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Multi-Party Computation (MPC)
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I\/Iultl Party Computatlon (MPC)

* Voting

e Auctions

 Who is richest?

= privacy, correctness required
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Multi-Party Computation (MPC)
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Generally
encompasses:

« Secure channels

* CRS for UC setting

» Optionally BC or PKI
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Multi-Party Computation (MPC)




Security Properties for MPC

« Correctness: protocol computes intended result
* Privacy: nobody learns more than intended

* Robustness: everybody receives intended result
« Fairness: everybody receives result, or nobody

« Agreement (on abort): all honest parties receive
their result or notification of failure



Security Paradigms for MPC

e Abort Security: agreement, privacy, correctness

» Fair Security: fairness, privacy, correctness

» Full Security: robustness, privacy, correctness

« |T Security: tolerates unbounded adversaries

« CO Security: tolerates computationally bounded
adversaries



Limitations for MPC with BC

 Fair security only for t < n/2 corrupted [Cle86]
o |T security only for t < n/2 [Kil0O]

 Full security for t1 and abort security for tz2 only if
t1 +t2<n [IKLPOB6], [Kat07]

 We cannot have IT full security always

= Trade-offs to be made
= Graceful degradation desired

= Hybrid Multi-Party Computation (HMPC)



Hybrid MPC (HMPC)

» Different guarantees depending on t:

- For t<I; full (robust) security

- For t<Is fair security

- For t<L abort security

* While tolerating:

- For t<tc; computationally unbounded adversaries
- For t<t, signature forgery
- For t<tp inconsistent PKls

= Graceful degradation



Limitations for HMPC with BC

 |T security fort < t; only if t; < n/2 [KilOOQ]
 Fair security fort < | only if |t < n/2 [Cle86]

 Full security for t<l; and abort security for t<L
only if I-+L < n [IKLPO06], [Kat07]

n

e Therefore: /2
tb<n/2 A lL<k<lL “I
A li<n/2 A l+b<n (1) i




Optimal Hybrid MPC (with BC)
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Goal: For any p < n/2

 IT full security fort<p

o |T fair security fort < n/2

« CO abort security fort < n-p



Optimal Hybrid MPC (with BC)

Goal: For any p < n/2
‘/ ~ ‘ « IT full security for t < p

o |IT fair security for t < n/2
« CO abort security for t < n-p

[GMW87], [CLOSO01]:
can be IT protected




Optimal Hybrid MPC (with BC)
‘@@ ‘@
Goal: For any p < n/2

‘/ ~ ‘ « IT full security for t < p

o |IT fair security for t < n/2
« CO abort security for t < n-p

Trusted =
IT fairness, correctness




Optimal Hybrid MPC (with BC)
‘@ ‘@ [Cha89]: emulate!

= honest for t < n/2 [RB89]
@ =t < n/2: IT fair, correct
$ =t > n/2: CO private, correct
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Trusted =
IT fairness, correctness




Optimal Hybrid MPC (with BC)
‘@ ~1-(1 ' [Cha89]: emulate!

= honest for t < n/2 [RB89]
@ =t < n/2: IT fair, correct

e =t > n/2: CO private, correct
3/ ~&
”,. Use sharing qualifying all sets of
@ ‘ ‘ emulated and n-p actual parties
> \ / =t < p: IT robust, correct

e =t < n/2: IT fair, correct
@ =t < n-p: CO private, correct

/



Optimal Hybrid MPC (with BC)
‘@ (T  Share inputs

=t < n/2: IT privacy
@ =t > n/2: no correctness



Optimal Hybrid MPC (with BC)
‘@ (T  Share and commit

= Nno robustness  or
@ = no correctness for t > n/2

Xj = XideS @ xjem

@% ‘\ &= \(C.o) com,,(xiem)
. (dees CI)

g \‘ = (xi¢M,0j)



Optimal Hybrid MPC (with BC)
‘@ ‘@ Share, commit, complain

=t < p: IT full security
@ =t < n/2: IT fair security

=t < n-p: CO abort security
3/ 8
® 3 F
A \ /

Xj = dees @ xjem

(ci,0i) =com (xieM)
| (dees C|)
e o ~B (xiem,0)

complaint? input x



Optimal Hybrid MPC (with BC) «/
np‘@ @ Share, commit, complain

=t < p: IT full security
@ =t < n/2: IT fair security

=1 < n-p: CO abort security
E \l

Xj = dees @ xjem

@% \ ( ) ComH(Xiem)
) | (dees CI)
/ \ (xiem,0i)

complaint? input x



Hybrid MPC without BC or PK

 Fair security fort < l; only if s < n/2 [Cle86]
 IT security fort < t; only if t; < n/2 [KilOO

 Full security for t < |, and abort security fort < L
only if I, >0 = |+2L < n [FHHWO03]

+ Protocol m° with the BC from [FHHWO03]
achieves bound tc<n/2 N [ <Ek<L )

AN li<n/2 N (>0=]+2L <n) (2) 3

* Improves over [FHHWO3] for p=0, which
makes no guarantees fort > n/2




Limits for MPC without BC, with PKI

L
 Tolerate inconsistent PKI for t < t, "

 Tolerate signature forgery fort < ts

n/2
n/3

* We achieve the following bounds 0 s
te<n/2 N [<Ek<L A lk<n/2 N I+L <n
A2ts+L<n A(th>0=1+2L <n) (3)
and prove them necessary for | = tp, 15



Hybrid MPC without BC, with PKI

« Protocol t* with a hybrid BC (HBC) for bounds
2s+T<n A (o >0=1+2T < n)
achieves bound (3) (where BC secure fort<T)

* Fort, > 0 treated in [FHWO04]

» Fort, = 0 and 2ts+T < n we provide an HBC
protocol achieving full BC T

- For t = 0 unconditionally

- For t < t; conditional on PKI consistency n/2
n/3

- For t < T conditional on unforgeability
and PKI consistency




BC with extended validity (BCEV)

» For 2ts+T < n and t,=-1 BCEV achieves:

- For t < t5 full broadcast

- For t < T validity, conditional on unforgeability



BC with extended validity (BCEV)

» For 2ts+T < n and t,=-1 BCEV achieves:

- For t < t5 full broadcast
- For t < T validity, conditional on unforgeabillity

1. Ps: multisend (m,os(m)); receive (x;, 0;)]

2. VP;: BGP((x;,04));  [VP; receive ((v)°,07?), (v],07))
SP0 = {07’ = v A 07 Pvalid);
SV = {jlv) = v A olvalid};

3. if |87 >n—T A |SI7%| =0 then y; == x; (I)
elsif |S?| > |S;| then y; := 0 else y; := 1 fi. (IT)




BCEV: Validity for t<T

p—t

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:));  [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)




BCEV: Validity for t<T

p—t

validity:
Ps honest

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:));  [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)




BCEV: Validity for t<T

validity: = (m,as(m))
Ps honest
1. P, multisend (m,os(m)); receive (xz,az

)
2. VP;: BGP((xi,0:));  [VP; receive ((v)°, "), (v],0]))
SUY = {jlv?? = v A o7 Ovalid};
S = {jlv! = v A olvalid};
3. if ST >n—T A |S/7™
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

= ( then y; := z; (I)



BCEV: Validity for t<T

validity: for Pihonest = (m,gs(m))
Ps honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); receive (x;, 0;)]
2. VP BGP((21,04));  [VP; receive ((v]°,01"), (v],0]))

SP0 = L)’ = v A o7 valid);

SY = {jlv) = v A olvalid};
3. if ST >n—T A |S/7™

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

— 0 then y; := z; (I)



BCEV: Validity for t<T

validity: for Pihonest = (m,gs(m))
Ps honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); receive (x;, 0;)]
2. VP BGP((21,04));  [VP; receive ((v]°,01"), (v],0]))

SP0 = il = v A o7 valid);
SY = {jlv) = v A olvalid};

3. if ST >n—T A |S; "] =0 then y; := z; (T)
elsi/f\LSE\ > |S!| then y; := 0 else y; := 1 fi. (IT)

holds always
(for xi=m)




BCEV: Validity for t<T

validity: for Pjhonest = (m,o5(m))
PS honest = ((m,Gs(m)), ?)
1. P, multisend (m,os(m)); ﬁrecelve (xz,az)
2. WP BGP((xi,04)); [P receive ((v]°,07"), (v], o))

S77 = {jlv}” = v Aol valid}: [holds for t > to

S = {jlv! = v A olvalid}; (and xi=m)
3. if [SPP|>n—T A |S!7"| =0 then y; := (T)

elsi/f\LSE\ > |S}| then y; := 0 else y; := 1 fi. (IT)

holds always
(for xi=m)




BCEV: Validity for t<T

validity: secure for for Pjhonest = (m,o5(m))
Pshonest t<t;<n/3 = ((m,0s(m)), ?)

1. Py mUItiS/Zﬂf{ (m, os(m)); ﬁrecelve (xz,az

2. VP;: BGP((xi,0:));  [VP; receive ((v)°, "), (v!,0?)
Si = {jlv]” = v A o} valid}; [holds for t > to
SY = {jlv) = v A olvalid}; (and xi=m)

3. if ST >n—T A |S; "] =0 then y; := z; (T)
elsi/f\LSE\ > |S!| then y; := 0 else y; := 1 fi. (IT)

)
)

holds always
(for xi=m)




BCEV: Validity for t<T

validity: secure for for Pjhonest = (m,o5(m))
Pshonest t<t;<n/3 = ((m,0s(m)), ?)

1. Py mUItiS/Zﬂf{ (m, os(m)); ﬁrecelve (xz,az

2. VP;: BGP((xi,0:));  [VP; receive ((v)°, "), (v!,0?)
Si7 = {jlvl” = v A o valid}; [holds for t > to
S = {jlv! = v A olvalid}; (and xi=m)

3. if |87 >n—T A S| =0 then y; == x; (I)
elsi/f\LSE\ > |S!| then y; ;= 0 else y,; := 1 fi. (IT)

)
)

holds always

(for xi=m) holds for t < t; (and m=0)




BCEV: Consistency for t<ts

p—t

P.: multisend (m, os(m)); receive (x;, 0;)]
VP;: BGP((2;,0:));  [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)




BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P,: multis/Zﬂ{ (m, os(m)); receive (x;, 0;)]
VP;: BGP((23,0:));  [VP; receive ((v)°,07°), (v!,0]))
S0 = {j|v)? = v A o Pvalid};

S = {jlv] = v A olvalid};

if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)




BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P.: multis/Zﬂ{ (m, os(m)); receive (x;,0;)

VP;: BGP((x;,0;)); VP, receive ((vj’o JJ’O), (’Uf,af))

A ]

SUY = {jlv?? = v A o7 Ovalid}; S'=S}
SV = {jlv! = v A ojvalid};
if |SP°>n—T A |S]7"| =0 then y; := z, (I)
elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)




BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3
P,: IIlU.ltiS/Zﬂ{ (m, os(m)); receive (x;, 0;)]
VP;: BGP((z;,0;));  |VP; receive (00, 7%, (v, o))
00 . (.50 0. 111,
S = {jlv]" = v Ao valid}; S'=S}
SV = {jlv] = v A olvalid};
if |SP°>n—T A |S]7"| =0 then y; := z, (I)

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

all decisions
here identical




BCEV: Consistency for t<ts

p—t

secure for

t < tc < n/3
P.: IIlU.ltiS/Zﬂ{ (m, os(m)); receive (x;,0;)
VP;: BGP((z;,0;));  |VP; receive (00, 7%, (v, o))
SP0 = il = v A o7 valid); SV=3\"

S,:) = {]"Uf = U AN ngahd}, 2 identiCal Sjv
if \Sfi’o >n—T A |S/7"] =0 then y; := x; (I)

elsif |S?| > |S;}| then y; := 0 else y; := 1 fi. (IT)

all decisions
here identical




BCEV: Consistency for t<ts

p—t

secure for
t < tc < n/3

P.: multi (m, os(m));

VP;: BGP((z;, 0:)); P, receive ((vj’o o), (’Uf,af))
SUY = {jlv?? = v A o7 Ovalid}; SV=3\"

SY = {]\vf = v A ngalid};
if | ST
elsif |S7| > |S;| then y; :

all decisions
here identical

>n—T A |S/

jESVVejESY
for Pj honest

receive (x;, 0;)]

5,0

A ]

2 identical S;"

= ( then y; := z; (I)
= (0 else y; :=1 fi. (IT)




Hybrid Broadcast (HBC)

» For 2t:+T < nand t, = 0 HBC achieves
- Fort=0full BC

- For t <t full BC, conditional on PKI consistency

- For t < T full BC, conditional on unforgeability and
PKI consistency

 Protocol idea:

- Attempt detectable precomputation of a new PKI
[FHHWO3]; fall back to existing PKI

- Run an HBC for 2t5+T <n and tp =-1 constructed
from BCEV and DS



Hybrid Broadcast (HBC) for tp,=-1

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Security for t<tg

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Security for t<tg

1. P, DS(m); BC fort <1, receive d;]
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Security for t<tg

1. P, DS(m); BC fort <1, receive d;]
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); holds fort < to receive S7]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Consistency for to<t<T

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV( ); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV( ); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
consistent -1 { - fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Consistency for to<t<T

1. Ps: DS(m % BC fort > to receive d;
2. Py BCEV( ); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid}; if holds then ...
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
consistent -1 { - fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Consistency for to<t<T

1. P DS(m % BC fort > to receive d;
2. Py BCEV( ); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid}; if holds then ...
4. if . |MP| > n—1, then DS(M)
and i 1= U; receive S7| ()
else DS(0); | receive SY]
Sonaistanih I fujand a set S of valid signatures on v
fortst, and S| > n —t, then y; 1= v; (IT)
else y; 1= d;; (I1T)
£i also holds
for same v

fi



HBC: Validity for to<t<T

1. Py DS(m); receive d;)
2. Pg: BCEV(m); receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV % guarantees validity [recelve b,
3. Multisend (bz, O'Z(b )); VP, receive (c!, o )
M? = {(7 ] = v A o?valid};
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV( ); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
fi

fi



HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV( ); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
f1 can only hold for v=m

fi



HBC: Validity for to<t<T

1. P,: DS(m % BC fort>1o receive d;]
2. Py BCEV( ); % guarantees validity = |receive b;
3. Multisend (b;, 0(b;)); VP, receive (c!, o )
M? = {(7 |¢} = v A olvalid};| can only hold for v=m
4. if . |M?| > n —t, then DS(M})
and Yi 1= U; receive S7] (1)
else DS(0); receive 5]
If 3 v and a set S? of valid signatures on v
and |S7| > n —t, then y; := v; (IT)
else y; 1= d;; (I1T)
. f1 m can only hold for v=m
i



Conclusions

« We provide optimal HMPC protocols and
matching tight bounds for the setting

- with BC
— without BC but with PKI
— without BC or PKI

« We treat possibly inconsistent PKls

* We consider signature forgery separately from
other (computational) assumptions






Summary of Results

« We provide HMPC protocols for the setting

— with BC under the bounds
te<n/2 AN I <E<L A k<n/2 AN [i+L<n

— without BC but with PKI under the bounds
te<n/2 N I <Ek<L A k<n/2 AN [i+L<n

N 2tc+L<n A (tp>0=1tp+2L<n)

— without BC or PKI under the bounds
tc<n/2 A <L A li<n/2 A (I>0=1+2L<n)

» Our bounds are tight, given |, > 1y, t5
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