Optimally Hybrid-Secure MPC

Dominik Raub

Institute of Theoretical Computer Science
ETH Zirich

on joint work with
M. Fitzi, C. Lucas, U. Maurer

Tartu, 2009/10/05

Multi-Party Computation (MPC)

8

/’. ;':_’,-9.'
o7 . |
d 5

g
L -

I\/Iultl Party Computatlon (MPC)

* Voting

e Auctions

 Who is richest?

= privacy, correctness required

Multi-Party Computation (MPC)

& ; f@ l@

Multi-Party Computation (MPC)

1 1 t@s@

o \x

Generally
encompasses:

« Secure channels

* CRS for UC setting

» Optionally BC or PKI

Multi-Party Computation (MPC)

& 1 P
@

Multi-Party Computation (MPC)

Security Properties for MPC

« Correctness: protocol computes intended result
* Privacy: nobody learns more than intended

* Robustness: everybody receives intended result
« Fairness: everybody receives result, or nobody

« Agreement (on abort): all honest parties receive
their result or notification of failure

Security Paradigms for MPC

e Abort Security: agreement, privacy, correctness

» Fair Security: fairness, privacy, correctness

» Full Security: robustness, privacy, correctness

« |T Security: tolerates unbounded adversaries

« CO Security: tolerates computationally bounded
adversaries

Limitations for MPC with BC

 Fair security only for t < n/2 corrupted [Cle86]
o |T security only for t < n/2 [Kil0O]

 Full security for t1 and abort security for tz2 only if
t1 +t2<n [IKLPOB6], [Kat07]

 We cannot have IT full security always

= Trade-offs to be made
= Graceful degradation desired

= Hybrid Multi-Party Computation (HMPC)

Hybrid MPC (HMPC)

» Different guarantees depending on t:

- For t<I; full (robust) security

- For t<Is fair security

- For t<L abort security

* While tolerating:

- For t<tc; computationally unbounded adversaries
- For t<t, signature forgery
- For t<tp inconsistent PKls

= Graceful degradation

Limitations for HMPC with BC

 |T security fort < t; only if t; < n/2 [KilOOQ]
 Fair security fort < | only if |t < n/2 [Cle86]

 Full security for t<l; and abort security for t<L
only if I-+L < n [IKLPO06], [Kat07]

n

e Therefore: /2
tb<n/2 A lL<k<lL “I
A li<n/2 A l+b<n (1) i

Optimal Hybrid MPC (with BC)

f@ ™

‘/

\

s

O

@'

Goal: For any p < n/2

 IT full security fort<p

o |T fair security fort < n/2

« CO abort security fort < n-p

Optimal Hybrid MPC (with BC)

Goal: For any p < n/2
‘/ ~ ‘ « IT full security for t < p

o |IT fair security for t < n/2
« CO abort security for t < n-p

[GMW87], [CLOSO01]:
can be IT protected

Optimal Hybrid MPC (with BC)
‘@@ ‘@
Goal: For any p < n/2

‘/ ~ ‘ « IT full security for t < p

o |IT fair security for t < n/2
« CO abort security for t < n-p

Trusted =
IT fairness, correctness

Optimal Hybrid MPC (with BC)
‘@ ‘@ [Cha89]: emulate!

= honest for t < n/2 [RB89]
@ =t < n/2: IT fair, correct
$ =t > n/2: CO private, correct

e ™2
® 5 5

RN

Trusted =
IT fairness, correctness

Optimal Hybrid MPC (with BC)
‘@ ~1-(1 ' [Cha89]: emulate!

= honest for t < n/2 [RB89]
@ =t < n/2: IT fair, correct

e =t > n/2: CO private, correct
3/ ~&
”,. Use sharing qualifying all sets of
@ ‘ ‘ emulated and n-p actual parties
> \ / =t < p: IT robust, correct

e =t < n/2: IT fair, correct
@ =t < n-p: CO private, correct

/

Optimal Hybrid MPC (with BC)
‘@ (T Share inputs

=t < n/2: IT privacy
@ =t > n/2: no correctness

Optimal Hybrid MPC (with BC)
‘@ (T Share and commit

= Nno robustness or
@ = no correctness for t > n/2

Xj = XideS @ xjem

@% ‘\ &= \(C.o) com,,(xiem)
. (dees CI)

g \‘ = (xi¢M,0j)

Optimal Hybrid MPC (with BC)
‘@ ‘@ Share, commit, complain

=t < p: IT full security
@ =t < n/2: IT fair security

=t < n-p: CO abort security
3/ 8
® 3 F
A \ /

Xj = dees @ xjem

(ci,0i) =com (xieM)
| (dees C|)
e o ~B (xiem,0)

complaint? input x

Optimal Hybrid MPC (with BC) «/
np‘@ @ Share, commit, complain

=t < p: IT full security
@ =t < n/2: IT fair security

=1 < n-p: CO abort security
E \l

Xj = dees @ xjem

@% \ () ComH(Xiem)
) | (dees CI)
/ \ (xiem,0i)

complaint? input x

Hybrid MPC without BC or PK

 Fair security fort < l; only if s < n/2 [Cle86]
 IT security fort < t; only if t; < n/2 [KilOO

 Full security for t < |, and abort security fort < L
only if I, >0 = |+2L < n [FHHWO03]

+ Protocol m° with the BC from [FHHWO03]
achieves bound tc<n/2 N [<Ek<L)

AN li<n/2 N (>0=]+2L <n) (2) 3

* Improves over [FHHWO3] for p=0, which
makes no guarantees fort > n/2

Limits for MPC without BC, with PKI

L
 Tolerate inconsistent PKI for t < t, "

 Tolerate signature forgery fort < ts

n/2
n/3

* We achieve the following bounds 0 s
te<n/2 N [<Ek<L A lk<n/2 N I+L <n
A2ts+L<n A(th>0=1+2L <n) (3)
and prove them necessary for | = tp, 15

Hybrid MPC without BC, with PKI

« Protocol t* with a hybrid BC (HBC) for bounds
2s+T<n A (o >0=1+2T < n)
achieves bound (3) (where BC secure fort<T)

* Fort, > 0 treated in [FHWO04]

» Fort, = 0 and 2ts+T < n we provide an HBC
protocol achieving full BC T

- For t = 0 unconditionally

- For t < t; conditional on PKI consistency n/2
n/3

- For t < T conditional on unforgeability
and PKI consistency

BC with extended validity (BCEV)

» For 2ts+T < n and t,=-1 BCEV achieves:

- For t < t5 full broadcast

- For t < T validity, conditional on unforgeability

BC with extended validity (BCEV)

» For 2ts+T < n and t,=-1 BCEV achieves:

- For t < t5 full broadcast
- For t < T validity, conditional on unforgeabillity

1. Ps: multisend (m,os(m)); receive (x;, 0;)]

2. VP;: BGP((x;,04)); [VP; receive ((v)°,07?), (v],07))
SP0 = {07’ = v A 07 Pvalid);
SV = {jlv) = v A olvalid};

3. if |87 >n—T A |SI7%| =0 then y; == x; (I)
elsif |S?| > |S;| then y; := 0 else y; := 1 fi. (IT)

BCEV: Validity for t<T

p—t

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:)); [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

BCEV: Validity for t<T

p—t

validity:
Ps honest

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:)); [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

BCEV: Validity for t<T

validity: = (m,as(m))
Ps honest
1. P, multisend (m,os(m)); receive (xz,az

)
2. VP;: BGP((xi,0:)); [VP; receive ((v)°, "), (v],0]))
SUY = {jlv?? = v A o7 Ovalid};
S = {jlv! = v A olvalid};
3. if ST >n—T A |S/7™
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

= (then y; := z; (I)

BCEV: Validity for t<T

validity: for Pihonest = (m,gs(m))
Ps honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); receive (x;, 0;)]
2. VP BGP((21,04)); [VP; receive ((v]°,01"), (v],0]))

SP0 = L)’ = v A o7 valid);

SY = {jlv) = v A olvalid};
3. if ST >n—T A |S/7™

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

— 0 then y; := z; (I)

BCEV: Validity for t<T

validity: for Pihonest = (m,gs(m))
Ps honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); receive (x;, 0;)]
2. VP BGP((21,04)); [VP; receive ((v]°,01"), (v],0]))

SP0 = il = v A o7 valid);
SY = {jlv) = v A olvalid};

3. if ST >n—T A |S; "] =0 then y; := z; (T)
elsi/f\LSE\ > |S!| then y; := 0 else y; := 1 fi. (IT)

holds always
(for xi=m)

BCEV: Validity for t<T

validity: for Pjhonest = (m,o5(m))
PS honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); ﬁrecelve (xz,az)
2. WP BGP((xi,04)); [P receive ((v]°,07"), (v], o))

S77 = {jlv}” = v Aol valid}: [holds for t > to

S = {jlv! = v A olvalid}; (and xi=m)
3. if [SPP|>n—T A |S!7"| =0 then y; := (T)

elsi/f\LSE\ > |S}| then y; := 0 else y; := 1 fi. (IT)

holds always
(for xi=m)

BCEV: Validity for t<T

validity: secure for for Pjhonest = (m,o5(m))
Pshonest t<t;<n/3 = ((m,0s(m)), ?)

1. Py mUItiS/Zﬂf{ (m, os(m)); ﬁrecelve (xz,az

2. VP;: BGP((xi,0:)); [VP; receive ((v)°, "), (v!,0?)
Si = {jlv]” = v A o} valid}; [holds for t > to
SY = {jlv) = v A olvalid}; (and xi=m)

3. if ST >n—T A |S; "] =0 then y; := z; (T)
elsi/f\LSE\ > |S!| then y; := 0 else y; := 1 fi. (IT)

)
)

holds always
(for xi=m)

BCEV: Validity for t<T

validity: secure for for Pjhonest = (m,o5(m))
Pshonest t<t;<n/3 = ((m,0s(m)), ?)

1. Py mUItiS/Zﬂf{ (m, os(m)); ﬁrecelve (xz,az

2. VP;: BGP((xi,0:)); [VP; receive ((v)°, "), (v!,0?)
Si7 = {jlvl” = v A o valid}; [holds for t > to
S = {jlv! = v A olvalid}; (and xi=m)

3. if |87 >n—T A S| =0 then y; == x; (I)
elsi/f\LSE\ > |S!| then y; ;= 0 else y,; := 1 fi. (IT)

)
)

holds always

(for xi=m) holds for t < t; (and m=0)

BCEV: Consistency for t<ts

p—t

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:)); [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P,: multis/Zﬂ{ (m, os(m)); receive (x;, 0;)]
VP;: BGP((23,0:)); [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P.: multis/Zﬂ{ (m, os(m)); receive (x;,0;)

VP;: BGP((x;,0;)); VP, receive ((vj’o JJ’O), (’Uf,af))

A]

SUY = {jlv?? = v A o7 Ovalid}; S'=S}
SV = {jlv! = v A ojvalid};
if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3
P,: IIlU.ltiS/Zﬂ{ (m, os(m)); receive (x;, 0;)]
VP;: BGP((z;,0;)); |VP; receive (00, 7%, (v, o))
00 . (.50 0. 111,
S = {jlv]" = v Ao valid}; S'=S}
SV = {jlv] = v A olvalid};
if |SP°>n—T A |S]7"| =0 then y; := z, (I)

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

all decisions
here identical

BCEV: Consistency for t<ts

p—t

secure for

t < tc < n/3
P.: IIlU.ltiS/Zﬂ{ (m, os(m)); receive (x;,0;)
VP;: BGP((z;,0;)); |VP; receive (00, 7%, (v, o))
SP0 = il = v A o7 valid); SV=3\"

S,:) = {]"Uf = U AN ngahd}, 2 identiCal Sjv
if \Sfi’o >n—T A |S/7"] =0 then y; := x; (I)

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

all decisions
here identical

BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P.: multi (m, os(m));

VP;: BGP((z;, 0:)); P, receive ((vj’o o), (’Uf,af))
SUY = {jlv?? = v A o7 Ovalid}; SV=3\"

SY = {]\vf = v A ngalid};
if | ST
elsif |S7| > |S;| then y; :

all decisions
here identical

>n—T A |S/

jESVVejESY
for Pj honest

receive (x;, 0;)]

5,0

A]

2 identical S;"

= (then y; := z; (I)
= (0 else y; :=1 fi. (IT)

Hybrid Broadcast (HBC)

» For 2t:+T < nand t, = 0 HBC achieves
- Fort=0full BC

- For t <t full BC, conditional on PKI consistency

- For t < T full BC, conditional on unforgeability and
PKI consistency

 Protocol idea:

- Attempt detectable precomputation of a new PKI
[FHHWO3]; fall back to existing PKI

- Run an HBC for 2t5+T <n and tp =-1 constructed
from BCEV and DS

Hybrid Broadcast (HBC) for tp,=-1

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Security for t<tg

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Security for t<tg

1. P, DS(m); BC fort <1, receive d;]
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Security for t<tg

1. P, DS(m); BC fort <1, receive d;]
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); holds fort < to receive S7]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Consistency for to<t<T

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV(); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV(); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
consistent -1 { - fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV(); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid}; if holds then ...
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
consistent -1 { - fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Consistency for to<t<T

1. P DS(m % BC fort > to receive d;
2. Py BCEV(); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid}; if holds then ...
4. if . |MP| > n—1, then DS(M)
and i 1= U; receive S7| ()
else DS(0); | receive SY]
Sonaistanih I fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
£i also holds
for same v

fi

HBC: Validity for to<t<T

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV % guarantees validity [recelve b,
3. Multisend (bz, O'Z(b)); VP, receive (c!, o)
M? = {(7] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV(); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi

HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV(); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
f1 can only hold for v=m

fi

HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV(); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o)
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
. f1 m can only hold for v=m
i

Conclusions

« We provide optimal HMPC protocols and
matching tight bounds for the setting

- with BC
— without BC but with PKI
— without BC or PKI

« We treat possibly inconsistent PKls

* We consider signature forgery separately from
other (computational) assumptions

Summary of Results

« We provide HMPC protocols for the setting

— with BC under the bounds
te<n/2 AN I <E<L A k<n/2 AN [i+L<n

— without BC but with PKI under the bounds
te<n/2 N I <Ek<L A k<n/2 AN [i+L<n

N 2tc+L<n A (tp>0=1tp+2L<n)

— without BC or PKI under the bounds
tc<n/2 A <L A li<n/2 A (I>0=1+2L<n)

» Our bounds are tight, given |, > 1y, t5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

