Accountable Certificate Management using Undeniable Attestations

Ahto Buldas Küberneetika AS (Estonia) & U. of Tartu (Estonia)

ahto.buldas@cyber.ee

Peeter Laud Universität des Saarlandes (Germany)

laud@cs.uni-sb.de

Helger Lipmaa Helsinki U. of Technology (Finland) & U. of Tartu (Estonia)

helger@tml.hut.fi

ACM CCS 2000

Motivations

• Our main motivation: law and order* with help of digital signatures

★ For this one needs certificate management

- For law and order one needs the court
 - ★ Court = our roots
- Let us look at what happens in court ...

 *Warning! This is continuation of work, originally financed by lawyers from Estonian government

 ACM CCS 2000
 Accountable Certificate Management using Undeniable Attestations

We are now in court . . . 1

• Can the judge solve the case, given an evidence?

ACM CCS 2000

We are now in court ... 2

• Mostly not! Somebody could create a counter-evidence

ACM CCS 2000

We are now in court ... 3

• Solution: make creating of counter-evidence impossible!

ACM CCS 2000

Accountable Certificate Management (ACM)

- *Undeniability* = no possibility of "counter-evidence":
 - If a certificate was valid, nobody can "attest" it was invalid (no false negatives)
 - If a certificate was invalid, nobody can "attest" it was valid (no false positives)
- In ACM, certificates are accompanied with *undeniable attestations*

Model of Accountable Certificate Management 1

- The CA maintains the database S of valid certificates
- Certificate issuing and removal procedures are observed by a notary
 - * Other operations should not be (nor are) audited!
- Certificate x is accompanied by undeniable attestation P(x, S) of status of $x \stackrel{?}{\in} S$
- For their own sake, clients should store the attestations ("evidence")

ACM CCS 2000

Model of Accountable Certificate Management 2

• After the end of current round, *digest* D(S) of the database is published in "New York Times"

* In many ways, model is the same as in time-stamping!

* E.g., we do not use public-key cryptography

• Verifier obtains certificate x, digest d and attestation p.

* $V(x, d, p) \stackrel{?}{=} \text{Accept.}$

ACM CCS 2000

Undeniable Attesters

- Attester = triple (P, D, V) of efficient algorithms.
- For "correct" inputs x, D(S), P(x, S):

 $V(x, D(S), P(x, S)) = \text{Accept} \iff x \in S$

- Attester is undeniable if it is intractable to create a tuple (x, d, p, p),
 s.t. V(x, d, p) = Accept but V(x, d, p) = Reject.
- That is, in court, (x, d, p) is an evidence s.t. there does not exist counter-evidence.

ACM CCS 2000

Some examples

List Take P(x, S) = S, D(S) = h(S): $V(x, d, S) = \text{Accept iff } x \in S \text{ and } d = h(S)$ Inefficient if $|S| \ge 10^3$. (Similar to CRLs!)

Hash Tree Can prove efficiently that $x \in S$, but not that $x \notin S$. (Similar to Merkle's hash trees)

Sorted Hash Tree (Similar to CRTs) Can do both efficiently ...

- but it is tractable to create counter-evidence!
- Where does the sorted hash tree fail?

ACM CCS 2000

Sorted Hash Tree

- The CA can leave the tree unsorted!
- Tracing this would need access to whole S
- We need more efficient way of detecting the "non-sorting attack"

ACM CCS 2000

Our Solution: Authenticated Search Trees

Attestation p that $30 \in S$ = attestation \overline{p} that $31 \notin S$.

- \forall node v is associated with $K[v] \in S$; $S[v] = h(S[v_{\ell}], \underline{K[v]}, S[v_r])$
- If v' is in left subtree of v then K[v'] < K[v]If v' is in right subtree of v then K[v'] > K[v]

ACM CCS 2000

Security Analysis

Theorem If *h* is a CRHF then authenticated search tree attester is undeniable.

Proof Idea. Doing local verifications is sufficient!

Theorem If an undeniable attester exists then there exists also a CRHF.

ACM CCS 2000

Comparison

Method	Attestation length	$k = 160, S = 10^7$
List	k S	191 MB
Ours	$2k \log_2 S $	930 B
Gain:	$\frac{ S }{2\log_2 S }$	> 200, 000 times

- Our solution is 200,000 times more efficient than the list attester :-)
- The sorted hash tree attester has still twice shorter attestations :-(

More about Efficiency

Attestations can be compressed by *standard* compression methods, such that the worst case attestation length is $k(n+1) + \frac{n^2+n}{2}$, where in practice $n = \log_2 |S| \ll \sqrt{k}$.

Method	Attestation length	$k = 160, S = 10^7$
List	$k\cdot 2^n$	191 MB
Ours	2kn	930 B
Ours (compressed)	$k(n+1) + \frac{n^2+n}{2}$	520 B
SHT (insecure)	kn	465 B

ACM CCS 2000

<u>Conclusions</u>

- New model for accountable certificate management
 - * It should be intractable to create counter-evidence!
- Security of our model \leftarrow security of new primitive, *undeniable attester*
- We proposed an efficient construction of the latter
- New methods in cryptography:
 - \star authenticated search trees
 - * standard compression methods

ACM CCS 2000

More information

- Webpage:
 - * http://www.tml.hut.fi/~helger/cuculus
- Email me (helger@tml.hut.fi)
- Or ask here (now or later)!