-');
 3483  0
                 sb.append(sign);
 3484  
 
 3485  0
                 char[] tmp = new char[exp.length - 1];
 3486  0
                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
 3487  0
                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
 3488  0
             } else if (c == Conversion.DECIMAL_FLOAT) {
 3489  
                 // Create a new FormattedFloatingDecimal with the desired
 3490  
                 // precision.
 3491  0
                 int prec = (precision == -1 ? 6 : precision);
 3492  
 
 3493  0
                 FormattedFloatingDecimal fd
 3494  
                     = new FormattedFloatingDecimal(value, prec,
 3495  
                         FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
 3496  
 
 3497  
                 // MAX_FD_CHARS + 1 (round?)
 3498  0
                 char[] v = new char[MAX_FD_CHARS + 1
 3499  
                                    + Math.abs(fd.getExponent())];
 3500  0
                 int len = fd.getChars(v);
 3501  
 
 3502  0
                 char[] mant = addZeros(mantissa(v, len), prec);
 3503  
 
 3504  
                 // If the precision is zero and the '#' flag is set, add the
 3505  
                 // requested decimal point.
 3506  0
                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
 3507  0
                     mant = addDot(mant);
 3508  
 
 3509  0
                 int newW = width;
 3510  0
                 if (width != -1)
 3511  0
                     newW = adjustWidth(width, f, neg);
 3512  0
                 localizedMagnitude(sb, mant, f, newW, l);
 3513  0
             } else if (c == Conversion.GENERAL) {
 3514  0
                 int prec = precision;
 3515  0
                 if (precision == -1)
 3516  0
                     prec = 6;
 3517  0
                 else if (precision == 0)
 3518  0
                     prec = 1;
 3519  
 
 3520  0
                 FormattedFloatingDecimal fd
 3521  
                     = new FormattedFloatingDecimal(value, prec,
 3522  
                         FormattedFloatingDecimal.Form.GENERAL);
 3523  
 
 3524  
                 // MAX_FD_CHARS + 1 (round?)
 3525  0
                 char[] v = new char[MAX_FD_CHARS + 1
 3526  
                                    + Math.abs(fd.getExponent())];
 3527  0
                 int len = fd.getChars(v);
 3528  
 
 3529  0
                 char[] exp = exponent(v, len);
 3530  0
                 if (exp != null) {
 3531  0
                     prec -= 1;
 3532  
                 } else {
 3533  0
                     prec = prec - (value == 0 ? 0 : fd.getExponentRounded()) - 1;
 3534  
                 }
 3535  
 
 3536  0
                 char[] mant = addZeros(mantissa(v, len), prec);
 3537  
                 // If the precision is zero and the '#' flag is set, add the
 3538  
                 // requested decimal point.
 3539  0
                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
 3540  0
                     mant = addDot(mant);
 3541  
 
 3542  0
                 int newW = width;
 3543  0
                 if (width != -1) {
 3544  0
                     if (exp != null)
 3545  0
                         newW = adjustWidth(width - exp.length - 1, f, neg);
 3546  
                     else
 3547  0
                         newW = adjustWidth(width, f, neg);
 3548  
                 }
 3549  0
                 localizedMagnitude(sb, mant, f, newW, l);
 3550  
 
 3551  0
                 if (exp != null) {
 3552  0
                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
 3553  
 
 3554  0
                     Flags flags = f.dup().remove(Flags.GROUP);
 3555  0
                     char sign = exp[0];
 3556  0
                     assert(sign == '+' || sign == '-');
 3557  0
                     sb.append(sign);
 3558  
 
 3559  0
                     char[] tmp = new char[exp.length - 1];
 3560  0
                     System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
 3561  0
                     sb.append(localizedMagnitude(null, tmp, flags, -1, l));
 3562  
                 }
 3563  0
             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
 3564  0
                 int prec = precision;
 3565  0
                 if (precision == -1)
 3566  
                     // assume that we want all of the digits
 3567  0
                     prec = 0;
 3568  0
                 else if (precision == 0)
 3569  0
                     prec = 1;
 3570  
 
 3571  0
                 String s = hexDouble(value, prec);
 3572  
 
 3573  
                 char[] va;
 3574  0
                 boolean upper = f.contains(Flags.UPPERCASE);
 3575  0
                 sb.append(upper ? "0X" : "0x");
 3576  
 
 3577  0
                 if (f.contains(Flags.ZERO_PAD))
 3578  0
                     for (int i = 0; i < width - s.length() - 2; i++)
 3579  0
                         sb.append('0');
 3580  
 
 3581  0
                 int idx = s.indexOf('p');
 3582  0
                 va = s.substring(0, idx).toCharArray();
 3583  0
                 if (upper) {
 3584  0
                     String tmp = new String(va);
 3585  
                     // don't localize hex
 3586  0
                     tmp = tmp.toUpperCase(Locale.US);
 3587  0
                     va = tmp.toCharArray();
 3588  
                 }
 3589  0
                 sb.append(prec != 0 ? addZeros(va, prec) : va);
 3590  0
                 sb.append(upper ? 'P' : 'p');
 3591  0
                 sb.append(s.substring(idx+1));
 3592  
             }
 3593  0
         }
 3594  
 
 3595  
         private char[] mantissa(char[] v, int len) {
 3596  
             int i;
 3597  0
             for (i = 0; i < len; i++) {
 3598  0
                 if (v[i] == 'e')
 3599  0
                     break;
 3600  
             }
 3601  0
             char[] tmp = new char[i];
 3602  0
             System.arraycopy(v, 0, tmp, 0, i);
 3603  0
             return tmp;
 3604  
         }
 3605  
 
 3606  
         private char[] exponent(char[] v, int len) {
 3607  
             int i;
 3608  0
             for (i = len - 1; i >= 0; i--) {
 3609  0
                 if (v[i] == 'e')
 3610  0
                     break;
 3611  
             }
 3612  0
             if (i == -1)
 3613  0
                 return null;
 3614  0
             char[] tmp = new char[len - i - 1];
 3615  0
             System.arraycopy(v, i + 1, tmp, 0, len - i - 1);
 3616  0
             return tmp;
 3617  
         }
 3618  
 
 3619  
         // Add zeros to the requested precision.
 3620  
         private char[] addZeros(char[] v, int prec) {
 3621  
             // Look for the dot.  If we don't find one, the we'll need to add
 3622  
             // it before we add the zeros.
 3623  
             int i;
 3624  0
             for (i = 0; i < v.length; i++) {
 3625  0
                 if (v[i] == '.')
 3626  0
                     break;
 3627  
             }
 3628  0
             boolean needDot = false;
 3629  0
             if (i == v.length) {
 3630  0
                 needDot = true;
 3631  
             }
 3632  
 
 3633  
             // Determine existing precision.
 3634  0
             int outPrec = v.length - i - (needDot ? 0 : 1);
 3635  0
             assert (outPrec <= prec);
 3636  0
             if (outPrec == prec)
 3637  0
                 return v;
 3638  
 
 3639  
             // Create new array with existing contents.
 3640  0
             char[] tmp
 3641  
                 = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
 3642  0
             System.arraycopy(v, 0, tmp, 0, v.length);
 3643  
 
 3644  
             // Add dot if previously determined to be necessary.
 3645  0
             int start = v.length;
 3646  0
             if (needDot) {
 3647  0
                 tmp[v.length] = '.';
 3648  0
                 start++;
 3649  
             }
 3650  
 
 3651  
             // Add zeros.
 3652  0
             for (int j = start; j < tmp.length; j++)
 3653  0
                 tmp[j] = '0';
 3654  
 
 3655  0
             return tmp;
 3656  
         }
 3657  
 
 3658  
         // Method assumes that d > 0.
 3659  
         private String hexDouble(double d, int prec) {
 3660  
             // Let Double.toHexString handle simple cases
 3661  0
             if(!FpUtils.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
 3662  
                 // remove "0x"
 3663  0
                 return Double.toHexString(d).substring(2);
 3664  
             else {
 3665  0
                 assert(prec >= 1 && prec <= 12);
 3666  
 
 3667  0
                 int exponent  = FpUtils.getExponent(d);
 3668  0
                 boolean subnormal
 3669  
                     = (exponent == DoubleConsts.MIN_EXPONENT - 1);
 3670  
 
 3671  
                 // If this is subnormal input so normalize (could be faster to
 3672  
                 // do as integer operation).
 3673  0
                 if (subnormal) {
 3674  0
                     scaleUp = FpUtils.scalb(1.0, 54);
 3675  0
                     d *= scaleUp;
 3676  
                     // Calculate the exponent.  This is not just exponent + 54
 3677  
                     // since the former is not the normalized exponent.
 3678  0
                     exponent = FpUtils.getExponent(d);
 3679  
                     assert exponent >= DoubleConsts.MIN_EXPONENT &&
 3680  0
                         exponent <= DoubleConsts.MAX_EXPONENT: exponent;
 3681  
                 }
 3682  
 
 3683  0
                 int precision = 1 + prec*4;
 3684  0
                 int shiftDistance
 3685  
                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
 3686  0
                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
 3687  
 
 3688  0
                 long doppel = Double.doubleToLongBits(d);
 3689  
                 // Deterime the number of bits to keep.
 3690  0
                 long newSignif
 3691  
                     = (doppel & (DoubleConsts.EXP_BIT_MASK
 3692  
                                  | DoubleConsts.SIGNIF_BIT_MASK))
 3693  
                                      >> shiftDistance;
 3694  
                 // Bits to round away.
 3695  0
                 long roundingBits = doppel & ~(~0L << shiftDistance);
 3696  
 
 3697  
                 // To decide how to round, look at the low-order bit of the
 3698  
                 // working significand, the highest order discarded bit (the
 3699  
                 // round bit) and whether any of the lower order discarded bits
 3700  
                 // are nonzero (the sticky bit).
 3701  
 
 3702  0
                 boolean leastZero = (newSignif & 0x1L) == 0L;
 3703  0
                 boolean round
 3704  
                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
 3705  0
                 boolean sticky  = shiftDistance > 1 &&
 3706  
                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
 3707  0
                 if((leastZero && round && sticky) || (!leastZero && round)) {
 3708  0
                     newSignif++;
 3709  
                 }
 3710  
 
 3711  0
                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
 3712  0
                 newSignif = signBit | (newSignif << shiftDistance);
 3713  0
                 double result = Double.longBitsToDouble(newSignif);
 3714  
 
 3715  0
                 if (Double.isInfinite(result) ) {
 3716  
                     // Infinite result generated by rounding
 3717  0
                     return "1.0p1024";
 3718  
                 } else {
 3719  0
                     String res = Double.toHexString(result).substring(2);
 3720  0
                     if (!subnormal)
 3721  0
                         return res;
 3722  
                     else {
 3723  
                         // Create a normalized subnormal string.
 3724  0
                         int idx = res.indexOf('p');
 3725  0
                         if (idx == -1) {
 3726  
                             // No 'p' character in hex string.
 3727  0
                             assert false;
 3728  0
                             return null;
 3729  
                         } else {
 3730  
                             // Get exponent and append at the end.
 3731  0
                             String exp = res.substring(idx + 1);
 3732  0
                             int iexp = Integer.parseInt(exp) -54;
 3733  0
                             return res.substring(0, idx) + "p"
 3734  
                                 + Integer.toString(iexp);
 3735  
                         }
 3736  
                     }
 3737  
                 }
 3738  
             }
 3739  
         }
 3740  
 
 3741  
         private void print(BigDecimal value, Locale l) throws IOException {
 3742  0
             if (c == Conversion.HEXADECIMAL_FLOAT)
 3743  0
                 failConversion(c, value);
 3744  0
             StringBuilder sb = new StringBuilder();
 3745  0
             boolean neg = value.signum() == -1;
 3746  0
             BigDecimal v = value.abs();
 3747  
             // leading sign indicator
 3748  0
             leadingSign(sb, neg);
 3749  
 
 3750  
             // the value
 3751  0
             print(sb, v, l, f, c, precision, neg);
 3752  
 
 3753  
             // trailing sign indicator
 3754  0
             trailingSign(sb, neg);
 3755  
 
 3756  
             // justify based on width
 3757  0
             a.append(justify(sb.toString()));
 3758  0
         }
 3759  
 
 3760  
         // value > 0
 3761  
         private void print(StringBuilder sb, BigDecimal value, Locale l,
 3762  
                            Flags f, char c, int precision, boolean neg)
 3763  
             throws IOException
 3764  
         {
 3765  0
             if (c == Conversion.SCIENTIFIC) {
 3766  
                 // Create a new BigDecimal with the desired precision.
 3767  0
                 int prec = (precision == -1 ? 6 : precision);
 3768  0
                 int scale = value.scale();
 3769  0
                 int origPrec = value.precision();
 3770  0
                 int nzeros = 0;
 3771  
                 int compPrec;
 3772  
 
 3773  0
                 if (prec > origPrec - 1) {
 3774  0
                     compPrec = origPrec;
 3775  0
                     nzeros = prec - (origPrec - 1);
 3776  
                 } else {
 3777  0
                     compPrec = prec + 1;
 3778  
                 }
 3779  
 
 3780  0
                 MathContext mc = new MathContext(compPrec);
 3781  0
                 BigDecimal v
 3782  
                     = new BigDecimal(value.unscaledValue(), scale, mc);
 3783  
 
 3784  0
                 BigDecimalLayout bdl
 3785  
                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
 3786  
                                            BigDecimalLayoutForm.SCIENTIFIC);
 3787  
 
 3788  0
                 char[] mant = bdl.mantissa();
 3789  
 
 3790  
                 // Add a decimal point if necessary.  The mantissa may not
 3791  
                 // contain a decimal point if the scale is zero (the internal
 3792  
                 // representation has no fractional part) or the original
 3793  
                 // precision is one. Append a decimal point if '#' is set or if
 3794  
                 // we require zero padding to get to the requested precision.
 3795  0
                 if ((origPrec == 1 || !bdl.hasDot())
 3796  
                     && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
 3797  0
                     mant = addDot(mant);
 3798  
 
 3799  
                 // Add trailing zeros in the case precision is greater than
 3800  
                 // the number of available digits after the decimal separator.
 3801  0
                 mant = trailingZeros(mant, nzeros);
 3802  
 
 3803  0
                 char[] exp = bdl.exponent();
 3804  0
                 int newW = width;
 3805  0
                 if (width != -1)
 3806  0
                     newW = adjustWidth(width - exp.length - 1, f, neg);
 3807  0
                 localizedMagnitude(sb, mant, f, newW, l);
 3808  
 
 3809  0
                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
 3810  
 
 3811  0
                 Flags flags = f.dup().remove(Flags.GROUP);
 3812  0
                 char sign = exp[0];
 3813  0
                 assert(sign == '+' || sign == '-');
 3814  0
                 sb.append(exp[0]);
 3815  
 
 3816  0
                 char[] tmp = new char[exp.length - 1];
 3817  0
                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
 3818  0
                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
 3819  0
             } else if (c == Conversion.DECIMAL_FLOAT) {
 3820  
                 // Create a new BigDecimal with the desired precision.
 3821  0
                 int prec = (precision == -1 ? 6 : precision);
 3822  0
                 int scale = value.scale();
 3823  0
                 int compPrec = value.precision();
 3824  0
                 if (scale > prec)
 3825  0
                     compPrec -= (scale - prec);
 3826  0
                 MathContext mc = new MathContext(compPrec);
 3827  0
                 BigDecimal v
 3828  
                     = new BigDecimal(value.unscaledValue(), scale, mc);
 3829  
 
 3830  0
                 BigDecimalLayout bdl
 3831  
                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
 3832  
                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
 3833  
 
 3834  0
                 char mant[] = bdl.mantissa();
 3835  0
                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
 3836  
 
 3837  
                 // Add a decimal point if necessary.  The mantissa may not
 3838  
                 // contain a decimal point if the scale is zero (the internal
 3839  
                 // representation has no fractional part).  Append a decimal
 3840  
                 // point if '#' is set or we require zero padding to get to the
 3841  
                 // requested precision.
 3842  0
                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
 3843  0
                     mant = addDot(bdl.mantissa());
 3844  
 
 3845  
                 // Add trailing zeros if the precision is greater than the
 3846  
                 // number of available digits after the decimal separator.
 3847  0
                 mant = trailingZeros(mant, nzeros);
 3848  
 
 3849  0
                 localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
 3850  0
             } else if (c == Conversion.GENERAL) {
 3851  0
                 int prec = precision;
 3852  0
                 if (precision == -1)
 3853  0
                     prec = 6;
 3854  0
                 else if (precision == 0)
 3855  0
                     prec = 1;
 3856  
 
 3857  0
                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
 3858  0
                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
 3859  0
                 if ((value.equals(BigDecimal.ZERO))
 3860  
                     || ((value.compareTo(tenToTheNegFour) != -1)
 3861  
                         && (value.compareTo(tenToThePrec) == -1))) {
 3862  
 
 3863  0
                     int e = - value.scale()
 3864  
                         + (value.unscaledValue().toString().length() - 1);
 3865  
 
 3866  
                     // xxx.yyy
 3867  
                     //   g precision (# sig digits) = #x + #y
 3868  
                     //   f precision = #y
 3869  
                     //   exponent = #x - 1
 3870  
                     // => f precision = g precision - exponent - 1
 3871  
                     // 0.000zzz
 3872  
                     //   g precision (# sig digits) = #z
 3873  
                     //   f precision = #0 (after '.') + #z
 3874  
                     //   exponent = - #0 (after '.') - 1
 3875  
                     // => f precision = g precision - exponent - 1
 3876  0
                     prec = prec - e - 1;
 3877  
 
 3878  0
                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
 3879  
                           neg);
 3880  0
                 } else {
 3881  0
                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
 3882  
                 }
 3883  0
             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
 3884  
                 // This conversion isn't supported.  The error should be
 3885  
                 // reported earlier.
 3886  0
                 assert false;
 3887  
             }
 3888  0
         }
 3889  
 
 3890  
         private class BigDecimalLayout {
 3891  
             private StringBuilder mant;
 3892  
             private StringBuilder exp;
 3893  0
             private boolean dot = false;
 3894  
             private int scale;
 3895  
 
 3896  0
             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
 3897  0
                 layout(intVal, scale, form);
 3898  0
             }
 3899  
 
 3900  
             public boolean hasDot() {
 3901  0
                 return dot;
 3902  
             }
 3903  
 
 3904  
             public int scale() {
 3905  0
                 return scale;
 3906  
             }
 3907  
 
 3908  
             // char[] with canonical string representation
 3909  
             public char[] layoutChars() {
 3910  0
                 StringBuilder sb = new StringBuilder(mant);
 3911  0
                 if (exp != null) {
 3912  0
                     sb.append('E');
 3913  0
                     sb.append(exp);
 3914  
                 }
 3915  0
                 return toCharArray(sb);
 3916  
             }
 3917  
 
 3918  
             public char[] mantissa() {
 3919  0
                 return toCharArray(mant);
 3920  
             }
 3921  
 
 3922  
             // The exponent will be formatted as a sign ('+' or '-') followed
 3923  
             // by the exponent zero-padded to include at least two digits.
 3924  
             public char[] exponent() {
 3925  0
                 return toCharArray(exp);
 3926  
             }
 3927  
 
 3928  
             private char[] toCharArray(StringBuilder sb) {
 3929  0
                 if (sb == null)
 3930  0
                     return null;
 3931  0
                 char[] result = new char[sb.length()];
 3932  0
                 sb.getChars(0, result.length, result, 0);
 3933  0
                 return result;
 3934  
             }
 3935  
 
 3936  
             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
 3937  0
                 char coeff[] = intVal.toString().toCharArray();
 3938  0
                 this.scale = scale;
 3939  
 
 3940  
                 // Construct a buffer, with sufficient capacity for all cases.
 3941  
                 // If E-notation is needed, length will be: +1 if negative, +1
 3942  
                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
 3943  
                 // exponent.  Otherwise it could have +1 if negative, plus
 3944  
                 // leading "0.00000"
 3945  0
                 mant = new StringBuilder(coeff.length + 14);
 3946  
 
 3947  0
                 if (scale == 0) {
 3948  0
                     int len = coeff.length;
 3949  0
                     if (len > 1) {
 3950  0
                         mant.append(coeff[0]);
 3951  0
                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
 3952  0
                             mant.append('.');
 3953  0
                             dot = true;
 3954  0
                             mant.append(coeff, 1, len - 1);
 3955  0
                             exp = new StringBuilder("+");
 3956  0
                             if (len < 10)
 3957  0
                                 exp.append("0").append(len - 1);
 3958  
                             else
 3959  0
                                 exp.append(len - 1);
 3960  
                         } else {
 3961  0
                             mant.append(coeff, 1, len - 1);
 3962  
                         }
 3963  
                     } else {
 3964  0
                         mant.append(coeff);
 3965  0
                         if (form == BigDecimalLayoutForm.SCIENTIFIC)
 3966  0
                             exp = new StringBuilder("+00");
 3967  
                     }
 3968  0
                     return;
 3969  
                 }
 3970  0
                 long adjusted = -(long) scale + (coeff.length - 1);
 3971  0
                 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
 3972  
                     // count of padding zeros
 3973  0
                     int pad = scale - coeff.length;
 3974  0
                     if (pad >= 0) {
 3975  
                         // 0.xxx form
 3976  0
                         mant.append("0.");
 3977  0
                         dot = true;
 3978  0
                         for (; pad > 0 ; pad--) mant.append('0');
 3979  0
                         mant.append(coeff);
 3980  
                     } else {
 3981  0
                         if (-pad < coeff.length) {
 3982  
                             // xx.xx form
 3983  0
                             mant.append(coeff, 0, -pad);
 3984  0
                             mant.append('.');
 3985  0
                             dot = true;
 3986  0
                             mant.append(coeff, -pad, scale);
 3987  
                         } else {
 3988  
                             // xx form
 3989  0
                             mant.append(coeff, 0, coeff.length);
 3990  0
                             for (int i = 0; i < -scale; i++)
 3991  0
                                 mant.append('0');
 3992  0
                             this.scale = 0;
 3993  
                         }
 3994  
                     }
 3995  0
                 } else {
 3996  
                     // x.xxx form
 3997  0
                     mant.append(coeff[0]);
 3998  0
                     if (coeff.length > 1) {
 3999  0
                         mant.append('.');
 4000  0
                         dot = true;
 4001  0
                         mant.append(coeff, 1, coeff.length-1);
 4002  
                     }
 4003  0
                     exp = new StringBuilder();
 4004  0
                     if (adjusted != 0) {
 4005  0
                         long abs = Math.abs(adjusted);
 4006  
                         // require sign
 4007  0
                         exp.append(adjusted < 0 ? '-' : '+');
 4008  0
                         if (abs < 10)
 4009  0
                             exp.append('0');
 4010  0
                         exp.append(abs);
 4011  0
                     } else {
 4012  0
                         exp.append("+00");
 4013  
                     }
 4014  
                 }
 4015  0
             }
 4016  
         }
 4017  
 
 4018  
         private int adjustWidth(int width, Flags f, boolean neg) {
 4019  0
             int newW = width;
 4020  0
             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
 4021  0
                 newW--;
 4022  0
             return newW;
 4023  
         }
 4024  
 
 4025  
         // Add a '.' to th mantissa if required
 4026  
         private char[] addDot(char[] mant) {
 4027  0
             char[] tmp = mant;
 4028  0
             tmp = new char[mant.length + 1];
 4029  0
             System.arraycopy(mant, 0, tmp, 0, mant.length);
 4030  0
             tmp[tmp.length - 1] = '.';
 4031  0
             return tmp;
 4032  
         }
 4033  
 
 4034  
         // Add trailing zeros in the case precision is greater than the number
 4035  
         // of available digits after the decimal separator.
 4036  
         private char[] trailingZeros(char[] mant, int nzeros) {
 4037  0
             char[] tmp = mant;
 4038  0
             if (nzeros > 0) {
 4039  0
                 tmp = new char[mant.length + nzeros];
 4040  0
                 System.arraycopy(mant, 0, tmp, 0, mant.length);
 4041  0
                 for (int i = mant.length; i < tmp.length; i++)
 4042  0
                     tmp[i] = '0';
 4043  
             }
 4044  0
             return tmp;
 4045  
         }
 4046  
 
 4047  
         private void print(Calendar t, char c, Locale l)  throws IOException
 4048  
         {
 4049  14
             StringBuilder sb = new StringBuilder();
 4050  14
             print(sb, t, c, l);
 4051  
 
 4052  
             // justify based on width
 4053  14
             String s = justify(sb.toString());
 4054  14
             if (f.contains(Flags.UPPERCASE))
 4055  0
                 s = s.toUpperCase();
 4056  
 
 4057  14
             a.append(s);
 4058  14
         }
 4059  
 
 4060  
         private Appendable print(StringBuilder sb, Calendar t, char c,
 4061  
                                  Locale l)
 4062  
             throws IOException
 4063  
         {
 4064  17
             assert(width == -1);
 4065  17
             if (sb == null)
 4066  0
                 sb = new StringBuilder();
 4067  17
             switch (c) {
 4068  
             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
 4069  
             case DateTime.HOUR_0:        // 'I' (01 - 12)
 4070  
             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
 4071  
             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
 4072  0
                 int i = t.get(Calendar.HOUR_OF_DAY);
 4073  0
                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
 4074  0
                     i = (i == 0 || i == 12 ? 12 : i % 12);
 4075  0
                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
 4076  
                                || c == DateTime.HOUR_0
 4077  
                                ? Flags.ZERO_PAD
 4078  
                                : Flags.NONE);
 4079  0
                 sb.append(localizedMagnitude(null, i, flags, 2, l));
 4080  0
                 break;
 4081  
             }
 4082  
             case DateTime.MINUTE:      { // 'M' (00 - 59)
 4083  0
                 int i = t.get(Calendar.MINUTE);
 4084  0
                 Flags flags = Flags.ZERO_PAD;
 4085  0
                 sb.append(localizedMagnitude(null, i, flags, 2, l));
 4086  0
                 break;
 4087  
             }
 4088  
             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
 4089  0
                 int i = t.get(Calendar.MILLISECOND) * 1000000;
 4090  0
                 Flags flags = Flags.ZERO_PAD;
 4091  0
                 sb.append(localizedMagnitude(null, i, flags, 9, l));
 4092  0
                 break;
 4093  
             }
 4094  
             case DateTime.MILLISECOND: { // 'L' (000 - 999)
 4095  0
                 int i = t.get(Calendar.MILLISECOND);
 4096  0
                 Flags flags = Flags.ZERO_PAD;
 4097  0
                 sb.append(localizedMagnitude(null, i, flags, 3, l));
 4098  0
                 break;
 4099  
             }
 4100  
             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
 4101  0
                 long i = t.getTimeInMillis();
 4102  0
                 Flags flags = Flags.NONE;
 4103  0
                 sb.append(localizedMagnitude(null, i, flags, width, l));
 4104  0
                 break;
 4105  
             }
 4106  
             case DateTime.AM_PM:       { // 'p' (am or pm)
 4107  
                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
 4108  0
                 String[] ampm = { "AM", "PM" };
 4109  0
                 if (l != null && l != Locale.US) {
 4110  0
                     DateFormatSymbols dfs = new DateFormatSymbols(l);
 4111  0
                     ampm = dfs.getAmPmStrings();
 4112  
                 }
 4113  0
                 String s = ampm[t.get(Calendar.AM_PM)];
 4114  0
                 sb.append(s.toLowerCase(l != null ? l : Locale.US));
 4115  0
                 break;
 4116  
             }
 4117  
             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
 4118  0
                 long i = t.getTimeInMillis() / 1000;
 4119  0
                 Flags flags = Flags.NONE;
 4120  0
                 sb.append(localizedMagnitude(null, i, flags, width, l));
 4121  0
                 break;
 4122  
             }
 4123  
             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
 4124  0
                 int i = t.get(Calendar.SECOND);
 4125  0
                 Flags flags = Flags.ZERO_PAD;
 4126  0
                 sb.append(localizedMagnitude(null, i, flags, 2, l));
 4127  0
                 break;
 4128  
             }
 4129  
             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
 4130  0
                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
 4131  0
                 boolean neg = i < 0;
 4132  0
                 sb.append(neg ? '-' : '+');
 4133  0
                 if (neg)
 4134  0
                     i = -i;
 4135  0
                 int min = i / 60000;
 4136  
                 // combine minute and hour into a single integer
 4137  0
                 int offset = (min / 60) * 100 + (min % 60);
 4138  0
                 Flags flags = Flags.ZERO_PAD;
 4139  
 
 4140  0
                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
 4141  0
                 break;
 4142  
             }
 4143  
             case DateTime.ZONE:        { // 'Z' (symbol)
 4144  0
                 TimeZone tz = t.getTimeZone();
 4145  0
                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
 4146  
                                            TimeZone.SHORT,
 4147  
                                             (l == null) ? Locale.US : l));
 4148  0
                 break;
 4149  
             }
 4150  
 
 4151  
             // Date
 4152  
             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
 4153  
             case DateTime.NAME_OF_DAY:          { // 'A'
 4154  0
                 int i = t.get(Calendar.DAY_OF_WEEK);
 4155  0
                 Locale lt = ((l == null) ? Locale.US : l);
 4156  0
                 DateFormatSymbols dfs = new DateFormatSymbols(l);
 4157  0
                 if (c == DateTime.NAME_OF_DAY)
 4158  0
                     sb.append(dfs.getWeekdays()[i]);
 4159  
                 else
 4160  0
                     sb.append(dfs.getShortWeekdays()[i]);
 4161  0
                 break;
 4162  
             }
 4163  
             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
 4164  
             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
 4165  
             case DateTime.NAME_OF_MONTH:        { // 'B'
 4166  0
                 int i = t.get(Calendar.MONTH);
 4167  0
                 Locale lt = ((l == null) ? Locale.US : l);
 4168  0
                 DateFormatSymbols dfs = new DateFormatSymbols(l);
 4169  0
                 if (c == DateTime.NAME_OF_MONTH)
 4170  0
                     sb.append(dfs.getMonths()[i]);
 4171  
                 else
 4172  0
                     sb.append(dfs.getShortMonths()[i]);
 4173  0
                 break;
 4174  
             }
 4175  
             case DateTime.CENTURY:                // 'C' (00 - 99)
 4176  
             case DateTime.YEAR_2:                 // 'y' (00 - 99)
 4177  
             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
 4178  2
                 int i = t.get(Calendar.YEAR);
 4179  2
                 int size = 2;
 4180  2
                 switch (c) {
 4181  
                 case DateTime.CENTURY:
 4182  0
                     i /= 100;
 4183  0
                     break;
 4184  
                 case DateTime.YEAR_2:
 4185  1
                     i %= 100;
 4186  1
                     break;
 4187  
                 case DateTime.YEAR_4:
 4188  1
                     size = 4;
 4189  
                     break;
 4190  
                 }
 4191  2
                 Flags flags = Flags.ZERO_PAD;
 4192  2
                 sb.append(localizedMagnitude(null, i, flags, size, l));
 4193  2
                 break;
 4194  
             }
 4195  
             case DateTime.ISO_WEEK_OF_YEAR_2:   // 'g'
 4196  
             case DateTime.ISO_WEEK_OF_YEAR_4: { // 'G'
 4197  2
                 if (!t.getClass().getName().equals("java.util.GregorianCalendar")) {
 4198  0
                     Calendar nonGregorian = t;
 4199  0
                     t = new GregorianCalendar(t.getTimeZone(), Locale.US);
 4200  0
                     t.setTimeInMillis(nonGregorian.getTimeInMillis());
 4201  
                 }
 4202  2
                 t.setFirstDayOfWeek(Calendar.MONDAY);
 4203  2
                 t.setMinimalDaysInFirstWeek(4);
 4204  2
                 int year = t.get(Calendar.YEAR);
 4205  2
                 int month = t.get(Calendar.MONTH);
 4206  2
                 int weekOfYear = t.get(Calendar.WEEK_OF_YEAR);
 4207  
                 // This is not accurate around the Gregorian cutover
 4208  2
                 if (weekOfYear == 1 && month == Calendar.DECEMBER) {
 4209  2
                     year++;
 4210  0
                 } else if (weekOfYear >= 52 && month == Calendar.JANUARY) {
 4211  0
                     year--;
 4212  
                 }
 4213  2
                 int size = 4;
 4214  2
                 if (c == DateTime.ISO_WEEK_OF_YEAR_2) {
 4215  1
                     year %= 100;
 4216  1
                     size = 2;
 4217  
                 }
 4218  2
                 sb.append(localizedMagnitude(null, year, Flags.ZERO_PAD, size, l));
 4219  2
                 break;
 4220  
             }
 4221  
             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
 4222  
             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
 4223  2
                 int i = t.get(Calendar.DATE);
 4224  2
                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
 4225  
                                ? Flags.ZERO_PAD
 4226  
                                : Flags.NONE);
 4227  2
                 sb.append(localizedMagnitude(null, i, flags, 2, l));
 4228  2
                 break;
 4229  
             }
 4230  
             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
 4231  0
                 int i = t.get(Calendar.DAY_OF_YEAR);
 4232  0
                 Flags flags = Flags.ZERO_PAD;
 4233  0
                 sb.append(localizedMagnitude(null, i, flags, 3, l));
 4234  0
                 break;
 4235  
             }
 4236  
             case DateTime.MONTH:                { // 'm' (01 - 12)
 4237  2
                 int i = t.get(Calendar.MONTH) + 1;
 4238  2
                 Flags flags = Flags.ZERO_PAD;
 4239  2
                 sb.append(localizedMagnitude(null, i, flags, 2, l));
 4240  2
                 break;
 4241  
             }
 4242  
             case DateTime.DAY_OF_WEEK_1:   // 'u' (1 - 7) Monday
 4243  
             case DateTime.DAY_OF_WEEK_0: { // 'w' (0 - 6) Sunday
 4244  4
                 int dayOfWeek = t.get(Calendar.DAY_OF_WEEK) - 1;
 4245  4
                 if (dayOfWeek == 0 && c == DateTime.DAY_OF_WEEK_1) {
 4246  
                     // Sunday is 7 in 'u'.
 4247  0
                     dayOfWeek = 7;
 4248  
                 }
 4249  4
                 sb.append(localizedMagnitude(null, dayOfWeek, Flags.NONE, 1, l));
 4250  4
                 break;
 4251  
             }
 4252  
             case DateTime.WEEK_OF_YEAR_SUNDAY:    // 'U' (00 - 53) Sunday+
 4253  
             case DateTime.WEEK_OF_YEAR_MONDAY: {  // 'W' (00 - 53) Monday
 4254  2
                 t.setFirstDayOfWeek(c == DateTime.WEEK_OF_YEAR_SUNDAY ?
 4255  
                                     Calendar.SUNDAY : Calendar.MONDAY);
 4256  2
                 t.setMinimalDaysInFirstWeek(7);
 4257  2
                 int weekOfYear = t.get(Calendar.WEEK_OF_YEAR);
 4258  2
                 if (weekOfYear >= 52 && t.get(Calendar.MONTH) == Calendar.JANUARY) {
 4259  0
                     weekOfYear = 0;
 4260  
                 }
 4261  2
                 sb.append(localizedMagnitude(null, weekOfYear, Flags.ZERO_PAD, 2, l));
 4262  2
                 break;
 4263  
             }
 4264  
             case DateTime.WEEK_OF_YEAR_MONDAY_01: { // 'V' (01 - 53) Monday+
 4265  2
                 t.setFirstDayOfWeek(Calendar.MONDAY);
 4266  2
                 t.setMinimalDaysInFirstWeek(4);
 4267  2
                 int weekOfYear = t.get(Calendar.WEEK_OF_YEAR);
 4268  2
                 sb.append(localizedMagnitude(null, weekOfYear, Flags.ZERO_PAD, 2, l));
 4269  2
                 break;
 4270  
             }
 4271  
 
 4272  
             // Composites
 4273  
             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
 4274  
             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
 4275  0
                 char sep = ':';
 4276  0
                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
 4277  0
                 print(sb, t, DateTime.MINUTE, l);
 4278  0
                 if (c == DateTime.TIME) {
 4279  0
                     sb.append(sep);
 4280  0
                     print(sb, t, DateTime.SECOND, l);
 4281  
                 }
 4282  
                 break;
 4283  
             }
 4284  
             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
 4285  0
                 char sep = ':';
 4286  0
                 print(sb, t, DateTime.HOUR_0, l).append(sep);
 4287  0
                 print(sb, t, DateTime.MINUTE, l).append(sep);
 4288  0
                 print(sb, t, DateTime.SECOND, l).append(' ');
 4289  
                 // this may be in wrong place for some locales
 4290  0
                 StringBuilder tsb = new StringBuilder();
 4291  0
                 print(tsb, t, DateTime.AM_PM, l);
 4292  0
                 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
 4293  0
                 break;
 4294  
             }
 4295  
             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
 4296  0
                 char sep = ' ';
 4297  0
                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
 4298  0
                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
 4299  0
                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
 4300  0
                 print(sb, t, DateTime.TIME, l).append(sep);
 4301  0
                 print(sb, t, DateTime.ZONE, l).append(sep);
 4302  0
                 print(sb, t, DateTime.YEAR_4, l);
 4303  0
                 break;
 4304  
             }
 4305  
             case DateTime.DATE:            { // 'D' (mm/dd/yy)
 4306  1
                 char sep = '/';
 4307  1
                 print(sb, t, DateTime.MONTH, l).append(sep);
 4308  1
                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
 4309  1
                 print(sb, t, DateTime.YEAR_2, l);
 4310  1
                 break;
 4311  
             }
 4312  
             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
 4313  0
                 char sep = '-';
 4314  0
                 print(sb, t, DateTime.YEAR_4, l).append(sep);
 4315  0
                 print(sb, t, DateTime.MONTH, l).append(sep);
 4316  0
                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
 4317  0
                 break;
 4318  
             }
 4319  
             default:
 4320  0
                 assert false;
 4321  
             }
 4322  17
             return sb;
 4323  
         }
 4324  
 
 4325  
         // -- Methods to support throwing exceptions --
 4326  
 
 4327  
         private void failMismatch(Flags f, char c) {
 4328  0
             String fs = f.toString();
 4329  0
             throw new FormatFlagsConversionMismatchException(fs, c);
 4330  
         }
 4331  
 
 4332  
         private void failConversion(char c, Object arg) {
 4333  0
             throw new IllegalFormatConversionException(c, arg.getClass());
 4334  
         }
 4335  
 
 4336  
         private char getZero(Locale l) {
 4337  16
             if ((l != null) &&  !l.equals(locale())) {
 4338  0
                 DecimalFormatSymbols dfs = new DecimalFormatSymbols(l);
 4339  0
                 return dfs.getZeroDigit();
 4340  
             }
 4341  16
             return zero;
 4342  
         }
 4343  
 
 4344  
         private StringBuilder
 4345  
             localizedMagnitude(StringBuilder sb, long value, Flags f,
 4346  
                                int width, Locale l)
 4347  
         {
 4348  16
             char[] va = Long.toString(value, 10).toCharArray();
 4349  16
             return localizedMagnitude(sb, va, f, width, l);
 4350  
         }
 4351  
 
 4352  
         private StringBuilder
 4353  
             localizedMagnitude(StringBuilder sb, char[] value, Flags f,
 4354  
                                int width, Locale l)
 4355  
         {
 4356  16
             if (sb == null)
 4357  16
                 sb = new StringBuilder();
 4358  16
             int begin = sb.length();
 4359  
 
 4360  16
             char zero = getZero(l);
 4361  
 
 4362  
             // determine localized grouping separator and size
 4363  16
             char grpSep = '\0';
 4364  16
             int  grpSize = -1;
 4365  16
             char decSep = '\0';
 4366  
 
 4367  16
             int len = value.length;
 4368  16
             int dot = len;
 4369  43
             for (int j = 0; j < len; j++) {
 4370  27
                 if (value[j] == '.') {
 4371  0
                     dot = j;
 4372  0
                     break;
 4373  
                 }
 4374  
             }
 4375  
 
 4376  16
             if (dot < len) {
 4377  0
                 if (l == null || l.equals(Locale.US)) {
 4378  0
                     decSep  = '.';
 4379  
                 } else {
 4380  0
                     DecimalFormatSymbols dfs = new DecimalFormatSymbols(l);
 4381  0
                     decSep  = dfs.getDecimalSeparator();
 4382  
                 }
 4383  
             }
 4384  
 
 4385  16
             if (f.contains(Flags.GROUP)) {
 4386  0
                 if (l == null || l.equals(Locale.US)) {
 4387  0
                     grpSep = ',';
 4388  0
                     grpSize = 3;
 4389  
                 } else {
 4390  0
                     DecimalFormatSymbols dfs = new DecimalFormatSymbols(l);
 4391  0
                     grpSep = dfs.getGroupingSeparator();
 4392  0
                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
 4393  0
                     grpSize = df.getGroupingSize();
 4394  
                 }
 4395  
             }
 4396  
 
 4397  
             // localize the digits inserting group separators as necessary
 4398  43
             for (int j = 0; j < len; j++) {
 4399  27
                 if (j == dot) {
 4400  0
                     sb.append(decSep);
 4401  
                     // no more group separators after the decimal separator
 4402  0
                     grpSep = '\0';
 4403  0
                     continue;
 4404  
                 }
 4405  
 
 4406  27
                 char c = value[j];
 4407  27
                 sb.append((char) ((c - '0') + zero));
 4408  27
                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
 4409  0
                     sb.append(grpSep);
 4410  
             }
 4411  
 
 4412  
             // apply zero padding
 4413  16
             len = sb.length();
 4414  16
             if (width != -1 && f.contains(Flags.ZERO_PAD))
 4415  16
                 for (int k = 0; k < width - len; k++)
 4416  5
                     sb.insert(begin, zero);
 4417  
 
 4418  16
             return sb;
 4419  
         }
 4420  
     }
 4421  
 
 4422  0
     private static class Flags {
 4423  
         private int flags;
 4424  
 
 4425  2
         static final Flags NONE          = new Flags(0);      // ''
 4426  
 
 4427  
         // duplicate declarations from Formattable.java
 4428  2
         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
 4429  2
         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
 4430  2
         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
 4431  
 
 4432  
         // numerics
 4433  2
         static final Flags PLUS          = new Flags(1<<3);   // '+'
 4434  2
         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
 4435  2
         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
 4436  2
         static final Flags GROUP         = new Flags(1<<6);   // ','
 4437  2
         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
 4438  
 
 4439  
         // indexing
 4440  2
         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
 4441  
 
 4442  39
         private Flags(int f) {
 4443  39
             flags = f;
 4444  39
         }
 4445  
 
 4446  
         public int valueOf() {
 4447  424
             return flags;
 4448  
         }
 4449  
 
 4450  
         public boolean contains(Flags f) {
 4451  209
             return (flags & f.valueOf()) == f.valueOf();
 4452  
         }
 4453  
 
 4454  
         public Flags dup() {
 4455  0
             return new Flags(flags);
 4456  
         }
 4457  
 
 4458  
         private Flags add(Flags f) {
 4459  6
             flags |= f.valueOf();
 4460  6
             return this;
 4461  
         }
 4462  
 
 4463  
         public Flags remove(Flags f) {
 4464  0
             flags &= ~f.valueOf();
 4465  0
             return this;
 4466  
         }
 4467  
 
 4468  
         public static Flags parse(String s) {
 4469  19
             char[] ca = s.toCharArray();
 4470  19
             Flags f = new Flags(0);
 4471  25
             for (int i = 0; i < ca.length; i++) {
 4472  6
                 Flags v = parse(ca[i]);
 4473  6
                 if (f.contains(v))
 4474  0
                     throw new DuplicateFormatFlagsException(v.toString());
 4475  6
                 f.add(v);
 4476  
             }
 4477  19
             return f;
 4478  
         }
 4479  
 
 4480  
         // parse those flags which may be provided by users
 4481  
         private static Flags parse(char c) {
 4482  6
             switch (c) {
 4483  0
             case '-': return LEFT_JUSTIFY;
 4484  0
             case '#': return ALTERNATE;
 4485  0
             case '+': return PLUS;
 4486  0
             case ' ': return LEADING_SPACE;
 4487  0
             case '0': return ZERO_PAD;
 4488  0
             case ',': return GROUP;
 4489  0
             case '(': return PARENTHESES;
 4490  6
             case '<': return PREVIOUS;
 4491  
             default:
 4492  0
                 throw new UnknownFormatFlagsException(String.valueOf(c));
 4493  
             }
 4494  
         }
 4495  
 
 4496  
         // Returns a string representation of the current <tt>Flags</tt>.
 4497  
         public static String toString(Flags f) {
 4498  0
             return f.toString();
 4499  
         }
 4500  
 
 4501  
         public String toString() {
 4502  0
             StringBuilder sb = new StringBuilder();
 4503  0
             if (contains(LEFT_JUSTIFY))  sb.append('-');
 4504  0
             if (contains(UPPERCASE))     sb.append('^');
 4505  0
             if (contains(ALTERNATE))     sb.append('#');
 4506  0
             if (contains(PLUS))          sb.append('+');
 4507  0
             if (contains(LEADING_SPACE)) sb.append(' ');
 4508  0
             if (contains(ZERO_PAD))      sb.append('0');
 4509  0
             if (contains(GROUP))         sb.append(',');
 4510  0
             if (contains(PARENTHESES))   sb.append('(');
 4511  0
             if (contains(PREVIOUS))      sb.append('<');
 4512  0
             return sb.toString();
 4513  
         }
 4514  
     }
 4515  
 
 4516  0
     private static class Conversion {
 4517  
         // Byte, Short, Integer, Long, BigInteger
 4518  
         // (and associated primitives due to autoboxing)
 4519  
         static final char DECIMAL_INTEGER     = 'd';
 4520  
         static final char OCTAL_INTEGER       = 'o';
 4521  
         static final char HEXADECIMAL_INTEGER = 'x';
 4522  
         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
 4523  
 
 4524  
         // Float, Double, BigDecimal
 4525  
         // (and associated primitives due to autoboxing)
 4526  
         static final char SCIENTIFIC          = 'e';
 4527  
         static final char SCIENTIFIC_UPPER    = 'E';
 4528  
         static final char GENERAL             = 'g';
 4529  
         static final char GENERAL_UPPER       = 'G';
 4530  
         static final char DECIMAL_FLOAT       = 'f';
 4531  
         static final char HEXADECIMAL_FLOAT   = 'a';
 4532  
         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
 4533  
 
 4534  
         // Character, Byte, Short, Integer
 4535  
         // (and associated primitives due to autoboxing)
 4536  
         static final char CHARACTER           = 'c';
 4537  
         static final char CHARACTER_UPPER     = 'C';
 4538  
 
 4539  
         // java.util.Date, java.util.Calendar, long
 4540  
         static final char DATE_TIME           = 't';
 4541  
         static final char DATE_TIME_UPPER     = 'T';
 4542  
 
 4543  
         // if (arg.TYPE != boolean) return boolean
 4544  
         // if (arg != null) return true; else return false;
 4545  
         static final char BOOLEAN             = 'b';
 4546  
         static final char BOOLEAN_UPPER       = 'B';
 4547  
         // if (arg instanceof Formattable) arg.formatTo()
 4548  
         // else arg.toString();
 4549  
         static final char STRING              = 's';
 4550  
         static final char STRING_UPPER        = 'S';
 4551  
         // arg.hashCode()
 4552  
         static final char HASHCODE            = 'h';
 4553  
         static final char HASHCODE_UPPER      = 'H';
 4554  
 
 4555  
         static final char LINE_SEPARATOR      = 'n';
 4556  
         static final char PERCENT_SIGN        = '%';
 4557  
 
 4558  
         static boolean isValid(char c) {
 4559  0
             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
 4560  
                     || c == 't' || isCharacter(c));
 4561  
         }
 4562  
 
 4563  
         // Returns true iff the Conversion is applicable to all objects.
 4564  
         static boolean isGeneral(char c) {
 4565  0
             switch (c) {
 4566  
             case BOOLEAN:
 4567  
             case BOOLEAN_UPPER:
 4568  
             case STRING:
 4569  
             case STRING_UPPER:
 4570  
             case HASHCODE:
 4571  
             case HASHCODE_UPPER:
 4572  0
                 return true;
 4573  
             default:
 4574  0
                 return false;
 4575  
             }
 4576  
         }
 4577  
 
 4578  
         // Returns true iff the Conversion is applicable to character.
 4579  
         static boolean isCharacter(char c) {
 4580  0
             switch (c) {
 4581  
             case CHARACTER:
 4582  
             case CHARACTER_UPPER:
 4583  0
                 return true;
 4584  
             default:
 4585  0
                 return false;
 4586  
             }
 4587  
         }
 4588  
 
 4589  
         // Returns true iff the Conversion is an integer type.
 4590  
         static boolean isInteger(char c) {
 4591  0
             switch (c) {
 4592  
             case DECIMAL_INTEGER:
 4593  
             case OCTAL_INTEGER:
 4594  
             case HEXADECIMAL_INTEGER:
 4595  
             case HEXADECIMAL_INTEGER_UPPER:
 4596  0
                 return true;
 4597  
             default:
 4598  0
                 return false;
 4599  
             }
 4600  
         }
 4601  
 
 4602  
         // Returns true iff the Conversion is a floating-point type.
 4603  
         static boolean isFloat(char c) {
 4604  0
             switch (c) {
 4605  
             case SCIENTIFIC:
 4606  
             case SCIENTIFIC_UPPER:
 4607  
             case GENERAL:
 4608  
             case GENERAL_UPPER:
 4609  
             case DECIMAL_FLOAT:
 4610  
             case HEXADECIMAL_FLOAT:
 4611  
             case HEXADECIMAL_FLOAT_UPPER:
 4612  0
                 return true;
 4613  
             default:
 4614  0
                 return false;
 4615  
             }
 4616  
         }
 4617  
 
 4618  
         // Returns true iff the Conversion does not require an argument
 4619  
         static boolean isText(char c) {
 4620  0
             switch (c) {
 4621  
             case LINE_SEPARATOR:
 4622  
             case PERCENT_SIGN:
 4623  0
                 return true;
 4624  
             default:
 4625  0
                 return false;
 4626  
             }
 4627  
         }
 4628  
     }
 4629  
 
 4630  0
     private static class DateTime {
 4631  
         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
 4632  
         static final char HOUR_0        = 'I'; // (01 - 12)
 4633  
         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
 4634  
         static final char HOUR          = 'l'; // (1 - 12) -- like I
 4635  
         static final char MINUTE        = 'M'; // (00 - 59)
 4636  
         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
 4637  
         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
 4638  
         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
 4639  
         static final char AM_PM         = 'p'; // (am or pm)
 4640  
         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
 4641  
         static final char SECOND        = 'S'; // (00 - 60 - leap second)
 4642  
         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
 4643  
         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
 4644  
         static final char ZONE          = 'Z'; // (symbol)
 4645  
 
 4646  
         // Date
 4647  
         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
 4648  
         static final char NAME_OF_DAY           = 'A'; // 'A'
 4649  
         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
 4650  
         static final char NAME_OF_MONTH         = 'B'; // 'B'
 4651  
         static final char CENTURY               = 'C'; // (00 - 99)
 4652  
         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
 4653  
         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
 4654  
         static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
 4655  
         static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
 4656  
         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
 4657  
         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
 4658  
         static final char MONTH                 = 'm'; // (01 - 12)
 4659  
         static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
 4660  
         static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (00 - 53) Sunday+
 4661  
         static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
 4662  
         static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
 4663  
         static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
 4664  
         static final char YEAR_2                = 'y'; // (00 - 99)
 4665  
         static final char YEAR_4                = 'Y'; // (0000 - 9999)
 4666  
 
 4667  
         // Composites
 4668  
         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
 4669  
         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
 4670  
         static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
 4671  
         static final char DATE_TIME             = 'c';
 4672  
                                             // (Sat Nov 04 12:02:33 EST 1999)
 4673  
         static final char DATE                  = 'D'; // (mm/dd/yy)
 4674  
         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
 4675  
         static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
 4676  
 
 4677  
         // Modifiers
 4678  
         static final char MODIFIER_E    = 'E'; // Modifier for alternative calendar
 4679  
 // *    static final char MODIFIER_O    = 'O'; // Modifier for alternative numeric
 4680  
 
 4681  
         static boolean isValid(char c, char c2) {
 4682  19
             switch (c) {
 4683  
             case HOUR_OF_DAY_0:
 4684  
             case HOUR_0:
 4685  
             case HOUR_OF_DAY:
 4686  
             case HOUR:
 4687  
             case MINUTE:
 4688  
             case NANOSECOND:
 4689  
             case MILLISECOND:
 4690  
             case MILLISECOND_SINCE_EPOCH:
 4691  
             case AM_PM:
 4692  
             case SECONDS_SINCE_EPOCH:
 4693  
             case SECOND:
 4694  
             case TIME:
 4695  
             case ZONE_NUMERIC:
 4696  
             case ZONE:
 4697  
 
 4698  
             // Date
 4699  
             case NAME_OF_DAY_ABBREV:
 4700  
             case NAME_OF_DAY:
 4701  
             case NAME_OF_MONTH_ABBREV:
 4702  
             case NAME_OF_MONTH:
 4703  
             case CENTURY:
 4704  
             case DAY_OF_MONTH_0:
 4705  
             case DAY_OF_MONTH:
 4706  
             case ISO_WEEK_OF_YEAR_2:
 4707  
             case ISO_WEEK_OF_YEAR_4:
 4708  
             case NAME_OF_MONTH_ABBREV_X:
 4709  
             case DAY_OF_YEAR:
 4710  
             case MONTH:
 4711  
             case DAY_OF_WEEK_1:
 4712  
             case WEEK_OF_YEAR_SUNDAY:
 4713  
             case WEEK_OF_YEAR_MONDAY_01:
 4714  
             case DAY_OF_WEEK_0:
 4715  
             case WEEK_OF_YEAR_MONDAY:
 4716  
             case YEAR_2:
 4717  
             case YEAR_4:
 4718  
 
 4719  
             // Composites
 4720  
             case TIME_12_HOUR:
 4721  
             case TIME_24_HOUR:
 4722  
             case LOCALE_TIME:
 4723  
             case DATE_TIME:
 4724  
             case DATE:
 4725  
             case ISO_STANDARD_DATE:
 4726  
             case LOCALE_DATE:
 4727  15
                 return true;
 4728  
 
 4729  
             // Modifiers
 4730  
             case MODIFIER_E:
 4731  4
                 switch (c2) {
 4732  
                 case DATE_TIME:
 4733  
                 case CENTURY:
 4734  
                 case LOCALE_DATE:
 4735  
                 case LOCALE_TIME:
 4736  
                 case YEAR_2: // offset from EC
 4737  4
                     return true;
 4738  
                 default:
 4739  0
                     return false;
 4740  
                 }
 4741  
             default:
 4742  0
                 return false;
 4743  
             }
 4744  
         }
 4745  
 
 4746  
         static boolean isLocalFormat(char c) {
 4747  19
             return (c == MODIFIER_E) || (c == LOCALE_DATE)
 4748  
                 || (c == LOCALE_TIME);
 4749  
         }
 4750  
     }
 4751  
 }